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Analogue circuit design and implementation of an adaptive resonance
theory (ART) neural network architecture

CHING S. HOft, JUIN J. LIOUt, MICHAEL GEORGIOPOULOST,
GREGORY L. HEILEMAN{} and CHROSTOS CHRISTODOULOUY

An analogue circuit implementation is presented for an adaptive resonance theory
neural network architecture, called the augmented ART-1 neural network
(AARTI-NN). The AARTI-NN is a modification of the popular ARTI-NN,
developed by Carpenter and Grossberg, and it exhibits the same behaviour as the
ARTI-NN. The AARTI1-NN is a real-time model, and has the ability to classify an
arbitrary set of binary input patterns into different clusters. The design of the
AARTI-NN circuit is based on a set of coupled nonlinear differential equations
that constitute the AARTI-NN model. The circuit is implemented by utilizing
analogue electronic components such as operational amplifiers, transistors, capaci-
tors, and resistors. The implemented circuit is verified using the PSpice circuit
simulator, running on Sun workstations. Results obtained from the PSpice circuit
simulation compare favourably with simulation results produced by solving the
differential equations numerically. The prototype system developed here can be
used as a building block for larger AARTI-NN architectures. as well as for other
types of ART architectures that involve the AARTI-NN model.

1. Introduction

Information processing and management in modern military and commercial
systems is growing more complex and is requiring higher performance. Traditional
computational approaches have not met the challenge posed by these expanding
requirements. Neural networks offer new computational solutions to these require-
ments that are potentially robust to noise and incomplete information, adaptive to a
changing environment, intrinsically massively parallel and fault tolerant. Neural
networks are currently realized in a number of ways. Most of the neural networks in
the open literature have been implemented via computer simulation of their
corresponding mathematical models. For real-life applications, however, neural
networks need to be implemented as analogue, digital, or hybrid (analogue digital)
hardware.

In this paper we focus our attention on the hardware implementation of an
adaptive resonance theory neural network named AARTI-NN (augmented adaptive
resonance theory-1 neural network). The AARTI-NN was developed by Heileman
et al. (1992), and is a modification of the popular ARTI-NN introduced by
Carpenter and Grossberg (1987). The major difference between the AARTI-NN and
the ART1-NN is that the AARTI-NN is completely described by a set of differential
equations, while the ART1-NN incorporates algorithmic components in its descrip-
tion. As Carpenter (1989) points out, differential equations constitute the language
of real-time models. Hence, from this perspective the AARTI-NN is a real-time
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model. The meaning of real-time is twofold: in the neural network literature, it
describes systems that require no external control of system dynamics. In the
engineering literature, it is used to describe a system that is able to process inputs as
fast as they arrive. There is no doubt that it is advantageous for a system such as
the AART-NN to have the aforementioned characteristics. It is also worth pointing
out that the AARTI-NN exhibits a behaviour identical with the behaviour of the
ARTI-NN (for a proof see Carpenter and Grossberg 1987). Since both models
exhibit identical behaviour, a hardware implementation of the AARTI-NN will
provide us with a hardware module that behaves like the ART1-NN.

Let us now elaborate on the significance of designing hardware that guarantees
an operation identical with that of the ARTI-NN. The novel property of the ARTI-
NN is the controlled discovery of clusters in response to binary input patterns
presented to it. In addition, the ARTI-NN can accommodate new clusters without
affecting the storage or recall capabilities for clusters already learned. To date, the
ARTI-NN has been used successfully in a variety of applications. In particular, the
Boeing Corporation (Caudell 1991) has utilized the ART1-NN, or modifications of
it, for automatic target recognition, sensor and data fusion, and aircraft design
retrieval applications; in all of these cases, real-world data have been used.
Furthermore, the ARTI-NN has been utilized in the design of larger ART
architectures, such as ARTMAP (Carpenter et al. 1991) and Fuzzy ARTMAP
(Carpenter et al. 1992), to mention only two. These architectures exhibit capabilities
beyond those achieved by the ART1-NN alone. For example, supervised learning is
possible with ARTMAP and Fuzzy ARTMAP, and consequently these architectures
can be used as pattern recognition machines.

In our paper an analogue circuit is designed and implemented based on the set of
differential equations tht describe the AARTI-NN model. One of the primary
reasons that implementation of neural networks on analogue hardware is a
worthwhile pursuit stems from the fact that a large proportion of neutral computa-
tion in the human brain is done in an analogue rather than a digital manner. The
building blocks utilized to implement the AARTI-NN model in this work are
weighted summers, comparators, multipliers, and integrators. All of these blocks are
implemented using operational amplifiers. Operational amplifiers are relatively
inexpensive and they have been used in a variety of circuit designs, some of them
involving neural networks (Fryre et al. 1991, Read and Geiger 1989). There have
been other efforts in the past to implement an ART1-NN in hardware. For example,
Nahet et al. (1989) developed an analogue implementation of shunting neural
networks. The equations that describe short term memory (STM) activities in the
AARTI-NN (for more details see §2) are shunting equations. However, no attempt
was made by Nahet er al. (1989) fully to implement a compete adaptive resonance
theory neural network architecture, a task that is accomplished in this paper. A
VLSI implementation of the ART1-NN has been conducted by Tsay and Newcomb
(1991). The particular implementation encompasses the (STM) equations, and the
long term memory (LTM) equations. But Tsay and Newcomb (1991) implemented
the LTM equations at their equilibrium point, and omitted the implementation of
the reset subsystem in the ARTI-NN. No such restrictions are imposed in our
implementation. As we demonstrate in §3, the complete adaptive resonance theory
neural network is implemented, which yields a circuit that can operate without
external supervision The only information that the circuit requires to function
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properly is the collection of the patterns that are applied at the neural network
input.

The organization of our paper is as follows: in the second section, the AARTI-
NN model is described as a set of nonlinear differential equations. In the third
section, we proceed with the hardware design of a prototype AARTI-NN. In §4, we
describe qualitatively how the circuit of § 3 is supposed to operate. This allows us to
test the PSpice simulation results, presented in § 5 both qualitatively and quantitati-
vely. The qualitative test is based on the description of §4, while the quantitative test
is based on simulation results obtained by numerically solving the differential
equations that define the AART1-NN model. The PSpice simulation results turn out
to fare well in both tests. Finally, in §6, we give an overview of the paper and
provide some concluding remarks.

2. The AARTI-NN model

The major components of the AARTI-NN model are depicted in Fig. 1. These
components can be grouped into two subsystems—the attentional subsystem and the
orienting subsystem. The attentional subsystem consists of two fields of nodes,
designated as F, and F, fields. The nodes in the F, and F, fields are used to encode
patterns of STM activity. Each node in the F, field is connected via bottom-up
weighted connections, called ‘bottom-up LTM traces’, to all the nodes in the first
layer of the F, field. Furthermore, every node in the first layer of the F, field is
connected via top-down weighted connections, designated as ‘top-down LTM
traces’, to all the nodes in the F, field. The bottom-up and top-down LTM
connections are adaptive and are used to store the knowledge acquired by the neural
network as its training progresses. Finally, the nodes in the first layer of the F, field
are completely connected via non-adaptive connections. In Fig. 1, the bottom-up
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Figure 1. The architecture of the augmented ARTI1 neural network (AARTI-NN) model.
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LTM traces are depicted by an arrow from the F, field to the F, field, while the
top-down LTM traces are depicted by an arrow from the F, field to the F, field. The
non-adaptive connections among the nodes in the first layer of the F, field are
omitted for reasons of figure clarity. The F, field is often referred to as the ‘input
field” because the input patterns are presented to it. The first layer of the F, field is
often referred to as the ‘category representation layer’, because it is the layer that
indicates the category to which the input pattern belongs. The orienting subsystem
in the AARTI1-NN architecture consists of a single node designated as v, (see Fig. 1).
The primary purpose of the orienting sybsystem is to generate a reset wave to the F,
field, whenever the category representation in the first layer of the F, field is not a
good match for the input pattern. The objective of the second layer of nodes in the
F, field is to deactivate the erroneous category representation in the first layer of the
F, field, whenever such an erroneous representation occurs, and to keep this
erroneous category deactivated for as long as the same input pattern persists at the
F, field. The AARTI-NN architecture is completed by a couple of gain control
mechanisms, designated as Gain | and Gain 2. The functionality of Gain | is to
guarantee the satisfaction of the ‘2/3 rule’ (for more details see Carpenter and
Grossberg 1987). Gain 2, in collaboration with the second layer of the F, field
nodes, maintains the deactivation of erroneous category representations in the first
layer of the F, field for as long as the input pattern persists across the F; field;
furthermore, Gain 2 drives the STM activity of the network to the resting value of
zero in the absence of input patterns at the F, field.

We denote nodes in the F, field by v;, nodes in the first layer of the F, field by v;
and nodes in the second layer of the F, field by #;. As we mentioned before, the reset
node is designated as v,. The index of nodes in the F, field ranges from 1 to M, while
that of nodes in the first and second layer of the F, field ranges from M+ 1 to N. We
denote the activities of the nodes v;, v; and #; by x;, x; and X;, respectively. The
activity of a node v; in the F, field is described by the following differential equation:

d
gl&xi=_-\-i+(l_AL-Y:')J:_(BI.'{'CI-‘-[)J; (1)
where J;" and J; represent the total excitatory and inhibitory input to the node v;.

respectively. In particular, J;" and J; are given by the following equations:

N

Ji'=I;+Dy Z fz(—‘fj)-'-'ﬁ (2)
i=M+1
N .
Ji = z Salx;) (3)

J=M+1

In (2) and (3), A,. By, C, and D, are constants, [; is the component of the binary
input pattern I that is received by node v;, f5(x;) is the output activity generated by
node v; with activity x;, and zj; is the value of the top-down LTM trace between
node v; in the F, field and node v; in the F, field. In (2) and (3) and throughout this
paper we assume that the output activity generated by a node v; with activity x; is
the threshold function



ART neural network architecture design 275

| if x>0, @

fZ("j)_{O, otherwise
where J, is the threshold of every node v; in the first layer of the F, field. The
meaning of the threshold is that if the node activity exceeds the threshold value the
output activity of the node is positive (i.e. the node is active), otherwise the output
activity of the node is zero (i.e. the node is inactive). The activity of a node v; in the
first layer of the F, field satisfies the following differential equation:

d
Ezaxj=—xj+(l_A2xj)Jj+_(B?_+Cl-’\1j)"j7 (5}

where J;" and J; represent the total excitatory and inhibitory input to the node v;,
respectively. In particular, J and J; are given by the following equations:

M
J; =f25)g)+ Dy Y. filxz, )
i=1
Ji =Y fax)+f2(%) ?
k#1

In (6) and (7), 45, B,, C, and D, are constants, f,(x;) is the output activity
generated by node v; with activity x;, f,(x;) is the output activity produced by node &;
with activity X;, and z;; is the value of the bottom-up LTM trace corresponding to
the connection between node v; in the F, field and node v; in the F, field. The output
activities f,(x;) and f,(¥;), as well as the function g(I'). appearing in (6), are provided
by the following equations:

1 ifx;>46,
filx)= {0‘ otherwise ®)
2 I if %> 0,
F(%)= {0. otherwise ©)
ifYX 1,40

g(1)= {0‘ otherwise (10)

In (8) and (9), 6, and &, represent the thresholds of nodes in the F, field and the
second layer of the F, field, respectively. The meaning of these thresholds is the same
as the meaning of the threshold 9, that we discussed above. The activity X; of a node
0; is provided by the following differential equation:

d
b2 %= — (1 =915+ g (x V() (1)

In the above equation, f,(x,) stands for the output activity of the reset node v,
with activity x,. The activity x, of the reset node is given by the following differential
equation:
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d M M
sraixr= ﬁArxr+U|:P Z Il‘_Q Z .f](xu'}:l (12)
i=1 i=1

where A,, P and Q are constants and U stands for the unit step function (i.e.
U(x)=1if x>0, and zero otherwise). The ratio P/Q is denoted by p and it is referred
to as the ‘vigilance parameter’ of the AARTI-NN architecture (for more details
about the role of the vigilance parameter, see Carpenter and Grossberg 1987). The
output activity f(x,) generated by the reset node is given by the following rule:

if x,> 6,

, otherwise (13}

=4,

Once more, in (13), d, represents the threshold of the reset node v,. In the present
model, the value of the bottom-up LTM trace, z;;, and the top-down LTM trace z;
are determined by the following differential equations:

d M
& g, T [(L Dfi(x)+ Y fl(—*k)].fz(xj)fu+Lf1(xl-)f2(xj) (14)
k=1

d
b q % =fa(x)zi+f1(x) f2(x;) ()

In (14), L is a constant. The parameters ¢,, &,, ¢ and ¢, that appear in the previous
equations are referred to as ‘learning rates’. These values determine the rate of
change for the variables (STM activities in the F, and F, fields, activity of the reset
node, and bottom-up or top-down LTM traces) that are characterized by the above
equations. A smaller value for the parameter ¢ results in a faster rate of change for
the variable described by the differential equation under consideration. In particular,
in the AARTI-NN model the rate of change for the STM activities in the F, and F,
fields, as well as the rate of change for the activity of the reset node, are much faster
than the rate of change for the bottom-up and top-down LTM traces (i.e. &, &,,
£, <¢E,).

3. Circuit design and implementation

In this section we design an analogue circuit prototype of the AARTI-NN,
consisting of four nodes in the F, field (nodes v, through v,), a reset node v,, and
eight nodes in the F, field (nodes v through vy in the first layer and nodes #; in the
second layer). The analogue circuit implementation of the prototype AARTI-NN is
based on the set of differential equations described in the previous section. In these
equations, the constants (e.g. 4,, 4,), the initial bottom-up and top-down LTM
traces (e.g. z,5(0), z5,(0)), and the initial STM activities (e.g. x,(0), x,(0)) are chosen
as depicted in the Table (for why the parameters are chosen as such, see Heileman et
al. 1992). It is worth pointing out that there is a wide range of parameter values for
which the differential equations of §2 can be implemented (again, for more details
see Heileman er al. 1992).

The implementation of the prototype circuit is accomplished in a number of
steps. In the first step, the circuit cells, such as the weighted summer, comparator,
multiplier and integrator, are implemented using operational amplifiers, and their
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A, =1 B,=15 C, =1 D, =1 0,=001

£, = A,=013 B,=10* c,=10* D,=1

0,=0-01 £,=100 A=2 P=0-99 0=1

4, =0-02 e.=1 dy=10"" L=1-01 g, =10%
z,5(0)=0-24 7,5(0)=0-24 Z45(0)=0-24 245(0)=0-24 z,6(0)=0-22
2,6(0)=0-22 2,6(0)=0-22 246(0)=0-22 z,4(0)=0-20 757(0)=0-20
23,(0)=0-20 247(0)=0-20 z,4(0)=0-18 2,4(0)=0-18 235(0)=0-18
245(0)=024 z5,(0)=1 25,(0)=1 z53(0)=1 z54(0) =1
z6,1(0)=1 z62(0)=1 z63(0)=1 264(0)=1 z(0)=1
295(0)=1 z93(0)=1 z74(0)=1 z5,(0)=1 zg2(0)=1
zg3(0)=1 zg4(0)=1 x,(0)=0 x,(0)=0 x5(0)=0
x4(0)=0 x5(0)=0 x6(0)=0 x4(0)=0 xg(0)=0
%5(0)=0 %6(0)=0 x4(0)=0 Xg(0)=0 x(0)=0

Parameter values and initial conditions used for the PSpice/numerical simulation of the
differential equations in §2. These differential equations describe the prototype
AARTI-NN designed in §3.

functionality is tested. In the second step, we implement an arbitrary node belonging
to the first layer of the F, field. In the third step, we design an arbitrary node
belonging to the F, field. Then, in the fourth step, we proceeded with the
implementation of the reset node and the nodes in the second layer of the F, field.
Finally, in the fifth step, the bottom-up and top-down LTM traces were imple-
mented to interconnect the nodes in the F, and the F, field. Each of the above
implemented circuits was tested extensively to verify its functionality. The function-
ality of the entire prototype AARTI-NN was also tested and the details of the
testing procedure are included in the following sections.

Let us now describe in more detail the circuit implementation corresponding to
an arbitrary node in the first layer of the F, field (i.e. the second step). In the
AARTI-NN, the activity x; of the node v;in the first layer of the F, field is described
by (5) (in our case M =4 and N=28). Equation (5) can be rewritten as follows:

d
52&.¥1=—(1+A2JJ++C2J1_)XJ+(JJ+—BZJJ_) (16)

where

4
Ji =fo(x;)g()+D;3 ¥, f1(x)z;;
i=1
) (17)
J5 =3 f(x;)+f(%)

k#j

The value of the function g(I) in the above equations is determined by the
summation of the binary inputs affecting the F, field of the AARTI-NN. The
quantities f,(x;) and fz(,fj) correspond to output activities of nodes v; and &,
respectively; the activities of these nodes are determined by the differential equations
(1) and (11), which are implemented in Steps 3 and 4, respectively. Finally, z;; is the
bottom-up LTM trace from node v; to node v; determined by (14), which is
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implemented in Step 5. The circuit implementation of the differential equation
corresponding to the activity x; (see (16)) can be realized by a weighted summer with
inputs x;, 4,J; x;, C,J; x;, ByJ; and —J;; the output of the weighted summer
would be &,(d/dt)x;. The relationship between x; and &,(d/dt)x; is accomplished by
utilizing an integrator combined with an inverter. The circuit diagram for node v; in
the first layer of the F, field is shown in Fig. 2. In this figure the triangles represent
the operational amplifiers, and blocks A, B, C, D and E denote the inverter,
weighted summer, integrator, multiplier, and comparator cells, respectively. As we
mentioned above (first step), each cell circuit was verified using PSpice simulation
before it was incorporated into the one-node circuit of Fig. 2. Note that the value of
the learning rate ¢, is determined by the RC time constant of the integrator (see
block C in Fig. 2). Furthermore, the threshold function f,(x;), described in (4), is
provided by the comparator with input x; (see Block E in Fig. 2). Multipliers are
used to implement the multiplication items on the right hand side of (16), such as
Ay J [ x;, C3J5x;, ByJ;, and —J; .

Figure 3 shows the results obtained from the PSpice simulation of the differential
equation (16) using a near ideal op.-amp. model (henceforth, this model is referred
to as the ideal op.-amp. model), and using a practical op.-amp. 741 model. In Fig. 3,
we have implemented the differential equation (16) for an arbitrary node v; in the
first layer of the F, field, with 4,=0-3, B,=100, C,=100, D,=1, 0,=05, &,=1,
g()=1and Y, fi(x)z;;=1. As we can see from Fig. 3, excellent agreement is
found between exact solutions and the PSpice simulation results using the ideal op.-
amp. model. The ideal op.-amp. amplifier model used as a very large input resistance
(100k€Q), a very small output resistance (10), and a high voltage gain (10°). Several
practical op.-amp. models are available in the model library of the PSpice simulator,
each one with characteristics resembling the characteristics of a practical op.-amp.
commercially available. We chose the op.-amp. 741 model because it has been widely
used in circuit applications such as signal processing and power amplification. As
Fig. 3 demonstrates, the simulation results obtained by using the op.-amp. 741
model follow the exact trend of the simulation results produced by using the ideal
op.-amp. model. The only difference is a small propagation delay caused by the RC
time constant associated with the real op.-amp. This delay is not going to affect the
behaviour of the prototype AARTI-NN that we intend to build. The only effect that
it might have is to introduce an additional delay for the time required by the nodes
in the AARTI-NN to become active or non-active. Thus, in order to reduce the
CPU time for the PSpice simulation, we employ the ideal op.-amp. model for all our
circuit designs.

Next, the circuit for an arbitrary node v; in the F, field is designed, based on (1).
Following a procedure similar to that described above, the circuit is implemented as
shown in Fig. 4. The output of this circuit (i.e. x;) is used to produce the output
activity f,(x;) of node v; in the F, field, which affects the nodes v; in the first layer of
the F, field (see Fig. 2). Subsequently, the differential equations that determine the
activity of an arbitrary node ¢; in the second layer of the F, field (see (11)), and the
activity of the reset node (see (12)) are implemented; the corresponding circuits are
shown in Figs 5(a) andﬁ 5(h). Note that the circuit corresponding to X; generates the
output activity signal, f(X;), of node i;, which affects node v; in the first layer of the
F, field (see Fig. 2). In addition to that, the circuit corresponding to x, generates an
output activity f,(x,) which influences all the nodes in the second layer of the F, field
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Figure 3. Short term memory (STM) activity of an arbitrary node v; in the first layer of the
F, field using an ideal op.-amp. and LM741 op.-amp.

(see Fig. 5(a)). The bottom-up and top-down LTM traces are characterized by (14)
and (15); their implemented circuits are shown in Figs 6(«) and 6(b), respectively.

4. Circuit functionality

In the previous section we designed a circuit prototype of the AARTI-NN,
consisting of four nodes in the F, field (nodes v, through v,), a reset node (node v,),
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Figure 4. The circuit diagram for an arbitrary node #; in the F, field. The circuit cells
depicted in the diagram are designed as demonstrated in Fig. 2.



ART neural network architecture design 281

10K - o)
A 5 0 Lix) al o Input .. o
Al = z o, b(x) 2
!
" yf'_l 3 g
5
Ry =
10K 10K
R12 HD‘
» 10K 10K
oP1 rHe A 10K 1WF
; s iy R —f— 10K
10K e A
= — ™M a1 R
Ry oP3 -y D\ 10K I\ji
+ an OP.‘ AV =
= - R, oPs Ou;put
- + |
(a)
5K
10K
10K
ﬂl? ‘a‘.
- 10K =
OP1 A -
't Ry oP2
“+
= Qutput
- o
il L COMP L)
10K
COMP
it 10K
A 10K
A
Input 10K A Ry
Py o —— 10K
/ 51 WA = 10K
R OP6 W
- Ag
Input ’ 10K =
Q" Zf(x) O Wy
i R
(&)

Figure 5. (a) Circuit diagram for an arbitrary node §; in the second layer of the F, field; (b)
circuit diagram for the reset node v,. The circuit cells depicted in the diagrams are
designed as demonstrated in Fig. 2.

and eight nodes in the F, field (nodes vs through vy in the first layer and nodes s
through ¢y in the second layer). In this section, we qualitatively discuss the
functionality of the circuit during the presentation of the patterns 1000 and 1100 at
the F, field. We choose the vigilance parameter p(=P/Q) in the network approxi-
mately equal to one (see the Table); consequently, we expect the input patterns 1000
and 1100 to choose different categories in the first layer of the F, field. The
successful operation of the AARTI1-NN and other ART architectares are based on
the assumption that the STM network activity returns to zero between the
presentations of two distinct input patterns. In the AARTI-NN model, to guarantee
this assumption we need to present the zero pattern at the F, field between any two
distinct pattern presentations, and we need to choose the initial STM activities equal
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Figure 6. (a) Circuit diagram corresponding to an arbitrary bottom-up LTM trace z;;; (b)
circuit diagram corresponding to an arbitrary top-down LTM trace z;;. The circuit
cells depicted in the diagrams are designed as demonstrated in Fig. 2.

to zero (see the Table). Hence for our example we need to present the zero pattern
(i.e. pattern 0000) between the presentation of patterns 1000 and 1100. The time
during which the zero pattern is presented is much shorter than the time during
which useful patterns (such as 1000 and 1100) are presented. We designate the first
useful pattern presented to the AARTI-NN as I' (i.e. I'=1000), and the second
useful pattern presented to the network as I* (ie., I°=1100); we reserve the
notation I? for the zero pattern presented between the I' and the I* patterns (i.e.
1?=0000). We also designate by I}, I} and I} (1<i<4), the ith component of
patterns I', I? and I°*, respectively. For example, during the presentation of pattern
I'=1000 at the F, field, node v, receives input I | =1, node v, receives input 1};=0,
node v, receives input 13=0, and node v, receives input I ;=0. As mentioned in the
previous section, the parameters of the differential equations in §2 and the initial
bottom-up and top-down LTM traces during the circuit simulation are chosen as
depicted in the Table.

The AARTI1-NN is supposed to work as follows during the presentation of the
patterns I, 1% and I°. After the appearance of pattern I* at the F, field, node vs is
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chosen in the first layer of the F, field to represent the input pattern. This is because
node vs is the node that receives the largest bottom-up input from F 1+ Since node vy
has not been chosen to represent any pattern prior to the appearance of I', there is
not going to be a mismatch between bottom-up and top-down inputs at the F, field;
consequently, the reset node will remain non-active, and node v. will be deemed
approxpriate by the architecture to represent pattern I'*. Subsequently. the bottom-
up and top-down traces corresponding to node vs will learn the input pattern I,
After the withdrawal of pattern I' from the F, field, the zero pattern I? is presented
Lo prepare the network for the appearance of the next useful pattern /°. During the
presentation of pattern I? at the F, field, all STM node activities return to their
resting value of zero. When pattern I? is presented to the AARTI-NN. node vs in
the first layer of the F, field will be chosen first to represent the input pattern I°.
This is due to the fact that node vs will be the node receiving the largest bottom-up
input from the F, field. Node vy will be reset by the reset node because there is a
mismatch between the bottom-up and top-down inputs at the F, field. The
bottom-up inputs at the F, field correspond to the input pattern I3 (1100), while the
top-down inputs from node vy correspond to the pattern I' (1000) that node Us
learned during the presentation of I' at the F, field. Since the vigilance parameter p
was chosen approximately equal to one, an almost perfect match between the
bottom-up and top-down inputs at the F, field is required to keep the reset node
non-activated. The reset of node v will force the F, field to choose another node in
its category representation layer to represent the input pattern I°. At this time, node
ve Will be chosen since it is the node in the first layer of the F, field that receives the
next (to node vs) largest bottom-up input from the F, field. The activation of node
ve Will not create a mismatch of bottom-up and top-down inputs at the F, field
because node vg has not been chosen to represent any pattern prior to the
appearance of pattern I*. Hence, the reset node remains non-active and node e will
learn to represent the input patiern I (i.e. the bottom-up and top-down LTM traces
corresponding to node vy will converge to appropriate values).

5. Simulation results

In this section we verify the prototype AARTI-NN circuit of § 3 using the PSpice
circuit simulator. The PSpice simulation results for the transient response of the
prototype circuit are shown in Figs 7-15 (solid curves). Pattern I is presented in the
interval between 0 and 70 x 10%s, pattern I? is presented in the interval between
70 x 10* and 75 x 10*s, and pattern I? is presented in the interval between 75 x 10°
and 145 x10*s. The qualitative verification of our PSpice simulation results is
presented below, and it is based on the expected network behaviour. outlined in the
previous section. The quantitative verification of the PSpice simulation results is also
provided in Figs 7-15 (broken curves) by solving the differential equations ol §2
numerically. The differential equations were solved numercially bu using the Runge-
Kutta technique with a step size of 1072,

In Fig. 7, we demonstrate that node vy is the one chosen to represent the input
pattern I''. As we can see from Fig, 7, after the input pattern is presented the activity
of v, increases from zero to a positive value above the node threshold d,. Once v,
becomes active, nodes in the first layer of the F, field begin to receive bottom-up
input (i.e. input from the F, field). Since v, receives the largest bottom-up input (see
the initial bottom-up traces in the Table), it becomes active before any other node
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Figure 7. Short term memory (STM) activities in the AARTI-NN prototype during the
presentation of the ' = 1000 input pattern. The solid curves correspond to the PSpice
simulation results and the broken curves correspond to the numerical simulation
results; x;, x,, x5 and x, are the STM activities of nodes v, v, (F, field), v5 and v (F,
field), respectively. The horizontal axis represents Time in seconds.
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Figure 8. Short term memory activities in the AARTI-NN prototype during the presen-
tation of the I*=0000 input pattern. The solid curves correspond to the PSpice
simulation results and the broken curves correspond to the numercial simulation
results; x;, X,, X5 and x4 are the STM activities of nodes v\, v, (F, field), vs. and vg (F,
field), respectively. The horizontal axis represents Time, where Time is equal to
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Figure 9. Short term memory activities in the AARTI-NN prototype during the presen-
tation of the I*=1100 input pattern. The solid curves correspond to the PSpice
simulation results and the broken curves correspond to the numerical simulation
results; x,, x,, X5, X and x, are the STM activities of the nodes vy, v, (F, field), vs, 14
(F, field) and the reset node v,, respectively: (a) STM activities for the time interval
[75000, 75010]; () STM activities for the time interval [75 100, 75 140]. The horizontal
axes in both figures represent Time, where Time is equal to (1+75000) s, and the values
of ¢ are shown below the horizontal axes.

becomes active in the first layer of the F, field. As we can see from Fig. 7, the activity
of vy which is the node receiving the next largest input, never manages to reach a
level above the node threshold é,; similar behaviour is exhibited by the other nodes
in the first layer of the F, field (i.e. nodes v, and vg). After the activation of node v,
node v, in the F, field receives both bottom-up input (from the input pattern I'') and
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solid curves correspond to the PSpice simulation results, while the broken curves
corresond to the numerical simulation results. In most instances, the solid and the
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The behaviour of the bottom-up LTM traces z,s, z,, and z,; during the

presentation of patterns I', I* and [ at the F, field (time interval [0, 145000]) The
solid curves correspond to the PSpice simulation results, while the broken curves
correspond to the numerical simulation results. In most instances, the solid and the
broken curves overlap. The horizontal axis represents Time, where Time is equal to
(r = 1000)s, and the values of 1 are shown below the horizontal axis.
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Figure 12. The behaviour of the bottom-up LTM traces zys, z3 and z3, during the
presentation of patterns I', 1% and I? at the F, field (time interval [0, 145000]) The
solid curves correspond to the PSpice simulation results, while the broken curves
correspond to the numerical simulation results. In most instances, the solid and the
broken curves overlap. The horizontal axis represents Time, where Time is equal to
(% 1000)s, and the values of ¢ are shown below the horizontal axis.

1.2
1 € 1
» 08
a —— PSpica results
g ol ~—— Numerical results
s Yo O LTH I,
[
= O LTH
c
3 04 4 LM g,
2
5
= 0.2
O. = o
0.2 T T T T T T T
0 20 40 60 80 100 120 140

Figure 13.

Time (= t*10° s)

The behaviour of the top-down LTM traces z5;, 25,

160

and zgy during the

presentation of patterns I'', I? and I at the F, field (time interval [0, 145000]) The
solid curves correspond to the PSpice simulation results, while the broken curves
correspond to the numerical simulation results. In most instances, the solid and the
broken curves overlap. The horizontal axis represents Time, where Time is equal to
(r = 1000)s, and the values of r are shown below the horizontal axis.
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Figure 14. The behaviour of the top-down LTM traces z4,, z4, and zgy during the
presentation of patterns I', I* and I at the F, field (time interval [0, 145000]) The
solid curves correspond to the PSpice simulation results, while the broken curves
correspond to the numerical simulation results. In most instances, the solid and the
broken curves overlap. The horizontal axis represents Time, where Time is equal to
(= 1000)s, and the values of 1 are shown below the horizontal axis.

top-down input (from node vs). This causes the activity of v, to decrease and
eventually reach a limiting value, which is above the node threshold &,(see Fig. 7).
Note that the activity of field F, throughout the presentation of I is large enough
so that the reset node cannot generate a reset wave. Consequently, node vs is deemed
by the architecture as the right node in F, to represent the input pattern I!, and the
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Figure 15. The behaviour of the top-down LTM traces z,, z,, and z,; during the
presentation of patterns I'', I? and I? at the F, field (time interval [0, 145000]) The
solid curves correspond to the PSpice simulation results, while the broken curves
correspond to the numerical simulation results. At most instances, the solid and the
broken curves overlap. The horizontal axis represents Time, where Time is equal to
(1 % 1000)s, and the values of ¢ are shown below the horizontal axis.
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bottom-up and top-down LTM traces converging to node vs will learn pattern I'. In
particular, as we can see from Figs 10-13, the LTM traces z5, and z,5 converge to
large values, while the remaining traces corresponding to node v5 converge to small
values (i.e. values close to zero).

In Fig. 8, we illustrate what happens during the presentation of the zero pattern
at the F, field of the AARTI-NN. As shown in Fig. 8, all STM node activities
converge to their resting value of zero within the first 1000 units of time after the
appearance of 1% (actually, in Fig. 8 only certain STM node activities are shown in
order to preserve the clarity of the figure). The behaviour of the network after the
presentation of I? is depicted in Figs 9(a) and 9(b). In Fig. 9(a), we can see that after
the presentation of I node vs becomes active first because it is the node in the first
layer of the F, field that receives the largest bottom-up input. Once node v becomes
active, the activities of nodes v, and v, begin to decrease. The activity of v, remains
above the threshold, while the activity of vc, decreases to a level below the threshold.
This a consequence of the fact that node v, receives strong top-down input (z5, large
from Fig. 13), while node v, receives weak top-down input (z,, is equal to zero from
Fig. 13)—both nodes receive bottom-up input. When v, becomes non-active, the
activity of the reset node starts increasing due to the mismatch between the bottom-
up and top-down inputs that is now occurring at the F, field. When v, becomes
active (i.e. its activity exceeds the threshold 6,), it generates a reset wave that
deactivates vs almost instantancously (see Fig. 9(a)). After v is deactivated, v, and
v, Teceive only bottom-up input, and their activities increase towards the limiting
value of 0-5 (see Fig. 9(a)). Now that v, is deactivated, ve becomes active next since it
is the node in the first layer of the F, field that receives the next largest bottom-up
input from the F, field. The activation of v, is shown in Figs 9(a) and 9(h). When v,
becomes active, the activities of v, and v, begin to decrease from the value of 0-5: but
they both remain above the threshold &, (see Fig. 9(b)). This is a consequence of
both v, and v, receiving bottom-up input and strong top-down input (see Fig. 14). It
is worth noting that the activity of the reset node starts decreasing some time after
the deactivation of node vs and that it continues to do so after the activation of v
because there is no mismatch between bottom-up and top-down inputs at the F,
field when node v is active (the activity of the reset node is not shown in Figs 9(a)
and 9(b) in order to preserve the figure clarity). As we emphasized before, node Vg
should not be reset since it has not been chosen to represent any input pattern yet.
The input pattern I°=1100 is withdrawn from the F, field at time 145000. During
the time interval from the activation of v, until the withdrawal of pattern I3 from
the F, field, the bottom-up and top-down LTM traces corresponding to node Vg
learn to represent pattern I3, In particular, as can be seen from Figs 10-12 and 14,
the LTM traces z,4, 226, Z¢; and zg, converge to large values, while the remaining
traces corresponding to node v converge to small values (i.e. values close to zero). It
is worth pointing out that LTM traces, corresponding to nodes that have not been
chosen to represent any pattern yet, do not change their values during the
presentation and learning of the useful patterns I' and I (see the bottom-up or top-
down LTM traces corresponding to node v, in Figs 10, 11, 12 and 15).

6. Conclusions

In this paper, a prototype circuit has been successfully designed and implemented
for the augmented adaptive resonance theory—I neural network (AART1-NN). The
AARTI-NN, as its predecessor the ARTI-NN, can cluster in a parallel manner an



290 Ching S. Ho et al.

arbitrary collection of binary input patterns. This capability makes the AARTI-NN
very attractive for high speed signal processing applications. Furthermore, using the
AARTI-NN module other adaptive resonance theory (ART) neural networks,
which can function as pattern classifiers, can be implemented. The circuit was
designed and implemented based on analogue electronic components including
operational amplifiers, transistors, capacitors and resistors. Verification of the circuit
was carried out using the PSpice circuit simulator available on Sun workstations.
The CPU time required for a complete PSpice simulation (i.e. presentation of I'' and
13 for 70 x 10% s and presentation of I? for 5 x 10¥s) ranged between 20 min and 4 h,
depending on the values chosen for the learning rates (i.e. the ¢'s). Excellent
agreement was obtained when we compared the PSpice simulation results and the
results calculated (either exactly or numerically) from the coupled differential
equations constituting the neural network. The following features are important
regarding the work performed.

(1) The implemented circuit exhibits the same behaviour as the ARTI-NN. The
ARTI-NN has been used successfully in numerous applications so far.

(2) The implemented circuit covers all the subsystems of the ART1-NN architec-
ture, such as the attentional subsystem (i.e. F, and F, fields), and the
orienting subsystem. As a result, the circuit developed is self-contained and
does not require any external supervision. The only information required in
order for the circuit to function properly, is the collection of the input
patterns affecting the F, field. This is a feature that distinguishes our
implementation from other implementations of the ARTI-NN reported in
the literature.

(3) The implemented circuit is parallel and analogue. The parallel characteristic
allows the circuit to possess very fast processing capabilities.

One of our future goals is to extend the designed AARTI-NN prototype circuit
to larger and consequently more practical prototypes, as well as utilizing the
aforementioned design approach and implementation for other similar neural
network architectures. Finally, another worthwhile pursuit, which will make the
circuit more compact and integrable into one chip, is to implement the AARTI-NN
based on the approach of very large scale integration using only CMOS technology.

ACKNOWLEDGMENT

This work was supported in part by the Florida High Technology Council, by
the Division of Sponsored Research at UCF, and by the Harris Semiconductor
Corp., Melbourne, Illinois.

REFERENCES

CARPENTER, G. A., 1989, Neural network models for pattern recognition and associative
memory. Newral Networks, 2, 243-257.

CARPENTER, G. A., and GROSsBERG, S., 1987, A massive parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics and Image
Processing, 37, 54-115.

CARPENTER, G. A., GROSSBERG, S., MArKUZON, N., REynoLDs, J. H., and Rosen, D. B., 1992,
Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of
analog multidimensional maps. /EEE Transactions on Neural Networks, 3, 698-T13.



ART neural network architecture design 291

CARPENTER. G. A.. GROSSBERG. S.. and ReynoLps, J. H., 1991, ARTMAP: supervised real-
time learning of non-stationary data by a sell~organizing neural network. Newral
Networks, 4, 565-588.

CaupiLL, T. P., 1991, Adaptive neural systems. 1990 IR & D Technical Report, TR #
BCS-CS-ACS-91-001, Research and Technology Boeing Computer Services, Seattle,
Washington, U.S.A.

Fryre, R. C., Rierman, E. A, and Wong, C. C., 1991, Back-propagation learning and non-
idealities in analog-neural network hardware. IEEE Transactions on Neural Networks,
2, 110-117.

HeiLeMAN, G. L., GEORGIOPOULOS, M., and ABDALLAH, 1992, A dynamical adaptive reso-
nance architecture. TEEE Transactions on Neural Networks, submitted for publication;
also partially published in the Proceedings of the International Joint Conference on
Neural Networks, Singapore, November 1991, Vol. 3, pp. 2658-2663.

NaHET, B., DARLING, R. B., and PINTER, R. B., 1989, Analog implementation of shunting
neural networks. Proceedings of the 1988 Neural Information Processing Systems
(Morgan Kaufman), pp. 695-701.

Reap, R. D.. and GEGER, R. L., 1989, A multiple-input OTA circuit for neural networks.
TEEE Transportations on Circuits and Systems, 36, 767-770.

Tsav, S. W., and Newcoms, R., 1991, VLSI Implementation of ARTI memories. [EEE
Transactions on Neural Networks, 2, 214-221.



