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Abstract—The work described in this paper addresses the
problems of fault diagnosis in complex multicircuit transmission
systems, in particular those arising due to mutual coupling
between the two parallel circuits under different fault conditions;
the problems are compounded by the fact that this mutual
coupling is highly variable in nature. In this respect, artificial in-
telligence (AI) technique provides the ability to classify the faulted
phase/phases by identifying different patterns of the associated
voltages and currents. In this paper, a Fuzzy ARTmap (Adaptive
Resonance Theory) neural network is employed and is found to
be well-suited for solving the complex fault classification problem
under various system and fault conditions. Emphasis is placed on
introducing the background of AI techniques as applied to the
specific problem, followed by a description of the methodology
adopted for training the Fuzzy ARTmap neural network, which
is proving to be a very useful and powerful tool for power system
engineers. Furthermore, this classification technique is compared
with a Neural Network (NN) technique based on the error back-
propagation (EBP) training algorithm, and it is shown that the
former technique is better suited for solving the fault diagnosis
problem in complex multicircuit transmission systems.

Index Terms—Artificial intelligence, fault classifier, fault diag-
nosis, fuzzy ARTmap, neural networks.

I. INTRODUCTION AND BACKGROUND

BECAUSE of environmental and regulatory concerns, the
growth of electric power transmission facilities is re-

stricted; as a consequence, transmission bottlenecks, under-
utilization, and uncontrollable usage of facilities can occur.
Parallel transmission systems, in particular those comprising
of double circuit lines, are finding widespread usage [1] and
better utilization of such lines in terms of increased loading
is one solution to the restrictions imposed on transmission
system growth. However, fault diagnosis in such systems poses
many difficulties for conventional logical techniques or linear
algorithms principally because a faulted phase(s) on one circuit
has an affect on the sound phases (both on the remaining
healthy phases of the faulted circuit and the healthy phases of
the unfaulted parallel circuit) due to the mutual coupling effect
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between the two circuits. The problem is compounded by the
fact that this mutual coupling is not constant and is dependent
upon a complex interplay among a number of variables such
as generator source capacities, fault location, fault resistance,
type of fault, etc. As a consequence, the sound phases may
sometimes be wrongly diagonised as being the faulted phase(s)
under certain fault conditions; this in turn can cause tripping of
the wrong phase(s), thereby threatening system stability and/or
continuity of power supply. There is thus a need to develop
an alternative fault diagnosis technique.

Recently, artificial intelligence (AI) techniques which
include neural networks (NN’s), fuzzy logic, genetic algo-
rithms, and expert systems, have been used worldwide to
solve many nonlinear classification problems. Since each
branch has its own individual advantages/disadvantages, for
any complex classification task, it is essential to compare
all possible AI techniques and then choose the one most
appropriate for solving a specific problem. For example,
in the case of fault classification, apart from the accuracy
requirements, speed is of the essence (typically 5–10 ms)
[2]. In this respect, an NN on its own or an NN integrated
with fuzzy logic or genetic algorithm for training purposes
can be employed; it should be mentioned that an NN on its
own requires a much longer training time compared to the
latter approach, but it is important to note that once trained
and provided the size of the NN is not too large, its on-line
testing and application is fast and hence a fault classifier based
solely on an NN can satisfy the speed requirements. Another
technique, such as that based on combined fuzzy logic and an
expert system, has been found to be useful for fault detection
in power systems but such an approach is not particularly well
suited for fault classification [3], [4].

From the viewpoint of NN training techniques, these can be
defined as supervised, unsupervised, and reinforced learning
algorithms. In this respect, a typical supervised EBP network
has been used as a fault classifier, which employs a nonlinear
regression technique to achieve minimum global error [5].
However, this classification technique is more suited to a
single-circuit transmission system rather than a more complex
transmission system such as that comprising of double-circuit
lines; this is so because in the case of the latter, the voltage
and current waveforms (sinusoidal waveforms disturbed by
a fault) are more complex under different fault conditions.
Moreover, the features within the waveforms are not obvi-
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ous even through multidimensional diagrams, irrespective of
how the input and output signals, the data sampling rate,
and data window length have been chosen; the trained NN
never reaches the desired global minimum and often the NN
is stuck at local minimum. When the voltage and current
waveforms are preprocessed into nonstationary waveforms
[6], although a fault classifier with the supervised training
technique can reach the desired global minimum, the classi-
fication rate is only about 79% and this is not particularly
high. When a fault classifier is based on an unsupervised
(i.e., Kohonen NN) or combined supervised and unsupervised
training technique, such as self-organizing mapping (SOM)
NN, radial-basis function (RBF) NN, counterprogation (CP)
NN, etc., by using the nonstationary waveforms [7], [8], the
classification rate can reach a high level of about 95%, but
the number of neurons in the Kohonen layer or prototype
layer are very large. These types of NN’s are thus less
suitable for practical implementation of fault diagnosis in
power systems simply because the calculation times involved
are rather long. Reinforced learning technique has also been
used in [9]; here, a genetic algorithm is used to search the
weight space of a multilayer feedforward NN without the use
of any gradient information. The basic concept behind this
technique is that a complete set of weights
are coded into a string, which has an associated fitness finding
attribute for the optimal weights. Although the reinforced
learning performs a global search and therefore minimizes the
possibility of getting stuck in local minima, the training is
very time-consuming; classification rate is around 85%, which
is still not satisfactory.

For an NN to be called a fuzzy neural net (FNN), the
signals and/or the weights must be fuzzy sets. In this respect,
there are three different types of FNN’s: the first type has
real number signals but fuzzy weights; the second type has
fuzzy signals and real number weights; and the third FNN
has both fuzzy signals and fuzzy weights. With regard to fault
diagnosis, experience has shown that the first FNN, i.e., the
one based on the concept of fuzzy weights, is the one most
suitable for solving the fault classification problem. In this
respect, it has been found that the previously mentioned fuzzy
ARTmap network rather than the more conventional FNN,
enhances the performance (both in terms of convergence speed
and accuracy) even further and this is the approach adopted
here.

This paper proposes a fault diagnosis technique for complex
transmission systems by using a fuzzy ARTmap NN. In
particular, it places emphasis on describing the basic concepts
of the fuzzy ARTmap and its advantages over other NN-based
techniques. Also experimentation with the training of such a
network is described in detail. The test results clearly show
that the proposed technique is well-suited for this particular
fault classification problem.

II. FUZZY ARTMAP TECHNIQUE

Fuzzy ARTmap is an incremental supervised learning al-
gorithm which combines fuzzy logic and adaptive resonance
theory (ART) neural network for recognition of pattern cate-

Fig. 1. A typical fuzzy ARTmap architecture.

gories and multidimensional maps in response to input vectors
presented in an arbitrary order. It realizes a new minimax
learning rule which conjointly minimizes predictive error and
maximizes code compression, and therefore gives general-
ization. This is achieved by a match tracking process that
increases the ART vigilance parameter (fuzzy degree of mem-
bership of the input with respect to the category templates)
by the minimum amount needed to correct a predictive error
(PE). The fuzzy ARTmap neural network is composed of two
fuzzy ART modules, i.e., fuzzy ARTand fuzzy ART, which
are typified in Fig. 1 and are essentially the same as those
described by Carpenteret al. in [10]. The interactions mediated
by the map field may be operationally characterized as
follows.

A. ART and ART

Inputs to ART and ART are in the complement code
form: for ART ; for ART
(see Fig. 1). Variables in ART or ART are designated
by subscripts “” and “ ,” respectively. For ART, let

denote the output vector, let
denote and let

denote the th ART weight vector. For ART let
denote output vector, let

denote and let denote
the th ART weight vector. For the map field, let

denote the output vector, and let
denote the weight vector from theth

node to Vectors and are set to
between input presentations.

B. Map Field Activation

The map field is activated whenever one of the ART
or ART categories is active. If node of is chosen, then
its weights activate If node in is active, then
node in is activated by 1-to-1 pathways between
and If both ART and ART are active, then becomes
active only if ART predicts the same category as ARTvia
the weights



1216 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

The output vector obeys the following:

IF the th node is active and
is active
IF the th node is active and
inactive
IF is inactive and is active
IF is inactive and is inactive.

(1)

From (1), if the prediction is disconfirmed
by Even such a mismatch triggers an ARTsearch for a
better category, as follows.

C. Match Tracking

At the start of each input presentation, the ARTvigilance
parameter equals to a baseline vigilance The map field
vigilance parameter is

(2)

then is increased until it is slightly larger than
, where is the input to , in complement coding

form, and

(3)

where is the index of the active node. When this occurs,
ART search leads either to activation of another node
with

(4)

and

(5)

or, if no such node exists, to the shut-down of for the
remainder of the input presentation.

D. Map Field Learning

Learning rules determine how the map field weights
change through time, as follows. Weights in
paths initially satisfy

(6)

During resonance with the ARTcategory active,
approaches the map field vector With fast learning, once

learns to predict the ARTcategory , that association is
permanent, i.e., for all time.

III. T ESTED SYSTEM AND PATTERNS

A. The Tested System Model

To demonstrate the suitability of Fuzzy ARTmap network
for fault diagnosis, a fuzzy ARTmap network is employed
to identify the different patterns generated from the complex
transmission system which is represented in Fig. 2; this is a
typical 400-kV transmission system of the type encountered on
the U.K. supergrid transmission network [11]. In this respect,
it should be noted that in practice, a transmission system is

Fig. 2. The tested system model.

fully integrated whereby to each end of a line (endor
) is connected the local generation and transmission lines

from other power stations within the network. However, from
a viewpoint of studying the fault transient phenomena on a
particular part of the network (such as of the type shown
in Fig. 2), it is normal practice to lump the whole of the
generation capacity, which includes local generation together
with generation from other sources connected to that particular
end, into one single source as though the line were terminated
in one extremely large generating capacity source. Typically
on the U.K. system, this can range from a maximum level of
50 gigavolt-amperes (50 GVA) to a minimum level of about
5 GVA at any particular line end. Some of the fundamental
concepts of modeling a faulted transmission system have been
outlined in the Appendix. A more detailed explanation can be
found in [11].

Fig. 3 typifies the simulated voltage current waveform pat-
terns at end for an “ ”-earth fault (i.e., “ ” phase fault
on circuit 1) approximately 30 km from end, where the
fault classifier of the type described herein would be located
in practice. All components are modeled using the well-
proven and universally accepted ElectroMagnetic Transients
Program (EMTP) software [12]. As can be seen, there is some
high-frequency (HF) distortion on the voltage waveforms,
in particular on the faulted “” phase on fault occurrence
[Fig. 3(a)]. With regard to the current waveforms, as expected,
there is a large increase in the magnitude of the faulted “”-
phase current which is relatively distortion free; both the
healthy “ ” and “ ” phase currents on circuit 1 have very small
magnitudes in comparison [Fig. 3(b)]. In contrast, although the
magnitudes of the current waveforms on the healthy circuit 2
are much smaller than those generated on circuit 1, the patterns
impressed upon the current signals have a much higher level
of HF distortion [Fig. 3(c)] and this arises principally due to
the aforementioned mutual coupling effect between the two
circuits.

It should be mentioned that the simulated signals attained
through the EMTP software package have been extensively
validated using both real data and data generated via other
techniques, the frequency-domain technique for modeling the
fault transient phenomena on transmission lines being one of
them [11].

In practice, in a transmission network, the only signals avail-
able for fault diagnosis are the foregoing phase voltage and
current waveforms. Moreover, for both measurement purposes
and subsequent processing of these signals in hardware, their
magnitudes have to be very significantly transduced down
through suitable transducers (instrument voltage and current
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Fig. 3. Typical voltage and current patterns.

transformers more commonly known as VT’s and CT’s). It is
thus crucial that in any computer-aided design (CAD) of the
new technique, models of the VT’s and CT’s, analog interfaces
within the digital hardware and quantization errors arising in
the digitization of the analog signals should also be included
in the simulation and this is the approach adopted in the fault
diagnosis technique described here. Importantly, through this
approach, the performance attained from the simulation studies
more closely pertains to an actual practical situation than
would otherwise be the case. The training patterns based on the
foregoing voltages and currents are generated to cover a whole
variety of commonly encountered fault types for different
fault locations, fault resistances, fault inception angles, and
source capacities. In this study, the training set size comprised
of 250 exemplars which broadly reflects the aforementioned
commonly encountered different system and fault conditions.

B. Selection of Input and Output Vectors

In order to build up an NN, the inputs and outputs of the NN
have to be defined for pattern recognition. Here, the measured

Fig. 4. The structure of the fault classifier.

three-phase voltages ( and ) and six-phase currents
on both circuits 1 and 2 ( and ) which
are preprocessed into nonstationary waveforms, are used as
inputs to the fuzzy ARTmap network. The nine-digit outputs
are composed of and in
the NN, which correspond to phases for circuit 1,
phases for circuit 2, and phases for circuit
3 operational states, respectively. These simply represent digits
“ ” or “ ” which signify whether there is a fault on a phase(s)
and if so, which phase(s) is involved in the fault. For example,
if we get an output from the NN then this
constitutes an – phase fault on circuit 1, and so on. The
NN structure of the fault classifier is shown in Fig. 4.

IV. THE FAULT CLASSIFIER TECHNIQUE

BASED ON FUZZY ARTMAP NETWORK

The fuzzy ARTmap algorithm overcomes the drawbacks
associated with the EBP algorithm. Since it is not based
on the gradient descent algorithm, it does not suffer from
the local minima problem, and this in turn results in rapid
training. It also supports incremental learning which ensures
that new events can be added to the training set at a later stage
with little influence on the previous learning. This attribute is
very useful for training for some contingencies, which may
occur from time to time in power systems; an example is a
broken conductor. In the EBP algorithm, the training has to
be performed right from the beginning if there is any addition
required to the training set since there is no provision for
any new learning. Discussion relating to the experimentation
with several parameters for the aforementioned fuzzy ARTmap
network (as shown in Fig. 4) is given below; this is impor-
tant in view of the fact that the values of these parameters
(and therefore the optimal choice) can greatly influence the
classification rate.

A. The Structure of the NN

This is composed of an input layer, layers , , and an
output layer (see Fig 4); these layers are associated with either
ART or ART shown in Fig. 1. The number of neurons in the
input layer are 18 (two samples for each input variable), 36 in

(double inputs), 33 in (these depend upon the number
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of training sets) and nine outputs. It should be mentioned
that although the number of neurons in the layer reflect
the number of category modes in each ART system shown
in Fig. 1, the other training parameters (as discussed later)
can also be adjusted to control the number of neurons in
and, therefore, the size of the NN. In this study, the optimum
number of ART categories were 30.

B. Baseline Vigilance

For any ARTmap network, it has the vigilance parameter
(also called a confidence measure) which measures whether the
chosen hypothesis matches the data well enough to generate
its prediction. If vigilance is low, even poor matches are
acceptable. Many different examples can then be incorporated
into one category so that compression and generalization are
high. If vigilance is high, then even good matches may be
rejected, and hypothesis testing may be initiated to select
a new category. In this case, a few examples activate the
same category, so that compression and generalization are low.
Herein, the vigilance factor is set to . The match-tracking
system then increases the vigilance until a match is achieved.

C. Recode Rate

A “slow-recode” long-term memory updating scheme is
used in the fuzzy ARTmap. When a category is newly formed,
the long-term memory is immediately set to match the input
data. Therefore, a winning category’s long-term memory is
only partially updated according to the recode rate which is
set at in this particular application.

D. Choice of Parameter

This parameter is encoded into the long-term memory. The
choice function for a category PE is , where
is the activity in the layer shown in Fig. 1.

E. Error Tolerance

This parameter is used by the match-tracking system for
triggering a category reset which is achieved by gradually
increasing the vigilance. The absolute error at the output layer
is compared with the tolerance and if the tolerance is greater
than the set level, a reset is triggered. Here, the error tolerance
value is set to . In essence, the error tolerance signifies
a relationship between the NN “ideal” output and the actual
output during training (this situation is somewhat analogous
to the more traditional NN architecture employing the error
back-propagation learning algorithm). For example, an error
tolerance level set to indicates that for a certain fault data
input file, the training is complete i.e., the NN has converged,
once the absolute error at the output layer has reached this
threshold level.

The classification rates for fault diagnosis under different
parameter selection are compared and are as shown in Table I.

It is apparent from the above table that the best classification
rate is 97%, which is achieved from the parameter selections
of baseline vigilance, recode rate, choice pa-
rameter, and error tolerance, and these were the training

TABLE I
CLASSIFICATION RATE COMPARISON UNDER DIFFERENT PARAMETER VARIATIONS

parameters used in the study presented herein. However, the
best classification rate by using EBP algorithm under the
same training sets is only 80%, no matter how the training
parameters are chosen. Even in studies based on employing
other NN architectures such as the Kohonen network [7] or the
counterpropagation network [8], the performance achievable in
terms of the fault classification rate is lower than that attained
using the fuzzy ARTmap network. It is thus clearly evident
that the latter, in comparison to the more traditional NN
architectures, is much better suited for fault classification, in
particular on the more complex parallel transmission systems.

This attribute of the ARTmap classifier is clearly depicted
in Table II which shows its performance under a variety of
different system and fault conditions; all the test results (based
on data different from those employed during training of the
network) indicate the correct solution. Equally importantly,
the results also show stability of the technique under normal
steady-state conditions and rapidly converge to the requisite
values of the output variables (either very close to unity
or zero) under fault conditions; this further confirms the
suitability of the proposed classifier for fault type classifica-
tion in complex multicircuit transmission lines. It should be
mentioned that the technique described in this paper is based
on a time-domain moving-window approach (each window
comprises of two data samples) as discussed previously. The
results in Table II show that in the fault cases presented, there
is a very rapid transition in the NN outputs as the windows
move from the pre-fault to the fault states (the first set of
outputs in each fault case depict the prefault state, and the
fault state subsequently). Significantly, the NN outputs show
the correct levels (for a particular type of fault) throughout
the fault period.

V. CONCLUSIONS

This paper proposes a novel fault diagnosis technique
for complex parallel transmission systems by using fuzzy
ARTmap neural network. The artificial neural network based
on the supervised adaptive resonance theory can identify the
faulted phase with a high degree of accuracy. Compared with
the EBP algorithm, the classification rate is significantly higher
and the training times required are much shorter for the same
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TABLE II
ACTUAL TEST RESULTS THROUGH THE FUZZY ARTMAP NEURAL NETWORK (TIME STEP �t = 1.25 ms)

training sets. Furthermore, the fuzzy ARTmap network can be
improved by adding more events to it, such as contingencies,
without having to completely retrain the network. In particular,
some experimentation in the training of such a network is
given in the paper in detail. All the test results presented show
that the proposed fault diagnosis technique based on fuzzy
ARTmap network is well suited for the complex transmission

systems than other more conventional NN-based techniques.

APPENDIX

A. A Faulted Transmission System

A high-voltage transmission line is prone to faults due

to natural hazards. In this respect, the most common fault
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Fig. 5. Two-port transfer matrix of the line.

(over 90%) is of the single-phase–ground type principally
caused by lightning strikes; the latter raises the potential
of a phase conductor (normally insulated from the tower
which is connected to ground) to such a high level as to
cause a flashover of the conductor to the tower and this
results in a ground fault. Other, less common, types of fault
involve two phases such as: phase–phase caused by conductors
clashing due to high winds and phase–phase–ground caused
by an object (such as a tree) falling on to a line. A fault
constitutes a sudden circuit change and sets up the traveling-
wave phenomenon on the transmission line, which manifests
itself as high-frequency distortion on the normal steady-sate
power frequency voltage and current waveforms, as depicted
in Fig. 3.

B. Fundamental Relationships

Any multiconductor transmission line section is defined
by its series impatience matrix per unit length and the
corresponding shunt admittance matrix Each element of

varies with frequency and is determined by the conductor
types, their physical geometry and the nature of the earth plane.

The theory of natural modes developed by Wedepohl [11]
enables a solution to the system voltage steady-state equations
given by (7) to be transformed into a series of independent
differential equations of the form given in (8)

(7)

(8)

where , is the voltage eigenvector matrix, and
is the propagation constant matrix.
Matrix function theory permits easy evaluation of the hy-

perbolic functions, the polyphase surge impedance, and admit-
tance necessary for a solution to the problem. For example, the
polyphase surge admittance matrix is given by

(9)

1) Transmission Line Transfer-Matrix Function:A faulted
transmission system essentially consists of a network of cas-
caded sections. Two-port transfer matrices are particularly
useful in the solution of such a problem. For example, with
reference to Fig. 5, the transfer matrix representing a line
section, say up to the fault point, is given by

(10)

where

Fig. 6. General source network.

2) Source-Side Network Matrix:The source network con-
sidered here at each terminating busbar is a general source
model comprising of some local generation and a number
of infeeding parallel lines from other power stations, each
with its own generation, all the generations being based upon
arbitrarily defined short-circuit levels. This is shown in Fig 6
and when lumped together, forms the total source capacity (in
GVA at any busbar) as referred to in Fig. 2.

It is relatively easy to define an equivalent source admittance
matrix [YS] at each terminating busbar and this is then
used in combination with the corresponding transmission line
admittance matrices of (10) to form the full transmission line
fault transient model.
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