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Abstract- An incremental, nonparametric probability estima- 
tion procedure using a variation of the Fuzzy ARTMAP (FAM) 
neural network is introduced. The resulted network, called Fuzzy 
ARTMAP with Relevance factor (FAMR), uses a relevance factor 
assigned to each sample pair, proportional to the importance 
of the respective pair during the learning phase. Experimental 
results have shown that FAMR favorably compares with FAM 
and Probabilistic FAM (PFAM, defined in 111, 121). both as a 
classifier and as a probability estimator. 

I. INTRODUCTION 

When designing and implementing data mining applications 
for large data sets, we face processing time and memory space 
problems. In this case, incremental learning is a very attractive 
feature. According to [3], we define an incremental learning 
algorithm as one that meets the following criteria: 

1 )  It should be able to learn additional information from 
new data. 

2) It should not require access to the original data, used to 
train the existing system. 

3) It should preserve previously acquired knowledge. 
4) It should be able to accommodate new data categories 

that may be introduced with new data. 
The fundamental issue in incremental learning is: how can a 

learning system adapt to new information without corrupting 
or forgetting previously learned information - the so-called 
stobilily-plasticity dilemma addressed by Carpenter and Gross- 
berg [4]. 

In  the context of supervised training, incremental learning 
means learning each input-output sample pair, without keeping 
it for subsequent processing. 

The topic addressed in this paper is the development of 
a supervised incremental learning algorithm satisfying all of 
the above-mentioned criteria. Very few algorithms perfectly fit 
into this description of incremental learning. The FAM family 
of neural networks, having the roots in Carpenter, Grossberg, 
Markuzon, Reynolds, and Rosen’s seminal paper [5] is the 
best known example. A more recent neural network having 
this strong property is described by Polikar, Udpa, Udpa, and 
Honovar [3]. 

Many pattern recognition applications require an estimate 
of the posterior probability P(Cla), where C is a class index 
and a is an input pattern. This task also allows classification 
because one can select the class C with the maximum condi- 
tional probability. 

The present paper only deals with the posterior probabil- 
ity, estimation from data samples in  supervised incremental 

learning systems based on FAM architectures. Such procedures 
have been developed by Carpenter, Grossberg, and Reynolds 
[61, and Marriott and Harrison [7]. 

Lim and Harrison’s PFAM [l], [Z] is a hybrid FAM + 
Probabilistic Neural Network (PNN, see [SI) classifier with 
incremental probability estimation capabilities: It uses the 
P N N s  ability to incrementally construct an approximation of 
the probability density functions (pdt) and it also uses the code 
compression feature of FAM. Instead of considering every 
sample pattern in estimating pdf, the clustering property of 
FAM is used to obtain the centroid of each cluster. The pdf 
approximation is made based on these centroids only. 

This paper introduces a variation of the probability esti- 
mation phase of FAM and identifies the resulted network as 
FAMR to distinguish it from the original architecture. FAMR 
is an incremental leaning system for general classification 
and nonparametric estimation of the probability that an input 
belongs to a given class. The architecture of the network is 
able to incrementally ‘grow’ and to sequentially accommodate 
input-output sample pairs. Each training pair has a relevance 
factor assigned to it. This factor is proportional to the impor- 
tance of the respective pair in the learning process. Using a 
relevance factor adds more flexibility to the training phase, 
allowing ranking of sample pairs according to the confidence 
we have in the information source. The training sequence may 
include sample pairs from sources with different levels of 
noise. 

Experimental results have demonstrated that FAMR favor- 
ably compares with FAM and PFAM, both as a classifier and 
as a probability estimator. 

In Section 11, we briefly discuss how the FAM architecture 
was used for probability estimation. Section 111 introduces our 
modification of the FAM algorithm. In Section IV we present 
the experimental results comparing the FAMR model to FAM 
and PFAM. Section V concludes with some closing remarks. 

11. FAM AS AN INCREMENTAL PROBABILITY ESTIMATOR 

Carpenter, Grossberg, and Reynolds’ FAM [6] can estimate 
posterior probabilities via formation and associations between 
intermediate categories. We present here only the necessary 
details. 

FAM includes a pair of ART modules (ART, and ARTb) 
that create stable recognition categories in response to arbitrary 
sequences of input patterns. These modules are linked by 
an inter-ART module called Mapfield whose purpose is to 
determine whether the correct mapping has been established 
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from inputs to outputs or not. The ART, and ARTb vigilance 
parameters pa. respectively pb. control the matching mecha- 
nism inside the modules. 

During learning, FAM updates its Mapfield weights to 
estimate the probability that an input belongs to a given output 
class: the strength of the weight projecting from the selected 
ART, category to the correct ART6 category is increased, 
while the strength of the weights to other ARTb categories 
are decreased. A Mapfield vigilance parameter pab calibrates 
the degree of predictive mismatch, necessary to trigger the 
search for a different ART, category. If the weight projecting 
from the active ART, category through the Mapfield to the 
active ARTb category is smaller than pab (vigilance test), then 
the system responds to the unexpected outcome through the 
so-called match tracking, that triggers an ART, search for a 
new input category. 

Once an ART, category J is chosen, whose prediction of 
the correct ART6 category is strong enough, match tracking 
is disengaged, and the network is said to be in a resonance 
state. In this case, Mapfield leams by updating the weights of 
associations between ART, and ART* categories. According 
to this updating scheme, weight wab is a non-decreasing 
function of the frequency of associations between the j th  
ART, category and the kth ART6 category during the training 
phase. 

This last feature is made more explicit in PROBART [7], 
where Mapfield weight w$ is exactly the frequency of asso- 
ciations between the j t h  ART, category and the kth ART6 
category. Therefore, W $ / I W ; ~ I  is the empirical estimate of 
the posterior probability P(kjj) that ART, category j i s  
associated to ARTb category k .  

Jk.  

111. THE FAMR ALGORITHM 

A. A probability estimation procedure 

A stochastic approximation procedure described in [9] is 
introduced and new theoretical results are developed. Let us 
consider a sequence of independent experiments according 
to the finite probability distribution P ( a l ) ,  . . . , P(a,), where 
P(ai) 2 0 is the probability of outcome ai, E:=, P(a i )  = 
1. These objective probabilities are not known and will be 
estimated at each step based on the previous observations. A 
criterion for a qualitative differentiation of the experiments is 
represented by the relevance associated to each experiment. 
The relevance qt is a real positive finite number directly 
proportional to the importance of the experiment considered at 
step t (t = 1 , 2 , .  . .). This number may be either of objective 
or subjective nature. 

The following estimation procedure makes use of both 
the results and the relevances of the present, and previous 
experiments. 

The subjective pmbability of outcome ai ( i  = 1,. . . , n) at 
step t (t = 1 , 2 , .  . .) is given by: 

(qowo(az)  + 5 Y,dS(Ui)) 

(1) 
*=I 

Qt 
ut(.,) = 

where: if at step t we get outcome a j ,  & ( a j )  = 1 and &(ai)  = 
0 for j f i :  wo(ai) 2 0 is the initial subjective probability, xi=, wo(a;) = 1; qo 2 0 is the initial relevance, and Qt = 

At each step t (t = 0,1,. . .) we have a probability vector 
with zut(ai) 2 0 ( i  = 1,. . . , n), E:=, wt(ai)  = 1. 

Relation ( I )  can be rewritten in a recursive form: 

x,=o q.. 

 ai) = wt-l(ai)  + At (&(ai) - ~t-i(ai)) (2) 
where At = qt/Qt ( t  = 1 , 2 , .  . .). The following result is from 

Theorem 1: wt(ai) I P(ai)  in probability iff Qt --t 00. 
Consequently, wt(ai)  is a correct biased estimator of P(a,) 

iff Qt + 00. Further analysis of the estimate can be made if 
we compute the mean square error: 

t 
PI:  

ot(ai) = (1 - Atj2oti1(ai) + P ( ~ i ) ( l -  P (a i ) )  A: (3) 
where ut(ai) = E(wl(at) - P(ai))’. This expression gives 
us the possibility of evaluating the rate of convergence. 

For some additional conditions imposed to qt.  the direct 
result can be strengthened: 

Theorem 2: If 40 E [0, b ] ;  qt E [a,  b] (t  = 1,2 , .  . .), for 
two real values 0 < a 5 b < CO, then wt(ai) 5 P(a;) with 
probability one. 

Sketch ofpm08 Equation ( 2 )  can be rewritten as a Robbins- 
Monroe process. The proof is based on the Stochastic Approx- 
imation Theorem. 

In practice, the above restriction imposed to qt does not re- 
strict our estimation procedure. The meaning of the conditions 
in the previous theorems is: an observer who intends to learn 
objective probabilities from examples has to have sufficient 
confidence in the results of the experiences. 

Let m p ) ( a i )  be the subjective probabilities at step t ( t  = 

1,2,. . .), for n possible outcomes. What is happening if at 
some step we get a new outcome, a,+l? Assuming we have 
wg) (a i )  = l/n (i = 1,. . . , n), then the new subjective 
probabilities w,(nf”(ai) for n + 1 possible outcomes may be 
obtained by the following relations: 

wj“ t” (a , t i j=qo/ (n+l )Qt  
(4 (n+1J 

win+l)  (a i )  = wt (a i )  - wt (a,+l)/n, i = 1 , 2 , .  . . ,n 
(4) 

Relations (4) will be used in the dynamic allocation of 
ARTb categories (Step 2 in Algorithm 1.) 

B. The FAM modification 
A modification of the FAM, named FAMR, that enhances 

the probability estimation ability of FAM is presented. 
Mapfield weight w$ can be considered an estimate of the 

posterior probability P(k1j).  This enables us to use formula 
(2) to update the weights w$: 

i f j # J  o b ( d d )  

w$((neWJ = { :;pdJ + A t ( l  - wJK Wold)) 

W U J : ( ~ ~ ~ ) ( I  ~ A,) i f k f K  
(5) 
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Is w$ a good estimate of p(IblIa), where I. and Ib 
are intervals based around input pattern a and output pattern 
b, respectively? As depicted by Marriott and Harrison the 
feedback via match tracking alters this estimation [7]. One 
way to avoid this problem is to eliminate match tracking. This 
approach is used in PROBART and ensures that a given input 
to ART, will always select the same category. Meanwhile, 
eliminating match tracking allows for one-to-many mapping 
between ART, and ART6 categories, which may be important 
in situations where more than one action result from a single 
input [7]. 

If the conditions in Theorem 2 are fulfilled and match 
tracking is not used, then for each ART, category j ( j  = 
1,. . . , N,) and each ARTb category k (k = 1 , .  . . , Nb) we 
have: 

w,"kb-P(klj) with probability one. (6) 

Match tracking can be avoided by setting pob = 0. Elimi- 
nating match tracking is not always convenient, because match 
tracking controls category proliferation in ART,. On the other 
hand, one could hardly say anything about this probability 
approximation in the presence of match tracking, since in this 
case wab is not necessarily a good estimate of the posterior 
probability with respect to the already processed data. A 
smaller value for pab results in a better approximation. For 
Pob = 0 the approximation is statistically correct. However, in 
our experiments, match tracking has not significantly altered 
probability estimation. 

Let Q be the vector iol.. . QN,]. N, and Nb are the 
number of categories in ART, and ARTb, initialized to 0, 
respectively. For incremental learning of one training pair, the 
new procedure in Mapfield is given in Algorithm 1. 

Since we initialize the weights w$ with l/Nb and not with 
I ,  we have to modify the vigilance test. The new test is: 

?! 

Nb W& 2 Pob (7) 

The rest of the FAM mechanism remains unchanged. The 
resulted algorithm will be called FAMR (Fuzzy Artmap with 
Relevance factor.) In [IO], we have introduced a probability es- 
timator based on a restricted FAMR version, where estimated 
probabilities are strictly positive. 

For pab = 0 (no match tracking), qo = 0, qt = q ,  0 < 
q < 00 ( t  = 1 , 2 , .  . .), probability estimate w$ is exactly the 
empirical estimate of the posterior probability P ( k l j ) .  This 
can be observed from the nonrecursive formula ( I ) .  Therefore, 
PROBART is a particular case of FAMR. 

In our experiments, since we have used relatively large 
training sets, the influence of the initial values (probabilities 
and relevance) was insignificant. We have set qo = 1 for 
all experiments. The initial probabilities in Algorithm 1 are 
equal. Generally, the initial values can influence the stability 
of the system (i.e., how fast it learns), especially for the first 
iterations. 

19 

Step 1. Accept vector pair (a, b) with relevance factor q. 
Step 2. If necessary, cfeate category K in ARTb: 

Nb = Nb + 1 
K = Nb 
if Nb > 1 then 

ab -a f o r j = l ,  ..., N, wjK - NaQj 
{append new component to w,"*} 

w$ = w$ - ~ for k = 1,. . . , K - 1, 
, j = 1,. . . N,, {normalize} 
endif 

N, = N, + 1 
J = N, 
Q J  = qo {append new component to Q) 
w:: = 1/Nb for k = 1 , .  . . , Nb 
{append new line to wab} 

if vigilance test (7) is passed then 

Step 3. If necessary, create category J in ART,: 

Step 4. J ,  K are winners or new added nodes. 

{learn in Mapfield} 
& J = Q J + q  

w J K  - 

wyi = w'$ (1 - &) for k = 1 , .  . . , Nb, k # K 

perform match tracking and restart from step 3 

ob - W a b  
J K  + & ( I  -w%) 

else 

endif 

Algorithm 1: One iteration in the new Mapfield algorithm 

C. Application areas of the relevance factor 

Ranking the importance of training examples in neural com- 
puting has been considered by several authors. Gallant uses 
an importance factor attached to each training sample [l l] .  
Proportional to the importance factor, additional duplicates of 
each training sample are created. 

In FAMR, using a relevance factor is not equivalent to 
repeatedly present a training sample to the system: the varia- 
tion of w& values is finer than in the case of repeating the 
presentation of the training pair, since the relevance factor can 
be a real value. Second, learning is faster, because we can 
learn in one step instead of repeatedly learning the same pair. 

How to assign a relevance factor to a training sample? An 
answer could reside in ranking the sample pairs according to 
the (subjective) confidence we have in the information source. 
Two application areas are considered for such learning systems 
with relevance factor: 

1. When training neural networks with noisy data, a rel- 
evance factor could be assigned to each learning pattern, 
inversely proportional to the noise. Let us suppose that we 
have a training sequence consisting of two sample pairs: 
(a1 = O.l,classindez(al) = 1) with q1 = 1, and 
(a2 = 0.3,clnss.indez(az) = 2) with q2  = 1. We as- 
sume that classindex(a1) is a correct association, whereas 
classindez(a2) is a noisy association (that should be 1.) 
After two iterations in the FAMR algorithm, assuming that 
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. .  
only one ART, category is generated, the new probability 
vector will be 

(8) Wab - - [0.5 0.51 

If we perform FAMR training with q1 = 2 and qz = 1 (the 
first pair is more relevant than the second one), we obtain: 

w : ~  = [0.62 0.371 

Let us classify pattern az. The second trained network 
makes a better prediction, indicating class 1 with the highest 
probability. In this example, the relevance factor acts as a noise 
filter. 

2. Training pairs are usually randomly selected. However, 
it seems reasonable to expect that if correctly classified 
examples are chosen near the decision boundaries then the 
classifier will learn the boundaries better. This conjecture 
has not been significantly explored, most probably because 
the true boundaries are usually unknown at the beginning of 
the training. Assuming we can generate points close to the 
boundary, we could assign a relative higher relevance factor 
to this samples. There are experimental results. reported [I21 
showing that choosing examples from the boundary area does 
not necessarily lead to better classification performances. That 
remains an open area for further investigation. 

Iv. EXPERIMENTS AND RESULTS 
A suite of experiments were performed to test the FAMR's 

ability for probability estimation and classification, compared 
to FAM and PFAM. The classification was made based on 
the probability estimation by hard-decision: an input pattern 
belongs to the category with maximum posterior probability. 
The performance of the probability estimator was quantified 
by an average Brier score. The Brier score measures the 
quality of the probability estimation by comparing it to the 
real conditional probability 161. The score u(q ,p)  is a function 
of the estimated probability q and the true probability p :  

We have used only incremental learning, though the network 
is able to improve its performance using off-line processing, 
when the training set is reprocessed, or using Multiple Classi- 
fier Systems. Unless otherwise specified, the used relevance 
factor was I .  In the prediction phase, we took pa = 0; 
thus, any input pattern is assigned to an ART, category and 
subsequently to an output class. 

A. Circle-in-the-square 
This problem requires a system to identify which points of 

a square lie inside and which lie outside a circle whose area 
equals half that of the square. Patterns were'generated inside 
the square using an uniform distribution for each coordinate. 
The points were classified according to their position relative 
to the circle, whose center coincides with the center of the 
square. Thus we have two classes of points: points located 
inside the circle and points located outside the circle. For 
computing the Brier score, 1000000 evenly spaced points were 
generated inside the square. 

~ 
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TABLE I 

CIRCLE-IN-THE-SQUARE: AVERAGE VALUES OF ART, CATEGORIES 

NUMBER AND TEST SET RECOGNITION RATE FOR FAMR COMPAREDTO 

RESULTS FROM 151. THE FAMR RESULTS REPRESENT AVERAGE VALUES 

FOR 5 DIFFERENTTRAINING SETS. 

96.8 96.7 
121 98.1 98.0 

The training sets contained 1000, 10000, and 100000 pat- 
terns. The test set consisted of I00000 patterns in each case. 
For each training set size, five different training sets were 
generated and the average Brier score was computed at the end 
of every training phase. The number of ART, categories was 
at most as large as reported in [51, but the performance was 
superior. The results for the three training sets are presented in 
Table I. As expected, the test set recognition rate and the Brier 
score increased with the number of training patterns from an 
average value of-93.0% and 0.9327 (for 1000 training pat- 
terns) to 98.1% and 0.9810. respectively (for 100000 training 
patterns.) 

B. Noisy circle-in-the-square 
We used a modified version of the circle-in-the-square prob- 

lem in order to test the effectiveness of the relevance factor. We 
considered three data sources (called A, B, C), each of them 
producing the same number of training samples. Each source 
has an associated probability @A, PE, and pc. respectively) 
of producing wrong associations. We took (pa,pe,pc) = 
(0,0.2,0.35). First, the relevance factor qt was set to 1. for 
each information source. The average Brier score obtained for 
6 different data sets was 0.89568. Subsequently, we considered 
different relevance factors, in accordance to the noise level of 
the three sources: (gA,qB,qc) = (100,10, I), where q,y is 
the relevance factor associated with the data source X. The 
average Brier score obtained for the 6 different data sets was 
0.9 1896, higher than the previous case (Table 11.) The total 
number of training patterns was 10000 for each experiment, 
and the Brier score was computed for 10000 points evenly 
distributed inside the square. 

Correlating the relevance factors to the degree of confidence 
in each data source resulted in higher performances for the 
system. The relatively small value of the average Brier score 
is explained by the presence of noise. 

In order to prove the advantage of  taking into account 
supplementary data sources, though these sources were noisy, 
we developed another experiment. This experiment proved 
more relevant when the number of available correct train- 
ing samples was relatively small. First, we have generated 
1000 associations using three data sources (A, B, C), each 
with the same probability of producing training patterns, 
@A,PE,Pc) = (0,0.2,0.35),and (4A,qE,qc) = (100,10,1). 
The average Brier score for different training sets was 0.88370 



TABLE 11 
AV,ERACE BRIER SCORE FOR NOlSY CIRCLE-IN-THE-SQUARE 

ASSOCIATIONS. @ ~ , p a , p c )  = (0,0.2,0.35). W H E R E p r  I S T H E  

PRoBABlLlTYTHA? DATA SOURCEX GIVES WRONG ASSOCIATIONS.4X IS 

THE RELEVANCE FACTOR ASSOCIATED WITH DATA SOURCEX. 

4 
5 
6 

Average 

I 0.91672 0.89251 I i '  I n 9x540 I 0,90876 . ... ~ 

0.91018 0.88908 
0.91298 0.89215 
0.91682 0.8936 
0.91896 0.89568 

. -  . . . e . .  . . . . . . . *. 
. * .  . . ...**.. . . . ,. *.r... .... e. * 

$j;@::,.....*.. *.... -. .... .,.*: : . . 
* * ..... ...*. . . .. . .' . . 

* .  . . e * .  

. . .  
... - .  

(a) Nested spirals: (b) Nested spirals: test 
training set I set 

Fig. 1. Two nested spirals 

for 1000 training patterns, above 0.88033, the value obtained 
when using only the 1000/3 correct samples from source A to 
train the FAMR. 

C. Learning to tell iwo spirnls apart 
The two spirals [I31 make three complete turns in the plane, 

totaling 194 points (the training set.) For the test set, we added 
Gaussian noise centered in each point, with standard deviation 
0.1. The train and the test set are represented in Fig. I(a) and 
Fig. 1 (b), respectively. 

Each Gaussian cluster contains 20 points giving a total 
number of 3880 test patterns. The number of ART, categories 
is 82, and the test set recognition rate has an average value 
of 94.55% (using five differents test sets), while the clusters 
are fairly close. As justified in [6], the Brier score is an un- 
derestimate of FAMR uerformance because it does not reflect 

Fig. 2. Two bidimensianal overlapping Gaussian distribulions, 

Using the FAM architecture [6], the authors reported an 
average Brier score of 0.984 using 1000 training patterns. The 
average number of ART, categories is reported to be 8. For 
a Maxnode strategy, the system evolved to 20 categories and 
a Brier score of 0.979. 

We trained the FAMR for this benchmark. The initial value 
for po was set to 0.7 and pab was set to 0. First, we used 
a constant relevance factor 1, and obtained the average Brier 
score 0.894, and an average number of 6.85 ART, categories. 
It would be unfair to compare directly our results to the results 
in [6] since, in our experiments, the training set was processed 
on-line. In [6], the order dependence problem was alleviated by 
retraining the system on different permutations of the training 
set. 

Second, we chose a relevance factor inversely proportional 
to the distance between the pattern and the line bisecting the 
segment of the two Gaussian centers. This way, we payed 
more attention to training patterns with high classification 
uncertainty from the overlapping area of the classes. The main 
idea is how to make use of additional knowledge (the Gaussian 
centers) in  the learning phase. We did not obtained a significant 
improvement and we believe that a deeper investigation is 
necessary here. This problem is interesting because it is 
connected to learning in hybrid systems, where explicit rules 
are mixed with learning from examules. - 

the network's ability of recomposing the complex underlying 
eeometrical shane. E. Landsnt satellite images 
', 

D. Two Gaussinns 
This test [6] consists of estimating the posterior probability 

of input patterns from two normally distributed overlapping 
classes (Fig. 2.) The input points are located inside the unit 
square and they are drawn from two Gaussian distributions 
centered in p, = (0.5,0.75) and fi2 = (0.5,0.25), with 
covariance matrix 

This part of the experiments was concerned with classifica- 
tion of Landsat satellite images as used in Statlog project 1141. 
The dataset can be obtained from UCI Repository of Machine 
Learning Databases and Domain Theories [I51 and consists of 
subsections of a scene drawn from the original satellite images. 
The measurements comprise the intensities of four spectral 
bands from the same scene. Given these values, the purpose 
is to predict the target output of a pixel as belonging to one 
of the six classes. This is a challenging benchmark problem 
because of the noisy images. Each input pattern has 36 integer 
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TABLE 111 
PEPFORM,ANCEFOR THE LANDSATDATA. T H E  FAM RESULTS A R E T H O S E  

REPORTED I N  [ I71 A N D  THE PFAM RESULTS A R E  FROM 1 161. THE PFAM 
RESULTS ARE OBTAINED ON MULTIPLENETWORKS. 

Algorithm’ 

No. of ART. Categones 

No. of ART. Cateeorier 
- L 1  

Test set recognition rate (70) I 81.45 I 87.5 
NO. of ART, Categories I 40 1 340 

value attributes. The training set contains 4435 samples and 
the test file has 2000 samples. 

Lim and Harrison [I61 used this dataset to compare PFAM’s 
performance to that from [17]. In their off-line experiments 
training patterns were randomized to produce different order- 
ing sets. Each set was used to train a different PFAM network. 
In the prediction mode, the results were averaged across five 
individual networks. 

In order to test the FAMRs incremental learning ability, we 
did not use different orderings of the training set as in [16] 
and the original data was trained on a single network. Thus, 
we did not eliminate the order-dependency. 

For values of p a  (pa is the initial value for p.) close to the 
ones used in [161, [17], the results (test set recognition rate, 
number of ART, categories) are reported in Table 111. 

The results are rather good, compared to those from [16], 
taking into consideration that the decision of only one system 
was used. For instance, for p ,  = 0, the test set recognition 
rate was close to the one reported in [16], but for a smaller 
number of ART, categories, and also for an incremental (not 
off-line) training. 

The trade-off between a high recognition rate and a small 
number of ART, categories is generally better in the case of 
FAMR than in the case of FAM and PFAM. 

v. CONCLUSIONS AND FUTURE WORK 

The Mapfield algorithm developed here expands the range 
of FAM applications by allowing us assignation of a relevance 
factor to each training pair. The FAMR probability estimation 
is computationally simple and converges with probability one 
to the posterior probability. When the initial relevance is zero 
and all other relevances are constant, FAMR is equivalent to 
PROBART. 

Compared to the FAM probability estimator, FAMR shows 
similar or better performances with respect to the Brier score, 

test set recognition rate, and number of generated nodes. As 
a classifier, FAMR favorably compares with PFAM. The true 
benefits of using FAMR may come from using a relevance 
factor assigned to the training samples, improving the quality 
of the results, especially for probability estimation. 

Usage of the mean square error (3) allows us to evaluate 
the rate of convergence. Choosing an adequate variable rele- 
vance factor can result in a faster convergence and a better 
performance of the network. This is left for further research 
work. 
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