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Abstract

A fuzzy neural network, Falcon-MART, is proposed in this paper. This is a modification of the original Falcon-ART
architecture. Both Falcon-ART and Falcon-MART are fuzzy neural networks that can be used as fuzzy controllers or
applied to areas such as forgery detection, pattern recognition and data analysis. They constitute a group of hybrid
systems that incorporate fuzzy logic into neural networks. In this way, the structure of these hybrid networks become
transparent as high level IF-THEN human-like reasoning is used to interpret the network connections. In addition, the
hybrid networks automatically derive the fuzzy rules (knowledge base) of the problem domain using neural network
techniques and hence avoid the pitfalls of traditional fuzzy systems. The main problem in designing a fuzzy neural
network is how to formulate the fuzzy rule base. Most proposed fuzzy neural networks in the literature could be
classified into two categories. The first group assumes the existence of a preliminary rule base and uses neural tech-
niques to tune the parameters to obtain the final set of fuzzy rules. The second group assumes no knowledge of any
fuzzy rules and performs a cluster analysis on the numerical training data before formulating the rules from the
computed clusters. Falcon-ART attempts to overcome the constraints faced by these two groups of fuzzy neural
networks by using the fuzzy ART technique to partition the training data set. However, there are several shortcomings
in the Falcon-ART network. They are:

1. Poor network performances when the classes of input data are closely similar to each other;
2. Weak resistance to noisy/spurious training data;

3. Termination of network training process depends heavily on a preset error parameter; and
4. Learning efficiency may deteriorate as a result of using complementary coded training data.

Falcon-MART has been developed to address these shortcomings. To evaluate the effectiveness of Falcon-MART,
three different sets of experiments are conducted. The first experiment demonstrates the efficiency of Falcon-MART over
Falcon-ART using the Fisher’s Iris data set. The second experiment evaluates the modeling capability of Falcon-MART
against the classical multi-layered perceptron (MLP) network using a set of traffic flow data. The last experiment uses a set
of phoneme data to demonstrate the clustering ability of Falcon-MART against the traditional K-nearest-neighbor
(K-NN)) classifier. The results obtained are encouraging. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Traditional fuzzy systems are flexible and intu-
itive in their modeling of the problem domain.
However, the main drawback of traditional fuzzy
systems is the process of formulating the fuzzy rule
base, which is often manual, subjective and
sometimes inconsistent. In addition, experts may
find it difficult to explicitly express their knowledge
of the problem domain in IF-THEN linguistic
rules. Neural networks, on the other hand, are able
to efficiently model the systems that they are pre-
sented with. However, the trained networks are
opaque and become a black box to the users. It is
difficult to interpret and relate the weight matrix of
a trained neural network to the dynamics of the
problem domain. Artificial fuzzy neural networks
are hybrid networks that incorporate fuzzy logic
into neural network structures. In this way, the
connectionist structures of these hybrid networks
become transparent as high level IF-THEN hu-
man-like reasoning can be applied to interpret the
network connections. At the same time, the hybrid
networks automatically derive the fuzzy rules and
the associated parameters, hence avoiding the
pitfalls of traditional fuzzy systems.

However, a new set of problems besieges the
design of fuzzy neural networks. The main prob-
lem is how to formulate the fuzzy rule base to
accurately reflect the dynamics of the problem
domain. Most proposed fuzzy neural networks in
the literature could be classified into two catego-
ries. The first group assumes the existence of a
preliminary set of fuzzy rules and their parameters
are tuned using neural techniques to obtain the
final fuzzy rule base. This group of hybrid net-
works faces the same constraint as the traditional
fuzzy systems, that is, the derivation of a consis-
tent set of preliminary fuzzy rules. The second
group assumes no knowledge of any available
fuzzy rules and performs a cluster analysis on the
numerical training data set before formulating the
fuzzy rule base using the computed clusters.
However, this group of fuzzy neural networks is
prone to the problems encountered by the clus-
tering techniques they used. This includes the need
of a prior knowledge such as the number of clus-
ters for a given data set and the need to determine

the optimal values for the parameters in the clus-
tering algorithm since they vary with data sets.
The Falcon-ART (Lin and Lee, 1991) architec-
ture attempts to overcome the constraints faced by
these two groups of fuzzy neural systems. Falcon-
ART applies fuzzy adaptive resonance theory
(ART) (Carpenter and Grossberg, 1987a,b, 1988,
1990, 1991; Grossberg, 1976) to obtain the trape-
zoidal fuzzy partitions of the input and output
data spaces. There is no need to specify the num-
ber of clusters and most of the parameters used are
application independent. Moreover, fuzzy ART
computes the fuzzy partitions and formulate the
associated fuzzy rules in a single pass of the data
set, making Falcon-ART suitable for on-line
learning. However, there are several shortcomings
in the network. They are:
1. Poor network performances when the classes of
input data are closely similar to each other;
2. Weak resistance to noisy/spurious training
data;
3. Termination of network training process de-
pends heavily on a preset error parameter; and
4. Learning efficiency may deteriorate as a result
of using complementary coded training data.
In this paper, a modified version of the Falcon-
ART network is proposed to address these
deficiencies. This improved network is named Fal-
con-Modified ART (Falcon-MART). As compared
to Falcon-ART, Falcon-MART is able to differ-
entiate data points from similar classes and is more
resilient to noisy/spurious inputs. This is achieved
by using weighted averaging in determining the
firing strengths of the fuzzy rules. In addition,
the training of Falcon-MART terminates when the
difference in cost errors between two successive
training epoch is small enough. This eliminates the
need to determine the optimal value of the targeted
cost error as in Falcon-ART. By using absolute-
valued training data, Falcon-MART formulates a
fuzzy rule base that is more intuitive than the one
derived by Falcon-ART, and it is able to handle
application with a single input/output. To illustrate
the concepts behind Falcon-MART, the paper is
organized as follows. In Section 2, the original
Falcon-ART architecture is introduced and ex-
perimental results using Fisher’s Iris data set
(Fisher, 1936) in Section 3 are presented to
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highlight the shortcomings. Section 4 introduces
the proposed Falcon-MART architecture and the
performance of the Falcon-MART network is
validated by results from three different experi-
ments in Section 5. Section 6 presents the conclu-
sions and highlight additional work undertaken.

2. Dynamics of Falcon-ART

The Falcon-ART architecture developed by Lin
and Lee (1991) is a highly autonomous system. It
has five layers as shown in Fig. 1 and generates
fuzzy rules of the form in Eq. (1).

If input 1 is Ly ... and input p is L,y . ..
and input n is Ly,

("dy,"dy") W ("dp"d,)
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and output m is L ,
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The fuzzy rule in Eq. (1) has five elements, namely
the input linguistic variables and terms, the output
linguistic variables and terms and the IF-THEN
rule construct. The labels input 1...input n de-
notes the input linguistic variables and the labels
output 1...output m denote the output linguistic
variables, where n and m are the number of input
and output, respectively. They represent entities
such as height, speed and weight. The labels
Liy,...,L,s denote the input linguistic terms and
the labels L,,...,L! , denote the output linguistic
terms. In Falcon-ART, the input and output
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Fig. 1. Structure of Falcon-ART.
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linguistic terms are represented as trapezoidal
fuzzy sets. The linguistic terms represent fuzzy
concepts such as tall, short, medium, fat and thin.
The input linguistic variables and terms constitute
the antecedent (condition) section of a fuzzy rule
while the output linguistic variables and terms
made up the consequent section of the rule. The
IF-THEN construct is used to join the condition
section to the consequent section. Each of the five
layers in Falcon-ART is mapped to the respective
elements of the fuzzy rule as shown in Fig. 1.

Prior to training, Falcon-ART has only the in-
put and output layer to represent the input and
output linguistic variables, respectively. There are
n inputs and m outputs. The hidden layers for the
input and output term nodes and the fuzzy rules
are created and begin to grow as the learning cycle
progresses. Falcon-ART dynamically partitions
the input-output data spaces into trapezoidal
fuzzy sets, tunes the trapezoidal membership
functions representing the linguistic terms, and
determines the proper network connections (fuzzy
rules) in a single pass of the training data set. The
fuzzy ART is used to perform the fuzzy clustering
of the input—-output spaces into fuzzy hyper-boxes
(hyper-cubes). Falcon-ART then dynamically de-
termines the proper fuzzy rules by connecting the
appropriate input and output clusters (input and
output hyper-boxes) through a mapping process.
The back-propagation learning scheme is subse-
quently used to tune the input—output membership
functions. Thus, Falcon-ART effectively combines
the fuzzy ART algorithm for structural learning
(formulation of the fuzzy rules) and the back-
propagation algorithm for parameter learning
(tuning of the membership functions).

With reference to Fig. 1, layer 1 nodes represent
the input linguistic variables and each node in
layer 2 acts as a one-dimensional trapezoidal fuzzy
set for an input node. The label Q denotes the
number of term nodes for each input variable. In
Falcon-ART, each input node has the same
number of term nodes. The nodes in layer 3 are the
rule nodes and they form the fuzzy rule base of
the Falcon-ART network. Layer 5 represents the
output linguistic variables and layer 4 the respec-
tive output term nodes. The label S denotes the
number of term nodes for each output node. After

training, the number of rule nodes in layer 3 is
determined by the number of term nodes for each
input node. That is, there will be Q rules if there
are Q terms for each input variable. This is because
in Falcon-ART, each input term node is connected
to only one rule node and only one term from each
input node contributes to the antecedent of a fuzzy
rule.

The output of the nodes in each layer is denoted
by z. That is, the label z, denotes the output from
the pth input node in layer 1 and z,, denotes the
output of the ¢gth term of the pth input node. The
weights connecting each layer are unity unless
otherwise shown. The trapezoidal membership
functions of the term nodes in layer 2 and layer 4
are represented by a tuple consisting of the left (u)
and right (v) flat points of the kernel. The tuple is
shown as the weights of the links in layers 2 and 4.
The membership function of the ¢th term node of
the pth input node is denoted by (u,,, v,,). For the
sth term node of the rth output node, its mem-
bership function is denoted by (uy,vy). During
training, the inputs to Falcon-ART are the
complementarily coded input vector x' = ("x;,"x¢,
”xz,”xg, e ,"x,””x;')T and the complementarily co-
ded desired output vector d' = ('d),"ds,"dy,
"d¢,...,"d,"d)". The output of Falcon-ART is
denoted as y = (31,25 -+ - s V) -

Based on the five layers of the Falcon-ART
model shown in Fig. 1, Lin has developed an on-
line learning algorithm FALCON_ART (Lin and
Lee, 1991) to train the network.

3. Performance of Falcon-ART

To illustrate the shortcomings of the Falcon-
ART network, a simple classification experiment
using the Fisher’s Iris data (Fisher, 1936) set is
conducted. The data set is partitioned into a
training set and a test set. The training set
consists of one-third of the data points, (approx.
35%, i.e., 17 data points for each class) while the
test set contains the remaining 65%. The results
are cross-validated by using three different
groups of training and test sets. They are
denoted as CVI, CV2 and CV3. For the
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experiment, the following Falcon-ART parame-

ters are used.

e Learning constant in the back-propagation
algorithm (1) = 0.005.

e In-vigilance parameter in the fuzzy ART
algorithm (p;,) = 0.80.

e OQOut-vigilance parameter in the fuzzy ART
algorithm (p,,,) is 0.80.

e Targeted cost error E, = 0.00005.

Sensitivity parameter of the trapezoidal mem-

bership function (y) = 30.00.

Training set =35%.

Test set = 65%.

Number of input (input linguistic variables) = 4.

Number of output (output linguistic variables)

=3.

e Maximum number of training iterations = 1000.
The parameter ‘maximum number of training

iterations’ is used to ensure that the training cycle

stops if the targeted cost error is unrealized. When

it is realizable, then the training may stop before

the specified 1000 iterations. The hardware con-

figuration on which the experiment for Falcon-

ART is conducted is listed.

e CPU =Intel Pentium I1I 450 MHz.

e Operating system = Microsoft Windows 95

(4.00.950 B).

Memory available = 128 Mbytes.

Hard disk used = Seagate 4.0 Gbytes.

File system = Fat 32.

Virtual memory = 32 bit.

Disk compression = Not installed.

Training set of CV1 is shown in the Appendix

A. Three outputs are used to represent the three

classes of irises for the experiment. They are

namely, Class 1-Setosa, Class 2-Virginica and

Class 3-Versicolor. A cost function E defined in

Eq. (2) is used to measure the convergence of the

back-propagation learning algorithm of Falcon-

ART during training.

E=1/2>(d" —y") forb=1,...,0, (2)
i=1

where m is the number of outputs from the Falcon-
ART network, d; is the desired output for the ith
output node, y; is the actual network output for the
ith output node and, Q is the number of training
data in the training set.

Cost function E is computed for each training
data in the training set and the total error (TE) for
one training epoch is obtained using Eq. (3).

TE =) Ev, (3)

b=1

where TE is the total error for one training epoch;
Q is the number of training data in the training set;
and E® is the cost function for the bth training
data in the training set.

Training stops when TE is less than the user
preset E.x or the number of training cycle exceeds
the maximum number of iterations specified. Fig. 2
shows the convergence of the back-propagation
algorithm during training (CV1).

TE remains unchanged throughout the 1000
training iterations except for the initial rise. This is
far from the preset targeted cost error of 0.00005.
This problem can be explained when one examines
the fuzzy sets that are derived using Falcon-ART
in Fig. 3. The result shows that Virginica and
Versicolor are very much alike from the large re-
gion of overlap in their respective fuzzy sets. In
each of the numeric attribute, there is only a slight
difference between the two classes. In Fig. 2, the
TE does not converge because the fuzzy ART al-
gorithm is unable to distinguish minute differences
between fuzzy sets of different classes as it exam-
ines the membership values of the fuzzy sets to-
gether as a class. For example, a class 2 training
data has membership values of {0.9, 0.8, 0.9, 0.9}
for the class 2 fuzzy sets. Hence it gives a resem-
blance of 0.875 (0.9/4+0.8/4+0.9/4+0.9/4) to
class 2. However, the same training data has

Convergence

Total Error

0 200 400 600 800 1000

Epoch Iteration

= Falcon-ART Total Error

Fig. 2. A plot of TE against the number of training iterations.
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Fig. 3. Fuzzy sets derived using the Falcon-ART network.

membership values of {1.0, 0.6, 1.0, 0.6} for class 3
fuzzy sets. This gives a resemblance of 0.8 to class
3 and gives rise to a large error at the outputs.

Learning by back-propagation causes the cor-
ners of the membership functions to oscillate. This
occurs when classes 2 and 3 training data are fed
into the network. The network initially tunes itself
towards class 2 outputs. When a class 3 training
data is presented, the correction is reversed.
Therefore, the TE remains constant. The initial
rise of TE occurs between the first epoch and the
second epoch when the fuzzy sets have not been
completely formed. Hence, the generated error was
much lesser than when all three classes of fuzzy
sets had been formed.

This assessment reveals significant drawbacks of
the Falcon-ART architecture. Firstly, the network
is able to provide a satisfactory performance only
when the classes of the input data are very different
from each other (for example, between Setosa and
Virginica). If they only differ by a slight difference
(like in the case of Virginica and Versicolor), then
this difference is likely to be missed by the network

because the input iris data on the whole closely re-
sembles both classes and hence, gives a similar firing
strength for both classes. Because of this drawback,
the classification results using the test sets are poor.
Each test set consists of 65% of the original iris data
set. There are 99 data points in a test set. The clas-
sification results for CV1, CV2 and CV3 are sum-
marized in Table 1.

The learning and classification performance of
the Falcon-ART is poor because class 2-Virginica
and class 3-Versicolor are still inseparable even

Table 1
Iris classification using Falcon-ART®
Result Group
CV1 CVv2 CV3
C 69 83 73
M 30 16 26
U 0 0 0
C rate® (%) 69.70 83.84 73.74

#C = Classified; M = Misclassified; U = Unclassified; C rate =
Classification rate.
> Mean = 75.76%, S.D. = 7.54%.
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Fig. 4. Complementary coded iris data set.

with the complementary coding of the input data.
Fig. 4 shows the plot for all 150 instances of irises
in the data set after complementary coding.

It is clear that class 1-Setosa is linearly separa-
ble from the other two classes and classes 2 and 3
are inseparable. When one examines the sepal
length attribute, both classes 2 and 3 have large
overlaps. This also occurs in the sepal width, petal
width and petal length attributes. Fig. 4 shows
why back-propagation in Falcon-ART is unable to
converge for the iris data set used and the poor
classification performances of the network for the
test groups. This is not limited only to Fisher’s Iris
data set but also for any data set with clusters
(classes) that are inseparable.

Another problem of Falcon-ART is its weak
resistance to noisy/spurious training data points in
the training sets. The fuzzy ART algorithm in-
corporates a new training data point into an ex-
isting category as long as that category is the
closest to the training data point and passes the
resonance test. However, this training data may be
far from most of the data in the category and is
incorporated because the resonance parameter is
set small enough to accommodate such an inclu-
sion. Inclusion is done through the fast learning
scheme in the structural learning step of the Fal-
con-ART architecture.

The learning cycle in Falcon-ART very much
depends on the setting of the targeted cost error. If
this is set to a large value, then learning will ter-
minate quickly. On the other hand, if it is set to
too small a value, then learning may not cease.
This is likely to occur for data sets like Fisher’s Iris

data since there are classes that are inseparable
from one another. This makes comparison of re-
sults difficult since the optimal value of E, is
often obtained through trial-and-error and is dif-
ferent for different data sets. This makes Falcon-
ART application dependent. An alternative is to
terminate the learning process when the difference
in the TE for consecutive training epochs is suffi-
ciently small, as in the case of Kohonen’s com-
petitive learning rule (Kohonen, 1989).

In addition, the use of complementary coding in
Falcon-ART can cause the learning efficiency of
the network to deteriorate. Consider when two
different training data points with magnitudes that
are proportional to each other but belonging to
different classes enter the network. Complemen-
tary coding under this situation will yield the same
input for the two data points. In addition, Fal-
con-ART cannot handle single input/output
application because of the need for complementary
coding. Moreover, the fuzzy sets that are derived
using Falcon-ART cannot be directly interpreted
because all the values used are normalized. Hence,
the fuzzy rules that are generated are non-intuitive
to our understanding of the dynamics of the
problem domain. The next section describes the
new architecture called Falcon-MART that at-
tempts to overcome the shortcomings highlighted.

4. Dynamics of Falcon-MART

Falcon-MART is developed to address the in-
herent deficiencies of the Falcon-ART network.
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The deficiencies are: (1) unsatisfactory classifica-
tion performance when the classes of input data
are very similar to each other; (2) susceptible to
noisy training data and outlier; (3) use of preset
error parameter to terminate the learning process
and (4) deterioration of learning efficiency. The
performance of Falcon-MART is evaluated in
Section 5 using three different experiments.

4.1. Poor performances for similar classes of input
pattern

The Falcon-ART architecture compares an in-
put pattern against its stored clusters as a whole
and averages out the incompatibility against each
of the respective numeric attributes (four numeric
attributes as in the iris data set). As a result, an
input that is close to 2 or more stored clusters will
give similar firing for those rules representing the
clusters. To overcome this drawback, a method is
proposed to enlarge/magnify any difference be-
tween the respective elements in two given sets of
membership values. This method is implemented
in Falcon-MART and is outlined in the algorithm

Magnify.

Algorithm Magnify:

Variables: Sum =0, Weight =0, array value of
size m. Assume m-dimensional stored clusters in
the Falcon-ART network.

Step 1 (Sorting). Store the respective member-
ship values for a cluster due to the present input
pattern in the array value of m-dimension and sort
the array in descending order, with the largest
value at element 0 and the smallest value at ele-
ment m — 1. That is, value [0] = value[1] = --- >
value [m — 1].

Step 2 (Weighted averaging). Multiply each el-
ement ¢; in the array with a weight w; that is de-
rived using Eq. (4) and add this product to Sum.
Add w; to Weight.

w; = 23i, (4)
m—1
Sum = Z e;w;,
i=0
m—1
Weight = Z wi,
i=0

where i is the index position of the element e; in the
array value starting with index 0; and m is the
number of elements in array value.

Step 3 (Firing). Obtain the firing strength F of
the cluster due to the present input pattern using
Eq. (5).

F = Sum/Weight, (5)

where 7 is the number of numeric attributes in the
data set.

This algorithm gives the largest weight to the
smallest element in the array value. Hence, any
small differences between the membership values
of two clusters are magnified by a large factor.

End Magnify

An advantage of the proposed algorithm is its
ability to magnify the difference in membership
value between the same attribute of different
membership sets and hence producing a very dif-
ferent firing strength for membership sets that
have the same cardinality. For example, consider
two fuzzy membership sets 4{0.8, 0.8, 0.8, 0.8}
and B{l1, 0.8, 1, 0.4} that has the same cardinality.
Under Falcon-ART, both will have a firing
strength of 0.8. However, using Falcon-MART,
set A will give a firing strength of 0.8 but set B will
give a firing strength of 0.45. Moreover, it pre-
serves the firing strength of a membership set in
which all the elements are the same. For example,
set A would give a firing strength of 0.8 because
each of its elements has 80% compatibility.

4.2. Weak resistance to noisy training data

The Falcon-ART architecture uses the fast-
learn rule of the fuzzy ART algorithm to include
an input pattern into a chosen fuzzy rule. This
method performs well if all the data has strong
correlation to one another; that is, they cluster
closely to each other. The network is then able to
quickly form the correct fuzzy hyper-boxes.
However, when noisy data exists among those
used for training, the learning efficiency drops
because such data upsets the equilibrium of the
system. The data is included because the resonance
parameter is small. Hence, it becomes easy to pass
the resonance test. A more stable and progressive
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learning rule is adopted by Falcon-MART to
minimize the effects of noisy data. This is shown in

Eq. (6).
w(t+1) = BT Aw(t) + (1= B)w(), (6)

where w(f) is the weight vector of the selected
cluster at learning step ¢; I is the input to the
network; and 0 < f§ < 1.

By setting f very close to 1 approximates the
original fast-learning rule since the input pattern is
heavily absorbed into the chosen fuzzy rule and
hence may cause instability. On the other hand,
setting f very close to 0 reduces the plasticity of the
network. Hence, f is set at 0.5 to achieve a com-
promise for the stability—plasticity dilemma.

4.3. Termination of learning process depends heavily
on a preset error parameter

Experimental results for the Falcon-ART in
Section 3 have shown that the back-propagation
algorithm fails to converge to the targeted cost
error when the network is used to learn and clas-
sify data that are close to one another. The TE is
constant throughout the training iterations.
Hence, the learning process can in fact terminate
when the difference between TE of two consecutive
iterations is sufficiently small. Therefore, in Fal-
con-MART, a parameter ¢ is introduced to allow
the network to terminate the learning process
when the change in TE between two consecutive
epochs is smaller than &. Now ¢ replaces the tar-
geted cost error as the termination criterion. This
pseudo termination of the back-propagation
learning algorithm is similar to the forced termi-
nation in the Kohonen’s rule of competitive
learning. It eliminates the need to determine the
optimal value of E,, as in Falcon-ART through
trial-and-error.

4.4. Complementary coding

The problem of complementary coding in Fal-
con-ART has been illustrated in Section 3. To
overcome this problem, absolute-valued data is
used in Falcon-MART instead of complementarily
coded data. In Falcon-ART, complementary
coding is used to prevent category proliferation.

The number of category to be formed is deter-
mined by the vigilance parameters p;, and p,,, and
the resonance test performed by the fuzzy ART
algorithm. However, the resonance test and the
computation of the choice function to determine
the best-fit cluster for the present input require
that the inputs be normalized to unity. Hence,
changing the form of the input data implies
modifications to these two operations. Firstly, to
determine the cluster that is a best fit to the present
input using the choice function is essentially se-
lecting the cluster that has the strongest rule firing
due to the input pattern.

The computation of the choice function in
Falcon-ART determines the firing strength of the
stored clusters for a given input. Hence, in Falcon-
MART, a firing of layers 1, 2 and 3 can be acti-
vated and the best-fit cluster is determined from
the outputs of the rule nodes in layer 3 as the one
with the largest rule firing strength. This is ex-
pressed in Eq. (7) for the best-fit cluster R.

R= argmax(zrulel7zrule27 ey Zrulery - - ;ZruleQ)- (7)
r

Eq. (8) describes the input resonance test in Fal-
con-ART. A cluster is said to pass the test when
Eq. (8) evaluates as true. When a cluster passes the
resonance test, the input training data is incorpo-
rated into the cluster. The output resonance test is
similarly defined.

|1\ W

T = Pins Pin € [07 1]7 (8)

where p;, is the input vigilance parameter set by
user; [ is the input vector to the network; and W is
the weight vector representing the best-fit cluster.

The cardinality of the complementary coded
input vector 7 is n, where n is the number of at-
tributes in the data set. To pass the resonance test
in Falcon-ART, minimal changes to the kernels of
the trapezoidal fuzzy sets of a cluster is to be made
so that the average kernel of the updated cluster
(after the input training data is incorporated) must
not exceed 1 — p;,.

In Falcon-MART, to obtain the functionally
equivalent input resonance test of Falcon-ART,
the maximum value of each of the input attributes
and training data of absolute values are used
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instead of the complementarily coded data. Now,
the corners of the trapezoidal functions are of
absolute values. Therefore, to pass the resonance
test and have the present input included into its
kernel, the best-fit cluster R must satisfy the con-
dition defined in Eq. (9).

> Kp < (1 = pi,)MaxSum (9)
i=1

and MaxSum=>} ", maximum value of input
attribute i, where n is the number of input attri-
butes; Kz; is the range of kernel of attribute i of
best-fit cluster R; and p,, is the user preset input
vigilance parameter.

5. Performance of Falcon-MART

The performance of Falcon-MART is evaluated
using three different experiments. The first experi-
ment demonstrates the efficiency of Falcon-
MART over Falcon-ART using the Fisher’s Iris
data set. The second experiment evaluates the
modeling capability of Falcon-MART against the
classical multi-layered perceptron (MLP) network
using a set of traffic flow data. The last experiment
uses a set of phoneme data to demonstrate the
clustering ability of Falcon-MART against the
traditional K-nearest-neighbor (K-NN) classifier.
All the experiments are carried out on the same
hardware configuration as listed in Section 3.

5.1. Experiment 1: classification of Iris data

To benchmark against the performance of
Falcon-ART, the Fisher’s Iris data set with the
same training and test sets are used. The network
parameters common to both architectures are kept
constant with the exception of the sensitivity pa-
rameter, 7. The parameter y is the gradient of the
slope of the trapezoidal membership function. This
is set to 2.0 in Falcon-MART to provide a buffer
of 0.5 on either side of the kernel of the trapezoidal
function. The following Falcon-MART parame-
ters are used in the assessment.

e [earning constant in the back-propagation al-

gorithm () = 0.005.

o In-vigilance parameter in the fuzzy ART algo-

rithm (p;,) = 0.80.

e Out-vigilance parameter in the fuzzy ART algo-

rithm (p,,,) is 0.80.

e Termination criterion ¢ = 0.00005.

Sensitivity parameter of the trapezoidal mem-
bership function (y) = 2.00.

Training set = 35%.

Test set = 65%.

Number of input (input linguistic variables) =4.
Number of output (output linguistic vari-
ables) = 3.

e Maximum number of training iterations = 1000.
Fig. 5 shows the convergence of the back-propa-
gation algorithm in Falcon-MART for the train-
ing set of CV1.

Falcon-MART completes the learning cycle in
11 iterations. Moreover, comparing against the
Falcon-ART results in Fig. 2, the TE has con-
verged and is much lower than that of the original
Falcon-ART architecture. The fuzzy sets derived
using the Falcon-MART network is shown in
Fig. 6.

From Fig. 6, it can be seen that Class 2-Virgi-
nica and Class 3-Versicolor are still very much
alike. In the fuzzy sets for the sepal width and petal
width attributes, the two classes are almost iden-
tical. Hence, the distinguishing properties of these
two classes lie in the sepal length and petal length
attributes. The classification results using the
training and test sets of CV1, CV2 and CV3 are
summarized in Table 2.

Comparing against the results of Falcon-ART
in Table 1, Falcon-MART offers a much-improved

Falcon-MART Total Error (TE)

Total Error

0 T T T T T
1 3 5 7 9 "

Epoch Iteration

—e— Falcon-MART Total Error (TE)

Fig. 5. TE against number of training iteration.
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Fig. 6. Fuzzy sets of the three classes of irises derived using Falcon-MART.

Table 2
Iris classification using Falcon-MART?
Result Group
CV1 CV2 CV3
C 98 95 89
M 1 4 10
U 0 0 0
C rate® (%) 98.99 95.96 89.90

& C =Classified; M = Misclassified; U= Unclassified; C rate =
Classification rate.
® Mean = 94.95%, S.D. =4.64%.

performance for the classification of the iris data in
the test sets. In addition to the smaller number of
training epochs required, it also has a higher mean
classification rate of 94.95% for correct classifica-
tion as compared to the Falcon-ART of 75.76%. It
also has a higher noise tolerance than Falcon-ART
as shown by the smaller value in the S.D. of the
classification rate.

Table 3
CPU timings and memory usage of various networks

In addition to the classification rate, three other
benchmark criteria are used to compare the two
architectures. They are the training time of the
network, recall time and memory usage. The CPU
timing for training and recall and the memory
usage for the two network architectures are shown
in Table 3. The variable / denotes the size of a long
double variable type. Here, only the memory space
used by the networks to store the fuzzy sets of the
input space partition is used in the comparison.

The timings shown in Table 3 are obtained by
simulating the experiments 10 times each for CV1,
CV2 and CV3. The mean and the S.D. of the
timings are shown in the table. Falcon-ART re-
quires a longer CPU training time because of its
failure to converge to the preset termination cri-
terion (Ena.x = 0.00005) and hence training con-
tinued to the preset limit of 1000 cycles before
terminating. On the other hand, Falcon-MART

Network (parameter) CPU time (s)

Recall time (s) Memory usage (h)

98.75+8.57
1.46+0.39

Falcon-ART (n = 0.005)
Falcon-MART (n = 0.005)

0.07£0.051 24
0.07+0.045 24
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requires a mean CPU training time of just 1.46 s.
This is less than 2% of the average training time
for Falcon-ART. The memory usage of both net-
works is 24 h. They are used essentially for the
storage of the two corners of the kernel of the
membership functions in the input term nodes of
hidden layer 2. The iris data set has four numeric
inputs and both networks derived three fuzzy rules

(therefore three terms per input node). Hence, the

total memory requirement is 4 inputs x 3 input

terms x 2 corners x size of long double variable
type =24 h. The recall time for both architectures
are similar.

By assigning semantics (labels) to the fuzzy sets
of each numeric attribute; namely: short (S), me-
dium (M) and long (L), the fuzzy rules derived by
Falcon-ART in the classification of the Fisher’s
Iris data set (from CV1) can be expressed as fol-
lows:

e Rule 1a: If sepal length is L and sepal width is L
and petal length is S and petal width is Ss, then
iris is Setosa.

e Rule 1b: If sepal length is M and sepal width is
M and petal length is M and petal width is M,
then iris is Virginica.

e Rule lc: If sepal length is S and sepal width is S
and petal length is L and petal width is L, then
iris is Versicolor.

Examining the data distributions of the
training set of CV1 in the Appendix A, the fuzzy
rules derived by Falcon-ART do not directly
represent the training set because complementary
coded data are used for training. Such repre-
sentation is non-intuitive, as we tend to classify
the irises by examining their numeric attributes
and making comparisons within the same at-
tribute. As a result, the fuzzy rules derived by
Falcon-ART do not match the ones deduced
from the data distributions found in the Ap-
pendix A.

On the other hand, the fuzzy rules derived by
Falcon-MART for CV1 (Fig. 6) is as followed:

o Rule 2a: If sepal length is S and sepal width is L
and petal length is S and petal width is S, then
iris is Setosa.

o Rule 2b: If sepal length is M and sepal width is
M and petal length is M and petal width is M,
then iris is Virginica.

e Rule 2c: If sepal length is L and sepal width is S
and petal length is L and petal width is L, then
iris is Versicolor.

Comparing this set of fuzzy rules with the one
found in the Appendix A, it is observed that both
sets of rules are similar except for the definition of
the sepal width attribute in the classification of the
irises. Falcon-MART derived that Virginica and
Versicolor should have medium and short sepal
widths respectively whereas the data distributions
show the opposite. This is unsurprising as a closer
examination of the data distributions in the Ap-
pendix A reveals that except for the sepal width
attribute, the other three attributes can be clearly
classified as shown by the data distributions.
However, for the sepal width attribute, both
Virginica and Versicolor are very similar in their
data distributions. With respect to Fig. 6, the fuzzy
sets derived by Falcon-MART also suggest the
same problem. Hence, due to this great similarity
between Virginica and Versicolor in the sepal
width attribute, it is unsurprising that Falcon-
MART fails to differentiate the two classes of iri-
ses. This is due to the clustering characteristic of
the fuzzy ART algorithm in Falcon-MART. Al-
though the original learning rule has been modi-
fied to make Falcon-MART more resistive to
noisy data or outliers, it does not entirely remove
the deficiency. And from the data distributions in
the Appendix A, it is clear that Versicolor has a
wider distribution than Virginica for the sepal
width attribute. This resulted in the slight inaccu-
racy in the fuzzy rules derived by Falcon-MART.

5.2. Experiment 2: modeling of traffic flow data

This experiment is conducted to evaluate the
effectiveness of the Falcon-MART network in
universal approximation and data modeling using
traffic flow data. The raw traffic flow data for the
experiment was obtained from Tan (1997), cour-
tesy of School of Civil and Structural Engineering
(CSE), NTU, Singapore. The data were collected
at a site (site 29) located at exit 15 along the east-
bound Pan Island Expressway (PIE) in Singapore
(see Appendix B) using loop detectors embedded
beneath the road surface. These inductive loop
detectors were pre-installed by the Land Transport
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Authority (LTA) of Singapore in 1996 along ma-

jor roads to facilitate traffic flow data collection.

There are a total of five lanes at the site, two exit

lanes and three straight lanes for the main traffic.

For this experiment, only the traffic flow data for

the three straight lanes were considered. The pur-

pose of this experiment is to model the traffic flow

trend at the site using 10 inputs, namely time and

traffic volume, speed and traffic density of the

three lanes using Falcon-MART. The trained

network is then used to obtain prediction for

traffic density of a particular lane at a time ¢ 4 7,

where © = 5, 15, 30, 45 and 60 min. Fig. 7 shows a

plot of the traffic flow density data for the three

straight lanes spanning a period of 6 days from

5-10 September 1996.
The following Falcon-MART parameters are

used in the experiment.

e Learning constant in the back-propagation
algorithm (1) = 0.005.

e In-vigilance parameter in the fuzzy ART algo-
rithm (p,,) = 0.70.

e OQOut-vigilance parameter in the fuzzy ART algo-
rithm (p,,) is 0.95.

e Termination criterion & = 0.005.

o Sensitivity parameter of the trapezoidal mem-
bership function (y) = 5.00.

e Training set =40%.

e Test set = 60%.

e Number of input (input linguistic variables)
=10.

953

e Number of output (output linguistic variables)
=1.
e Maximum number of training iterations = 1000.

For the experiment, three groups of training
and test sets are used. They are CVI, CV2 and
CV3. The training windows are labeled as such in
Fig. 7. To compute the accuracy of the predictions
by Falcon-MART, the square of the Pearson
product-moment correlation value (R?) is used.
The prediction made by Falcon-MART for =
60 min for lane 1 traffic density is shown in Fig. 8.
The variation of R? against t is shown in Fig. 9 and
the results of the experiment are summarized in
Table 4.

As expected, the correlation of the data points
decreases as 7 increases. Hence, the accuracy of the
prediction by the Falcon-MART network is ex-
pected to fall. This is verified by the decrease in R?
value as 7 increases. The prediction results for all
the three lanes for various t values are given in
Table 4.

The same set of experiment is repeated using the
MLP network with 10 input nodes, five hidden
nodes and one output node. The bipolar sigmoidal
function with an output range of [-1, 1] is used as
the activation function for the hidden and output
nodes. The input nodes simply relay the input
signals to the hidden nodes. The MLP network is
trained with the back-propagation algorithm.
During the prediction phase, the network func-
tions in a feed-forward mode. The results for the

Traffic Density of 3 Lanes along PIE (Site29)
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Fig. 7. Traffic density of three straight lanes along PIE.
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Fig. 8. Prediction of lane 1 density for t = 60 min using Falcon-MART.
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Fig. 9. Avg R? variations against 7.

prediction of lane 1 traffic flow density for 1 =5
min are given in Table 5.

Comparing against the results of Falcon-
MART in Table 4, the MLP can achieve better
results. However, the trained MLP is a black-box
and the linguistic rules defining the traffic flow
pattern cannot be extracted from the MLP net-
work. Hence, Falcon-MART may not be as effi-
cient an architecture as MLP in data modeling and
universal approximation, but its advantage lies in
its ability to formulate a set of understandable
fuzzy rules to describe the problem domain.

5.3. Experiment 3: clustering of phoneme data

This experiment is conducted to determine the
clustering capability of Falcon-MART against a
traditional classifier such as the K-NN classifier.

The data set used is a set of phoneme data that is
available on-line at the ELENA website.

The aim of the phoneme database is to distin-
guish between nasal and oral vowels. There are
thus two different classes, namely Class 0-Nasals
and Class 1-Orals.

This database contains vowels coming from
1809 isolated syllables (for example: pa, ta, pan,
etc.). Five different attributes were chosen to
characterize each vowel. They are the amplitudes
of the five first harmonics, normalized by the total
energy (integrated on all the frequencies). Each
harmonic is signed: positive when it corresponds to
a local maximum of the spectrum and negative
otherwise.

Three observation moments have been kept for
each vowel to obtain 5427 different instances:

— Observation corresponding to the maximum

total energy.

— Observations taken 8§ ms before and § ms after

the observation corresponding to this maximum

total energy.
From these 5427 initial values, 23 instances for
which the amplitude of the five first harmonics was
zero were removed, leading to the 5404 instances
of the present database. The patterns are presented
in a random order. Due to the size of the data set,
it is partitioned into two sets: 20% for the training
set and the remaining 80% for the test set. A total
of five groups of training and test sets are used for
the experiment. They are labeled as CV1, CV2,
CV3, CV4 and CVS5. The data for the training sets
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Table 4
Prediction results of traffic flow density by Falcon-MART
T CVI_R? CV2_R? CV3_R? Avg R?
Lane 3
5 0.818516 0.830194 0.875139 0.841283
15 0.796118 0.830353 0.844567 0.823679
30 0.763694 0.78257 0.817728 0.787997
45 0.656274 0.720153 0.757044 0.711157
60 0.601274 0.682837 0.720392 0.668168
Lane 2
5 0.715375 0.675857 0.820863 0.737365
15 0.6848 0.706844 0.778582 0.723409
30 0.667232 0.610182 0.781189 0.686201
45 0.6222 0.64312 0.758077 0.674466
60 0.572623 0.604237 0.692918 0.623259
Lane 1
5 0.792404 0.828861 0.884448 0.835238
15 0.708169 0.801472 0.822332 0.777324
30 0.73429 0.789983 0.807692 0.777322
45 0.682927 0.735286 0.812296 0.743503
60 0.601775 0.621251 0.762054 0.661693
Table 5 The classification results using Falcon-MART
Prediction of traffic flow density for lane 1 at t = 5 min by MLP is summarized in Table 6
Lane 1 In comparison, the confusion matrix obtained
T CVI_R? CV2_R? CV3_R? Avg R? with the K-NN classifier (result obtained from
5 0.834817  0.847881  0.881109  0.854602 ELENA and tested with the leave-one-out method

do not repeat among the five groups. For this ex-

periment, the Falcon-MART network has five in-

puts and one output. The following Falcon-

MART parameters are used.

e learning constant in the back-propagation
algorithm (1) = 0.005.

o In-vigilance parameter in the fuzzy ART algo-
rithm (p;,) = 0.70.

e OQut-vigilance parameter in the fuzzy ART algo-

rithm (p,,,) is 0.70.

Termination criterion ¢ = 0.0005.

Sensitivity parameter of the trapezoidal mem-

bership function (y) = 8.00.

Training set =20%.

Test set =80%.

Number of input (input linguistic variables) = 5.

Number of output (output linguistic variables)

=1.

e Maximum number of training iterations = 1000.

with k& = 20) is shown in Table 7. In this case, the
TE rate is 14.2%.

Comparing the results in Tables 6 and 7,
K-NN seems to have the better clustering capa-
bility. However, this is achieved with the whole
data set as the training set with the exception of
one data point that is used to perform the
classification test. The classification test for
K-NN is performed a total of 5404 times. On the
other hand, Falcon-MART is able to achieve a
reasonable error rate by using just 20% of the
data set for training. Moreover, IF-THEN fuzzy
rules can be extracted from the Falcon-MART
network to describe the clustering behavior of
the data set. This cannot be done using the
K-NN classifier.

6. Conclusions

The Falcon-ART architecture is a fuzzy neural
network that is developed with the aim of quickly
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Table 6
Phoneme classification results using Falcon-MART*

Group Results
Confusion matrix

CV1 Class 0 Class 1
Class 0 94.37% 5.63%
Class 1 54.77% 45.23%
Error rate =20.05%

CV2 Class 0 Class 1
Class 0 94.36% 5.64%
Class 1 63.50% 36.50%
Error rate =22.62%

CV3 Class 0 Class 1
Class 0 93.75% 6.25%
Class 1 59.84% 40.16%
Error rate =21.98%

CV4 Class 0 Class 1
Class 0 90.33% 9.67%
Class 1 47.55% 52.45%
Error rate =20.79%

CV5 Class 0 Class 1
Class 0 93.05% 6.95%
Class 1 55.38% 44.62%

Error rate=21.16%

#Mean error rate=21.32%; S.D.=1.006%. Class 0 — Mean
classification rate=93.17%; S.D.=1.68%. Class 1 — Mean
classification rate =43.79%; S.D.="7.24%.

Table 7
Phoneme classification result using K-NN (k = 20) and leave-
one-out method

K-NN (k = 20)

Confusion matrix

Class 0 Class 1
Class 0 91.40% 8.60%
Class 1 27.80% 72.20%

Error rate = 14.20%

deriving the fuzzy sets from training data and to
formulate fuzzy rules that accurately reflects the
dynamics of the problem domain in a single pass
of the training data. However, there are several
shortcomings in the architecture as illustrated by
the results of the experiments carried out. Falcon-
MART is proposed in this paper to overcome
these shortcomings. Both Falcon-ART and Fal-
con-MART identify trapezoidal membership
functions that are convex and normal from the
training data. Experimental results have shown
that Falcon-MART produces superior perfor-

mance to those derived from Falcon-ART. In
addition, the training cycle for Falcon-MART is
significantly reduced. Moreover, the fuzzy rules
derived using Falcon-MART provide a closer
representation to the training data than those de-
rived using Falcon-ART. However, due to the
clustering nature of the fuzzy ART algorithm used
in Falcon-MART, there is a slight inaccuracy in
the derived fuzzy rules. As this inaccuracy is in-
herent in the clustering technique used, efforts have
been made to substitute another clustering tech-
nique into the basic Falcon architecture to replace
fuzzy ART to identify the membership functions
in the fuzzy rule base. Some of the clustering
techniques under consideration are fuzzy C-means
(FCM) (Bezdek et al., 1987), modified learning
vector quantization (MLVQ) (Kohonen, 1989;
Quek et al., 1998), fuzzy Kohonen partitioning
(FKP) and pseudo fuzzy Kohonen partitioning
(PFKP) (Quek and Ang, 1999).

Appendix A

To compare the fuzzy rules derived using Fal-
con-ART and Falcon-MART, the data distribu-
tions for the training set of CV1 according to each
of the four numeric attribute are shown as histo-
grams in Fig. 10. The data samples are grouped
according to the ranges specified and the fre-
quencies are tabulated.

Since the four numeric attributes are physical
measurements of length, the semantics of short
(S), medium (M) and long (L) can be used to de-
scribe the data distribution of the irises according
to a particular attribute. From the distributions of
the data samples in the training set, the following
set of fuzzy rules on the classification of the irises is
deduced
e Rule 3a: If sepal length is S and sepal width is L

and petal length is S and petal width is .S, then

iris is Setosa.

e Rule 3b: If sepal length is M and sepal width is
S and petal length is M and petal width is M,
then iris is Virginica.

e Rule 3c: If sepal length is L and sepal width is
M and petal length is L and petal width is L,
then iris is Versicolor.
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Fig. 10. Data distributions according to numeric attribute.

Fig. 11. Location of site 29 along PIE (Singapore).

This set of fuzzy rules is used to benchmark those
derived using Falcon-ART and Falcon-MART.

Appendix B

The site location (site 29) at which traffic flow
data for the second experiment is collected is

shown in the map (Fig. 11). The arrows show the
direction of traffic flow.
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