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Acquiring Rule Sets as a Product of Learning
In a Logical Neural Architecture

Michael J. Healy Member, IEEE,and Thomas P. Caudelember, IEEE

Abstract—Envisioning neural networks as systems that learn that helps clarify the issues in the symbolic representation
rules calls forth the verification issues already being studied of neural-network processing. Our method is to present a
in knowledge-based systems engineering, and complicates thesgg|atively simple, “user-friendly” formal model using as little

with neural-network concepts such as nonlinear dynamics and . . . . -
distributed memories. We show that the issues can be clarified mathematical notation as possible while correctly representing

and the learned rules visualized symbolically by formalizing the semantics of the data and of the neural-network processing
the semantics of rule-learning in the mathematical language of of the data. To that end, relatively simple neural-network

two-valued predicate logic. We further show that this can, at grchitecures for data representation and rule extraction are used
least in some cases, be done with a fairly simple logical model.to exemplify the formalization

We llustrate this with a combination of two example neural- )
network architectures, LAPART, designed to learn rules as logical
inferences from binary data patterns, and the stack interval
network, which converts real-valued data into binary patterns The rule forms of knowledge-based systems and the strate-
that preserve the semantics of the ordering of real values. We gies they employ for executing rules are many and varied

discuss the significance of the formal model in facilitating the R
analysis of the underlying logic of rule-learning and numerical [5], [6], but central to all rule-based systems is iaference

data representation. We provide examples to illustrate the for- €nginethat implements the system’s rule-execution strategy.
mal model, with the combined stack interval/lLAPART networks The most common form of rule is the general, antecedent-
extracting rules from numerical data. consequent formi — B, suggestive of a deductive inference
Index Terms—Adaptive resonance theory (ART) neural net- in formal logic (although the system itself is usually based
works, classification, connectionist system, formal semantics, in- upon heuristics). A set of rules for a given application forms
ferencing, knowledge-based systems, logic, predicate, rule basea rule basewhich changes from application to application and

A. Rules and Neural Networks

rule extraction, synaptic learning. can be incrementally updated as more is learned about an
application. The inference engine determines which of possibly
|. INTRODUCTION many rules apply when the user supplies an input query. It then

E PRESENT a formalization of the semantics of certaidecides which of these rules to process, or else prioritizes them
classes of neural networks in two-valued logic. Theor application one at a time. It processes the selected rules
need for such a formalization arises from the architectural either antecedent—consequent order (forward chaining), pro-
models proposed by some investigators [1]-[4] as systewhscing consequents as conclusions, or the reverse (backward
which learn rules, in the sense of a knowledge-based systeafnaining), finding antecedents that apply to a given conclusion.
Rule-learning by neural networks is an ambitious goal, fdn forward-chaining, for example, a rukicceeddor input
it requires an interpretation of adaptation in a connectioif-its antecedent is a statement that appliesto As a result,
ist system as the learning of inference relations expressitig system infers tha® applies tox as well. Through a chain
cause—effect, condition—action, or other antecedent-consequarguch deductions, the user obtains an answer to the query in
relationships understandable in human terms. In this paper, the form of a final conclusion.
propose a formal but relatively simple model to support this An adaptive neural network learns such inference relations
interpretation for a neural network whose learned rules atwoughsynaptic learningin which it modifies the weights of
readily analyzed in two-valued logic, yet can express compléxe synaptic connections between its nodes. The modifications
phenomena represented by real-valued data. The formalizatiza the result of the simultaneous activation of connected
is intended as an analysis tool, to support the clarification anddes. The activation is in turn the result of the network’s
possible resolution of the issues we discuss. processing of example application data cases in which the
We emphasize at the outset that this is a theoretical paparyet-unknown rules apply.
aimed at the analysis of practical applications. The aim here isUnfortunately, the current state of neural-network technol-
not to present specific neural-network models or performangcgy does not include a generally accepted model describing
comparisons between them, but to present a formalizatitite processing in a neural network in terms of unambiguous
_ _ _ symbolic expressions for rule antecedents, consequents, and
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the conclusion itself. More generally, it is important to have arwise. To formalize the concept represented by the argument
model supporting knowledge-based verification and validatian we have introduced the terobjectsto refer informally to
[5]. Several issues arise in knowledge-based systems, corembers of classes. Normally, objects are the events or items
cerning potential pitfalls such as inconsistent rule sets. Fapresented by neural-network input, output, and connection-
example, there might occur an instancen which one rule weight patterns, including possibly the patterns themselves.
concludesB and another rule conclude®t B. The rulesin  We can now reformulate the task of modeling the learning of
a rule base are often related through logical relationships tmates of the formA — B: We seek a symbolic expression for
can lead to such difficulties. The larger the rule base, the maetatemen3(z) expressing membership in classfor some
difficult it is to discern troublesome relationships by simplebjectz, and this expression is to be a logical consequence of
means. Further discussion and examples of this are givenamother expressiod(x) expressing membership of an object
[5], [6]. Addressing these issues requires a formal model ofin some classi (we shall simplify by eliminating the object
the relationships among symbolic expressions which represeymbol z in Section lll, but prefer to retain it for now). The
rules and their applications. data for a given instance of the rule are given as a pair of input
A formal model of rule-learning in neural networks adds data patterns representing an instafeez) of the rule. We
new dimension to the modeling task. A mathematically preciémve created a neural network called LAPART, specifically
representation must be found not only for symbolic expredesigned for learning logical inferencing relationships from
sions, but also for neural-network quantities such as numeridaita according to this scheme. A LAPART network consists
connection weights and for the relationships between thesietwo interconnected adaptive resonance theory version 1
two fundamentally different kinds of entities. In addition, théART 1) networks [10]. An ART 1 network learns to recognize
learning of rules by a network requires a formalization of thelasses of inputs through unsupervised learning, in which
learning problem itself: How are symbolic logical relationshipi derives pattern features to represent object classes based
to be learned from data? How can this occur in a connectionigion examples whose patterns app&arilar according to a

system? criterion implemented by the network. A LAPART network
learns logical inference relations between object classes by
B. A Formal Model hypothesis-testing, in which it reads example pairs of data

Formal models for neural networks have been proposed ($@dterns and forms and executes trial rules (Fig. 1). Each
[7] for a rather sophisticated model based upon nonmonoto®&T 1 subnetwork reads a single pattern from each pair. It
logic and [8] for one that relates to fuzzy logic). Formalizationicorporates the pattern into a cluster, corresponding to an
can require some time for familiarization, particularly whem@bject class. The connections between the two ART 1 networks
they involve mathematical models that are not in common uderce the classes to reflect correct rules. That is, a class
We propose a relatively simple formalization in “traditional'instance (object) tentatively recognized by the first network A
mathematical logic and apply it to the investigation of ruletriggers a rule inferring that an instance of an associated class
learning in neural networks. Because of space limitations, @ as yet unseen object) must be recognized by the second
present only the essentials needed to understand its applicatietwork B. Operating as just described, a LAPART network
to our example architecture. Hence, we avoid some of tperforms 1) partially supervised ART 1 pattern classification,
issues that can complicate logical models and caution that otgsulting in synaptic learning within each ART network and
may require extension to encompass neural-network mod&)ssynaptic learning of the class-to-class inferences, or rules,
that vary widely from that presented here. However, we hatirough interconnects between the ART 1 networks.
tried to be careful in our definitions and use of terms and hope .
this discussion helps clarify important aspects of rule-learninf: ©On the Contents of this Paper

The LAPART (LAteral Priming Adaptive Resonance The- The remainder of this paper focuses on a formal model of
ory) neural network [9] establishes relationships betweenle extraction with a LAPART network and an associated
labeled sets, oclassesof objects through synaptic learning.preprocessing network. The formalization is in the form of
The fundamental connection between this and purely symbdi@@mulas in a two-valued logic. We have intentionally omitted
processing is that statement symbols such /asand B, discussion of probabilistic reasoning, fuzzy logic, and other
introduced earlier, are labels for two equivalent conceptualodels of uncertainty on the grounds that they involve very
entities: classes of objects and logical functions. There aremplex issues and would greatly increase the length of the
various reasons for our adopting the term “class”: noise apdper. We also omit discussion of “certainty factors” for rules,
other phenomena in the application data can cause mamy attempt at handling uncertainty in expert systems. For a
patterns to represent one object, data limitations can caukgcussion of the latter, including a more general discussion
one pattern to represent many objects, and it is often desirabfeuncertainty in models of probabilistic as well as heuristic
to establish groupings of objects that are examples of a singléerencing, see [11]. Our formalization of the semantics
important concept. The use of classes allows a two-level regf- rule extraction with neural networks will be entirely in
resentation—object and class—for flexibility in dealing witlsymbolic statements with a “true—false” interpretation, leaving
these occurrences. The logical functions, calf@ddicates open the issues of uncertainty. We also omit discussion of other
yield either of two Boolean valuedtue or false , for a architectures such as fuzzy ARTMAP [12] that are functionally
given argument: That is4(x) = true if and only if an object similar to LAPART. Fuzzy ARTMAP, for example, learns
denoted by: is a member of clasd, and A(xz) =false oth- maps between multidimensional spaces represented in real as
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weighted input signals; for a synapse, the events are patterns

AR} Ef;st: m = ARE Ic)f;:; ™ of activity in the network that determine whether or not the
activity of its source node determines the activity of its target
node. Taking the view that neural events originate from things

Input pattern that are somehow encountered in an application, we allow

°°‘:§‘iﬁl"m | the term “objects” to encompass all such events. A function
A class | evaluation yields groposition a statement with an assigned
: Booleantrue or false , depending upon whether or not
¥ the current input object possesses the property represented by
the function, or predicate. A network node can be intrepreted
as a predicate by regarding its output activation as a binary
NOT NOT ON/OFF signal, where ON (the valueue ) occurs when
ART pattern — ART pattern the numerical sum of inputs to the node exceeds a threshold
A class B class value. The semantics of the predicate—what it means in the

context of the neural network and its data—is determined by
the input connection weights, or by the properties of a sensor
if the node is an input node, and is also determined by the
with threshold value. Through their collective action, these quan-
B class tities implement a decision process to determine whether the
Fig. 1. The forward and backward inference rules implemented by a LARDject represented by the current input to the node possesses
PART network. some property—a particular color, a brightness level, or more
generally, membership in some class uniquely determined by
well as binary patterns. A discussion of the semantics of theseset of properties.
maps—similar to our rules—is beyond the scope of this paper,This underlies the connection between Boolean values and
since formalizing these as learned rules is a more involvethe numerical values in data patterns, connection-weight pat-
task than is that for LAPART. terns, and patterns of ON/OFF activation over the network
In Section Il, we present a representation of ART 1 classiodes. A binary input patterf(z) input to an ART 1 neural
fication in formal logic. The basic idea is that if learning hagetwork, representing an object can be regarded as a string
reached ajoal state(i.e., the objects represented by the inpwf “1's” and “0’s.” Alternatively, it can be regarded as a
patterns are completely represented by the learned templatisy),/(z) of Boolean valuesrue andfalse , respectively,
each template component represents a necessary conditiondgresenting truth or falsehood: Each input node “makes a
an object to be a member of a class and conjunctions of thesgtement” that: either does or does not appear to possess
conditions formalize the concept of generalization. We go onthe unique property that it represents. Correspondingly, we
describe symbolic rules as learned inferences between clagggs an identical notation to denote two different operations
of objects in Section lll. We define stack interval networkgit will always be clear which is intended): The numerical
which encode real-valued pattern components as binary sufinimum and the logical AND, both denoted. For any
patterns of a data pattern, in Section IV. As the formalisfivo binary patternsX and Y having the same number of
shows [13], [14], the significance of these networks is that thegro—one components, Ength let X AY denote the binary
capture the semantics of the ordering of numbers, a necessgiitern that constitutes their componentwise minimum, where
feature for data classification with real values. Section YA0 =0,1A1=1,0A1 = 0= 1A0. For propositiong and
contains simulation examples and illustrates rule formatign on the other hand, lgi A ¢ denote their logical AND, or
with some visualization aids, and Section VI is the conclusiogonjunction which has the valugue or false depending
upon whether both statements are true or not.

Let T (z) denote an arbitrary binary input pattern to an
We shall assume a basic familiarity with ART 1; it iSART 1 network withn input nodes; there being one pattern
described in many places [9], [10], [15], and [16] significantlgomponent per input node, the pattern is said to have length

extends the results concerning its learning behavior. When agt-The corresponding list of Boolean valued(z) indicates
ing as a stand-alone system, an ART 1 network autonomouslitetherz possesses each in a list of elemental propefties
clusters binary input patterns. In this section, we interprévherel < k < n). The values are derived via application
binary patterns as descriptions of objects in predicate logiata preprocessing, and can characterize any of a number of
and then show how pattern clustering can be interpreted ig8ns—image brightness or color values, accelerometer signal
the formation of object classes. amplitudes, disease symptoms or diagnostic test results, and
so on. The pattern componeﬁt(a:) is a binary one or zero,
indicating whether or nofy(z) = true. Informally, I;.(x) is
Neural-network nodes that have an activation threshold ctire statement# is observed to have properfy”
be regarded as logical functions of the neural events thatBased uponf(a:) and the current state of its synaptic
impinge upon them (see [17] and [18]), and we argue thatemory, the ART 1 network assignsto a class of objects
synapses can also. For a node, the events are connectighese patterns are similar to a binamgmplate pattern for

Input pattern
inconsistent

II. ART 1 AND LOGIC

A. Logic and Neural Networks
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the class. Here, similarity means thE(tq:) and the template We express the proposition correspondingf‘;b as follows:
share a sufficiently large subpattern of binary “1's.” Each
class template is a pattern of synaptic connection weights (V)5 (v) = Li(y). )
located in a distinct set of connections, separate from tfide subexpressiofiYy) is the familiar universal quantifier
connections for the other class templates. Being adaptive, #plied to the variabley, so that the implication formula
network will “learn” the information inf(x) by updating the F» s(y) = Ii(y) reads, informally, “For aly, if y is a member
matching template’s synaptic weight values, thereby affecting classF; s, theny has property;.” The variabler in I (z),
the network’s future classification of objects. In this way, then the other hand, represents only therentinput object. The
network develops a classification scheme for objects fromogcurrence of the conjunction & ;, is formalized as follows:
sequence of input examples. o

The actual selection of object properties to be represented by Fuwl@) = (@) A2 (y) = Dw)- ®)
the predicatesy, is an important consideration. The descriptivd he = sign here means that the left and right hand expressions
value of the selected properties has a great impact upon ff&ye the same Boolean valugse orfalse . The conjunc-
effectiveness of the network in identifying objects in the usert§#n on the right-hand side in (3) has the valmee if and
application, and achieving an appropriate selection may dict@@ly if I(r) = true and ((Vy)F>,s(y) = Ix(y)) = true.
considerable preprocessing of the available data. The logicEsjuivalently, from the correspondence between logical truth
the network, on the other hand, is independent of any particukgdues and binary values, the binary activation value of node
selection of properties. In analyzing this logic, it is enough t81,x is one,F ;. (z) = 1, if and only if I(x) AT} = 1.
discuss the manner in which ART 1 interprets the patterrB, Learnin
with the properties regarded as abstract propositions. ' 9

The logical implication formulas (2) state putative necessary

B. The ART 1 Algorithm conditions for class membership. In general, an object can

The ART 1 classification algorithm finds an object clas@e adopted by a class (its binary pattern can resonate with
to represent its current input based upon the binary inputthe class template) even though several of these conditions
pattern I(z) that represents:. The persistent activation of are violated, hence, they do not characterize fully the ART 1
an F, node F ; during the input Off(x) signifies thatz network’s behavior—that is taken care of by the optimization
has been assigned a class. The algorithm simply describ@rgnulation (1). What the template formulas do characterize
procedure for computing the class indgx Let ||X|| denote is @ hypothetical goal state of learning, in which all objects
the sum over the, zero—one components in a binary patterf) @n application will have been observed. As shown in [10],
X,||X|| = =7, X;. Let 4 be a small, positive value less tharthe small value fog3 used in (1) ensures thﬂtg nodes whosg
1/n, wheren is the number of input nodek,. Let p be the templates arqubsetemplates f_o'r the current input pattern will
ART 1 vigilance parameter, witlh < p < 1. For a given be preferred' in thefs competition. Here, the term “subset”
binary input pattern/(z), the ART 1 algorithm specifies ahas the obvious meaning: A subset template has component
class nodeF, ; and its associated binary template pattérh value “1’s” only where the input pattern has “1's.” If the

by solving the combinatorial optimization problem Iarge;t_subset template for an i_nput patt_ern dogs not activate
. . the vigilance system, then it will occur immediately as the
maximize 14 () A~T’|| resonant templatg. _This _is called thafect access property
J B+ |77 One way of explaining this property is to say that the ART 1
) ||_f($) ATJ'H system has reached a goallstate of Igarning in an applicatiop
subject to ||—f(37)|| 2 p. (1)  when the patterns representing the objects directly access their

resonant templates.

The solution nodé+, ; serves as a label for a class of objects. During a resonance, the conjunctions (3) are synaptically
Formally, its persistent activation assigns the vatiue 10 |earned by the network by adapting the template weight values
the logical function evaluationf’ ;(z), which denotes the to equal the current, pattern. This is expressed in the
proposition, % is a member of clasg.” following binary pattern equation:

C. Formalizing T = I(x) ATy = Fresonance(y), (4)

To see how the template pattern components appearTife modified template valug?, , is the Boolean value of
the formalization, suppose that resonance has not yet @ee kth conjunction in (3). When a class is first established,
curred in obtaining a solution to (1), but that the curréht all connection-weight values in its template are “1's,” that is,
“choice” F; s (for some.J) is being evaluated via the ART 1all the implications (2) are putative necessary conditions in the
pattern-matching operation at ti#¢ layer. The binary pattern absence of any learning. Many of them are found téeitee
minimum [(z) AT, with componentgk(a:) AT,;{, occurs as as the network learns from examples, and the corresponding
the currentF; activation pattern, with¥} j(z) = I (x) AT}/. template weights are therefore set to zero. We express this
For eachk, then, the corresponding logical function evaluatiomonotonicity in the synaptic learning of ART 1 by saying that
F ,(x) represents theonjunction or logical AND, of I;(z) an ART 1 network proceeds toward a goal state of learning
and a proposition corresponding to the template compondyt deleting necessary conditions that have been found not to
T,;’ (where J is the index of the tentatively selectéd node). apply to a class.
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In our analysis, the putative necessary conditions expressexle FQAZ be denoted4;. Similarly, let the predicate corre-
by the “1's” in a template are generalizations about the obje&ponding to network B nodé“fj be denotedB;. Evaluating
in a class. LetC,; be the set of indices corresponding tahe Fy* and ¥ properties for an object;, we obtain a
the surviving “1's” in a templatel™/ at any given time, pair (I4(x),I5(z)) of binary input patterns for a LAPART
Cy = {k|T; = 1}. Then aconjunctive generalizatiombout network. Upon receiving its input patteth (), network A
the classJ/ as of that time is the conjunction of putativeperforms the usual ART 1 hypothesis-testing, then resonates
necessary conditions at anF3! node corresponding to some class If network A
has correctly represented then, we can write;(z) = true.
ké (Vo) P2, (y) = Li(w)). ®) it that is the case, then thé?! layer will be allowed to persist
o ! o o with the resonating pattern of activatioiz) A7, and this
This yields a formal definition of generalization for the ARTpattern will be learned as the new version of tempﬁﬁei by
1 neural network: An ART 1 generalization about a clasgetwork A. However, the supervision enforced by the lateral
of objects is the conjunction formula whose index €&t connections in LAPART may change this. There are two cases,

corresponds to the class template. If learning has reachege®ending upon whether thi-node has previously resonated
goal state, this template is the direct access template. Thal§n an input pattern.

the index set for the conjunction has maximal size such thatcgonsider first the case in which thd;-node has not

the conjunction is true for all objects in the class. previously resonated with an input pattern. Then after a brief
delay (networkA has been allowed to suppress netwdtls
IIl. LEARNING THE RULES input until it achieved resonance), netwabkwill be allowed

. to receive its input pattern. Network will then resonate on
It can be seen from Fig. 2 that there are separate systems put p

B - , i
of lateral connectionsd — B and B — A between ART fggﬁ:ﬁcenﬁge rze(;;r)(]eslzr;ggg ?OS;EB; 'n;—%e' sggmltggt?\?gs
1 networks A and B in a LAPART network. The roles 9. J :

: : ; o A ic i ickl h
of all these connections are described in detail in [9]; forS a conseqtience, s}gnaptlc carning proceeds quickly andt €
— By (I3 — Fy;) connection strength approaches its

brevity, we shall limit the discussion to two main sets: the o : .
F$t — FP class-to-class connections, which are adaptive aHHper bOL.md value,_ which is a bma_ry one. Dur_mg any future
th2e VI G2 — VIG 4 lateral reset con;‘lection which is fixéd presentation of an input pattern pair for an objectf node

B A ' -A; is the resonant node, it will send a strong signal to node

The other connections help implement the inference—learnl%g selecting it as the exclusive class foin network B. As a

(rule-learning) function of these main connections. The class?’ .
. . . consequence, none of the — B; connections for nodeB;,
to-class connection weights store the learned inferences, an

. : ith k& # j will have a chance to compete, and their strengths
the lateral reset connection serves as the mechanism o 4
. . will remain at zero.
supervised learning.

The second case occurs more frequently as the LAPART
. ) network learns rules: If nodel; has previously resonated, it
A. How LAPART Learns Inference Relationships possesses a learned connection to a single mddeSince

Suppose that the objects in an application are of two kind¥etwork A delays networkB’s input, as mentioned before,
such as the weight of an adult bird and the average frequeribgre is a brief interval during which the hypothesis(x)
with which the bird flaps its wings. Suppose further that ind the always true statemefwtz)A;(z) = B;(z) are both
an objectz 4 of the first kind falls into some clasd; (where called into play. This occurs through the persistent activation
there are mutually exclusive classds, A,,---), then it is of the resonant nodd; in network A and itdateral primingof
always the case that some objegt in a unique classB; nodeB; through the previously learned; — B; connection.
(where there are classd3;, Bs,---) occurs along withz 4. The consequent activation of node; is the inferred class
Suppose that a representation for individual objects of the twaembership statemetdt; (). The laterally primed activation
kinds is available in two sets of Boolean-valued propertiesf B;, with network B’s input temporarily suppressed, forces
The objects can then be encoded as binary patterns, onerfetwork B to read out the templat&?# over theFlB~ layer
each object of the first kind using the first property set arfffig. 2(b)], to be compared with its input patteths(x).
one for each object of the second kind using the secofgstem B still has control of its vigilance node, however,
property set. The motivation behind LAPART is that two ARTand can either confirm or disconfirm the choice made for it
1 networks, properly interconnected and with the properties ly network A.
each kind represented by the respectielayers, might be  If the inferred classB, is accepted by3, both networks A
able to identify the correctl, — B; class-to-class inferenceand B, will update their templates in the ART 1 fashion
relationships by processing binary pattern pairs corresponding o e
to example pairgz_4, 2 ) of related objects. These inference Tigw =La(z) A TS?&Z
relationships are the rules learned by the network. TBI = TIp(x) A T(f(:li_

To simplify the discussion, we shall assume that the two
objectsz4 andxp in a related paifz,y,zp) are really the If the inference is not accepted, however, a lateral reset occurs:
same objectz. The A- and B-networkF; properties will be The vigilance system of network, VIG g, becomes active
regarded, then, as two sets of properties for a single set[Big. 2(c); see also Fig. 1]. This causes a reset of netwigirk
objects. Let the predicate corresponding to a networé»A but also a reset of networK, because there is a direct, fixed
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Fig. 2. Schematic of LAPART processing an input pattern pair. (a) New clasformed in network A; network B is allowed to act autonomously as
an ART 1 system and select a resonating clBgsfor its input; A; — B; inferencing connection set to maximum strength. (b) Previously formed class
A; already has a learned lateral connection to some dssResonance in network A causé®; template to be read out ovef{? via A; — B;
activation of its i node. (c) If B inputB; template is not a favorable matcNIG g, acting throughVIG 4 as well as its connections to the?
layer, mediates a lateral reset involving both the A and B networks.

connection fromVIG g to VIG 4. Network A is now forced to input pattern pairs as described thus forces the formation of
find a different classi; (wherei’ # 7) to represent the currentpattern classesi; in network A and B; in network B in
input objectz, and a new inference is made. Presentation wfich class membership depends as much upon the learned
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inferencing connectiong; — B, as it does upon the ART 1 with LAPART, we address this issue by using our knowledge
classification process. of its adaptive inferencing algorithm as well as the application
The learning of a synaptic connection from thHe node to to guide the development of data preprocessing modules to
a single £2 node conveys to LAPART the property that itachieve an effective representation. Our formalization shows

generalizes from a single instance occurring in classeand [13] that the stack filter network works well with ART 1-based
B; to the rule architectures in the representation of real and integer values

in binary patterns.

(V2)4i(2) = Bj(2). 6) Anothyerpimportant factor affecting applicability of the rules

Because of the exclusive nature df; in network B, a learned by a LAPART network is the order of presentation of
complete formalization would include a formula stating thgx@mples. Different presentation orders can lead to different
a representative for; in the B-network can exisonly in qutcomeg; this is an inherent truth in app_lymg most glassﬁpa—

classB;. For brevity, we will instead make this implicit by tion algorithms, and the ART 1 algorithm is no exception. This

the manner in which we apply the learned rules (6). effect can be undesirable in applications in which there is no
intrinsic ordering of the data, such as for a static database. On
B. Applying LAPART to Rule-Learning the other hand, it can be advantageous if useable information

is available on the effect that the order has upon classification:

LAPART can be seen as a system for the autonomoySps information implies an ordering that is better in some
capture and retrieval of knowledge in the form of rules that Afay than others, then this knowledge can guide the training
implicit in masses of data. Let us refer to a LAPART networkyyrateqy for the system. ART 1 provides some leverage here,
together with its synaptic connection-weight memory at SOMg; i [16] it is shown that learning in ART 1 follows a natural
stage of learning, as a LAPART system. A query t0 the Systefijer related to input pattern size (number of “1's”). It would

is a list of boolean or truth values,(z) for an objectz e ineresting to see this kind of result incorporated in a formal
in the form of a binary patterd.s(z) input to subnetwork ,qqa|

A. During rule leaming and verification testind.(z) i another phenomenon that calls for a formal analysis is
accompanied by a lisks(x) input to network B, as a binary yhe inconsistency that can occur between the learned rules.
pattern/p(x). The ART 1 logic in network A is a forward- o5 mentioned in Section I, inconsistency is a major issue in
inferencing resolut|on. stra_ltegy: the choice of an eX|st|ng Claﬁﬁowledge base verification. In LAPART, a learned inconsis-
4; selects a rule to fire, in the forivz)Ai(z) = B;(2) (f tency occurs when an input pattedn is paired with two
there is no appropriate class, a new rule is initiated). Thigerent patternsiz and I, where the first of the latter
results in the inference of an object clas. If I5(x) IS yo patterns does not trigger a lateral reset but the other
present and the3; template is not a good match for it, theyne goes. An occurrence of this sort could mean one of the
ensuing Iqt_eral reset performs a backward mferenqe via %ﬂowing: 1) A mistake occurred in supplying input pattern
contrapositive rule(Vz)not B;(z) = notA;(z) (see Fig. 1). nairs 1o the LAPART network. 2) The patterns were correctly
By this process, LAPART creates, executes, tests, and modifies,erated, but the data are inconsistent due, for example, to
rules. By using either the forward inference as a query answer... 3) There is no mistake and no inconsistency—it just

or the forward—backward inferencing as a _rule-verificatiqﬂappens that two different things can be inferred from the
scheme (see [9]), LAPART also serves as an inference engdif&me input, given two different contexts. LAPART has no

As a system for capturing and using knowledge, LAPARY, ;s in recovery for occurrences 1) and 2). The use of a

performs as a neural network in handling massive quantities,ghyJyijistic mathematical model would help compensate for
data, while the formal analysis shows that it clearly serves fﬁ A more complex network would be needed to deal directly

a symbolic processor. LAPART's use as a forward-chainigiy, ) This inconsistency must be detected by the network
inference engine is fairly straightforward: The fact that thﬁ it is to compensate for it, and the LAPART architecture
learned A-classes are mutually exclusive provides an augps

X , ; , ““does not currently provide for this: It only provides for
matic resolution strategy for selecting a rule to fire 1‘orag|ve(5|1etecting a classification error for a single object with a
query—merely fire the rulgvz)4,(z) = B;(z) if the input single class at a time. The cause of 3) is that the network
IS a member of clasd,. However, the real val_ue of LAPART A inputs do not contain enough information: An essential
is its role as an experimental neural architecture for ru'B’art of the context for an inference is missing. Analyzing
learning. In this role, it serves as a tool for the investigatio application to identify the missing context is a semantic
of phenomepa th.at can occur in systems that adaptively le oblem, hence, is a task for formal semantics. The class
rul_es as qu|cal mf_ergnces.fror.n data. Our formal model ﬁmplates and the lateral class-to-class inferencing connections
being applied to this investigation. formed by a LAPART network can be used to adavantage

] ) ) in such an analysis. Although it contains no mechanism for
C. Phenomena Encountered in Adaptive Inferencing signifying an occurrence of inconsistency (signifying that a
As mentioned in Section lIA, the data representation islagical inconsistency had occurred would require a rather
major factor in determining the applicability of the learningophisticated architecture), LAPART does store the occurrence
that takes place in an adaptive system. A simple neural netwamkthe form of laterally connected templates.
cannot be expected to perform all the tasks of data representaAnother phenomenon that can occur is as follows: Suppose
tion, classification, and class-to-class inferencing. In workirthat an A-input patterlfA(a:) has a subset template for a class
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A, that would resonate with it, were it not for the presencé x,y, and > are such that <y andy < z, then the binary

of a larger subset template for cladg, with k& # 7. Suppose pattern forz must have more in common with the binary
further that theB; template, which would have been selectedattern fory than it does with the binary pattern fer For an

by the rule(¥z)A,(z) = B;(z), would provide an acceptable ART 1 network, this means that and z can be in the same
template for the B-input patterdiz(z). However, it is the class only ify is also in that class.

rule (Vz)Ar(z) = By(z) that is executed, and its inferred Notice that no such relationship holds when the binary
class B, template is a poor match, producing a lateral resgtatterns are strings with the usual format used in digital
Finally, suppose that at some time, it is desired to ceasemputers, where the binary values represent the presence or
providing input patterns to network B and use LAPART purelgbsence of powers of two. For example, the numbers 122
as a forward-inference engine. Since no learning of any kimsd 128 represented as 8-b patterns in the powers-of-two
took place when the input patterns for both antecedent afmimat, with low-order binary digits to the right, are 01111010
consequent were available as just described, then the followawgd 10000000, respectively. The two numerical values are
can occur at some future time when the LAPART network i®latively close, yet a comparison of 1 b would show them
used purely in forward-inferencing. If the class and 4, to be relatively dissimilar—an ART 1 network, for example,
templates have not changed in their status as attractors forwwld place them in separate classes regardless of its vigilance
pattern I 1(z), and this pattern occurs as a query, then tha@lue. An example relating ART 1 pattern-matching to the
incorrect inferenceB, will occur—no longer corrected for by semantics of the order relation is that the number 186, where
the input of.fB(a:) to network B. This phenomenon can bel28 < 186, has the powers-of-two representation 10111010,
detected by tracking individual pattern pairs through repeatathich matches the representation of 122 more closely than it
cycles of presentation to the LAPART network and notingnatches the representation of 128.

the repeated lateral resets that will occur with a pair that isTo properly encode numbers for ART 1 networks, we
subject to the capture phenomenon. If a lateral reset occapply a basic representation scheme called a stack numeral.
every time a particular pair is presented, with the A-inpulve then add more information, to achieve the stack interval
pattern consistently causing the inappropriate rule involvirrgpresentation. This is done as follows. First, a fixed lower
a classA4y, to fire as discussed, then the inappropriate subd®und ¢ and upper bound: are chosen for the data values
template phenomenon has occurred. One can devise strategidar the particular numerical property to be represented in
for circumventing this phenomenon, but none of these ishénary patterns. Also, a positive integéis chosen. Each data
substitute for a formal semantic analysis of the architectuveluez is transformed to a positive integstack valuemn via

vis-a-visthe data representation. the equation
Our research goal is a better understanding of neural- g/
network semantics through logical formalism. We hope that m= [ 7 -d} @)
u f—

this discussion has helped in clarifying some of the issues
involved and indicating how they might be elucidated byhere [] forms the least integer greater than or equal to
expressing neural computations as logical inferences. r. Next, we form a binary string of lengtt, with m “1’s”
beginning, say, at the left end of the string and with “0’s”
occupying the remaining positions to the right—hence the
term “stack.” For example, if we chose= 0, = 128 and
Most applications of ART 1 networks require that data bé = 128, then 122 would have a stack representation as a
preprocessed to obtain an effective representation of objestsing of 122 “1's” on the left and “0’s” on the right, and 128
In this section, we describe the stack interval network architould be a stack of all “1's.” Clearly, these two binary strings
tecture, which converts integer- or real-valued data to binamave relatively many binary values in common. Even more
input patterns. The binary patterns output by stack inteniahportant is the fact that the binary positions which have value
networks can be passed directly as input to one or both ARTie in the stack representation of 122 are a subset of the binary
1 networks in a LAPART network, enabling it to learn rulegositions with value one in the stack representation of 128.
about objects represented by numerical data. Stack numerals obey a “subset” relation that corresponds to the
For properties which are already formulated as predicatesder relation< for the numbers they represent. This property
the preprocessing of data to obtain binary patterns is noBkes the stack numeral representation appropriate for the
difficult to conceptualize. However, application data consistilyRT 1 algorithm (this is proved in [13]). In this connection,
of real or integer values that aneeantto be numerical values recall the direct access property of maximal subset templates.
(as opposed to purely symbolic labels) must be preprocesse®bviously, the stack representation gains in the effective-
in a way that preserves the semantics of numbers: Integer aeds of representing numbers at the cost of larger binary
real numbers are totally ordered by the familiar(less than) patterns than the powers-of-two representation. The choice of
relation. For any two numberg and b, eithera < b,b<a, the numberd of stack levels is under the control of the user.
or a« = b. Then if numerical values are to be regarded a@dowever, high precision in representing numbers can require
numbers rather than as abstract symbols, their neural-netwst&cks—and, correspondingly, ART 1 networks—with many
representation must capture at least some essential propertgadfes and connections.
the ordering relation. Whether the numbers are real or integerOne step remains to compute a stack interval pattern.
it is reasonable to demand that the following property hol@his step is to simply form the bit-by-bit complement of a

IV. ENCODING ANALOG DATA-STACK REPRESENTATION
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Fig. 3. Schematic of a stack numeral network, which forms the positive stack in a stack interval network. (a) The inhibitory connections implement
a binary pattern “subset” relationship that corresponds to the order relationship for subsets of the real number system. (b) The activatiaf unction
stack node.6 = 0 is used in the work reported here.

stack numeral and concatenate the two, obtaining a binary x, Xo X X4
string of length2d. The reason for this will be explained g
presently. Using a simple example to illustrate, SUPPOSE tha@xf-« g o e
it was decided to represent numbers in the range 0-128
using stack intervals withdi = 10. Then the number 115
would have the stack numeral representation 1111111110.
The complementary pattern is 0000000001, and the resultingy,
stack interval pattern is 11111111 100000000 001.

A neural network that implements the stack interval repre-
sentation (see Fig. 3) is described in [14], where it is proved (a) (b) (c)
that the combined stack/ART 1 neural-network architecturgy. 4. Three visualizations of ART1 templates when stack interval networks
has the properties of Fuzzy ART. In the stack/ART 1 networkupply the input representation: (a) hyperbox region representing a stack/ART
several stack interval networks convert numerical patteffs IICTIeYTL ) SPace, () pesite e neganue Seeke g,
values to binary stack interval patterns. Acting in parallgt) range bar graph, constructed from each stack interval by simply drawing
through one-to-one connections to the input nodes of an ARTertical bar whose extent is equal to the “gap region” between the top of
1 network, the stack interval networks generate a composité POSiive stack and the bottom of the negative stack.
binary input pattern for it. To within the discretization specified
by the stack parametesw, and d, the resulting templates of inhibitory input to each of the other positive nodes. Node
correspond to the hyperbox regions formed from the numeridalhas inhibitory connections to nodes 2 throughnode 2
values by a fuzzy ART system operating in fast learning modeas inhibitory connections to nodes 3 througrand so on so
A stack interval network representing a single numerical valtleat nodem can receive as many a® units of inhibition
that varies between the boundsind v with resolutiond has from nodes 0 throughn — 1. Then, in the usual neural-
2d nodes and a system of fixed connections, inhibitory amgttwork model in which a node becomes activated if the
excitatory. For brevity, we will describe only the connectionsum of its inputs—excitator{+) and inhibitory(— )—exceeds
for the stack numeral part of the network—a full descriptioits threshold, each node becomes activated if and only if
of the stack interval network is in [14]. The correspondendts input sum exceeds zero. Thus, stack numeral nede
between stack interval templates and nonbinary hyperbb&comes activated only if node 0 becomes activéged 0).
regions is shown in Fig. 4. But because of the inhibitory input from node 0, node

In a single stack interval network, the firgtof the stack then requires that > 1. But then, node 1 can overcome the
interval nodes represent the stack numeral half of a staghit of inhibition it receives from node 0, hence, sends an
interval pattern. These are called positive stack nodes. Taeditional unit of inhibition tom. Proceeding through the
other d nodes, called negative stack nodes, represent #tack nodes preceding, we see thatn requiresz >m in
complement pattern. An item of numerical data can be thougtder to become activated, and, in that case, nodes 0 through
of as a signal unit (a pixel in an imaging sensor that detecis— 1 will also have been activated. Notice thatif< m + 1,
varying brightness levels, for example) whose output is reodesm + 1 throughd will remain inactive. Thus, nodes 0
numerical valuec. This unit has excitatory input connectionsthroughm will produce an output of magnitude one amd-1
one-to-one and with unit strength, to each positive stack notteough d an output of magnitude zero. if > d, the entire
in a single stack numeral network. Thus, each positive stapksitive stack will be activated, producing a row of “1's.”
node receivex as input. The positive stack array representbhis illustrates the operation of the stack numeral network in
the discretized stack value as follows. To simplify the representing numbers in a specified range. The negative stack
discussion, suppose that each node has activation threshmdes implement the complementary representation through
value ¢/ = 0 and thatu = d in the formula for converting further use of inhibitory connections.
z to s. Stack node 0, the lowest-order node, has inhibitory Stack interval patterns that represent numerical patterns are
connections through which it provides, when activated, a uridrmed by concatenating the stack interval patterns represent-
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ing the individual numerical pattern values. These composibé this example architecturgis-a-vis other architectures. It
patterns, and the ART 1 templates that form from them, can bienply illustrates that our example architecture for formal
visualized in four useful ways. Three of these are illustratexhalysis can perform in nontrivial applications. In fact, it will
for a binary template pattern derived from binary input pabe seen that there are practical cases in which it performs
terns representing two nonbinary values in Fig. 4. One wanearly as well as optimal classifiers.
[Fig. 4(a)] corresponds to the “hyperbox” representation for When one or both ART 1 subnetworks of a LAPART
fuzzy ART numerical pattern classes. The second [Fig. 4(gtwork are combined with stack interval networks, we call
is a simple lineup of the alternating positive and negatiie composite network stack/LAPART. We generally use stack
stacks representing the numerical values. The third [Fig. 4(@)}ervals to encode numerical data, and sometimes combine
combines the positive and negative portions to create a “rartges with binary codes representing purely symbolic labels for
bar graph” on a normalized min/max linear graph. The ART firoperties of objects as well. A stack/LAPART network can
templates that form directly reveal the variation in numericéarn rules which, because of the formal model presented in
values in the input patterns that have contributed to thedections Il and lll, can be easily extracted from the learned
formation through binary pattern ANDing. For each numericaleural memories contained in the templates. Using the formal
pattern component, the positive stack will have “eroded” tmodel for stack interval preprocessing networks in Section 1V,
represent the minimum of all the numerical values in thie rules can include nonbinary numerical properties. In this
patterns that contributed to it, and the negative stack wskction, we present three examples to illustrate this, all using
have “eroded” so that its bitwise complement represents tetack interval patterns. Examples 1 and 2 are pedagogical
upper bound. Thus, each binary stack interval template pattémnnature, and illustrate the visualization of templates as
contains the information describing the total variation in inputyperboxes and range bar graphs. Example 3 is from an actual
pattern components that contributed to its formation. That @pplication, and illustrates rule extraction from complex data.
it represents an interval of nonbinary numerical valugshat
have contributed to thé&th stack interval in the template (in
Fig. 4, k takes the values one and two, since there are tf¥ample 1) Two-Dimensional Input Space, Two
nonbinary Components)_ DISJOInt ReCtangUlar Distributions

This brings us to the fourth visualization, which is given The numerical patterns for network A have two components
directly in terms of the formal model of this paper: Each postenoted:; andz,. The numerical patterns for network B have
itive stack node represents a predicate of the feym, <z a single components. The B patterns might as well have
for somek, where s, is the nonbinary value representetheen binary, since they represent purely symbolic labels for the
by nodem of stack k; this is the valuex, that exactly network A classes and the labels are input directly through the
corresponds ton using the formula (7), wheré < m <d. input pattern pairs. Regarding the nonbinary numerical patterns
The corresponding negative stack node represents the predig@éenselves as objects to avoid further introduction of notation,
zr < sk,m. Suppose that the positive and negative stacks ; be the object represented by a particular pattern pair. We
corresponding to nonbinary componédnbavem’ andd—m”  denote the composite stack interval binary pattern input to
“1's,” respectively, wheren’ <m”. Taking the complement network A by I 4(z), representings; andz,, and the stack
of the negative stack, we see that the total stack interval patt@iterval pattern input to network B bf/B(a:). The network B
represents the intervady ;v <xx < sp,m~. Examples are pattern represents a numerical valug which is either high
given in Section V. or low, depending upon which of two classes are prescribed

Although the discretization of real into binary values imfor the corresponding network A pattern.
plemented by our stack network architecture is not a newThe points in Fig. 5(a) were generated from two disjoint,
idea (see, e.g., [1]), our formalization of it helps clarify ithut otherwise random, distributions @k, z2) points in a
significance. Of further significance is the fact [14] that afwo-dimensional region of Euclidean space. Each of the 800
ART 1 network with stack interval networks preprocessingoints is contained in one of two rectangular regions, with
analog pattern values for it (stack/ART 1) generates learnggrners at (0.2, 0.2) and (0.4, 0.6) for network A Class 1
pattern classes equivalent to those of fuzzy ART [19] with faghd (0.6, 0.4) and (0.8, 0.8) for network A Class 2. Regarded
learning, to within the resolution of the discretization of reads numerical patterns with two components, the pairs were
values by the stacks. Given the practical limits to resolution @f)ded as pairs of stack intervals ha\/|dg: 128 positive
data values, this is an indication that fast-learning fuzzy ARJtack nodes, resulting in 256 stack nodes total including the
classes are well-described in “ordinary" two-valued |OgiC. Th@)mmement’ for a total ART 1 input binary pattern size of
stack/ART 1 subnetworks of a stack/LAPART network forng12. Each stack was normalized to represent the nonbinary
classes similar (although not identical) to those of the ARfterval 0 < z; < 1 for each dimensiork of the data. These
subnetworks of a fuzzy ARTMAP network. binary patterns were presented in random order to an ART 1
network with a vigilance value 0p4 = 0.65. The network
learned two templates (rules), plotted in Fig. 5(b) as hyperbox
regions. Here, a single ART 1 network was used for network

Three examples of rule-learning, or rule extraction, with th& and network B is not present, since the binary input patterns
combined stack interval/LAPART architecture are given in thi®r the two mutually disjoint distributions are easily clstered
section. This is not meant as an indication of the performanitg¢o two classes by ART 1—LAPART is not needed. Fig. 6

V. THREE EXAPLES OF RULE-LEARNING
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Fig. 5. Two disjoint distributions in two-dimensional real space: (a) a scatter plot of the data samples (white for Class 1 and black for Class 2), (b)
the learned class templates as hyperboxes, defined by their lower left and upper right corners, (c) rule attractor regions based upon the tvéo hyperboxe
(calculated using the ART 1 algorithm and stack parameter values).

1, 1.0 10 1. 10 10 larger volume than would be found for the corresponding rule

if the rule were included in the rule base of a conventional
forward-chaining rule-based system. A conventional system
» ‘ would require a point to be actually within a hyperbox for the

rule to succeed.

Example 2) Two Overlapping, Normally Distributed Classes

0.0 O:I s 0.0 00 00 0.0 This example [21] illustrates the robustness of LAPART
ule Rule #1 . . . . . . .
400 Members 400 Members in applications with noise and/or confounding observations.

Samples in a two-dimensional problem are distributed accord-
Fig. 6. Range graph representation of the two rules learned in Example fhg to two overlapping multivariate normal distributions. The
distribution parameters are the following.
R Class 1: Meanu; = (0,0), variances? = 1.

shows a visualization of the two rules as range bar_grap_h_s._ "blass 2: Mearu; = (2,0), variances? = 4.
this case, the range pqr for. each rule consequent is art|f|<_:|aIFig. 7 displays the randomly generated samples from the
for Rule 0 (Class 1) it is “high” and for Rule 1 (Class 2) ity classes. The Bayesian classifier optimal decision surface
is “low.” __ for this problem is a circle roughly centered on the narrower

In addition to the hyperbox versus range bar visualizgrjass 1 and has an optimal probability of correct classification
tion, this example aids in visualizing the connection betwegy approximately 81.5%. After the training of LAPART on
resonance, template modification, and the region of attragygg samples total (1000 from each class), it was tested on
tion of a hyperbox outside its borders (see also [20]). The 000 random samples equally divided among the two classes.
region of attraction of points outside the boundary of #o compare the performance potential of LAPART with the
hyperbox is important when a goal state of learning haayes optimum, we investigated different valuespaf with
not yet been reached for a given collection of data pointgis data. Since the distributions overlap, LAPART is needed
Template modification comes about because templates gege, but network B is simply presented with labels for the
strong attractors for many binary patterns for which they agints—*high” for Class 1, “low” for Class 2—angjp is set
not subsets. Fig. 5(c) shows the regions of attraction for th& one. For a fixed random ordering of the training data, and
two hyperboxes representing a goal state for the samples of tRéhg a grid search with resolution of 0.01 for the network A
two distributions shown in Fig. 5(a). Following the reaching ofigilance value, the highest probability of correct classification
this goal state, another set of points might be presented to {fgs found to be 77.6%. This is less than four percentage points
network, with many of the points lying outside the boundariggsom optimal (the corresponding vigilance value was =
of the original two distributions. As long as the value @f 0.53). This example illustrates that, even with the limitations
does not change, many of the binary patterns representitigcussed in Section 1Il.C, LAPART can perform well as a
these points will be attracted by one or the other of the twgassification system when noise and apparent contradictions
templates, and the attractor regions in Fig. 5(c) illustrate thige found in the training data.
(of course, the templates will also be appropriately modified, The two examples just given illustrate the simple case of
i.e., the hyperboxes will widen). Each attractor region for aclass labeling, which is the meaning often given to the term
A-template corresponds to the rule for which the templatelassification.” In this case, the rule antecedents are learned
represents the antecedent, hence, we call each attractor regigect classes but the consequents are simply labels. This does
a “rule attractor.” Note that a rule attractor has a distinctlgot capture the full generality of rule extraction, in which the
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Fig. 7. Two overlapping distributions in two-dimensional real space: (a) a scatter plot of the data samples, drawn from two normal distributions, (b)
the rule attractors based upon the hyperbox regions for the two class templates. The optimal Bayesian decision surface is a circle surrounding the
distribution with the smaller variance (white).

TABLE |
SUMMARY OF LAPART PERFORMANCE TESTS. PARAMETERS: RH = RELATIVE HuMIDITY; LC = Low CLoub AMOUNT; MC = MIibDLE CLOUD AMOUNT; HC =
HiGH CLouD AMOUNT; % ERROR = PERCENT MISSCLASSIFIED ORCLASSIFICATION NOT DETERMINED BY LAPART. Two KINDS OF INFORMATION ARE SHOWN FOR
EAcH oF Six DIFFERENT EXPERIMENTS: (1) THE X's IN EACH CoLUMN INDICATE WHETHER OR NOT THEPARAMETER WAS USED IN THE INPUTS TOLAPART As A RULE
ANTECEDENT IN THE EXPERIMENT DESCRIBED BY EACH Row. (2) THE TOTAL ERRORINCLUDES BOTH MISCLASSIFICATIONS AND FAILURES TO FIND AN APPLICABLE RULE

£-3 t-2 t t+3
RH_LC MC HC RH L.C MC HC RH LC MC HC %$error
X X X X X X X X X X X X 0.03
X X X X X X X X X X 0.05
X X X X X X X X X 0.11
X X X X X X X 0.06

x X X X X X 0.09

X b4 X X X 0.08

consequents are also learned object classes. The last example test the performance of LAPART in each case, nearly
illustrates full rule extraction, with LAPART learning class-to5% (50 patterns) of the data were randomly selected and
class inferences while simultaneously learning the classes.withheld from the training session. The withheld patterns were
o subsequently presented to the trained LAPART network and
Example 3) Weather Parameter Prediction their mapping to the forecast parameter checked against the
The example is taken from an actual application of LAPARTuth. The data for each case were reused in 20 tests, with
to weather prediction. In the work of Soliz and Caudeh different randomly drawn subset of 50 patterns withheld
[22], [23], a large data set consisting of nearly 1000 weathtar each test. The vigilance values were kept constant at
observations was used in the training. For this applicationy = 0.75 and pp = 0.80, respectively. These values were
concatenated stack intervals were used to represent all ntound to yield rules each representing tens to hundreds of
binary values. The Cold Regions Research and Engineerjpajterns, which was desirable. All variables were represented
Laboratory (CRREL), Hanover, NH, made available severhy stack intervals withd = 16 (see Section V).
series of weather data sets taken during events at GraylingTable | summarizes the results of six different tests, each
Ml and Yuma, AZ. These data have been used to train thsing the indicated parameters in the rule antecedents (e.g.,
neural network and demonstrate the feasibility of a LAPART-C, MC where “low cloud” and “medium cloud” parameters
based weather forecast model. For each of several data cagese used. The last column (labeled “% error”) shows the
a special subset of the data was used to train LAPART. gercent of cases in which a test antecedent either yielded an
subset of weather state parameters was selected as antecedemtrect prediction or generated a new class in network A
(network A) parameters for each case. Observations of th€bence, no prediction) because it lay outside all of the rule
parameters over a 6-h period were used to forecast a singtgactors for templates (hyperboxes) that had formed during
parameter at a specified future time. The antecedent data weaéning.
drawn from three time periods: the current time hours, and  Finally, representative rules are shown in logical form
two timest — 3 and¢ — 6. Slightly more than 950 observationsin Fig. 8, illustrating the nature of the hyperbox regions
were processed by LAPART and associated with a future stataresponding to the templates generated by LAPART. For
parameter at + 3. Antecedent parameters were selected fromomplex problems with a high dimensionality and massive
a set that includes the amount of cloud cover for three clodéta bases, such as weather forecasting, the easily extracted
types and the relative humidity. The consequent (predictesi)mbolic form of the rules provides knowledge that is easy
parameter was always the temperature. to interpret and to understand in human terms. Knowledge of
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Rule ©
IF
[ 0.00 < LC(t-6) <= 0.50 ] AND
[ 0.00 < MC(t-6) <= 1.00 ] AND
[ 0.00 < LC(t-3) <= 0.90 ] AND
[ 0.00 <« MC(t-3) <= 1.00 ] AND
[ 68.0 < RH(t) <= 92.0 ] AND
[ 0.00 < LC(t) <= 1.00 ] AND
[ 0.00 < MC(t) <= 1.00 ] AND
HC(t) <= 0.00 ]
THEN
[ -8.0 < T(t+3) <= 48.0 ] "
Rule 1 [2]
IF -
[ 0.00 < LC(t-6) <= 0.80 ] AND
[ 0.00 < MC(t~-6) <= 0.70 ] AND [4]
[ 0.00 < LC(t-3) <= 0.70 1 AND
[ 0.00 < MC(t-3) <= 0.65 ] AND 5]
[ 32.0 < RH(t) = 80.0 ] AND
[ 0.00 < LC(t) <= 0.40 ] AND
[ 0.00 < MC(t) <= 0.70 ] AND 6]
[ 0.00 < HC(t) <= 0.40 ] -
THEN
[ 50.0 < T(t+3) <= 82.0 1

(8]
Fig. 8. Two of the rules extracted from the LAPART templates for the
weather parameter prediction problem [23]. The human-readable logical fori?]
of these rules is easy to extract from the stack interval templates and the
A — B inferencing connections learned from the data. [10]

this kind is difficult to extract from experts using classicalt!
knowledge acquisition techniques. [12]

VI. CONCLUSION [13]

We have introduced a formal model for the underlying
logic of symbolic processing with a class of neural-networi4
architectures. We have show that this model characterizes key
aspects of rule-learning from data with an example neural n?fél
work called LAPART. Further, the model extends to patterns
whose components are real-valued by combining LAPART
with stack interval networks, whose formalization captur
the order semantics of numbers. We have illustrated nontrivial
rule-learning with results on data cases, including the learnilig]
of simple rules for weather prediction from meteorological
data. [18]

Our contribution is a formal model for symbolic processingw]
from numerical data using neural networks. It is intended as
an aid in the analysis of neural-network models, including the
analysis supporting formal verification as applied to neurf
rule-based systems. The model requires careful extension to

address these issues in other neural-network architecturf@sl.

Extension to the formalization of uncertainty is also desirablg,,
The relationship of our Boolean predicate logic model to

fuzzy logic models of neural processing is not clear, but we
have established a relationship between it and Fuzzy ART 1%?]
quantized numerical values. The major advantage of boolean
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predicate logic is that it is well studied in mathematical logic
and lends itself well to formal semantic models. We claim
that the formal model is a potentially useful analysis tool for
LAPART and similar neural-network architectures.
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