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Abstract 

The FuzzyARTMAP algorithm is studied with respect to its usefulness for supervised chemical pattern recognition. The 
theory of this relatively complex artificial neural classifier is presented in detail for chemists. An instructive data set of mod- 
erate size, describing male and female participants in courses of chemometrics by their body measures, is used to demon- 
strate how FuzzyARTMAF’ works and what its basic properties are. 
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1. Introduction 

Adaptive resonance theory based artificial neural 
networks (ART) form a particular family of pattern 
recognition methods. They were introduced by 
Grossberg [1,2] to overcome the so-called stability- 
plasticity dilemma [3]. This dilemma describes the 
general difficulty for each classifier to be able to dis- 
tinguish between two types of new knowledge: new 
knowledge that fits into the existing classifier struc- 
ture and knowledge, that does not fit. The first type 
of new knowledge only requires a certain plasticity of 
the classifier, for example an adaptation of some fit- 
ting coefficients (network weights). The second type 
of new knowledge requires that the classifier not only 
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adapts some weights but its structure to the new clas- 
sification situation. 

ART-l, ART-2, ART-2a, ART-3 and FuzzyART, 
for example, are methods for unsupervised grouping 
of n pattern vectors X (dimension n X m> of length 
m into c clusters. These ART methods can be com- 
pared with respect of some algorithmic properties, for 
example, with the sequential leader algorithm [4]. 
Differences among the four ART methods exist in the 
type of processable input data (binary, real), data 
preprocessing (type of scaling, type of transfer func- 
tion), speed of training and the type of similarity 
measure (Euclidian angle based, Fuzzy set theory 
based) [5,6]. The I= l...c clusters generated during 
the training, are described by I= l...c individual di- 
rected vectors w (dimension 1 X m> forming together 
a so-called weights matrix W of dimension c X m. 
Caudell presented the use of ART-l in combination 
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with parallel operating opto-electronic multichannel in case of ARTMAP (resp. FuzzyARTMAP) are not 
detector arrays for commercial and military applica- priorly fixed. The correct number of clusters (groups 
tions [7]. Optical, opto-electronical and electronical of similar data vectors) will thus be formed during 
hardware implementations of ART-l and ART-2 training. The network structure itself (number of re- 
were reported by Kane and Paquin [s], Wunsch et al. quired neurons) forms thus an important result of the 
[9,10] and Ho et al. [ll]. Wienke and Kateman used training process and makes the design of the network 
ART-l to classify UV/VIS and IR spectra and structure less subjective due to different users. A fur- 
showed the quantitative chemical interpretability of ther consequence of this approach is, that several dis- 
the ART weights [12]. Lin and Wang fitted industrial tinct and distant clusters in the input space X can be 
time series data and classified the parameter vectors related to one single (identical) desired output clus- 
by ART-2 [13]. Whitley and Davis [14,15] proposed ter. ARTMAP is restricted to binary input data mak- 
to use ART-2 for monitoring and control of chemical ing it less interesting for chemical applications. 
reactors by real-time interpretation of sensor data Therefore the present work concentrates on Fuzz- 
taken from the reactor. Wienke et al. [16,17] applied yARTMAP as the most advanced ART algorithm 
ART-2a in on-line monitoring of the environment by with no restriction with respect to the type of input 
a classification of airborne particles using their scan- data. It has been decided to split this study in two 
ning electron microscopy image data and their X-ray parts because of the complexity of the Fuzz- 
fluorescence emission pattern. Another application of yARTMAP algorithm that includes aspects from 
ART-2 to pattern recognition with image data was adaptive resonance theory as well as from fuzzy set 
reported recently by Resch and Szabo [18]. In Ref. theory. By means of a moderate sized data set X of 
[19] body measures of female and male persons were n = 47 human beings characterized by their individ- 
clustered by ART-2a. A comparison of ART-2a ver- ual m = 5 body measures and by their sex y ( p = I), 
sus the principal component analysis based SIMCA the theory and the properties of FuzzyARTMAP are 
classifier and backpropagation multilayer neural net- discussed in Part 1. The chosen data set allows a 
works for rapid sorting of post-consumer plastics by quantitative insight in the classification behavior of 
remote NIR spectroscopy has been recently given FuzzyARTMAP and a detailed presentation of the 
[20]. Reported advantages for those four unsuper- meaning of so-called network weights. Other moder- 
vised ART methods compared to other types of clas- ate sized chemical data sets are presently under con- 
sifiers are short training times (usually less than 20 sideration of ART neural networks [28]. Part 2 of the 
epochs), built-in detector for outliers and for extrapo- present study [26] deals with the implementation of 
lations, the quantitative interpretability of weights and FuzzyARTMAP in a remote working near-infrared 
the on-line applicability of ART in chemical appara- multisensor system for rapid on-line sorting of post- 
tus. consumer plastics. 

A second group of ART algorithms (ARTMAP 
and FuzzyARTMAP) has been recently proposed by 
Carpenter et al. for supervised pattern recognition 
[21,22]. Their aim was to overcome the less powerful 
discrimination power of the former pure unsuper- 
vised working ART methods in case of very closely 
located clusters in the m-dimensional features space. 
Supervised learning by ARTMAP (resp. Fuzz- 
yARTMAP) means a controlled clustering of the X- 
space that is monitored by a corresponding desired 
output in a second space Y. Note, that in contrast to 
other supervised working classifiers (discriminant 
analysis, SIMCA, PLS, multilayer feedforward neu- 
ral networks, etc.) the number, c, of clusters in the 
X-space and the number, b, of clusters in the Y-space 

2. Theory and FuzzyARTMAP algorithm 

The theory of FuzzyARTMAP follows the general 
ART paradigms developed by Grossberg [1,2]. Ac- 
cording to these assumptions, a classifier should al- 
ways first check if a currently offered input vector xi 
fits into the actual model limits in the variables space 
covert by a set of training samples. If this check suc- 
ceeds, the current input xi ‘resonates’ with the ART 
network. Then the classifier model can be updated by 
upgrading corresponding coefficients (more specific: 
network weights). On the other hand, if the check of 
the current input fails, another action then fitting of 
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weights is required. Because this input deviates sig- 
nificant from the calibration space covered by the 
current classifier model, the structure of the classifier 
has to be extended towards the new area where the 
current deviating input sample is located. Structure 
adaptation during training plays thus in ART models 
an even important role as weights adaptation. 

Technically considered, the FuzzyARTMAP algo- 
rithm consists of two independently operating, self- 
organizing FuzzyART neural networks (Fig. 1). One 
of them clusters the i = l...n pattern vectors in their 
m-dimensional X-space, the other one in their p-di- 
mensional Y-space. m is the number of variables in 
the X-space and p the number of variables in the 
Y-space. A third algorithmic element, called ‘map- 
field’, monitors and controls simultaneously both 
clustering processes. 

2.1. Initial settings 

Before training, two so-called weight matrices, 
Wx (dimension m X cmux) and W y, (dimension p 
X bmax) need to be initialized, whereby cmax and 
bmax are large constants, corresponding to the maxi- 
mum expected number of clusters in the data sets 
(maximum is n>. Usually the elements of W x and WY 
are initialized by wj:, = l/ 6 (resp. w& = 1/ \/7;>, 
whereby j = l...m and k = l...p. The third weight 
matrix in a FuzzyARTMAP neural network, the so- 
called mapfield, W xy (dimension cmax X bmax), has 
to be initialized by zeros. 

Training parameters such like learning rates v’, 
rl *,y and vy and vigilance parameters p”‘“‘“, 
P xxY,“‘ax and ,, Ymx for all three networks have to be 
defined in advance (between 0 and 1, mostly around 
0.1). A necessary scaling constant, 0 < (Y < 1 has also 
to be set. 

2.2. Network training 

After this initialization, the training is done by 
random offer of corresponding pairs [xi, yi] of train- 
ing pattern vectors to the initialized network. xi is 
applied to the input of the network in the X-space and 
yi to the input of the corresponding network in the 
Y-space. In the very beginning, when no cluster ex- 
ists, xi and yi are copied as initial estimate of the first 

weight vectors wf (resp. w1y). Later on, a pairwise 
comparison is done between the current inputs, xi and 
yi, with all active I = l...c weight vectors W” (resp. 
h = l... b in WY> by calculating the fuzzy distance d; 
(resp. di) for dissimilarity 

dci = lxi A w;l/( a + Iw;I) (1) 

between the current inputs and all individual weight 
vectors with IzI = length of a vector z. The fuzzy set 
theory based operator ‘ A ’ (intersection) provides a 
resulting vector z = min(xi, WI> (resp. z = min(y,, 
w y>) which has as elements the corresponding mini- 
mum element values of the two considered vectors. 
Geometrically considered, this new resulting vector is 
always spatially located in between both vectors. 
Then, for each of both networks, a weight vector, 
Wbtinner (resP* WwYinner) can always be found having a 
minimum distance (highest similarity) to the present 
input vector. This weight vector is called winner. In 
the following step, called in ART ‘resonance check’, 
with the formula 

Pr = Ixi A W,*innerl/lXil (2) 
it is calculated if the present inputs are inside or out- 
side winner’s existing cluster. If the calculated dis- 
tances are smaller then the so-called ‘vigilance’ pa- 
rameters pxJmax (resp. py,max 1 according to 

p; < p-x (3) 

then the present input vector is inside an existing 
cluster (high similarity), or in other words, the input 
came into resonance with the network. If not, the 
secondly placed winner according (1) is checked by 
(2)-(3) and so on. In the following, ‘network leam- 
ing’ will happen. In contrast to conventional neural 
networks, this step is called in ART ‘adaptation’. 
Adaptation means more than simply fitting a fixed 
number of coefficients (network weights). Adapta- 
tion can also mean in ART an extension of the cur- 
rent network structure by additional weight vectors. 

For sequential fitting its weights W ‘, Fuzz- 
yARTMAP uses the learning rule 

w,“i’?fr = v”(x A w;f$;,) + (1 - $)w,“$“,, (4) 

(corresponding formulae for fitting both other weight 
matrices WY and W”,Y have simultaneously to be 
applied). 
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Expressed in classical terms of data fitting, the 
learning rates 77 are the step sizes for moving a cur- 
rent winning weight vector wzinner in its spatial di- 
rection towards the currently offered input vector xi 
(resp. WwYinner towards yi>. For the influence of the 
size of q’s on the training of an ART network, con- 
sult, for example, Ref. [12]. 

Additionally, the element in the Ith row and the 
hth column in the mapfield WxJ’, corresponding to 
the two separate winners in both networks, is set to 
one in the learning step. Alternative ways of map- 
field learning are the use of the binary coded output 
vector y OUf of the Y-network or of the real-coded 
vector of dt, values (length cl as inputs to the map- 
field. The mapfield as a real weight matrix is then 
trained by the corresponding training rule similar to 
Eq. ‘3). 

If condition (3) is not fulfilled, the current input 
vectors are outside all currently existing clusters. In 
such a case FuzzyARTMAP will give a ‘reset’ signal 
and it will create a new additional cluster. In case of 
the network in the X-space, the number of formed 
clusters will grow from l- l...c to 1= l...c + 1 by 
increasing the dimension of the weight matrix Wx by 
one. The same happens for W y with h = l... b weight 
vectors if a reset is given in the Y-space. That input 
vector that has caused a reset will directly be copied 
into the new formed weight vector. In this way a new 

Mapfield 

Fig. 1. The mapfield completes two FuzzyART neural networks to 
a FuzzyARTMAP network. The mapfield monitors and controls 
both simultaneous running clustering processes (network training). 
The number and the size of formed clusters depends for each sin- 
gle network from the size of the prior chosen vigilance parameter 
(see also Fig. 2). 

Fig. 2. Complement coding (see text) in combination with fuzzy 
distance measures provides hyperrectangular shaped clusters. Each 
cluster box grows during training to its maximum size. In this way, 
arbitrary shaped clouds of experimental data points are approxi- 
mated by overlapping hyperrectangulars. FuzzyARTMAP’s map- 
field allows a link of very distant clusters in the X-space to one 
common cluster in the Y-space. On the other hand, it allows the 
dedication of spatially close located clusters in X to distinct clus- 
ters in Y. 

additional cluster is always be initialized by its first 
offered pattern vector. 

The mapfield Wxy increases its dimensions si- 
multaneously by closely following the cluster num- 
bers c and b of Wx and W y. Another network reset 
happens, if a winner in the X-space does not corre- 
spond to a winner in the Y-space. This happens 
mostly for very close located clusters in variables 
space if they belong to different desired outputs. In 
such a case a reset is given by the mapfield, because 
the mapfield is that part of the entire network that 
covers the information which cluster in the X-space 
is linked to which cluster in the Y-space (Fig. 1). Two 
independent running neural networks that interact via 
a mapfield allow the link of distant clusters from X- 
space to an identical desired output cluster in the Y- 
space. As an example, NIR spectra of several grades 
of high density and low density polyethylene poly- 
mers (‘PE’) form distant clusters in the spectral space 
X. However, via the mapfield these distant clusters 
can be linked together to the same desired output 
‘PE’. On the other hand, close located clusters can be 
precisely separated (Fig. 2). 
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Table 1 
Anonymized experimental data matrices Y and X of five body measures of 12 female (f) and 35 male (m) participants in training courses in 
cbemometrics (for details, see Experimental) 

Participant y = sex n, = body xz = body .q = shoe xq = belly xg = neck 
identifier length (cm) weight (kg) size (/au.) outline (cm> (cm) 

ml 
m2 
m3 
m4 
f5 
m6 
t-7 
m8 
m9 
f10 
ml1 
ml2 
ml3 
ml4 
ml5 
ml6 
ml7 
ml8 
ml9 
m20 
t-21 
f22 
m23 
f24 
f25 
m26 
m27 
m28 
m29 
m30 
Dl 
m32 
m33 
04 
m35 
m36 
m37 
m38 
m39 
m40 
f41 
m42 
m43 
m44 
f45 
f46 
m47 

minimum 
maximum 

0 
0 
0 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0 
1 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
1 
0 

0 
1 

185 
196 
186 
169 
160 
178 
162 
183 
177 
170 
160 
190 
172 
183 
181 
185 
183 
183 
180 
187 
163 
164 
170 
170 
173 
168 
176 
172 
180 
172 
162 
186 
187 
165 
181 
188 
185 
188 
187 
178 
173 
189 
177 
181 
170 
170 
186 

160 
196 

91 
98 
75 
59 
57 
72 
55 
65 
66.5 
63 
57 
80 
82 
70 
71 
78 
77 
90 
80 
81 
60 
55 
74 
75 
56 
75 
72 
73 
83 
82 
55 

105 
90 
55 
78 
72 
81 
75 
73 
84 
61 
75 
70 
76 
70 
57 
85 

55 
105 

44.5 
43.5 
45.5 
41 
37 
44 
38 
41 
41 
39 
39 
46 
42 
43 
42 
42 
44 
42 
41 
44 
38 
39 
41 
37 
38.5 
41 
41.5 
41 
43 
42 
39 
45 
43 
37.5 
45 
43.5 
44.5 
44.5 
43 
43 
38 
45 
41 
42 
39 
39 
42 

37 
46 

103 
100 

90 
83 
74 
85 
70 
75 
90 
72 
81 
83 
93 
91 
91 
89 

105 
106 
58 
87 
76 
76 
94 
99 
65 
99 
85 
92 
89 

100 
68 

115 
93 
76 
99 
77 
95 
87 
85 
98 
70 
87 
89 
87 
81 
70 
87 

58 
115 

42 
39 
39 
38 
34 
37 
31 
34 
37 
35 
35 
36 
41 
38 
39 
39 
41 
46 
41 
41 
34 
31 
39 
37 
32 
39 
38 
41 
38 
41 
32 
43 
41 
33 
40 
33 
40 
37 
39 
41 
33 
38 
37 
39 
35 
35 
38 

31 
46 
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2.3. Complement coding as a special preprocessing 
procedure 

Eqs. (l)-(2) require, that the elements of the in- 
put vectors xi (resp. yi> are positive numbers in the 
range O...l. This can be reached, for example, by data 
preprocessing using range scaling. A second condi- 
tion has to be fulfilled. The input vectors have to be 
additionally ‘complement coded’. This means that xi 
is doubled in its length by appending its complement 
vector 1 - xi. yi is complement coded by its corre- 
sponding vector 1 - yi. Calculation examples for 
complement coding are given, for example, in Refs. 
[27,28]. From an algebraic point of view, comple- 
ment coding adds redundant information only. From 
the point of view of fuzzy set theory, a single crisp 
feature in a data vector is substituted by a function of 
this feature (here: a simple range between a lower and 
an upper feature limit). Thus, calculations (l)-(2) 
deal with functions of features instead of single crisp 
features. For two or more features, in this way, hy- 
perrectangular shaped boxes for each cluster (Fig. 2) 
are obtained instead of single directed vectors. The 
boxes grow during training (network weights adapta- 
tion) from a small point vector to a large hyperrect- 
angular. The mathematical proof for this effect can be 
found in Carpenter et al. [21,22]. Thus, an experi- 
mental data cluster will be approximated by Fuzz- 
yARTMAP by a sequence of overlapping hyperrect- 
angulars. The outer limits of such a hyperrectangular 
are called in the present work ‘upper fuzzy bounds’ 
and ‘lower fuzzy bounds’. Another effect of comple- 
ment coding is, that it gives ‘absent features’, having 
low data values, even high contributions in the fuzzy 
similarity measures (l)-(2) as ‘present features’ that 
usually have higher values. 

2.4. Qualification versus quantification 

Each cluster formed by a FuzzyARTMAP artifi- 
cial neural network describes a limited local region in 
the variables space. In this way, complicated shaped 
clouds of experimental data are approximated, in 
principle, by a sequence of overlapping hyperrectan- 
gulars. This is true for the data cloud in the X-space 
and in the Y-space. This approach of locally overlap- 
ping partial clusters the FuzzyARTMAP network is 
rather useful for supervised pattern recognition 

(qualification) than for function fitting (quantifica- 
tion). It has been shown [21-241 in studies with sim- 
ulated and experimental data sets, that Fuzz- 
yARTMAP can successfully approximate data clouds 
that are located within each other and data clouds that 
are formed from combined spirals. This gives an im- 
pression of its discrimination power, for example, 
compared with MLF-BP neural networks [29]. How- 
ever, the more a data set forms a continuous func- 
tion, the more new single weight vectors are needed 
by FuzzyARTMAP. Function fitting is thus possible, 
but the costs one has to pay for this are a rapid pro- 
liferation of an enormous number of new single clus- 
ters. 

3. Experimental 

During the international COMETT Course in 
Chemometrics in Heyen (The Netherlands) that was 
organised in 1991 by the Laboratory of Analytical 
Chemistry of the Catholic University of Nijmegen the 
present author asked the participants for their indi- 
vidual body measures ‘body length’, ‘body weight’, 
‘foot size’, ‘belly’ and ‘neck’. The aim was to get an 
experimental data set that could be used in the exer- 
cises of multivariate data analysis and multivariate 
statistics. The same experiment has been repeated 
once more again during a chemometrics course for 
chemistry teachers at the technical college Utrecht 
(The Netherlands) in 1991. Both data sets were 
anonymized and merged providing a complete data 
matrix X (size 47 X 5) of n = 47 persons, character- 
ized by m = 5 features, and their corresponding sex 
Y (dimension 47 X 11 as desired p = l-dimensional 
output (Table 1). 

4. Computations and software 

A program ‘FuzzyARTMAP.c’ has been written 
by the author in ANSII-C computer language for 
UNIX computers (SUN) for the gee-compiler. The 
alternative WINDOWS-version, now implemented in 
the master PC of an POLYTEC XDAP near-infrared 
diode array spectrometer, will be described in Part 2 
of this publication series. 
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5. Results and discussion 

First, the 47 X 5 data matrix (Table 1) has been 
analyzed in a classical way using multivariate statis- 
tical methods. This helps in understanding the fol- 
lowing results provided by the FuzzyARTMAP neu- 
ral network. 

5.1. An introducing multivariate-statistical study 

The present data set (Table 1) has been recently 
studied by hierarchical cluster analysis and principal 
component analysis [19]. The dendrograms for two 
different clustering methods of the columnwise au- 
toscaled 47 X 5 data matrix showed some single out- 
liers (m8, m18, m19, m32, m36). A group with a high 
contribution of 10 females and one single male par- 
ticipant (mll) has been found. Another large cluster 
concerns all remaining 34 male participants includ- 
ing two females f24 and f45 that were left. This large 
group splits into three subclusters whereby the clas- 
sification result differs slightly due to Ward’s and due 
to the average linkage method. The main result from 
hierarchical cluster analysis was, that obviously the 

five chosen body features provide combined infor- 
mation about differences between men and women. 
However, some few participants (mll, f24 and f45) 
were misclassified. Comparing their data with those 
ones from men in general makes these misclassifica- 
tions understandable (Table 1). Principal component 
analysis over the 5 X 5 correlation matrix of X pro- 
vided a distribution of the percentage contributions of 
the total variance over the five factors into 74.4%, 
15.0%, 5.0%, 3.8% and 1.8%. Multivariate correla- 
tions were found between the five body measures. An 
example for this is that a high body weight can be 
caused by a large body length or/and a large belly. 
Thus, small men with a big belly can get an even high 
weight as tall but slender women. On the other hand, 
this does not necessary mean that a correlation be- 
tween belly outline and body length exists. Fig. 3 
summarizes quickly the results from the multivariate 
statistical study. So the reader will get somewhat 
feeling for the data before application of Fuzz- 
yARTMAP. The linear mapping result in Fig. 3 looks 
similar to the already published PCA scores plots 
[19]. The position of the 47 participants scores are in 
agreement with the cited clustering results. The two 

0.35 m36 
ml2 

0.25- 

P 
5 0.15- 

ae 

5 0.05- 

N 

B -0.05- 
3 

i -0.15- 

-r 
a 

-0.25- 

r25 

m8 

f34 f4#l4 
121 

f5 ml1 

mtM2 

ml9 m3 
m39 

;m6 
i m1P47 

m20 

m37 

m2 

ml7 m1 

m40 

mp8m13 

m26 
m30 

ml8 

-0.35 ! I I I I I I 
-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 

principal map axis I (74.4 % variance) 

Fig. 3. Presentation of the two first principal axis obtained from a multidimensional scaling (MDS, Torgerson’s method [30]) of data from 
Table 1. Female participants (f) are found in the left handed lower region that is mainly determined by low values in ‘body size’, ‘body 
weight’ and ‘shoe measure’. Male participants (m) mostly can be found in the right handed region characterized by higher values in ‘body 
length’, ‘belly’, ‘ neck’ and ‘weight’. 



158 D. Wienke, L. Buydens/Chemometrics and Intelligent Laboratory Systems 32 (1996) 151-164 

formed class boxes 
14 

12 

10- 

a- 

4/ 

6- 

2 

. 
"0 

Fig. 4. Presentation of the growing resolution of a data set into finer 
subclusters by an increase of the vigilance parameter (here: p:““) 
in the X-space. The more compact the data are, the less they scat- 
ter. In such a case a change of p does not have nearly any effect 
(here: between 0.1 and 0.5). The more the data scatter or if they 
form a continuous function in place of a cluster the more sensitive 
the resolution reacts on small changes in p (here: 0.5-1.0). 

large clusters of male and female participants occupy 
distinct areas in the space. Females show lower val- 
ues in all five features compared to males. However, 
there are some exceptions and there is some overlap. 
Only combinations of several PC provided a perfect 

formed class boxes 

and distant separation of men and women. The rea- 
son is that special combinations of PC characterized 
the participants that took part in the courses of 
chemometrics coming from all over Europe. A few 
tall and gangling northern european women, for ex- 
ample, could compete with selected small european 
men according the combination of the three variable 
combination ‘length + weight + foot size’, for exam- 
ple. The closeness of the males mll, m4, m23 and 
m26 to the females group proofs this. On the other 
hand, men’s combined measure ratios in belly out- 
line and neck size allowed to distinguish them from 
female participants. 

5.2. FuzzyARTMAP study 

FuzzyARTMAP can be used to study data sets in 
three distinct directions. First, training runs with dis- 
tinct chosen sizes of P”‘“~“, pxy*max and pypmar re- 
solve the X and the Y matrix into distinct numbers 
of clusters and subclusters. In this way the raw struc- 
ture and the fine structure of the data cloud can be 
explored. Second, after such a training, the obtained 
network weights can be decoded and resealed again 
back to the original variables space for quantitative 

1 2 3 4 5 6 7 training epochs 
0 1 , I I I I I I I I 

0 47 94 141 188 235 282 329 378 423 470 

number of random selected patterns 

Fig. 5. Presentation of the formation of the final number of clusters as function of the number of training epochs for three distinct sizes of 
the vigilance parameter pFcrx = 0.1, 0.3, 0.5. In general, fast convergence of the training process can be observed for a FuzzyARTMAP 
network within a few epochs. The higher the desired cluster resolution is the more time the convergence takes (see also Fig. 6). 
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interpretation of the network structure. This helps to 
trace the nature of the formed clusters and it helps to 
understand why they were formed. Third, a trained 
FuzzyARTMAP network can be used to classify un- 
known pattern vectors. 

Fig. 4 shows for increasing vigilance parameter 
P xxmnx (thus for decreasing cluster size), how the 
network needs additional single clusters (hyperrect- 
angulars) to approximate the entire data cloud. This 
effect is also well known from the unsupervised 
working ART neural networks. Between 0.05 and 0.5 
for the p”‘“ax value the number of formed clusters 
does not change so much. That simply means that the 
more compact and focused to a single point a data 
cluster is, the less important the influence of the cho- 
sen size of p”,m”” is. On the other hand, it also indi- 
cates a disadvantage of all ART networks. The more 
a data cloud scatters (from noisy or wrong features) 
the more the FuzzyARTMAP network will tend to 
proliferation of single new clusters. 

The next important property, that has been studied 
here, was the speed of the convergence of the train- 
ing process. Carpenter et al. mentioned in their ART- 
2a study [5] the enormous gain in training speed by 
ART if it is compared, for example, with a multi- 

misclassified 
participants 

4 
1 

2 

i 

Table 2 
Weights matrix WEY (mapfield) links seven clusters of the five- 
dimensional X-space (body measures of participants) to two clus- 
ters in the one-dimensional Y-space (sex of participants). This par- 
ticular cluster structure was obtained for the data from Table 1 with 
following settings for the FuzzyARTMAP algorithm: learning 
rates: qx = 0.1, 91ry = 0.1, qy = 0.1; vigilance parameters: 

P X*m’x = 0.2, pry,max = 0.6, pyzmax = 0.9; scaling factor a = 
0.01. The network has been trained by 3 epochs 

Cluster k / I Y 0llr.1 Y our.2 

X our.1 1.0 0.0 
X our,2 0.0 1.0 
X our,3 1.0 0.0 
X our.4 1.0 0.0 
X 0”f.S 0.0 1.0 
X our.6 0.0 1.0 
X our,7 1.0 0.0 

layer feedforward backpropagation neural network. 
Even for large data sets with many thousands of pat- 
tern vectors [21,22,24,25] a remarkable small num- 
ber of training epochs were reported. For Fuzz- 
yARTMAP a significant speed has been observed, 
too, in the present work (Fig. 5). It can be seen, that 
FuzzyARTMAP converges for the training data from 

o 1 , , \. \ epoch ;’ , training 

0 20 40 60 80 100 
random selected training patterns 

Fig. 6. Convergence of Fux.zyARTMAF”s training process shown by a presentation of the reclassification error (data set, Table 1) as func- 
tion of the number of training epochs. In general, the reclassification error rapidly decreases within the first few epochs (here after less than 
two epochs). 
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Table 3 
Weights matrix W ’ describes seven rectangular shaped clusters among the n = 47 X pattern (Table 1). Each cluster is limited by the lower 
and upper ‘fuzzy bounds’ of the five contributing variables. W* has been obtained after training the FuzzyARTh4AP network with range 
scaled features (Table 1) using the network parameter given in Table 2. The sex identifier ‘M’ = male and ‘F’ = female are available via the 
mapfield (Table 2) 

Scaled feature Type of cluster 

Ml Fl M2 M3 F2 F3 M4 

lower fuzzy bounds 
length (a.u.) 
weight (a.u.) 
shoes (au.) 
belly (a.u.1 
neck (a.u.) 

upper fuzzy bounds 
length (a.u.) 
weight (a.u.) 
shoes (a.u.1 
belly (a.u.) 
neck (a.u.) 

0.30 0.00 0.51 0.00 0.07 0.27 0.25 
0.33 0.01 0.20 0.04 0.00 0.15 0.08 
0.47 0.00 0.44 0.22 0.16 0.13 0.44 
0.47 0.24 0.15 0.40 0.19 0.28 0.43 
0.40 0.14 0.16 0.26 0.00 0.26 0.46 

0.86 0.20 0.70 0.00 0.22 0.27 0.25 
0.87 0.10 0.36 0.04 0.00 0.34 0.08 
0.93 0.08 0.57 0.22 0.22 0.22 0.44 
0.89 0.32 0.48 0.40 0.31 0.53 0.43 
0.86 0.22 0.46 0.26 0.04 0.32 0.46 

Table 1 usually in less than three training epochs. the other ones that form together the center of a 
With respect to a correct reclassification (Fig. 6) the multi-pattern cluster. In this way the position of a 
convergence has been usually already reached after cluster covering many of the training pattern is much 
less than two epochs. The formation of the final faster formed than the position of a cluster with only 
fine-tuned cluster structure needed usually some ad- a single pattern. The main clusters covering the ma- 
ditional training epochs (Fig. 5). This effect is caused jority of all training pattern were mostly formed 
by a few single patterns that are located at the border within less than two training epochs. This is also al- 
line of a formed cluster. Such single patterns have the most independent from the chosen size of p and the 
same statistical chance to be randomly selected like number 12 of data set size (see Part 2 [26]). The split- 

Table 4 
Same weights matrix W” from Table 3, but decoded and resealed to original features space 

Feature Type of cluster 

Ml Fl M2 M3 F2 F3 M4 

lower fuzzy bounds 
length (cm) 171.12 
weight (kg) 71.84 
shoes (a.u.) 41.24 
belly (cm) 85.13 
neck (cm) 37.09 

upper fuzzy bounds 
length (cm) 190.96 
weight (kg) 98.66 
shoes (au.) 45.43 
belly (cm) 108.99 
neck (cm) 43.92 

160.00 178.40 160.00 162.62 170.00 169.00 
55.95 65.00 57.00 55.00 62.93 59.00 
37.00 41.00 39.00 38.50 38.18 41.00 
71.82 67.03 81.00 68.91 74.06 83.00 
33.19 33.53 35.00 31.00 35.00 38.00 

167.53 185.34 160.00 168.21 170.00 169.00 
60.26 73.22 57.00 55.46 72.04 59.00 
37.80 42.19 39.00 39.00 39.00 41.00 
76.68 85.65 81.00 76.00 88.37 83.00 
34.39 37.95 35.00 31.71 35.81 38.00 
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Table 5 Table 7 
Similarity between the two Y-clusters given as vector angle be- 
tween individual column vectors of weights matrix WY (from 
Table 5) 

The resealed and decoded weights matrix WY describes two clus- 
ters among the n = 47 Y pattern (Table 1). Theoretically, each 
cluster should be limited by the lower and upper ‘fuzzy bounds’ 
of the two contributing variables. The binary type (0, 1) of the 
variable ‘sex’ causes a fuzzy range of zero. WY has been obtained 
after training the FuzzyARTMAP network with range scaled fea- 
tures (Table 1) using the network parameter given in Table 2. The 
sex identifier ‘m’ = male and ‘f’ = female are available via the 
mapfield (Table 2) 

Input feature Clusters 

Ml Fl 

lower fuzzy bounds 
m 1.000 0.000 
f 0.000 1.000 

upper fuzzy bounds 

f” 
1.000 0.000 
0.000 1.000 

Cluster index Cluster index 

m f 

m 1.000 0.000 
f - 1.000 

vector of all p/’ values as input to the mapfield. This 
would provide real numbers in the mapfield. 

ting of the remaining clusters with only single pat- 
terns in them takes a longer time based on their lower 
statistical formation chance. 

After finishing the training, the weights of the 
FuzzyARTMAP network provide an insight into the 
structure of the obtained clusters (Tables 2-7). For 
such an insight one has to concentrate on the weight 
matrix of the mapfield (Table 21, on the weight ma- 
trix of the X-space (Tables 3 and 4) and on the weight 
matrix of the Y-space (Table 5). 

For an understanding of the mapfield one can 
make use from the scheme shown in Fig. 1. The 
mapfield has been trained with binary output vectors 
of the Y-space network. This provides binary weights 
in the mapfield. Another way would be a use of the 

The fuzzy bounds (Table 3) for the weights in the 
X-space reflect the individual range of a feature 
within a formed cluster. Lower and upper fuzzy 
bounds are obtained after decoding the complement 
coded weights. However, these weights have to be 
resealed per feature, too, by using the scaling param- 
eters of the original data (Table 1, below). After 
resealing weights were obtained (Table 4) that can 
directly be interpreted in terms of the original data. 
As an example (Tables 3 and 4) one can see that 
FuzzyARTMAP formed the main groups ‘small 
heavy man’ (Ml) and ‘tall slender men’ (M2). M3 
and M4 were single patterns forming ‘small men 
groups’. Women were classified into ‘small sized 
women’ (Fl, F2) and ‘large women’ (F3). A similar- 
ity consideration between the formed clusters in the 
X-space (Table 6) proofs in a quantitative way the 
similarity between small men (Ml, M4) and larger 
women (F3), in particular with respect to body length, 
shoe size and nek. In a similar way the cluster, formed 
in the Y-space, can be discussed (Table 7). However, 
for this particular binary coded Y-data set (Tables 1 

Table 6 
Similarity between the seven X-clusters given as cosine of the vector angle between individual column vectors of weights matrix Wx in 
Table 3 (note: only lower fuzzy bound taken into account) 

Cluster index Cluster index 

Ml Fl M2 M3 F2 F3 M4 

Ml 1.000 0.704 0.859 0.865 0.802 0.941 0.954 
Fl - 1.000 0.317 0.908 0.619 0.748 0.755 
M2 - _ 1.000 0.544 0.722 0.833 0.801 
M3 _ - 1.000 0.811 0.794 0.919 
F2 - - _ - 1.000 0.700 0.811 
F3 - _ - _ 1.000 0.909 
M4 - - - - _ 1.000 
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and 5) the cluster results are obvious and not that 
much exciting. However, for future processing of 
spectral, environmental-analytical or process-analyti- 
cal Y-data this consideration can provide interesting 
results, too. 

5.3. Verifzcation of the trained FuzzyARTMAP net- 
work 

A test data set (Table 8) has been used to verify 
the trained network. This set contains body measures 
of as well male, female adults as of children. The 
children group (between 6 and 7 years old) forms 
with its specific body measures an extrapolation re- 

gion in the features space, because the training set 
(Table 1) covered only data from adults. The test run 
has been performed in two different ways. First a 
validation run was done, for which the network has 
been undertrained with the training data from Table 
1 using a growing number of training epochs. For 
each undertrained network the test adults (from Table 
8) were predicted (Fig. 7). Similar to the decrease of 
the classification error it can be observed that the 
prediction error also rapidly decreases within a few 
training epochs (compare Figs. 6 and 7). Finally, all 
unknown adults have been correctly predicted by 
FuzzyARTMAP according their sex (male, female) 
based on their body measures if at least 2-3 training 

Table 8 
Anonymized test data set X”“’ of five body measures of female (f) and male (m) adults and of children (c) used for validation of trained 
FuzzyARTMAP neural network 

Person x, = body 
length (cm) 

x2 = body 
weight (kg) 

x3 = shoe 
size (au.) 

xq = belly 
outline (cm) 

x5 = neck 
(cm) 

f13 172 65 41 74 33 
f14 160 68 36 88 38 
m36 183 80 45 85 43 
Cl 121 24 32 54 25 
f15 166 64 39 80 33 
m37 186 80 43 93 42 
m38 175 66 40 86 42 
m39 183 75 43 79 38 
m40 189 87 45 86 40 
f16 158 51 36 74 40 
m41 183 70 43 78 36 
m42 193 72 45 80 38 
m43 177 67 42 75 38 
m44 170 89 43 102 41 
m45 180 78 42 89 35 
m46 197 84 45 88 36 
m47 194 87 46 86 38 
f17 173 63 39 69 32 
f18 162 65 39 76 34 
f19 170 70 38 79 36 
t-20 170 61 38 70 29 
t-21 171 61 40 71 30 
f22 171 62 40 72 35 
c2 114 22 29 47 22 
c3 113 23 30 49 24 
c4 124 28 33 59 26 
c5 114 24 30 54 27 
c6 120 27 31 55 26 
c7 120 23 29 51 23 
C8 116 24 30 51 25 
c9 121 26 31 56 25 
cl0 113 20 28 46 20 
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misclassified 
unknown 
adults 
20 1 

epoch 

0 20 40 I 60 80 ’ 100 120 146 160 
random selected training patterns 

Fig. 7. Convergence of FuzzyARTMAP’s training process, presented by the size of prediction error for a test data set (Table 8) as a function 
of the number of epochs for a training data set (Table 1). 

epochs were applied. For this test run it was the net- 
work not allowed to go on with learning by modify- 
ing any weights of existing clusters (from training). 

A second experiment has been performed with the 
test data set (Table 8) including now also the chil- 
dren’s data. Now the network it was allowed to keep 
learning its weights as well its structure. Based on the 
random order of test vectors the weight vectors of the 
existing cluster (of adults) did only oscillate a little 
bit around their previous position. However, the first 
child’s pattern vector from the test data set (Table 8) 
that was offered to the network, could not be classi- 
fied into any existing adults’s cluster. The network 
gave a reset and created in the X-space an additional 
new cluster and asked to declare a corresponding Y- 
pattern for this unknown. All following test vectors 
for children were classified then correctly by Fuzz- 
yARTMAP in this common new cluster. 

6. Conclusions 

FuzzyARTMAP is an alternative neural classifier 
for supervised pattern recognition with remarkable 
short training time and with full interpretability of its 

weights in terms of original variables. These two 
properties make the classifier interesting for quantita- 
tive pattern recognition studies. The built-in detector 
against outliers and extrapolations make Fuzz- 
yARTMAP also interesting for robust and save 
working technical applications in analytical-chemical 
process control and environmental monitoring tasks. 
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