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Abstract 

The supervised working FuzzyARTMAP pattern recognition algorithm has been applied to automated identification of 
post-consumer plastics by near-infrared spectroscopy (NIRS). Experimentally, a remote operating parallel multisensor de- 
vice, based on a rapid InGaAs diode array detector combined with new collimation optics, has been used. The laboratory 
setup allows on-line identification of more than 100 spectra per second. Internal parameter settings of FuzzyARTMAP were 
varied to explore their influence on the classifier’s behavior. Discrimination results obtained were better than those from an 
optimized multilayer feedforward backpropagation artificial neural network (MLF-BP) and significantly better than those 
provided by the partial least squares method (PLSZ). Additional advantages of FuzzyARTMAP compared to these two clas- 
sifiers are a significantly higher speed of calibration, the chemical interpretability of network weight coefficients and a built-in 
detector against extrapolations. 

Keywords: Artificial neural networks; Adaptive resonance theory (ART); Fuzzy set theory; Pattern recognition; Plastics recycling; Near-in- 
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1. Introduction 

Adaptive resonance theory based artificial neural 
networks (ART) were recently found to be interest- 
ing for several chemical pattern recognition applica- 
tions [l]. Whitley and Davis [2,3] proposed the use of 
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ART-2 for chemical process monitoring and control 
by real-time classification of data taken from a run- 
ning chemical reactor. Wienke and Kateman used 
ART-l to classify UV/VIS and IR spectra and dis- 
cussed the quantitative chemical interpretability of 
ART’s weight coefficients [4]. Lin and Wang fitted 
industrial time series data and classified the parame- 
ter vectors by ART-2 [5]. Wienke et al. [6,7] applied 
ART-2a in on-line monitoring of the environment by 
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a classification of airborne particles using scanning 
electron microscopy image data and X-ray fluores- 
cence emission patterns. Another application of 
ART-2 to pattern recognition by image data was re- 
ported recently by Resch and Szabo [8]. Compar- 
isons of ART-2a versus hierarchical cluster analysis, 
principal component analysis (PCA) and multidi- 
mensional scaling (MDS), the SIMCA classifier and 
backpropagation multilayer neural networks (MLF- 
BP) for rapid sorting of post-consumer plastics by 
remote NIR spectroscopy have recently been re- 
ported [9-111. Numerous studies of the use of ART 
neural networks outside the field of chemistry were 
reviewed recently [1,14]. 

The reported general advantages of ART based 
classifiers compared to other types of multivariate and 
neural pattern recognition methods are short training 
times (usually less than 10 epochs), ability to model 
highly non-linear shaped clusters, robustness against 
outliers because of a built-in detector against extrap- 
olations, the quantitative chemical interpretability of 
weight coefficients and the on-line applicability of 
ART in chemical apparatus. 

Two supervised working ART algorithms 
(ARTMAP and FuzzyARTMAP) were recently in- 
troduced by Carpenter et al. [12,13]. The basic idea 
behind this has been to increase the discrimination 
power compared to former ART methods (ART-l, 
ART-5 ART-2a, ART-3, FuzzyART) that work un- 
supervised, in case of very closely located, non-lin- 
ear shaped clusters in m-dimensional features space. 
ARTMAP is less interesting for chemical applica- 
tions because it is restricted to the processing of bi- 
nary coded input data. The present work, therefore, 
focusses on FuzzyARTMAP as the most advanced 
ART algorithm without any restriction on the type of 
input data. This work is presented in two parts be- 
cause of the complexity of the FuzzyARTMAP algo- 
rithm, including aspects from adaptive resonance 
theory as well as from fuzzy set theory. By means of 
a moderately sized data set, the theory of Fuzz- 
yARTMAP and its properties were recently dis- 
cussed in Part 1 [14]. Part 2 explores the on-line ap- 
plicability of the FuzzyARTMAP network for a re- 
mote working near-infrared diode array detector for 
rapid identification of post-consumer plastic waste for 
automatic sorting. The present study reports new re- 
sults from the running SIRIUS project (Sensors and 

Artificial Intelligence for Recognition and Zdentifi- 
cation of Used Plastics). Competitive studies in the 
field of automated plastic identification by NIR spec- 
troscopy were recently published by Eisenreich et al. 
[16] and Ritzmann and Schudel [17]. In contrast to 
recent work of Alam and Stanton [15], it was found 
by the present authors [lo] that MLF-BP neural net- 
works, despite their excellent and widely accepted 
discrimination power between non-linear shaped data 
clouds, tend to produce uninterpretable nonsense re- 
sponses if one tries to extrapolate them. Additionally 
to the normal classification error Type I (misclassifi- 
cation), this extrapolation deficiency of a MLF-BP 
network caused up to a 25% error of Type 0 (unin- 
terpretable network answers) and of Type II (only 
seemingly correct answers for wrong samples (ex- 
trapolation case>) for NIR spectra of plastics [lo]. 
Two further extrapolation experiments with ART 
networks were published recently (ART-2a [6], Fuzz- 
yARTMAP [14]). A missing built-in detector against 
outliers makes MLF-BP networks less robust with 
respect to undesired numerical extrapolations in an 
automated process-analytical environment. This is not 
acceptable and a serious disadvantage, in particular 
for automated control tasks. The theoretical reason for 
this deficiency is that MLF-BP networks do not per- 
form their similarity analysis in the X-space of input 
data (NIR spectra) but only later in the Y-space (class 
membership). Compared to classical regression anal- 
ysis, PCA or PLS, where high values of the X resid- 
uals simply help to signalize an extrapolation, the 
missing test strategy of a MLF-BP network is a step 
backward. In contrast to MLF-BP, the Fuzz- 
yARTMAP method performs its similarity check 
similarly to PLS in the spectral X-space, automati- 
cally providing a detection of outliers (and an extrap- 
olation of the calibration subspace). 

2. Theory 

In Part 1 [14], the theory and algorithm of the 
FuzzyARTMAP artificial neural network were dis- 
cussed. The present theoretical part therefore concen- 
trates on data coding for the application to automated 
identification of post-consumer plastics by remote 
NIR spectroscopy. 

A FuzzyARTMAP neural network consists, in 
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principle, of three partial neural networks I, II and III, 
that are running simultaneously (Fig. 1 of Ref. [14]). 
During a so-called supervised calibration phase 
(‘neural network training’), network No. I performs 
a cluster analysis in the m-dimensional space of n X 
data. In the present application, these are n NIR 
training spectra (given by reflectance values at m 
wavelengths) that will be clustered into c groups. For 
each training spectrum x its corresponding member- 
ship vector, y, to a particular type of plastic is also 
given. In the case of five distinct types of plastics 
(classes), y will form a binary coded vector of length 
p = 5, whereby the membership to one particular 
class is coded by a ‘I’, otherwise a 0. In general, 
FuzzyARTMAP can also process real coded data in 
the Y-space. The second network (II) performs a 
cluster analysis in this p-dimensional Y-space of 
given class memberships y. For the chosen example 
of binary coded class memberships, network No. II 
will thus find exactly b = 5 clusters in the Y-space 
of training data. Note that network No. I in the X- 
space will find c clusters among the IZ NIR spectra, 
whereby c can be equal to or can be different from 
the number, b, of clusters that will be formed in the 
Y-space. Note further that the number of clusters c 
and b are unknown before the network training. The 
third simultaneously running neural network (the 
‘mapfield’, No. III), monitors and controls the other 
two networks (Nos. I and II>. During the training 
process, this third neural network links the c clusters 
of NIR spectra, formed in the X-space, to the b clus- 
ters of class membership, formed in the Y-space. 

In the case of adaptive resonance theory, a cluster 
is described by a directed vector w (‘network weight’) 
that comes close to the centroid vector for this par- 
ticular cluster. The cluster size is given, in principle, 
via a priory fixed constant, called the vigilance pa- 
rameter p (usually between 0 and 1). Thus, by the 
choice of p the future number of formed clusters 
(‘cluster resolution’ of the experimental data cloud) 
and their size can be controlled to perform an explo- 
rative data analysis. Thus, in total three vigilance pa- 
rameters have to be defined before training (an addi- 
tional one for each partial network). 

works determines the winning vector of network 
weights that is closest to a current input (competitive 
learning) by a fuzzy distance metric. Secondly, each 
network checks if the present input lies inside the 
winning cluster (resonance case). If not, the subse- 
quent second place winner is checked and so on. If 
any resonating weight vector is found, a learning rule 
is applied as the third step to move the weights vec- 
tor a little towards the current input. In the case that 
no resonance occurred with any existing weights 
vector (extrapolation case) an additional fresh cluster 
is linked to the network. Thus, in contrast to other 
neural network types, ART uses either weights adap- 
tation or structure adaptation to model a data cloud 
during the network training process. This data driven 
adaptation can have two obvious advantages. First, it 
makes the choice of the network structure less sub- 
jective to a particular chemical user. Second, the 
training speed of the competitive learning process can 
become significantly faster than, for example, for a 
comparable Kohonen neural network or a linear vec- 
tor quantizizer (LVQ) or for a classical cluster analy- 
sis method. The theoretical reason for this speed is 
that in ART the n pattern vectors have only to be 
compared with c weight vectors (‘clusters’ or ‘neu- 
rons’), whereby c is, in the beginning, equal to 1. 
Even for increasingly large numbers n of spectra the 
computational expense remains small and only lin- 
early increasing. In the case of a Kohonen network (or 
a LVQ), for example, the number c of winner com- 
peting weight vectors (‘neurons’) is fixed. This re- 
quires from the very beginning many more computa- 
tional circles. For the other rather classical case of 
statistical clustering methods, half distance matrices 
of decreasing size, beginning with dimension (n2 - 
n)/2, have to be calculated. As is very well known, 
the calculational expense increases more than 
quadratically (thus rapidly) for slowly (linear) in- 
creasing numbers n of training spectra. However, for 
highly scattered data sets, ART networks in general 
tend to an undesired proliferation of new clusters. If 
this happens, the high training speed from the begin- 
ning can slow down dramatically because c in- 
creases rapidly. 

Each of the three partial networks within the After completion of the network training, the net- 
FuzzyARTMAP algorithm makes use of three essen- work found a particular number c of clusters in X- 
tial equations and one unequation during its training. space (or b in Y-space) with maximum contrast (dis- 
First, as outlined in Part 1, each of the three net- similarity) among them. The formed cluster struc- 
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tures in both variable spaces are the first result one 
can obtain from a FuzzyARTMAP network. In part 1 
[14] and in Refs. [4,6,7,9] it has been shown how a 
variation of the vigilance parameter and learning rate 
can be used for an active elucidation of fine and raw 
cluster structures in the training data. As a second re- 
sult, in the same references it has been illustrated that 
trained ART neural networks can be interpreted in 
chemical and spectroscopic terms after a suitable de- 
coding of the scaled network weights. Third, the 
trained FuzzyARTMAP can be used for classifica- 
tion of unknown samples. In the present application, 
a NIR spectrum ‘of an unknown type of plastic will 
be compared with the trained network in the X-space. 
The output of this network (No. I) forms the input to 
network No. III (mapfield) which will make a link to 
the partial network No. II in the Y-space. This latter 
network finally provides the membership to a partic- 
ular type of trained plastic classes, However, if a NIR 
spectrum x that is offered to network No. I does not 
fall into any of the c clusters of the X-space, no net- 
work resonance will occur. The unknown is assigned 
as a novelty and this will be signalized as an extrapo- 
lation case. In this way the network self-protects 
against extrapolations and against a ‘wash-out’ of al- 
ready learned information. 

3. Experimental 

FuzzyARTMAP has been implemented in an ex- 
perimental setup for rapid identification of post-con- 
sumer plastics (Fig. 1). The hardware setup has re- 
cently been described in detail by Huth-Fehre et al. 
1181. A new collimation optics, developed by Huth- 
Fehre et al. [19], enables acquisition of NIR trans- 
flectance spectra from remote plastic objects at a 
conveyor. The construction of the optics allows a 
variation of location, shape and distance of the object 
to the optics within a range up to 50 cm, always pro- 
viding measurable NIR spectra. The optics integrates 
over a fixed part of the conveyor. The spectrum of the 
empty conveyor serves as the reference spectrum. The 
transflected radiation is spectroscopically resolved 
using a new generation NIR diode array spectrome- 
ter with a 256 pixel InGaAs diode array detector 
(PolyTec XDAP, IKS Optoelectronics, Duisburg, 
Germany [10,18]). The spectrometer provides up to 
158 complete NIR spectra per second in the optical 
range 800-1700 nm (shortwave range near-infrared). 
The low absorption coefficients in this spectral re- 
gion enable a sample penetration depth of several 
millimeters. In this way, the deeper located sample 
bulk is also analysed instead of the sample surface 

near infrared 
illumination source 

Fig. 1. Scheme of the experimental setup for rapid automated on-line identification of post-consumer plastic waste by remote near-infrared 
sensing combined with real-time pattern recognition by a FuzzyARTMAF’ artificial neural network. 
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Fig. 2. Selected near-infrared transflectance spectra of distinct grades of post-consumer packaging materials. The spectra were recorded by 
the setup shown in Fig. 1 and shown (after pre-processing, see text) as they are offered to the FuzzyARTMAP neural network. 
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only. This causes significantly less disturbance from 
a polluted sample surface (stickers, dirt, humidity). 
On the other hand, much less spectroscopic informa- 
tion is coded in this part of the spectrum, requiring 
especially powerful pattern recognition methods. The 
raw NIR spectrum (vector x of m = 256 reflectance 
numbers, each of 14 bit intensity resolution) is then 
transferred on-line via an IEEE card (and corre- 
sponding control software) into the RAM of a per- 
sonal computer (Intel 80486 processor). Recent ex- 
amples of raw spectra of post-consumer plastics, 
recorded by this diode array spectrometer, can be 
found in Refs. [10,18]. The raw spectrum is then pre- 
processed by a moving average filter followed by 
calculation of the first derivative and scaling to spec- 
trum unit length. This combination of preprocessing 
methods provides compact, well separable clusters in 
the spectral space [10,18]. Examples of preprocessed 
spectra, now called feature vectors of length m, x, are 
shown in Fig. 2 for distinct grades, colors, sizes and 
sample placement of pieces of post-consumer plas- 
tics. The used samples belong to a set of dirty bottles 
and packing collected via the public waste collection 
system of the german town of Cologne. The feature 
vector x is further preprocessed by FuzzyARTMAP 
using complement coding [12-141 and scaling of all 
m features to the range (O...l). They were subse- 
quently classified. An identification result is immedi- 
ately presented in real time on the computer screen 
as a large text signal (Fig. 1). In the present study, 
five post-consumer packaging materials were classi- 
fied: PET (polyethyleneterephthalate), PE (polyethyl- 
ene), PP (polypropylene), PS (polystyrene) and Te- 
traPAKTx (a packaging material consisting of paper 
and PE layers). Fig. 2 shows that the spectral similar- 
ity between PE, PP and TetraPAK’” is greater than 
that between PET and PS. The available training and 
test spectra used in the present study (Table 1) origi- 
nate from samples of different size, color and distinct 
sample placement on the conveyor. 

4. Software and computations 

The program ‘FuzzyArtMap.c’ was written by the 
author in ANSII-C computer language for UNIX 
computers (SUN) for the gee-compiler. The altema- 
tive DOS version, now implemented on the master PC 

Table 1 
Number of NIR spectra of distinct samples from five different 
packaging materials used for training and testing the Fuzz- 
yARTMAP artificial neural network 

Packaging Samples in Samples in 
material test set training set 

PET 106 107 
PE 113 120 
PP 127 108 
PS 101 106 
TetraPAK’” 104 104 
Total 545 551 

of the fine-sorter (Fig. 1) for plastic waste, has been 
translated into Borland-C. The control software for 
the IEEE data acquisition card has also been written 
in Borland-C, forming together with FuzzyARTMAP 
and the data preprocessing algorithms one large soft- 
ware package for on-line measurements and real-time 
pattern recognition. A Microsoft Windows based 
version, written in Visual Basic and DLL codes, has 
recently been completed and will be described sepa- 
rately [21]. The training of the neural network is done 
externally at a SUN Spark 10 Unix workstation. With 
the given experimental data (Table 1) the Fuzz- 
yARTMAP algorithm has been studied with respect 
to the influence of the size of the vigilance parame- 
ters px*ma” and to the size of the learning rate 7’. The 
number of clusters formed and the error of classifica- 
tion were used as criteria to find optimal initial net- 
work parameter settings. The separation power of 
FuzzyARTMAP was finally compared with the sepa- 
ration power of the partial least squares algorithm 
(PLS) and an optimized multilayer feedforward 
backpropagation artificial neural network (MLF-BP). 
The MLF-BP network (from MATLAB neural net- 
work toolbox) made use of the Ngyuen-Widrow ini- 
tialization, adaptive size of learning rate, momentum 
term, a sigmoidal transfer function (hidden layer) and 
a log-linear transfer function (outputs O-l). The hid- 
den layer included six hidden neurons. The following 
section summarizes and discusses the obtained re- 
sults. 

5. Results and discussion 

In former studies of ART-l and ART-2a neural 
networks [4 6 7 9 lo] it has been found that, for in- , 7 9 , 
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Fig. 3. Presentation of the growing resolution of a data set into finer 
subclusters by an increase of the vigilance parameter (here pxVmaX 
in the X-space) as a function of the number of training epochs for 
four distinct sizes of the vigilance parameter ( pxSmax = 0.4 ( ??), 
0.5 ( ??), 0.6 (+), 0.7 (*). In general, fast convergence of the 
training process can be observed for a FuzzyARTMAP network 
within a few epochs. The higher the desired cluster resolution is, 
the more time the convergence takes (see also Fig. 5). 

creasing vigilance parameter p’pmax, the size of the 
formed clusters decreases and simultaneously their 
number increases. (Note the inverse relation, because 
p corresponds to a measure of distance and not to a 
similarity measure.) A similar trend has been ob- 
served for FuzzyARTMAP (Fig. 3), despite the fact 
that pxpmax is now calculated by the fuzzy set theory 
based intersection operator that differs from the Eu- 
clidian-like distance metrics in ART-l and ART-2a. 
For p xPmax = 0.7 and larger, a proliferation of new 
clusters is observed. For p x,max = 0.4 and smaller, the 
network quickly stabilizes at a fixed number of clus- 
ters within a few training epochs. A further decrease 

of PX’““” to values smaller than 0.4 did not decrease 
the number of clusters formed significantly. This can 
easily be understood by the scheme in Fig. 4. 

The remarkable speed of convergence of Fuzz- 
yARTMAP’s training process has already been men- 
tioned in Part 1. Figs. 3 and 5 illustrate that only 3-5 
training epochs (thus between 3 X 545 and 5 X 545 
randomly selected training samples) are required for 
these NIR data sets. The MLF-BP network that is de- 
scribed in the last part of this section needed 100 or 
more epochs for the same data to converge. Looking 
additionally at the necessary internal algorithmic cal- 

clas 

class 1 class 3 

Fig. 4. The more compact the data are (left, classes 1 and 21, the 
less they scatter. In such a case a change of the cluster box size 
via the vigilance parameter px9max has almost no effect. The more 
the data scatter (class 3, right) or if they form a continuous func- 
tion in place of a cluster, the more sensitive the cluster resolution 
is to small changes in px,max. Note that the concept of vigilance p 
follows a distance concept and not a similarity concept. 

culations (see Part 11, FuzzyARTMAP requires fewer 
computing steps than the MLF-BP network per train- 
ing spectrum, if the number of formed classes in the 
X-space stays at the moderate magnitude of the de- 
sired number of output classes. In general, a higher 
training speed allows an evaluation of more distinct 
network parameter combinations within the same 
short time. This allows the user a comfortable and 
rapid optimization of the settings of the classifier and 

1-I I 
0 10 20 

random training samples (out of 551) 
(kwands, 

Fig. 5. Convergence of FuzzyARTMAF? training process shown 
by a presentation of the prediction error (test data set, Table 1) for 
four distinct sizes of the vigilance parameter ( pGmax = 0.4 ( ??), 
0.5 ( 0 ), 0.6 ( + 1, 0.7 ( * 1) as a function of the number of training 
epochs. In general, the reclassification error rapidly decreases 
within the first few epochs. With increased vigilance parameter 

P xSmax the number of formed clusters rapidly grows (see also Fig. 
3) providing a growth in the classification error for the test set. 
FuzzyARTMAP network overtraining becomes visible. 
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it requires a less powerful computer. Additionally to 
training speed, an additional feature has been found 
in Fig. 3. Clusters concerning many training patterns 
are always formed within the first few training 
epochs. This is caused by a higher statistical chance 
of the contributing training patterns becoming ran- 
domly selected. Thus, the raw cluster structure is al- 
ways formed in the very beginning of the training, 
small separate clusters and single pattern clusters are 
split up later on. Therefore, the influence of pGmax on 
the number of clusters within the first epochs is rather 
small (Fig. 3). This causes the classification results to 
be rather independent in the beginning on a particu- 
lar choice of px’m”” (Fig. 5). 

Another important observation can be made con- 
cerning Figs. 3 and 5. A FuzzyARTMAP network can 
be overtrained if pqmax is chosen so large that un- 
controlled cluster proliferation occurs (here p”‘max = 

0.7 and larger). After stabilization at a relatively low 
level, the classification error can increase again (Fig. 
5) if one tries to form too many single clusters that 
do not reflect the general cluster structure of the data. 
Obviously, the separation power decreases again in 
such a case because too many single clusters are sep- 
arated in the area between two larger main clusters. 
In such a case, very similar clusters with very similar 
weight vectors belonging to distinct Y-classes are 
produced. However, such overtraining happens later 
after a relatively large number of epochs when the 
general cluster structure starts to split into many small 
subclusters. 

For the Y data and for the mapfield, the choice of 
P ymax does not play that important a role for the pre- 
sent application, because these data are binary coded, 
giving point-like ideal clusters without any variance. 
In general it is true that the more point-like (or com- 
pact> a training data set is, the less important are the 
choice and influence of the size of pxpmax for the 
number of clusters found by FuzzyARTMAP (Fig. 4). 
On the other hand, a data set having the highest scat- 
tering will be most sensitive to a small increase of 
P x*max. Data sets with a high variance will thus tend 
to high cluster proliferation. From Fig. 4 it becomes 
clear that FuzzyARTMAP is more suitable for pat- 
tern recognition applications (qualification) than for 
function fitting (quantification). Part 1 has already 
outlined this. 

With respect to the influence of the chosen learn- 

0 10 20 

random training patterns (out of 551) 

(Thousands) 

Fig. 6. With increasing learning rate qX ((0) 7’ = 0.001, (*) 7’ 
= 0.005, (A ) 7)’ = 0.05) a FuxxyARThLAP neural network tends 
to uncontrolled proliferation of new clusters caused by rapid oscil- 
lations of existing clusters in the variable space (see also Fig. 7). 

ing rate 71 on the number of clusters it has recently 
been found for ART-l [4] that a large 7 value ( > 0.5) 
causes an undesirable proliferation of clusters. The 
same was also observed, in principle, for Fuzz- 
yARTMAP (Figs. 6 and 7). The reason for this is that 
a training pattern that is situated inside a cluster, but 
close to its border, falls quickly outside the cluster if 
the actual weight vector of this cluster moves with a 
too large step away from its actual position (fast 

Iwo I 

,1 0 10 20 
random training patterns (out of 551) 

(Thousands) 

Fig. 7. Rapid oscillations of existing clusters caused by a large 
learning rate q” increase the prediction error of a FuzzyARTMAP 
neural network (( 0) 17’ = 0.001, (*) qX = 0.005, (A) 7X = 0.05). 
A moderate learning rate of 11’ = 0.005-0.01 seems a practical 
suitable choice. 
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Table 2 
Mutual classification of NIR spectra of 545 test samples, belong- 
ing to five packaging materials, by a FuzzyARTMAP neural net- 
work after almost one training epoch (500 randomly selected 
training samples out of 551). 525 out of 545 test spectra were cor- 
rectly classified (96.3%), whereby the network generated 15 clus- 
ters in X-space 

Packaging 
material 

Outside PET PE PP PS TetraPAK” 
all classes 

PET 0 94 10 1 0 1 
PE 0 0 101 0 0 3 
PP 0 0 2 118 0 0 
PS 0 1 1 0106 0 
TetraPAK’” 0 0 10 0 106 

learning). For simplicity, we consider the two ex- 
tremes 7) = 0.0 (no learning) and 7 = 1.0 (fast learn- 
ing). In the first case, the first randomly selected 
training pattern will completely dominate from the 
very beginning the entire future cluster structure 
without any modification during training. The initial 
cluster structure will propagate throughout the entire 
training phase without change. The short-term mem- 
ory of the network will be identical to the future 
long-term memory. In the second case, with 77 = 1.0, 
the network will have no long-term memory. Any 
existing cluster will be continuously overwritten and 
corrected by any newly presented training pattern. 
The cluster will hardly oscillate in several spatial di- 
rections causing in this way an uncontrolled prolifer- 
ation of new clusters. By comparing Table 2 (no 
overtraining) with Table 3 (overtraining) it can be 
seen that most of the misclassified samples are placed 
in new classes. This proves the hypothesis of rapid 
oscillations of class boxes in the case of the chosen 
size of 77 being too large. 

The final result of this study concerns a compari- 
son of an optimized FuzzyARTMAP neural network 
with PLS and with an optimized MLF-BP network. 
All three methods were calibrated (‘trained’) with the 
training data sets of NIR spectra given in Table 1. In 
a subsequent step, the three classifiers were validated 
with the test data sets (Table 1). For the PLS runs, a 
classical PLS2 model for the combined NIR training 
data sets (Table 1) for PE, PP, PS, PET and Tetra- 
PAK’” was fitted against the binary coded class 
membership Y. The network settings for the opti- 

mized MLF-BP neural network have already been 
given in Section 4. 

Using all m = 239 features in the pre-processed 
NIR spectra, the PLS model wrongly classified 33 out 
of 545 test spectra. This corresponds to 94% correct 
predictions. In contrast, the best MLF-BP model only 
had a prediction error of 11 samples (97.9% cor- 
rectly classified test spectra). The best Fuzz- 
yARTMAP model ( px’m”” = 0.4, $ = 0.005) pro- 
vided 12-18 wrongly classified test spectra (96.7- 
97.8% correctly classified test spectra) (Figs. 6 and 
8). For m = 239 features, FuzzyARTMAP always 
formed between 20 and 40 clusters from the 551 
training spectra in the X-space, depending on the 
random order of NIR spectra during training (Figs. 3 
and 6). This first result indicates that the PLS classi- 
fier is less powerful for this particular application 
compared to both neural networks. It also shows that 
FuzzyARTMAP is no better than the MLF-BP net- 
work with respect to its discrimination power. 

However, in a former study the present authors 
found [4] that ART neural networks are very sensi- 
tive to wrong and noisy features. It was shown that a 
suitable feature selection can significantly improve 
the classification results of ART-l. In the present ap- 
plication of FuzzyARTMAP to NIR spectra, at least 
two data pre-processing techniques were required that 
commonly tend to increase the relative contribution of 
noise to the data (first derivative per spectrum, range 
scaling per wavelength). Therefore, it was decided to 

Table 3 
Overtraining of a FuzzyARTMAF’ neural network shown by a de- 
tailed list of mutual classification and misclassification of NIR 
spectra of 545 test samples, belonging to five packaging materials, 
after 37 training epochs (about 20000 randomly selected training 
samples out of 551). Only 487 of 545 test spectra were correctly 
classified (89.3%), whereby the relatively high number of 104 X- 
clusters were generated by the network. Compared to Table 2 this 
is a significant increase of misclassification 

Packaging 
material 

Outside PET PE PP PS TetraPAK’” 
all classes 

PET 10 95 0 1 0 0 
PE 40 0 64 0 0 0 
PP 2 0 0 116 2 0 
PS 2 0 0 0 106 0 
TetraPAKn 1 0 0 0 0 106 
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misclassifac test samples (out of 545) 

Fig. 8. Frequency of particular observed classification errors for the 
same test set (545 NIR spectra of plastics) for 200 runs with var- 
ied random generator seed, for an optimized MLF-BP neural net- 
work (white-shadowed bars) and an optimized FuzzyARTMAP 
network (black bars) (for the parameters of MLF-BP, see Section 
4; parameters for optimized FuzzyARTMAP were p”max = 0.5, 
pr,m= = 0.95, pxr*m=x = 0.95, qxr = 1.0, qr = 1.0, 1)” = 0.005, 
number of training epochs = 10, 491 training samples, 551 test 
samples). 

repeat the runs with PLS2, MLF-BP and Fuzz- 
yARTMAP with an optimal subset of m = 50 se- 
lected features out of the 239 features. The subset se- 
lection was reached by a genetic algorithm or Fisher 
weighing, described in another study concerning op- 
timal wavelength selection for NIR spectra [20]. For 
PLS, again only 94% correct classifications were 
found. The optimum number of latent PLS variables 
was chosen by cross validation. The MLF-BP runs 
and the FuzzyARTMAP runs were repeated 200 times 
with distinct random generator seeds. For MLF-BP 
this always causes slightly distinct initializations of 
the network weight matrices, giving finally a slight 
variation in the classifications results. For Fuzz- 
yARTMAP, a different random generator seed only 
influences the random order of selection of the train- 
ing pattern (but not the initialization of weights). The 
final result for MLF-BP and FuzzyARTMAP (Fig. 8) 
shows that an optimized FuzzyARTMAP network 
with an optimally selected subset of m = 50 features 
reduces the error further to only three misclassified 
test samples (out of 545) which corresponds to 
99.5% correct classifications. On the one hand, the 

distribution for FuzzyARTMAP’s classification error 
shows a large tail, giving a rather log-normal shape 
(see the single run with 22 wrong classifications). On 
the other hand, for MLF-BP in no case could a cali- 
bration model be obtained for these NIR spectra with 
the excellent low prediction errors of Fuzz- 
yARTMAP. Note further that, despite the slight tail- 
ing, the total statistical chance for FuzzyARTMAP to 
produce a calibration model with lower prediction 
errors is obviously much higher for this particular 
application than for MLF-BP. FuzzyARTMAP pro- 
vided much more frequent stable and low classifica- 
tion errors closer to the origin (‘zero classification 
error’) than MLF-BP. More than 120 runs (out of 
200) of FuzzyARTMAP provided a prediction error 
smaller than five samples (out of 545); and more than 
180 (out of 200) runs still provided an error smaller 
than 10. This is a significantly high probability to re- 
produce a very predictive calibration model. In con- 
trast, the low chance for MLF-BP in this particular 
case was only around 30 runs out of 200 to obtain an 
error smaller than 10 samples. The chance of repro- 
ducing a MLF-BP model with low classification er- 
ror is, for this application, statistically significantly 
lower. 

The error improvement obtainable by feature re- 
duction is thus for FuzzyARTMAP much greater than 
for the MLF-BP network. Feature reduction also pro- 
vided smaller models with respect to the size of the 
calibration (or weights) matrices for PLS, MLF-BP 
and FuzzyARTMAP. In the case of FuzzyARTMAP, 
the number of clusters that were formed in the X- 
space for the training data now decreased from 20-40 
down to 10-15. This finally provided a more than 
five times higher classification speed (m reduced 
from 256 down to 50 and c reduced from 40-20 
down to lo-15), which becomes important in prac- 
tice for rapid automated sorting of post-consumer 
plastics. 

6. Conclusions 

FuzzyARTMAP is a new supervised classifier 
based on adaptive resonance theory that can be used 
to solve non-linear chemical pattern recognition tasks. 

FuzzyARTMAP’s training phase converges re- 
markably rapidly. The few calculation steps in the 
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subsequent classification phase also allow on-line 
application of FuzzyARTMAP in an process-analyti- 
cal environment. This has been demonstrated by a 
practical implementation in an identification device 
for automatic recognition of post-consumer plastics 
by remote near-infrared spectroscopy. The discrimi- 
nation power of FuzzyARTMAP for this particular 
application was highly comparable to an optimized 
multilayer feedforward neural network and signifi- 
cantly better than that of the partial least squares 
method. Together with its rapid convergence in train- 
ing and with the good discrimination power, three 
additional useful properties are provided by the 
FuzzyARTMAP algorithm. First, the weights of the 
trained network can be interpreted in terms of origi- 
nal variables (thus no black box) after suitable de- 
coding and resealing. In an example (see Part 1) it has 
been demonstrated that by means of such an interpre- 
tation important feature combinations can be ex- 
tracted that contribute to a particular cluster. This 
helps to understand why certain clusters were formed 
automatically by FuzzyARTMAP. Second, Fuzz- 
yARTMAP showed in this particular application sig- 
nificantly less dependence on initialization settings 
than, for example, MLF-BP networks. This has been 
demonstrated by more reproducible working trained 
networks with more stable and lower classification 
errors. Third, the double phase calculation concept of 
competitive learning and the possibility for network 
structure extension works as a built-in detector for 
novel patterns. This helps to prevent undesired ex- 
trapolations of the calibration subspace and it helps to 
avoid any senseless classification of outliers (for an 
example, see Part 1). 

However, there are also two serious disadvantages 
with the FuzzyARTMAP algorithm. For highly scat- 
tered data clusters or for function fitting Fuzz- 
yARTMAP is less suitable because it is a typical lo- 
cal modelling technique. It would form in such cases 
many small subclusters to approximate the experi- 
mental data cloud (cluster proliferation). Addition- 
ally, the strong dependence of FuzzyARTMAP re- 
sults on suitable data pre-processing is a serious defi- 
ciency that requires significant additional research. 
The more compact the data clusters can be made be- 
forehand by choosing a suitable data pre-processing 
scheme, the less the user’s future choice of training 
parameter settings (initialisation, sizes of learning 

rates and vigilance parameters) will be subjective to 
the result. 
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