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Abstract

This study presents a novel Adaptive resonance theory-Counterpropagation neural network (ART-CPN) for solving forecasting problems.

The network is based on the ART concept and the CPN learning algorithm for constructing the neural network. The vigilance parameter is

used to automatically generate the nodes of the cluster layer for the CPN learning process. This process improves the initial weight problem

and the adaptive nodes of the cluster layer (Kohonen layer). ART-CPN involves real-time learning and is capable of developing a more stable

and plastic prediction model of input patterns by self-organization. The advantages of ART-CPN include the ability to cluster, learn and

construct the network model for forecasting problems. The network was applied to solve the real forecasting problems. The learning

algorithm revealed better learning efficiency and good prediction performance.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Many neural networks are used for solving forecasting

problems. The forecasting network model is a supervised

learning algorithm on a neural network. The network

models include the backpropagation (BP), radial basis

function (RBF) and conterpropagation network (CPN)

models (Chun & Kim, 2004; Kim, Jeong, & Lee, 2003;

Shi, Xu, & Liu 1999). The counterpropagation network was

introduced by Hecht-Nielsen (1988). CPN was designed to

provide an efficient learning algorithm for solving the

function approximation problem yZf(x) and the forecasting

problem (Chang & Chen, 2001). The full CPN works best

only when the inverse function fK1 exists. The forward-only

CPN is designed to approximate yZf(x) when fK1 dose not

need. The forward-only CPN consists of three layers: input,

cluster (Kohonen), and output (Grossberg) layers. The

learning of CPN can be split into two stages that combine

unsupervised and supervised learning. During the first stage,
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the input vectors are clustered and the weight of cluster

nodes is determined. During the second stage, the weights

from the cluster nodes to the output nodes are adapted to

produce the desired response (target output). The supervised

learning reduces the errors between the CPN outputs and the

desired target.

Adaptive resonance theory (ART) was developed by

Carpenter and Grossberg. ART nets are a famous unsuper-

vised learning algorithm. This algorithm can automatically

find the adaptive clusters based on training patterns. The

ART net clustering result is affected by a lower change

value of the vigilance parameter. CPN is a supervised neural

network that based on the Kohonen learning vector

quantization. The learning vector quantization algorithm

depends on the approximately optimal number of codebook

vectors assigned to each cluster and their initial weights

(Kohonen, Hynninen, Laaksonen, & Torkkola, 1995). This

study proposes a new neural network called ART-CPN. This

network uses the vigilance parameter to generate the cluster

layer. In the train process, the learning algorithm sets the

vigilance parameter of the input layer (rx) to generate new

nodes of cluster layer. The net can automatically create the

nodes of the cluster layer and their initial weights.
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Fig. 1. Forward-only conterpropagation.

T.-C. Liu, R.-K. Li / Expert Systems with Applications 28 (2005) 21–2722
Moreover, the weights of each layer are adjusted based on

the CPN leaning rule.

This study introduces a new neural network for solving

forecasting problems using a modified CPN algorithm.

ART-CPN was applied to forecast the Box-Jenins furnace

data and the lead frame dimension in the etching process for

semiconductors. Compared with the conventional neural

network, that is the standard backpropagation network

(BPN). ART-CPN showed better learning efficiency and

good prediction performance for solving forecasting

problems.

The rest of this paper is organized as follows. Section 2

describes ART and CPN neural network architectures and

the learning algorithm. Section 3 then describes ART-CPN

neural network. Subsequently, Section 4 examines the

performance of proposed method by computer simulation

on benchmark Box-Jenins furnace data and predicting the

lead frame dimension. Finally, Section 5 discusses the

results and draws conclusions.
2. Adaptive resonance theory and forward-only

conterpropagation network

Adaptive resonance theory was developed by Carpenter

and Grossberg. ART nets are designed to control the degree

of similarity of patterns place on the same cluster unit. The

system is sufficiently stable against noise to enable learning,

and is sufficiently plastic to learn new input vectors without

affecting already learned results. ART networks can develop

stable and plastic clustering of arbitrary sequences of input

patterns by self-organization. Upon receiving an input

pattern, the network attempts to categorize it by first

comparing it against the stored weight vectors of existing

categories. If a category with the required matching level

(vigilance parameter) is identified, then the network training

enters a so-called resonant state, and learns by modifying its

weight vectors in the learning process. ART has since led to

an evolving series of real-time neural network models for

unsupervised and supervised leaning. These neural models

are capable of learning stable recognition categories in

response to arbitrary input sequences with either fast or slow

learning (Yang, Han, & Kim, 2004). Model families include

ART1 (Carpenter & Grossberg, 1987a), which can stably

learn to categorize binary input patterns presented in an

arbitrary order; ART2 (Carpenter & Grossberg, 1987b),

which can learn to categorize either analog or binary input

patterns; ART3 (Carpenter & Grossberg, 1990), which can

carry out parallel search, or hypothesis testing of distribution

recognition code in a multilevel network hierarchy and Fuzzy

ART (Carpenter, Grossberg, & David, 1991) developed

herein generalizes ART1 as being capable of learning stable

recognition categories in response to both analog and binary

input patterns.

The forward-only conterpropagation network is a

combination of a portion of the Kohonen self-organizing
map and the output layer. Fig. 1 illustrates the architecture

of the CPN, which appears to be same that of the

backpropagation net. The net consists of three layers:

input layer, cluster layer (Kohonen layer) and output layer

(Grossberg layer). The training procedure for the CPN

comprises two steps. First, an input vector is presented to the

input node. The nodes in the cluster layer then compete

(winner take all) for the right to learn the input vector. The

weights of the network are adjusted automatically during the

learning process. Unsupervised learning is used in this step

to cluster the input vector to separate distinct clusters of

input data. Second, the weight vectors between the cluster

and output layers are adjusted using supervised learning to

reduce the errors between the CPN outputs and the

corresponding desired target outputs.

During the first step, the Euclidean distance between

the input and weight vectors is calculated. The winner

node is selected based on comparing the input vector

X(x1,x2,.,xn)T and the weight vectors vij(w1j,w2j,.,wnj)
T.

The winning node zj has the weight vector wjk(w1j,w2j,.,

wnj)
T, winner-take-all operation that permits this cluster

node J to be the most similar to the input vector. The

weights of the cluster node J are adjusted. The weight vector

of the winner is updated according to

vnew
iJ Z vold

iJ Caðxi Kvold
iJ Þ (1)

where a denotes the learning rate and xi represents the ith

node of input layer.

After training the weights from the input layer to the

cluster layer, the weights from the cluster layer to output

layer are trained. Each training pattern inputs the input

layer, and the associated target vector is presented to the

output layer. The competitive signal is a binary variable,

assuming a value of 1 for the winning node and a value of 0

for other nodes of the cluster layer. Each output node k has a

calculated input signal wJk and target output yk. The weights

between the winning cluster node and the output layer nodes

are updated as follows:

wnew
Jk Z wold

Jk Cbðyk Kwold
Jk Þ (2)
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where wJk denotes the weights from the cluster layer to output

layer, and b represents the learning rate. The competitive

signal of cluster layer zj is computed by

zj Z
1 if j Z J; J is winning node

0 otherwise

(
(3)

and the output node k is given by

ŷk Z
Xp

jZ1

wjkzj (4)

ŷk is the CPN kth computed output.

The CPN classifies the input vector to most similar

cluster nodes, and then outputs the prediction result. The

learning speed of CPN is fast compared to other neural

networks owing to the use of the efficient learning algorithm

for solving forecasting problems. The CPN can compress

the m input patterns to p clusters where in general p!m. The

adaptive p cluster nodes determine the accuracy of the

network output. The next paragraph develops a new ART-

CPN network to automatically generate the adaptive nodes

of the cluster layer. The network was applied to solve the

real forecasting problems.
3. ART-CPN neural network

Adaptive resonance theory nets are designed to allow the

user to control the degree of similarity of patterns placed on

the same cluster. The adaptive resonance theory algorithm

proposed by Grossberg is a special neural network that can

cluster the training patterns. Meanwhile, the CNN-ART

algorithm (Lin & Yu, 2003) can dynamically generate the

nodes of the cluster layer. The appropriate initial weight

vectors (codebook vectors) can be obtained in contrast to the

conventional unsupervised learning algorithms. The ART-

CPN combines the adaptive resonance theory and con-

terpropagation network to develop a new prediction

network model. The algorithm redesigns the relative

similarity between the input vector and the weight vectors

for a cluster node. The vigilance parameters make the

network automatically generate the nodes of the cluster

layer and adaptive initial weights between the input layer,

cluster layer and output layer. The ART-CPN algorithm can

derive the Kohonen and Grossberg learning rule for

updating the weights of the winning node. The network

has fast learning speed and good prediction performance.
3.1. Similarity and architecture

Pattern recognition systems are designed to find the

similarly vector from random training vectors. From the

geometric perspective, the similarity of two vectors is

the distance metric of the two different vectors (patterns).

The p-norm metric is commonly used, and was defined as
follows (Han & Kamber, 2001)

X Z ½x1; x2; x3;.; xn�
T and Y Z ½y1; y2; y3;.; yn�

T

p-norm metric

kX KYkh
Xn

iZ1

jxi Kyij
p

 !1=p

; 1%p%N: (5)

The following conditions must be satisfied:

C1 : dðx; yÞR0 (6)

C2 : dðx; yÞ Z dðy; xÞ (7)

C3 : dðx; yÞ%dðx; zÞCdðz; yÞ (8)

The p-norm is generally used to determine whether two

patterns are the same class. The distance between two

vectors is as follows (Han & Kamber, 2001):

p Z 1; kX KYk1

Z
Xn

iZ1

jxi Kyij; is the Manhattan distance: (9)

p Z 2; kX KYk1

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

iZ1

jxi Kyij
2

s
; is the Euclidean distance: (10)

The competition learning law uses the Euclidean

distance to determine the winner. The distance calculates

the Euclidean distance between the input vector and weight

vectors, and the winner unit whose weight vector has the

smallest Euclidean distance from the input vector. ART-

CPN uses the mean of Manhattan distance to calculate the

similarity between the input and weight vectors. Consider

m unlabeled training patterns to have n-dimensional

attributes using a set of the vectors (X1,X2,.Xm), the

similarity between two vectors X1 and X2 is calculated as

follows:

X1 Z ½x11; x12; x13;.; x1n�
T and

X2 Z ½x21; x22; x23;.; x2n�
T have n � dimensional attributes:

Distance components of two vectors for x11,x21:

Dsðx11;x21Þ
Z

jx11 Kx21j

max xm1 Kmin xm1

;

x11;x12 3X1;X2 for first attribute of X1;X2 ð11Þ

Similarity between two vectors ðVsðX1;X2Þ
Þ between

X1 and X2:

DsðX1;X2Þ
Z

Pn
iZ1 Dsðxi ;x2iÞ

n
;

the mean of DsðX1;X2Þ
for n � dimensional vector: ð12Þ



Fig. 2. The architecture of ART-CPN.
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VsðX1;X2Þ
Z 1 KDsðX1;X2Þ

;

Vs is defined as the similarity between X1 and X2: ð13Þ

The major difference between ART and unsupervised

neural networks is the vigilance parameter (r). The ART

defines the similarity between a new pattern and a stored

pattern. This similarity is compared to r as a measure to

ensure that the new pattern is properly classified or that a

new cluster is generated. ART-CPN defines the vector

similarity (Vs) that VsRr creates the new node for the CPN

cluster layer. Fig. 2 shows the architecture of ART-CPN

network. The net develops a new method to generate the

adaptive nodes of the cluster layer. The first input vector

(first vij) and target vector (first wjk) are used directly to

establish the initial cluster node. The similarity of the

vector ðVsðXjÞ
Þ is calculated between the input vector (X)

and weight vector (vij). The maximum VsðXjÞ
is the winning

node. Moreover, the winning node is index J. rX is the

vigilance parameters of the weight vectors (viJ). If the

VsðXJ Þ
!rX is true, the cluster nodes are added one node to

cluster layer. Additionally, if VsðXJ Þ
RrX is true to represent

the input vector that belongs to weight vector (same

cluster), the Kohonen learning algorithm adjusts the

weights of viJ and the Grosesberg learning algorithm

adjusts the weights of ðwJkÞ: The network uses real-time

learning to generate dynamically the nodes of cluster layer

in the training process.

3.2. The ART-CPN algorithm

The training procedure for the forward-only counter-

propagation net includes two steps in learning process. The

ART-CPN simultaneously trains the weights of the input

layer, cluster layer and output layer. An input vector (X)

presents to the cluster node that the VsðXjÞ
of the weight

vector (vij) is calculated. Each training vector is presented to

the input layer, and the associated target vector is presented

to the output layer. The nodes in the cluster layer compete

(winner-take-all) for the right to learn the input vector. The

maximum VsðXjÞ
is the winning node (call its index J).
The winning node sends a signal of 1 to the output layer.

Each output node k has a calculated input signal wJk and

target vector. The learning rule updates the weights of the

winning nodes. Meanwhile, the learning rule updates the

weights from the input layer to the cluster nodes:

vnew
iJ Z vold

iJ Caðxi Kvold
iJ Þ (14)

J denotes the winning node.

The learning rule updates the weights from the cluster

nodes to the output layer:

wnew
Jk Z wold

iJ Cbðyk Kwold
Jk Þ (15)

The competitive signal of cluster layer zj is computed by

zj Z
1 if j Z J; J is winning node

0 otherwise

(
(16)

The learning rule for the weights from the cluster

nodes to the output nodes can be expressed using the delta

rule:

wnew
Jk Z wold

iJ Cbzjðyk Kwold
Jk Þ (17)

The training of the weights from the input nodes to the

cluster nodes continues at a low learning rate with

gradually reducing learning rate for the weights from the

cluster nodes to the output nodes. The nomenclature used is

as follows:
X(x1,.,xn)
 input vector.
Y(y1,.,yk)
 target vector.
VsðXjÞ

similarity of vector between the input and

weight vectors of cluster node j.
rX
 vigilance parameter of input vector (0.8–0.9).
C
 learning epochs.
a,b
 learning rate (0.04–0.1).
vxJ, wJk
 weights of the winner cluster nodes (J).
Table 1 lists a pseudo-code of the ART-CPN algorithm.

Setting the vigilance parameter can generate the number of

the cluster nodes. If the vigilance is set to be high, then it

gathers a large number of cluster nodes. After training, the

weights of the cluster nodes are distributed in a statistically

optimal manner that improves the accuracy performance.

The learning speed of ART-CPN is extremely fast due to

the one step learning process and the efficient learning

algorithm.

In the testing process, only input data is required for the

network model to operate when the ART-CPN is used for

the prediction. The application procedure for ART-CPN is

as follows:

Step 1. Present input vector X.

Step 2. Compute VsðXjÞ
;

Find the node J that is maximum VsðXJ Þ
:

Step 3. Set the activations of output nodes ðŷkÞ :



Table 1

The ART-CPN algorithm

Step 1. Set the initialize weights (first input vector and first target vector); initialize learning rate (a,b); 0%rX%1, number of epochs

Step 2. While stopping condition is false, do steps 3–8

Step 3. For each input vector X(x1,x2,.,xn) and target vector Y(y1,y2,.,yk), do Steps 4–8

Step 4. Compute VsðXjÞ
of each cluster node

Find the winning cluster node (J) that is a maximum VsðXjÞ
; called its index J

Step 5. If VXJ
Rrx update wiJ using

vnew
iJ Zvold

iJ Caðxi Kvold
iJ Þ; iZ1;.; n:

wnew
Jk Zwold

iJ Cbðyk Kwold
Jk Þ; kZ1;.; k:

Step 6. The maximum VsðXJ Þ
!rX then adds one cluster node (jZjC1).

vnew cluster node
ij ZxiðiZ1;.; nÞ; the weights between input layer and cluster layer.

wnew cluster node
jk ZykðiZ1;.; kÞ; the weights between cluster layer and output layer.

Step 7. Reduce learning rate

Step 8. Test stopping condition

The condition may specify a fixed number of epochs or the learning rate reaches a small value sufficiently
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The competitive signal of cluster layer zj is

computed by

zj Z
1 if j Z J; J is winning node

0 otherwise

(

ŷk Z
X

j

zjwjk (18)

4. Application of the ART-CPN to solve the forecasting

problems

The above methodology is applied to two forecasting

problems. The first problem is the benchmark Box and

Jenkins gas furnace data (Lin & Cunningham, 1995).

Meanwhile, the second problem is an application of

predicting the lead frame dimension for semiconductors.

The performance of ART-CPN and BPN are evaluated and

compared using the root-mean-square error (RMSE) and the

PI performance index. The root mean of the square errors of

prediction are calculated from the target output (yi) and

predicted values ðŷiÞ according to the equation:

RMSE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
iZ1ðyi K ŷiÞ

2

m

r
; for m training patterns (19)

PI is calculated based on the target output and predicted

values according to the equation (Lin & Cunningham,

1995):

PI Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
iZ1ðyi K ŷiÞ

2
p

Pm
iZ1 jyij

; for m training patterns (20)
Fig. 3. The pilot hole of the lead frame.
4.1. Box and Jenkins gas furnace data

The Box and Jenkins gas furnace data were obtained

from the literature (Lin & Cunningham, 1995). The process

is a gas furnace with a single input (gas flow rate) u(t) and

single output (CO2 concentration) y(t). The dataset

considers the variable y(tK1),y(tK2),.,y(tK4), u(tK1),
u(tK2).,u(tK6) as input nodes. This investigation trained

250 data points and predicted the next 40. The ART-CPN

sets the rXZ0.92, aZbZ0.04 and CZ6 for network

training. It took 1500 iterations to train. The forecasting

performance measure was RMSEZ0.65722, PIZ0.00077

on the training set, and RMSEZ1.61294 PIZ0.00473 on

the test set. The training data is used to train the back-

propagation network. Training the network model required

15,000 iterations. The BPN performance measure was

RMSEZ0.4284, PIZ0.0005 on the training set and

RMSEZ1.4795 PIZ0.00436 on the test set.

4.2. Forecasting the dimension of lead frame

for semiconductor

The electrical industry is rapidly developing, creating high

demand for IC production. Etched semiconductor lead frame

is the basic material used in IC packaging. The dimensions of

the pilot hole are generally required to be highly precise in the

lead frame manufacturing. Fig. 3 shows the dimension of the

pilot hole of the etching lead frame. The photo etching process

must control the dimension of the pilot hole, and records the

manufacturing parameters of the etching machine and also the

inspection data. These data were used to construct the ART-

CPN network model. The network model forecasts the

dimension of the pilot hole to control the dimension on target

value in the etching process. The model effectively maintains

process stability and supports the adjustment parameters of



Table 2

The training data is used to train the neural network

Be PH ORP ET Speed Roll number y(tK1) y(tK2) y(tK3) y(tK4) y(t)

41.70 486.90 534.50 50.10 1905 97.00 1551.40 1549.60 1551.00 1549.20 1550.20

41.70 488.90 534.60 50.20 1905 97.00 1550.20 1551.40 1549.60 1551.00 1551.40
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the subsequent etching process. The input parameters that

significantly influence the dimensions of the pilot hole during

the etching process must be identified. The input data is

mapped onto the output to the desired accuracy. Ten input

parameters are used to construct the forecasting model. The

input parameters are identified as follows:

Manufacture data of etching process:
1.
 Be(tK1): the Blaume value of etching solution in time

period tK1.
2.
 PH(tK1): the PH value of etching solution in time

period tK1.
3.
 OPR(tK1): the ORP value of etching solution in time

period tK1.
4.
 ET(tK1): the temperature of the etching solution (8C)

in time period tK1.
5.
 Speed(tK1): the speed of the material (mm/min) in

time period tK1.
6.
 RON(tK1): the etching open roller number in time

period tK1.
Inspection data:
7.
 y(tK1): the sample mean the dimension of the pilot

hole in time period tK1.
8.
 y(tK2): the sample mean the dimension of the pilot

hole in time period tK2.
9.
 y(tK3): the sample mean the dimension of the pilot

hole in time period tK3.
10.
 y(tK4): the sample mean the dimension of the pilot

hole in time period tK4.
Table 2 illustrates the input data for training process. y(t)

predicts the sample dimension of the pilot hole in time

period t. The 72 etching process data is used to establish the

forecasting network model. Network training took 1008

iterations using the ACT-CPN. Moreover, the ART-CPN

forecasting performance measure was RMSEZ1.5525,

PIZ0.00012 on the training set. Network training required

100,000 iterations using BPN. The performance measure

used on the training set was RMSEZ1.65795, PIZ0.00013.
Fig. 4. The predicting errors of ART-CPN and BPN.
This study used the trained network model to predict 25

samples of the pilot hole in the etching process. Fig. 4 shows

the prediction errors for the test process. The maximum

prediction error is ART-CPNZ4 mmm and BPNZ7 mmm.

Moreover, the performance measure was RMSEZ1.60609,

PIZ0.00020 for ART-CPN and RMSEZ2.86667,

PIZ0.00037 for BPN. The pilot hole has a tolerance of

25 mmm. The ART-CPN network can precisely forecast the

dimension of the pilot hole according to manufacturing

parameters and inspection data in the etching process. The

algorithm provides good learning efficiency and prediction

performance to improve the lead frame quality in the

etching process.
5. Conclusions

This investigation proposed a new neural network for

solving the forecasting problem. ART-CPN uses the

vigilance (rX) to generate the cluster layer nodes. The

adaptive cluster nodes can enhance the traditional CPN

performance. The net successfully applies to predict the gas

furnace data and the lead frame dimension in the forecasting

system. A good forecasting performance could improve the

lead frame quality in the etching process. ART-CPN

requires the one step leaning process. The learning speed

is faster than the CPN and BPN. ART-CPN based on

Adaptive Resonance Theory and CPN that is supervised

real-time learning by a self-organizing neural network. If

the vigilance is fixed, there is no need to retrain all patterns

when adding the new training patterns. In the dynamic

database, the real-time learning algorithm can adapt the

environmental change to produce a new network model for

new training patterns. The learning characteristic is critical

for dynamic forecasting problems. ART-CPN is success-

fully applied to solve the forecasting problems. The

algorithm can reduce the learning time and obtain good

prediction performance for solving forecasting problems.
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