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Abstract This paper presents a comparative analysis of
novel supervised fuzzy adaptive resonance theory (SF-ART),
multilayer perceptron (MLP) and Multi Layer Perceptrons
(MLP) neural networks over Ballistocardiogram (BCG) sig-
nal recognition. To extract essential features of the BCG
signal, we applied Biorthogonal wavelets. SF-ART performs
classification on two levels. At first level, pre-classifier which
is self-organized fuzzy ART tuned for fast learning classifies
the input data roughly to arbitrary (M) classes. At the second
level, post-classification level, a special array called Affine
Look-up Table (ALT) with M elements stores the labels of
corresponding input samples in the address equal to the index
of fuzzy ART winner. However, in running (testing) mode,
the content of an ALT cell with address equal to the index
of fuzzy ART winner output will be read. The read value
declares the final class that input data belongs to. In this
paper, we used two well-known patterns (IRIS and Vowel
data) and a medical application (Ballistocardiogram data)
to evaluate and check SF-ART stability, reliability, learning
speed and computational load. Initial tests with BCG from
six subjects (both healthy and unhealthy people) indicate that
the SF-ART is capable to perform with a high classification
performance, high learning speed (elapsed time for learn-
ing around half second), and very low computational load
compared to the well-known neural networks such as MLP
which needs minutes to learn the training material. Moreover,
to extract essential features of the BCG signal, we applied
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Introduction

Ballistocardiogram (BCG) reflects the mechanical activity
of the heart. As the heart is pumping blood out of the heart, a
reaction force opposite to the force moving the blood is gen-
erated [1, 2]. This force, among with the forces generated by
the respiration and disturbances caused by body movements,
can be measured in the spine axis using some sensitive force
sensor. BCG measurement was invented and used in the first
half of 20th century, but was later surpassed by the simpler to
measure electrocardiogram (ECG). BCG is difficult to ana-
lyze visually, and its use in medical diagnosis has never been
very common. With the development of computer process-
ing power and signal processing algorithms, new interest to
BCG has risen. The classic BCG measurement, a freely sus-
pended bed, has been surpassed by more advanced and easier
to use sensors, like the static-charge sensitive bed (SCSB).
However, a bed size sensor still requires quite a lot of space
to operate, which has motivated us to develop a chair based
sensor system. The developed EMFi-sensor based chair can
be made very light and easily transportable, and using wire-
less data transmission even indistinguishable from a normal
chair [3]. No electrodes are needed, and the patient can even
be measured fully clothed, although very thick clothing does
dampen the signal. An example of the BCG signal is shown
in Fig. 1.
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Fig. 1 An example of BCG
signal including spikes, and
wave complexes called G, H, I,
J, K, L, M, and N components

During the past several years, some classical as well as
intelligent pattern recognition methods have been devel-
oped for BCG analysis. Yu and Dent [4, 5], and Jansen
et al. [6] listed some of these methods in more details. The
performance of some of the existing methods is very good
whilst not considering electromechanical drifts, BCG cycle’s
latency, motion artifacts, or other kinds of non-linear distur-
bances [7]. The results will have some errors if not counting
such important factors. Another important limitation of the
existing approaches is their unsuitability for fast implemen-
tation as well as on-line processing.

To overcome these problems, in our previously developed
systems, we used some high resolution methods includ-
ing different kinds of wavelet transforms as well as novel
Time-frequency moments singular value decomposition
(TFM-SVD) to compute the most important BCG waveform
features and then cluster them using well known Artificial
Neural Networks (ANNs) such as Multilayer perceptrons
(MLP) and Radial basis functions (RBF). To find perfor-
mance of the combined approach, several test subjects from
three groups were used: two healthy young persons, two
healthy old men and two old men with a past infarct in
their heart. The results showed that our developed methods
have higher performance than other existing methods, but,
learning speed and computational loads are still not solved
[8–10].

To solve these two remaining problems, we applied our
newly developed neural network called Supervised Fuzzy
Adaptive Resonance Theory (SF-ART) [11] and biorthog-
onal wavelet transform [12–14] to classify the BCG cy-
cles with high learning speed and low computational loads.
In Section 2, the used measurement system is presented.
The developed signal processing methods are presented in
Section 3, followed by results and discussion.

Measurement system

The BCG measurement is done using a normal office chair
with 30 × 29 cm size EMFi-sensor films fitted under the
upholstery on the seat and the backrest. The signal from the
EMFi-sensors is amplified and converted to a voltage signal
using a charge amplifier unit. Output of the amplifier is fed
into a commercial medical data-acquisition device, which is
controlled by a laptop-PC. The recorded data are stored in
the laptop PC. A diagram of the measurement system is pre-
sented in Fig. 2. The system has been presented in [15, 16].

EMFi-sensor

EMFi sensor film [3] is an elastic electret material consist-
ing of three distinct layers: two smooth and homogeneous
surface layers, and a thicker mid section full of flat air voids
separated by leaf-like polypropylene layers. External force
supplied to the film surface changes the thickness of the air
voids and causes charges residing on the polypropylene/ void
interfaces to move with respect to each other. As a result, a
charge proportional to the force (pressure) applied to the film
is generated to the film electrodes [13].

Charge amplifier

To measure the weak charge changes produced by the EMFi-
film, a charge amplifier type of pre-amplifier is needed. The
amplifier design is based on the recommendations of EMFi-
film manufacturer Emfit Ltd, with increased gain and low-
pass amplifier in output. The charge amplifier produces a
+ 5 V · · · − 5 V voltage output signal, which is then fed
to a medical data acquisition device. The battery-operated
amplifier unit was accepted for medical use in Tampere Uni-
versity Hospital.
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Fig. 2 The measurement system

Data acquisition

The output of the charge amplifier is connected to the
CircMon circulation monitor, a medical data acquisition de-
vice developed by JR Medical Ltd, Tallinn, Estonia. Besides

BCG from the measurement chair, CircMon is able to record
electrocardiogram (ECG), impedancecardiogram (ICG) and
other biosignals simultaneously. The data from all the inputs
is sampled with CircMon’s internal 12 bit A/D-converter
with a fixed sampling frequency of 200 Hz. CircMon is con-
nected via a serial interface to a laptop PC, which is used to
display signals and parameters calculated from the measure-
ment in real-time, and to store recorded data for analysis.

Patient recordings

Ballistocardiogram of test subjects was recorded in a clini-
cal trial at Tampere University Hospital in 2004–2005 with
a chair fitted with EMFi-film sensors using the measurement
hardware presented in this section. A reference ECG sig-
nal was recorded simultaneously from the chest of subject’s
body. Several different subject groups were measured, but
only three groups were used in the study presented in this
paper. These were: (1) Group 1: Healthy young males and
females. Age between 20 and 30; (2) Group 2: 50–70 year-
old males. No coronary artery disease and no myocardial
infarction in the past, no asthma or no ongoing dialysis treat-
ment; (3) Group 3: 50–70 year-old males with myocardial
infarction in the past. Fig. 3 shows a typical BCG signal for
an old man with past cardiac infarct.

Intelligent signal processing methods

Overview

As shown in Fig. 4, our suggested procedure includes three
stages: 1-BCG cycle extraction using a blind segmentation
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Fig. 3 Typical raw and filtered
(band pass filter 2–20 Hz) BCG
signals for an old unhealthy
man. As can be seen, there are
some motion artifacts in the
BCG signal, not removed by
filtering
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Fig. 4 Block diagram of our
system to classify BCG data to
three classes; YN: Young
Normal, ON: Old Normal, and
OA: Old Abnormal classes

method; 2-The BCG feature computing using a biorthogonal
wavelet transform to eliminate non BCG related compo-
nents as well as reducing the dimension of SF-ART neural
network inputs; 3-Classification of BCG cycles using neural
networks. The segmentation stage uses only coarse compo-
nents of the BCG signal and amplitude separation/threshold
detection method to extract BCG templates (BCG waveforms
for every cardiac cycle).

Blind segmentation of BCG data

A recorded BCG signal consists of components attributable
to cardiac activity, respiration, and body movements. To have
a pure BCG signal and to remove additional components in-
cluding background noise as well as respiration, we used a
band pass filter with a passing band from 2 to 20 Hz. How-
ever, body movements during recording destroy some BCG
cycles (increasing high amplitude components to signal).
These parts of recorded BCG signal are useless and must
be eliminated by amplitude thresholds for accounting only
valid parts of signal. This method is useful because body
movements usually cause bigger signal changes compared
to normal cardiac activities.

To perform BCG data segmentation in a blind way without
using any other synchronization signal, such as ECG first, we
extracted a coarse BCG signal using a narrow band pass filter
with 1 and 2 Hz cutting frequencies. Then, we used abso-
lute values of this BCG coarse signal and its peaks between
a lower and upper amplitude threshold as synchronization
points. Based on our experience, peaks out of this range are
not related to BCG cycles, being background noises or mo-
tion artifacts. Fig. 5 shows typical filtered (2–20 Hz) BCG
and absolute values of BCG coarse signal for an old man with
past cardiac infarct. A uniform windows with length of 250
samples (1.2 s) and the computed synchronization points are
used to find central points of these windows and then count-
ing 125 samples before and 124 samples after these central
points to create BCG cycles with the same lengths (1.2 s for
every cycle). BCG cycle extraction for an unhealthy subject
is more difficult than healthy one. Therefore, we only show
extracted cycles for an old man with past cardiac infarct in
Fig. 6.
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Fig. 5 Typical BCG and corresponding absolute values of coarse
signal for an old man with past cardiac infarct
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Six Typical Extracted BCG Cycles Using Blind Segmentation Method

Fig. 6 Typical four BCG cycles of an old man with past cardiac infarct
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Computing BCG features based on shift-invariant
biorthonormal wavelet transform

The suggested high-resolution method for features comput-
ing is using a special kind of wavelet, called Shift-Invariant
Biorthonormal Wavelet Transform [12–14]. The properties
of this kind of wavelet are suitable for our application be-
cause we would like to reduce the dimensions of the BCG
cycle optimally. The method does not affect the phase or
cause shifting of waveforms.

There are several parameters that affect the wavelet char-
acteristics and behavior. In real applications such as feature
extraction, we would like to decrease the number of the high
amplitude values (singularities) of the wavelet coefficients as
well as to increase the number of around-zero coefficients,
but because of the tradeoffs in parameter choices we cannot
completely fulfill both interests.

If a wavelet gives us only one or two factors to control
its behaviors, it is recommended to choose it for our appli-
cation because of this benefit. In biorthogonal wavelet, it is
possible to control its behaviors using two factors (p and p̃).
The nonlinearity increases by p. The number of around-zero
wavelet coefficients as well as number of high amplitudes
increases by p̃ (trade’s off). Thus, we must be aware about
singularities of signal and generating high amplitude coeffi-
cients while increasing p̃ (only increasing p̃ till generating
enough around-zero wavelet coefficients).

BCG classification using Supervised Fuzzy Adaptive
Resonance Theory (SF-ART) and multi layer
perceptrons (MLP) neural networks

In this work, we used both Supervised Fuzzy Adaptive
Resonance Theory (SF-ART) and Multi Layer Perceptrons
(MLP) Neural Networks for BCG classification. MLP and
back propagation algorithm are very well known neural net-
works [17], but SF-ART is new. In our previous work, we
proposed a novel neural network called Supervised Fuzzy
Adaptive Resonance Theory (SF-ART) [11] which enables
Fuzzy Adaptive Resonance Theory (F-ART) [18] for super-
vised incremental learning by adding another module to it,
an array with M cells called Affine Lookup Table (ALT).
ALT plays very important role to enable classifier to learn
incrementally when new data become available. It protects
previously acquired knowledge and avoids forgetting it dur-
ing incremental learning phase (catastrophic forgetting). As
shown in Fig. 7, in pre-classifier level, a self-organized F-
ART Neural Network [18] is used to classify data primarily
to M arbitrary classes. Based on our experience, to increase
learning speed, clustering resolution and to create an auto-
matic learning algorithm, which is free from any parameter’s
adjustment for different applications, F-ART’s learning pa-
rameters (learning factor η and vigilance parameter ρ) must
be always just under 1. In post (affine)-classification level, it
uses an array with M cells called ALT, without any special
learning algorithm run on it. In training mode, the index of

Fig. 7 Supervised Fuzzy Adaptive Resonance Theory (SF-ART) structure: it is an automatic (supervised) learning algorithm and free from any
adjusting learning parameters: learning factor (η) and vigilance parameter (ρ) must be just under 1
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Fig. 8 (a) Wavelet Coefficients
(WCs) at four different levels
for a typical BCG cycle. (b) 3-D
representation of BCG cycle’s
WCs (in level 6) for six subjects
of three categories: young
Normal, Old Normal, and Old
Abnormal

winning output line of the first stage is used as index of the
ALT cell to copy the label (output desired value) of the cor-
responding input sample into it. In testing mode, the index
of first stage’s winning output line will be used as index of
the ALT cell to recall and declare formerly stored label as
the final output (final winning class).

Results

In this work we used compactly supported Biorthogonal
Spline wavelets with p = 2, p̃ = 4 to find the wavelet coef-

ficient of every BCG cycle x[n] at level 6 using the iterative
FWT algorithm (pyramidal multi-resolution wavelet analy-
sis) [12–14]. Our practical experiences showed that using
p = 2, p̃ = 4 is enough and the most important features
of the BCG waveforms were saved at level six of iteration
FWT, decreasing the signal dimension (N) from 250 to 4.
Fig. 8a shows wavelet coefficients at four different levels for
a typical BCG cycle. Fig. 8b also shows 3-D representation
of BCG cycle’s wavelet coefficients (in level 6) for six sub-
jects of three categories: young normal, old normal and old
abnormal subjects.
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Table 1 Results of BCG classification when using

Class 1 Class 2 Class 3 Overall

(A) Supervised fuzzy adaptive resonance theory (SF-ART)
Class 1 SBJ1 97.93 ± 2.28 2.07 ± 2.28 –

SBJ2 94.94 ± 2.83 5.06 ± 2.83 –
Class 2 SBJ1 – 61.72 ± 36.8 38.28 ± 36.8

SBJ2 – 89.87 ± 1.53 10.13 ± 1.53
Class 3 SBJ1 – 21.34 ± 6.90 78.66 ± 6.90

SBJ2 – 3.46 ± 0.94 96.54 ± 0.94
Overall 94.70 ± 0.86

(B) Multi layer perceptrons (MLP) neural network
Class 1 SBJ1 96.26 ± 3.06 3.74 ± 3.06 –

SBJ2 83.13 ± 5.99 16.87 ± 5.99 –
Class 2 SBJ1 – 99.40 ± 0.26 0.60 ± 0.26

SBJ2 – 77.80 ± 4.29 22.20 ± 4.29
Class 3 SBJ1 – 3.54 ± 1.37 96.46 ± 1.37

SBJ2 – 5.20 ± 0.48 94.80 ± 0.48
Overall 90.65 ± 1.51

Note. Classification of the BCG data of six subjects to three classes using SF-ART (SF) and MLP classifiers and
Biorthogonl wavelets. SBJ mean ‘subject number.’ O.P means ‘overall performance (averaged)’ after k-fold (five
times) cross validation tests: ‘ ± ’ shows a 95% confidence interval on the average performance (mean). Structures:
SF, η and ρ → 1; MLP, Nh1 = 15, Nh2 = 10, learning rate of 0.001 for all layers

To demonstrate performance of our approach, and to com-
pare results, we used both Supervised Fuzzy Adaptive Reso-
nance Theory (SF-ART) and Multi Layer Perceptrons (MLP)
Neural Networks for BCG classification. Based on our ex-
perience, level six wavelet coefficients of BCG cycles are
optimized for our application in which we classify subjects
using neural networks (4 inputs/3outputs) to three categories.
These three categories are: young healthy students with age
between 20–30 years old (2 subjects), old healthy men with
age between 50–70 years old (2 subjects) and two old sub-
jects (50–70 years old) with a history of heart infarct. SF-
ART structure has fixed structure, but for MLP, our previous
works showed that structure with Tanh() to simulate non-
linearity of neurons and two hidden layers (relatively 15,
and 10 neurons) is also optimized.

For every subject of the three categories, the wavelet de-
compositions stage gave us features of every BCG cycle
(dimension of data reduced from 250 to 4). These data were
normalized, mapped to area [ − 1, 1], and finally saved ran-
domly into a unique data matrix.

We used a small part of data (300 BCG cycles) for train-
ing the SF-ART and the MLP nets. All tests were done in
the 3 GHz Pentium 4 computer. Learning speed is low for
MLP with back propagation and convergence occurred after
10000 learning cycles. Training time for learning was around
five minutes while SF-ART needed 470 ms (seven learning
cycles) for convergence. Another factor that affects learning
speed is computational load. MLP is a heavy structure, but
SF-ART is not. The computational loads of the SF-ART is
N∗Ni∗M∗L, where N is number of learning cycles (Typically

less than 10 cycles for most pattern recognition problems:
elapsed time above few seconds to train a fresh classifier),
Ni is number of training samples, M = 7 is number of
mathematical calculations (sum, subtraction, division and
multiplying) and L = 2 is logical/comparative calculations
( > , < , = , Min and Max). It means that in SF-ART, first
stage (F-ART) has low computational load and second stage
is only a set of simple memory cells and they are easy to
implement on chip [19, 20].

In testing mode, the rest of the data (2000 BCG cycles)
were used to check the performance of the neural networks,
not using the same data for training or testing the system
although the BCG cycles were obtained from the same sub-
jects as the training data. Table 1 shows the performance of
the classifiers under test. It can be seen that the performance
of systems is high, but SF-ART learnt very fast. When the
highest proportion of cycles in a class is taken as the classifi-
cation result of the subject, no classification errors are made
for both MLP and SF-ART.

Discussion

The proposed Ballistocardiogram analysis system consists
of a sensitive EMFi-film based movement sensor, amplifiers
and ADC, wavelet-based feature extraction and neural net-
work classification of the features to three classes. Here the
EMFi sensor has been fitted to an office chair but it could be
installed to chairs for homes or even to cars. The advantage
of BCG analysis to ECG analysis is that no electrodes are
needed to be attached to the subject.
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The wavelets are known to be efficient in many signal
processing applications but choosing the appropriate type of
wavelets is not a trivial task. The applied biorthogonal spline
wavelets are not noticeably affected by latencies or nonlinear
disturbances in the signal.

The results show that the three classes could be separated
quite well from each other. The “scattegrams” of Fig. 8b
indicate, however, that the classification is not reliable on
the basis of a single BCG cycle but a number of them are
needed to estimate the center of the distribution.

For this study BCG signals of six subjects from three
classes were used to train and test well-known Multi layer
Perceptrons (MLP) as well as novel Supervised Fuzzy Adap-
tive Resonance Theory (SF-ART) neural networks. SF-ART
has two inner modules to classify input data to desired
classes. The SF-ART performs hierarchical clustering by em-
ploying Fuzzy Adaptive Resonance Theory (F-ART) neural
network as an unsupervised learning at the pre-classification
level. Another stage, post (affine)-classifier, using a special
look-up table called Affine Look-up Table (ALT) and down-
loading/uploading output desired values (labels) tries to per-
form final classification. In first level, it is possible to use
any kind of classic, statistical or intelligent classifier. But
in the second level, the ALT is neither a classifier nor a
learning algorithm, only a readable/writable look-up table
memory.

The results indicated that SF-ART learnt BCG patterns
very fast in less than one second while MLP need several
minutes to train. MLP or other existing neural networks ex-
cept SF-ART are very sensitive to volume of training set as
well as number of adaptation cycles during training mode
and they suffer from tradeoffs between learning speed and
performance [11]. SF-ART is an automatic classifier and it is
free from adjusting net’s parameters, only adjusting learning
and vigilance factors in values near to 1 is enough. The result
showed that SF-ART learnt patterns with lower volume of
training frames and overtraining occurred faster than with
other tested methods.

One interesting benefit of SF-ART, because of ALT, is in-
cremental learning when new data become available (on-line
learning) [11]. Therefore, our future aim is to apply SF-ART
for classifying more subjects, especially testing its reliabil-
ity, stability and performance for on-line learning. In order to
extend the system into a complete “heart disease diagnosing
system” several steps are necessary. First, a representative
BCG data set of normal subjects of both sexes and all adult
age groups needs to be collected. Additionally a representa-
tive data set of each heart disease category to be diagnosed
needs to be collected and the neural network needs to be
trained with the whole material. Finally, the system has to
be validated with an independent set of normal subjects and
heart patients before it can be taken into clinical use. Even
then the system can only serve as a part of the set of tests

which confirms the diagnosis although its ease of use sug-
gests that it could have value alone, too, as a screening device
of the general population.
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Marjaana Ylhäinen and Mrs. Pirjo Järventausta for carrying out the
measurements, and all the test subjects for their participation. This
study was financially supported by the Academy of Finland, Proactive
Information Technology Program 2002–2005, and the Finnish centre
of Excellence Program 2000–2005.

References

1. Starr, I., Further clinical studies with the ballistocardiograph on ab-
normal form, on digitalis action, in thyroid disease, and in coronary
heart disease. Trans. Assoc. Am. Physicians 59:180–189, 1946.

2. Baker, B. M., Jr., Scarborough, W. R., Mason, R. E., et al., Coronary
artery disease studies by ballistocardiography: a comparison of
abnormal ballistocardiograms and electrocardiograms. Ann. Proc.
Clin. Climatol. Assoc. 62:191, 1950.

3. Lekkala, J., and Paajanen, M., EMFi—new electret material for
sensors and actuators. Proc. 10th IEEE Internat. Symposium on
Electrets, Delphi, Greece, 22–24 September 1999 pp. 743–746.

4. Yu, X., and Dent, D., Neural networks in Ballistocardiography
(BCG) using FPGAs. IEE Colloquium on Software Support and
CAD Techniques for FPGAs, 13 Apr 1994 pp. 7/1–7/5.

5. Jansen, B. H., Larson, B. H., and Shankar, K., Monitoring of the
ballistocardiogram with the static charge sensitive bed. Biomed.
Eng. IEEE Trans. 38(8):748–751, 1991.

6. Yu, X., Gong, D. J., Osborn, C., and Dent, D., A wavelet mul-
tireolution and neural network system for BCG signal analysis.
1996 IEEE TECON-Digital signal processing Applications, pp.
491–495, 1996.

7. Akhbardeh, A., Vahabian, A., and Farrokhi, M., EEG features
extraction using neuro-fuzzy systems and shift-invariant wavelet
transforms for epileptic seizure diagnosing. Proc. 26th Annual
Internat. Conference of the IEEE EMBS, San Francisco, CA, USA,
pp. 498–502, 2004.

8. Akhbardeh, A., Junnila, S., Koivuluoma, M., Koivistoinen, T., and
Värri, A., Evaluation of heart condition based on ballistocardio-
gram classification using compactly supported wavelet transforms
and neural networks. In Proc. of the 2005 IEEE Conference on
Control Applications, pp. 843–848, 2005, Toronto, Canada.

9. Akhbardeh, A., Koivuluoma, M., Koivistoinen, T., and Värri, A.,
BCG data clustering using new method so-called time-frequency
moments singular value decomposition (TFM-SVD) and artifi-
cial neural networks. 2005 International Symposium on Intelligent
Control 13th Mediterranean Conference on Control and Automa-
tion, 2005, Limassol, Cyprus.

10. Akhbardeh, A., Junnila, S., Koivuluoma, M., Koivistoinen, T., and
Värri, A., Heart disease diagnosing mechatronics based on static
charge sensitive chair’s measurement, biorthogonal wavelets and
neural classifiers. 2005 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM 2005) July 24–28, 2005,
Monterey, California., USA.

11. Akhbardeh, A., and Värri, A., Novel supervised fuzzy adaptive
resonance theory (SF-ART) neural network for pattern recognition.
IEEE International Symposium on Intelligent Signal Processing
(WISP’05), 2005, pp. 149–154, Faro, Portugal.

12. Mallat, S., A Wavelet Tour of Signal Processing, Academic Press,
1997.

Springer



J Med Syst (2007) 31:69–77 77

13. Burrus, S., Gopinoth, R., and Haitao, G., Introduction to Wavelets
and Wavelet Transforms, Printice Hall Inc., 1998.

14. Akhbardeh, A., and Erfanian, A., Eye tracking user interface using
EOG signal and neuro-fuzzy systems for human-computer inter-
action aids. PhD Thesis, Iran University of Science & Technoloy,
Narmak, Tehran, Iran, May 2001.

15. Junnila, S., Koivistoinen, T., Kööbi, T., Niitylahti, J., and Värri,
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