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Abstract 

This paper introduces a neural architecture (HART for “Hierarchical ART”) that is capable of 

learning hierarchical clusterings of arbitrary input sequences. The network is built up of layers of 
Adaptive Resonance Theory (ART) network modules where each layer learns to cluster the 
prororypes developed at the layer directly below it. The notion of e&hue oigifance is introduced 
to refer to the vigilance level of multiple ART modules in a HART network. An upper bound is 
derived for the number of HART layers needed in the case when all ART modules have the same 
vigilance. Experiments were carried out on a machine learning benchmark database to demonstrate 
the developed internal representation as well as some learning properties of two- and three-layer 
binary HART networks. 

Keywords: Adaptive resonance theory; Self-organization; Hierarchical clustering; Machine learning; ~00 
database 

1. Introduction 

The ability to learn about the environment without a teacher has long been considered 
an important characteristic of intelligent systems. Unsupervised learning can be found 
both at sensory-level of mammals, and at higher, cognitive levels of humans. Therefore, 
it has been an important topic in neural network research (e.g. [13,17,18,11]) in recent 
years. Unsupervised learning networks typically perform dimensionality reduction or 

pattern clustering. In the latter case, upon presentation of an input pattern, the node 
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whose connection weight vector is the closest to the current input vector (in some 
distance metrics) will become the only active node (winner-take-all competition), and 
will be allowed to learn, i.e. modify its connection weights. After repeated exposure to 
the input environment, the network will store a prototypical element of each category, or 
class, in its connections weights. The number and size of classes the network finds on a 
given training set depends on the number of output nodes. The more neurons the 
network has, the larger number of more specific categories it will find. Because of its 
“winner-take-all” characteristics, the network will only be able to find one category for 
a given input pattern, regardless of how large the network is ‘. However, environments 
are often more complex and may exhibit a hierarchical structure (e.g. classification of 
animals), which humans can learn without difficulty. It is, therefore, worthwhile 
investigating neural network architectures that can learn class hierarchies. Networks that 
contain multiple competitive layers appear to be suitable candidates. For example, 
Rumelhart et al. [ 181 suggest that a hierarchical structure can be formed if a network has 
several “inhibitory clusters” in each layer that work in parallel, and each of them 
receives input from the output of the previous layer only. Another typical example for 
networks with multiple competitive layers is the cognitron [lo]. For the systematic 
construction of modular networks, however, Adaptive Resonance Theory (ART) neural 
network architectures [3] appear to be more suitable because of their well-defined 
interfaces as well as features that most other networks lack. In specific, ART networks 
have the ability to create new output nodes (i.e. categories) dynamically, and do not 
suffer from the problem of forgetting previously learned categories if the environment 
changes. They too, however, can only develop input categories at a given level of 
specificity, which depends on a global parameter called vigilance. There have been 
several attempts to combine ART modules in order to represent class hierarchies 
[9,20,19,2]. 

In this paper, we describe a modular multi-layer network architecture built up of ART 
networks (HART, for “Hierarchical ART”), which is capable of developing hierarchi- 
cal class representation through self-organisation. In a HART network, each layer - 
which is essentially an ART network - learns to cluster the curegory prototypes 
developed at the layer directly below it. This way, successively higher layers are able to 
gain more general “views” of the input environment while lower layers learn more 
specific categories. Due to its simple connectivity, the HART network retains the 
stability properties of ART networks. Some other useful properties of the architecture 
are also demonstrated both through analysis and experiments. 

Section 2 briefly summarises the main features of ART neural networks that are 
sufficient for understanding the rest of the paper. The architecture and information 
processing of the HART network are described in Section 3. The notion of efSective 
vigilance is introduced in Section 3.2, and an analysis reveals an upper bound on the 

’ We note here that competitive networks perform, in general, contrast enhancement [3], which may help 
overcome Some of the above limitations of “winner-take-all” networks. 
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Fig. 1. Architecture of the ART network. Thick arrows denote combined or non-specific signals. Winning F2 

category nodes are selected by the attentional subsystem. Category search is controlled by the orienting 

subsystem. If the degree of category match at the Fl layer is lower than the vigilance level p, the non-specific 

reset signal will be triggered, which will deactivate the current winning F2 node for the period of presentation 

of the current input. 

number of layers in a HART network. Experiments that were carried out on a machine 
learning database are discussed in Section 4, and conclusions are drawn in Section 5. 

2. ART neural networks 

This section describes the ART architecture at a level of detail that is necessary for 
understanding the rest of the paper. Unless otherwise stated, we refer to ARTl, the 
binary version of ART [3] 2. 

Adaptive Resonance Theory (ART) architectures are neural networks that develop 
stable recognition codes by self-organisation in response to arbitrary sequences of input 
patterns. They were designed to solve the “stability-plasticity dilemma” that every 
intelligent machine learning system has to face: how to keep learning from new events 
without forgetting previously learned information. 

An ART network is built up of three layers: the input layer (FO), the comparison 
layer (Fl) and the recognition layer (F2) with N, N and M neurons, respectively (see 
Fig. 1). The input layer stores the input pattern, and each neuron in the input layer is 
connected to its corresponding node in the comparison layer via one-to-one, non-modifi- 
able links. Nodes in the F2 layer represent input categories. The Fl and F2 layers 
interact with each other through weighted bottom-up and top-down connections that are 

’ There are ART networks that accept both continuous and binary inputs [4,7]. 
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modified when the network learns. There are additional gain control signals in the 
network (not shown in Fig. 1) that regulate its operation, but those will not be detailed 
here. The learning process of the network can be described as follows. 

At each presentation of a non-zero binary input pattern x (xj E {0, l}, j= 
1,2,..., N), the network attempts to classify it into one of its existing categories based 
on its similarity to the stored prototype of each category node. More precisely, for each 
node i in the F2 layer, the bottom-up activation Ti is calculated, which can be expressed 
as 

IwinxI 
zJ= p+,w,, i=l,..., M 

where I . I is the norm operator ( Ix ( = C& 1 xj>, wi is the (binary) weight vector (or 
prototype) of category i 3, and p > 0 is the choice parameter [6]. Then the F2 node I 
that has the highest bottom-up activation, i.e. T, = max{q I i = 1,. , . , M), is selected 
(winner-take-all competition). The weight vector of the winning node (w,) will then be 
compared to the current input at the comparison layer. If they are similar enough, i.e. 
they satisfy the 

(2) 

matching condition, where p is a system parameter called vigilance (0 < p < l), F2 
node I will capture the current input and the network learns by modifying w,: 

WI “ew = dwfd nx) +(1- r))wptd 

where 71 is the learning rate (0 < 7 < 1). All other weights in the network remain 
unchanged. 

If, however, the stored prototype w, does not match the input sufficiently, i.e. 
condition (2) is not met, the winning F2 node will be reset (by activating the reset signal 
in Fig. 1) for the period of presentation of the current input. Then another F2 node (or 
category) is selected with the highest Ti, whose prototype will be matched against the 
input, and so on. This “hypothesis-testing” cycle is repeated until the network either 
finds a stored category whose prototype matches the input well enough, or allocates a 
new F2 node. Then learning takes place according to (3). 

It is important to note that once a category is found, the comparison layer (Fl) holds 
Iw, rl x 1 until the current input is removed. It can be shown that after an initial period of 
self-stabilisation, the network will directly (i.e. without search) access the prototype of 
one of the categories it has found in a given training set. 

Note also, however, that, as a consequence of its stability-plasticity property, the 
network is capable of learning “on-line”, i.e. refining its learned categories in response 
to a stream of input patterns (as opposed to being trained “off-line” on a finite training 
set). 

3 For simplicity, we assume that the network is in fast learning mode (7 = 1, see below), in which case the 

bottom-up and top-down weights for each F2 category i are identical ( = wjr see [3]). 
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The number of developed categories can be controlled by setting p: the higher the 
vigilance level, the larger number of more specific categories will be created. (If p = 1, 
the network will create a new category for every unique input.) 

In order to get two or more “views” of the training set with the same network, one 
can consider choosing low vigilance first to get an overall view, and then raise it at a 
later phase during training to gain a more detailed view as well. This, however, will 
result in the network forgetting the overall view (i.e. coarser categorisation) and 
retaining only the more specific categories, even if vigilance is lowered again later. This 
is because only one category is selected for a given input, and if two categories (w,, wh) 
were found to match the current input perfectly, i.e. 

lw,nxl = Iw,I, and Iw,nxl = Iwhl, 

the more specific one (i.e. of the larger norm) will be preferred due to (1). 
There is no relationship between any pairs of category prototypes except that they are in 
the same network and compete with each other. The network, therefore, with its single 
layer of category nodes, is not capable of representing (and thus learning) a hierarchy of 
classes. 

3. The HART network 

The HART network we propose here is a modular, multi-layer architecture that can 
be used to develop hierarchical clusterings of arbitrary sequences of input patterns. It is 
composed of L layers of ART network modules with ART, and ART, being the bottom 
and top layers, respectively. The layers in HART are connected simply by uniting the FO 
layer of the ART, module and the Fl layer of the HART layer below (i.e. ART,_ ,). In 
other words, each layer in a HART network receives its input only from the Fl 
(comparison) layer of the HART layer directly below it (via one-to-one non-modifiable 
links as discussed in Section 2). 

More precisely, the l-th layer in a HART network is an ART network (ART,) with 
layers FO,, Fl, and F2,, and vigilance parameter p,. The sizes of the FO,, Fl, and F2, 
layers are N,, N, and M,, respectively. According to the above, 

FO,=Fl,_,, 1=2 ,..., L (4) 
where L is the number of layers in the HART network. Also, 

N,=const(=N), l=l,..., L (5) 
due to (4). 
The architecture of a two-layer HART network is shown in Fig. 2 

3.1 Training the network 

The learning process of the HART network is described as follows. 

Step 1: Initialisation 
The network is initialised by resetting each ART module. No further initialisation is 

needed. 
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Layer 2 

Layer 1 

Input 

Fig. 2. Architecture of a two-layer HART network. The FO + Fl connections are unidirectional, one-to-one, 
and non-modifiable, as in ART. For clarity, only the connections from the Fl layer to the active (winning) F2 
node in each HART layer are shown. This network is capable of developing a two-level class hierarchy from a 
sequence of input patterns. 

Step 2: New input 
A new input vector (x) is presented to the network by registering it into the FO, layer. 

Step 3: Category search 
The ART, module starts searching for an appropriate category in the F2 1 layer. Layer 

Fl , contains w, n x once ART, has found node I in layer F2, to match the input pattern 
sufficiently according to (2). 

The ART, network (i.e. layer 2 in HART) can then start searching for a suitable 
category for its input vector, which is now w, n x. 

This search process goes on involving successively higher layers until the ART 
module at the highest layer (ART,) finds an appropriate category for its input. 

(This sequential order of search can be implemented by appropriate gain conrrof 
signals [3] to the Fl and F2 layers such that the orienting subsystem at layer 1 will be 
activated only when the adaptive search process has completed at layer 1 - 1. 

Step 4: Learning 
Weights of the winning category node in each HART layer are adjusted according to 

(3). 

Steps 2 to 4 are repeated for each new input. 

(Note that, in a HART network that is built up of general ART networks as specified 
in [3], steps 3 and 4 can be interleaved: once ART, has found a matching category, it can 
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start adapting its weights while layer I + 1 - and possibly higher layers, too - is in 
the middle of the search process. To achieve this, the ART network dynamics [3] can be 
adjusted by appropriate parameter settings.) 

It can be shown that the learning properties of ARTl, which were discussed in [ 1.51, 
apply also to the HART network as a direct consequence of the stability properties of 
the component ART1 networks. Most notably, after a finite number of presentations of a 
(binary) training set, each pattern will directly (i.e. without search) read out its 
corresponding categories in the HART network. 

(We also note here that, since each layer learns from the prototypes the previous layer 
has developed, layer 1 can at most develop as many categories as layer 1 - 1. Therefore, 
ART networks of the same capacity (or F2 layer size) can always be used in a HART 
network.) 

As a result of the above learning mechanism, successively higher levels will develop 
fewer, and more general categories of the inpuf parterns. Therefore, the output of the 
HART network, which is composed of the outputs of the F2, layers, will at any time 
show which class the current input belongs to at each level in the class hierarchy. 

Furthermore, the prototypes of these categories are available, too, which can be used, for 
example, to locate features that are nor inherited from the more general class at a higher 
level. 

It may also appear as if the vigilance parameters ( p,) had to be decreased at higher 
levels in order to have increasingly broader (or more general) categories in the 
hierarchy. The following section shows that this is not necessarily so. 

3.2 The effective vigilance of HART networks 

This section provides an analysis of the effect of vigilance levels on the categorisa- 
tion properties of the HART network. 

Let us assume the HART network has L layers. The input vector to layer 1 is denoted 
by x’. The input vector to the network is x (= x’). Let w! denote the weight vector, or 
category prototype, of the ith F2 node in the Ith layer. Also the vigilance level of layer 1 
is denoted by pI. 

After self-stabilisation, no further learning occurs, therefore 

[W/I = Iw:ndI I= i,...,L (6) 
necessarily, where w: is the weight vector of the winning node I in layer I when xl 

is presented. 
From (6) and (2), it follows that in each layer 

Iw/l >~~Ix~l~~ i= l,..., M, I= l,..., L (7) 

where I x’ I min is the smallest norm of all the inputs to layer 1 during learning on a 
given training set. However, 

xI = w:- 1 n xI- I 
(8) 

due to the architectural constraint of the HART network as expressed in (4). 
Substituting x’ in (7) with x’ in (8), and applying (7) to layer 1 - 1 noting (6), we get 

Iw!l >,PjPl-1 IX1-‘Imin- (9) 
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Applying (9) recursively, the norm of the i-th F2, node I w! I can be expressed as 

Iw!l +pj. lXl,j” i= l)..., M, I= l,..., L. 

Let fir be the effective vigilance of layer 1, and be defined as 

(10) 

j- I 

Note that 3, is the vigilance level of layer 1 with respect to the input of the whole 
nerwork (i.e. x, or x1>. 

Since 0 < p Q 1, it follows from (10) that the addition of a new layer can only 
decrease the effective vigilance of all the layers above it, including that of the new top 
layer ( 6.J. 

Note that fiL approaches zero even if pI increases with 1, or if all pI are equal (and 
p, # 1). This may look counterintuitive, but it is a direct consequence of the way the 
ART modules are interconnected: each layer learns the pro&types of the previous layer, 
which can only be smaller in size than their input patterns. Just how quickly fiL 
approaches zero will depend on the actual values of pI. Since the minimum size of a 
prototype vector is 1, adding new layers to a HART network will not make any 
difference once j& Ix I min gets below 1. Therefore, given the minimum size of the input 
patterns in a training set, and the individual pI. we shall have an upper bound on the 
number of layers needed. 

A simple analysis can be done if we assume all p, are equal (i.e. p, = p. 1 = 1,. . . , L.). 
In this case, 

5, = p’. 

(Note the difference between p’ and p, here.) 
Furthermore, we assume all inputs are of the same norm, i.e. Ixk I = const = K. This 

can be guaranteed by applying complement coding to the input patterns before present- 
ing them to the network. Complement coding was introduced in [7] (and was also 
applied in [6]), and was shown to achieve desirable properties with ART networks, in 
particular to avoid the problem of proliferation of categories that was reported in [151. 

From (lo), the minimum size of a category prototype in layer 1 is 

Iw’Iti,,=p’K, (12) 

and we look for the minimum integer n such that 

p”K< 1. (13) 

In this case, having L,, = In + 11 gives us the maximum number of layers needed. 
From (131, we get 

log K 
n> -- 

1% P * 
(14) 

For example, if K = 20 and p = 0.5 (i.e. j$ is halved at each successively higher 
layer), then L,,, = 5. In other words, we do not need more than 5 layers to cover the 
broadest possible class that can be learned with this HART network. 
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Fig. 3. The maximum number of HART layers as a function of input size (K E [l, 1001) and vigilance 
( p E [0.1,0.91). 

Fig. 3 plots the lower limit for n according to (14) in a range of input sizes (K) and 
vigilance levels ( p>. Since it would rarely be desirable to have 40 layers, we may well 
need to set the vigilance layers individually to gain more control over the granularity of 
the clustering. Alternatively, some adaptive technique could be used to adjust the 
vigilance levels, or even add new HART levels as necessary. 

We also note that, since we looked at minimum prototype sizes only, the above 
analysis will hold even for situations when the network has not stabilised yet, i.e. not all 
inputs can read out their templates directly, which often occurs in real-world tasks. 

4. Experimental results 

This section presents experimental results that will demonstrate the main properties of 
HART network we have discussed above. 

We carried out experiments on the “zoo” machine learning benchmark database [ 161. 
It contains 101 instances of animals described with 18 attributes such as “hair”, 
“aquatic”, “domestic” and so on. The binary attributes were presented to the network 
in complement coding to assign significance to both the presence and absence of 
features, and to keep the input vectors normalised [6] to avoid proliferation of ART 
categories 1151. The only non-binary attribute (“number of legs”) was presented in 
generulised complement coding [2]. The “type” attribute was ignored to eliminate any 
bias from the developed clusterings. The 18th attribute (“animal name”) was simply 
used as a label for the individual instances. With this input encoding scheme, instances 
were presented to the network as 36-element binary vectors with the same norm of 16. 

The simulations were carried out using a public domain neural network simulator 
program (PlaNet [14]) running under Unix and X-windows. 
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The network parameters were chosen to be similar to those presented in [6]. In 
particular, the initial values of the bottom-up weights in both ART modules were chosen 
in such a way that F2 nodes became active in the order i = 1, 2,. . . and were small 
enough so the network selected an uncommitted (or free) node only if 1 wi fl x 1 = 0 for 
all committed nodes. Also, the p choice parameters were sufficiently small that, among 
committed nodes, q was determined by the size of I wi n x I relative to I wi I. The 
network was also used in fast Eearning mode, i.e. during learning, the connection 
weights were allowed to reach their asymptotic values while the current input was 
presented. 

In all the experiments, the HART network was trained “off-line” on a training set 
containing all 101 instances of the “zoo” database. In each training session, training 
proceeded by presenting the entire training set (in random order) repetitively (i.e. in 
epochs) until stability was achieved, i.e. inputs had direct access to their respective ART 
categories. 

4.1 Internal representation of the HART network 

In these experiments, we looked at the developed internal representation of the 
HART network. 

Table 1 shows an example of the category attribute vectors that a two-layer HART 
network developed. It is one of the potentially many stable clusterings the network can 
discover in the training set. The actual clusterings vary depending on the order of 
presentation of the input patterns. 

The hierarchical structure can be seen clearly: layer 1 categories l-4 and 5-7 belong 
to layer 2 categories 1 and 2, respectively. The representative feature of super-class 1 is 
“venomous”, which is inherited by all of its sub-classes. The same can be observed 
about attribute “milk” in super-class 2 and its sub-classes. Note also that although all 
sub-classes of super-class 1 share the same value for attribute “backbone”, yet it is 
regarded as non-critical in that super-class (i.e. its attribute value is “don’t care”>. The 
network does not have any built in bias towards preferring “venomous” over “back- 
bone” (or “yes” values over “no” for that matter). It simply means that at some stage 
during the training process, while the network was undergoing self-stabilisation, node 1 
in layer 2 attracted an input with its “backbone” attribute “yes”, which later ended up 
in super-class 2 (in one of sub-classes 6 or 7). Since the layer 2 vigilance level was low 
enough ( p2 = O.l>, the network accepted a generalised prototype for that class, keeping 
only “venomous” as critical. This situation cannot occur if the network is trained in 
sequential mode (see Section 4.2). 

As another example, Fig. 4 depicts the class hierarchy that a three-layer HART 
network developed in a training session. It shows graphically how categories become 
increasingly specific (with more critical features) at lower levels. Note the empty boxes 
(3 and 4) in layer 2, which means that those categories were found identical to their 
parents (2 and 3 in layer 3) at the given vigilance level in layer 2. Only at layer 1 (with 
higher vigilance) were those categories split up into smaller, more specific ones. Some 
of the classes may seem rather odd (e.g. 5 in layer 11, by looking at three of the inputs 
they attract, and only “make sense” to us by identifying their distinctive features. This 
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Table 1 

An example for the developed (stable) internal representation of a two-layer HART network. A “-” attribute 

value should be interpreted as “don’t care” (corresponding to a “00” pair in complement coding). Layer 1 
and layer 2 vigilance levels were 0.4 and 0.1, respectively. In this training run, the network developed 2 and 7 

categories at layers 2 and 1, respectively. The bottom row shows the number of input patterns that each 

category attracted. Note that the HART network does not have explicit connections between classes and their 

subclasses. The hierarchy “emerges” as inputs are presented and the corresponding category nodes at each 

layer are activated. 

Attribute Category prototype vectors 

2 
WI 

I 
WI 4 w: 

I 
W4 

2 
w2 4 4 4 

Hair 

Feathers 

Eggs 
Milk 

Airborne 

Aquatic 

Predator 

Toothed 

Backbone 

Breathes 

Venomous 

Fins 

Legs 
Tail 

Domestic 

Catsize 

no 
_ yes 

yes 
_ no 
_ 

_ 

_ 

no 

no 

no 

yes yes 
_ 

_ 

no 

yes 
no 

no 

yes 

yes 

no 

yes 
_ 

yes 

_ 
yes 

no 

no 
_ 

yes 

no 

yes 

yes - 
_ 

no 

yes yes 
yes - 

_ 

yes 
yes 
no 

yes 

yes 
no 

no _ 

_ 

yes - 
_ 

_ 

no _ 

_ 

no 

no 

_ 

Yes 

yes 
_ yes 
no _ 

yes yes 

yes 
yes - 

no 

yes - 
_ 

no 
_ 

yes yes 
_ _ 

_ 

_ yes 
yes - 

Category size 62 38 19 4 1 39 16 13 10 
- 

indicates that using the given 16 attributes, and without a bias or weightings of any of 
the features (which humans certainly have), those were plausible classes for the network 
to discover. 

4.2 Learning properties of the HART network 

We also carried out experiments, in which certain characteristics of the network as 
well as the training process were measured, and statistical quantities were calculated 
from a hundred different training runs. 

Table 2 

The effect of changing layer 2 vigilance, while keeping p, fixed. Measurements were taken from 100 training 

sessions. It shows the number of categories each layer developed, and the number of epochs it took for the 

network to stabilise 
- 

Layers Vigilance No. of categories No. of epochs 

PI.2 min-max average mitt-max average 

Layer 1 0.4 6-10 8.00 _ 

Layer 2 0.4 4-8 5.88 3-4 3.01 

0.2 3-6 4.05 2-3 2.98 

0.1 2-4 3.01 3-3 3.00 
- 
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Table 3 
The effect of learning mode (parallel vs. sequential) on the number of epochs and developed categories. Layer 

1 vigilance ( p,) was kept at 0.4 and is not shown here since, being at the lowest level, it was not affected by 

these experiments. Measurements were taken from the same 100 training sessions as in Table 2 

Layer 2 

vigilance 

Average no. of categories 

parallel sequential 

Average no. of epochs 

parallel sequential 

0.4 5.88 5.18 3.01 5.43 

0.2 4.05 3.42 2.98 5.21 

0.1 3.01 2.56 3.00 5.22 

First, the vigilance level at layer 2 ( p2) was changed while p, was fixed. The results 
are shown in Table 2. 

Here the effect of lowering p2 on the number of layer 2 categories can be seen. Note 
that the average number of categories drops from 8.00 to 5.88 even with p, and p2 
being equal. This is the effect of layer 2 learning from the prorotypes of layer 1, which 
have their size reduced already (see the analysis in Section 3.2). Also note the few 
number of epochs (around 3 on average) it took to learn the training set, and that it was 
independent of the layer 2 vigilance. 

We also looked at the effect of two different training modes: purullel and sequentiul. 

In parallel mode, each layer in the network learns in every presentation of a new input. 
In sequential mode, each layer starts learning only when the previous layer has 
stabilised, i.e. stopped learning on the training set. Initial experiments indicated that a 
more compact representation could be developed this way by filtering out initial 
fluctuations of categories due to the network undergoing self-stabilisation. Sequential 
mode can also be envisioned “biologically plausible” by considering the different time 
scales of categorisation and learning, which effectively allows learning to occur only 
after categorisation has been achieved at all levels. 

The results of these experiments with a two-layer HART network can be seen in 
Table 3. It can be seen from the table, that the network developed, on average, about 
15% less categories in sequential mode. However, the number of epochs needed to train 
the network increased by about 76%! Moreover, we can expect a linear increase in the 
number of epochs as more layers are added to the HART network. 

From these experiments, we can conclude that although parallel learning does result 
in an increase of the categories, it is not significant compared to the increment in 
training time (expressed in number of epochs). 

5. Conclusion 

In this paper, we introduced a hierarchical network architecture built up of ART 
modules that is capable of learning stable hierarchical clusterings of arbitrary sequences 
of input patterns. We have shown that a multi-layer HART network develops categories 
from the input sequence at successively increasing levels of generality. These were 
confirmed by the results of experiments with two- and three-layer HART networks when 
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trained on a machine learning benchmark database. The internal representation of the 
network demonstrated a (2/3-layer) hierarchy of classes, where lower-level classes 
“inherited” features from ones at higher-levels, and had their own distinctive features 
as well. Comparative experiments with two different learning modes (parallel and 
sequential) were also carried out, and the parallel learning mode was found to be better 
overall than the sequential one. 

We believe that the ideas and results presented here show the benefits of modularity 
in learning more complex relationships from the input environment. In particular, the 
HART network can be used in conjunction with other methods (e.g. [ 1,5,8,12]) to design 
larger ART networks capable of complex pattern classification tasks. 

We also suggest there are several ways the HART network can be extended. In the 
future, we are planning to investigate the following: 

0 Instead of using binary ART, the architecture can be built up of either ART2 [4] 
or Fuzzy ART [7] modules so the HART network can accept both binary and 
continuous inputs. The architecture defined in this paper does allow this exten- 
sion. 

0 The developed clusterings can be made more robust, i.e. less dependent on the 
order in which inputs are presented, by using (some of) the component ART 
modules in slow learning mode (7 < 1 in (3)). 

We hope that more experiments with the HART network and its extensions on a 
range of learning tasks will enable us to understand its behaviour better, and will 
ultimately extend the repertoire of neural network models available for solving real-world 
problems. 
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