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Abstract— An incremental, nonparametric probability estima-
tion procedure using a variation of the Fuzzy ARTMAP (FAM)
neural network is introduced. The resulted network, called Fuzzy
ARTMAP with Relevance factor (FAMR), uses a relevance factor
assigned to each sample pair, proportional to the importance
of the respective pair during the learning phase. Experiméntal
results have shown that FAMR favorably compares with FAM
and Probabilistic FAM (PFAM, defined in [1], [2]), both as a
classifier and as a probability estimator.

I. INTRODUCTION

When designing and implementing data mining applications
for large data sets, we face processing time and memeory space
problems. In this case, incremental learning is a very attractive
feature. According to [3], we define an incremental learning
algorithm as one that meets the following criteria:

1) It should be able to learn additional information from
new data.

2) It should not require access to the original data, used to
train the existing system.

3) It should preserve previously acquired knowiedge.

4) It should be able to accommodate new data categories
that may be introduced with new data.

The fundamental issue in incremental learning is: how can a
learning system adapt to new information without corrupting
or forgetting previously learned information — the so-called
stability-plasticity dilemma addressed by Carpenter and Gross-
berg [4].

In the context of supervised training, incremental learning
means learning each input-output sample pair, without keeping
it for subsequent processing.

The topic addressed in this paper is the development of
a supervised incremental learning algorithm satisfying all of
the above-mentioned criteria. Very few algorithms perfectly fit
into this description of incremental learning, The FAM family
of neural networks, having the roots in Carpenter, Grossberg,
Markuzon, Reynolds, and Rosen’s seminal paper [5] is the
best known example. A more recent neural network having
this strong property is described by Polikar, Udpa, Udpa, and
Honovar [3].

Many pattern recognition applications require an estimate
of the posterior probability P(C|a), where C is a class index
and a is an input patiern, This task also allows classification
because one can select the class C' with the maximum condi-
tional probability.

The present paper only deals with the posterior probabil-
ity estimation from data samples in supervised incremental

0-7803-7898-9/03/$17.00 ©2003 IEEE

Lucian Sasu
Department of Computer Science
Transylvania University of Bragov
Email: Imsasu@unitbv.ro

Valeriu Beiu
School of EE and CS
Washington State University, Pullman
Email: vbeiu@eecs.wsu.edu

learning systems based on FAM architectures. Such procedures
have been developed by Carpenter, Grossberg, and Reynolds
[6], and Marriott and Harrison [7].

Lim and Harrison’s PFAM [1], [2] is a hybrid FAM +
Probabilistic Neura! Network (PNN, see [8]) classifier with
incremental probability estimation capabilities: It uses the
PNN’s ability to incrementally construct an approximation of
the probability density functions (pdf) and it also uses the code
compression feature of FAM. Instead of considering every
sample pattern in estimating pdf, the clustering property of
FAM is used to obtain the centroid of each cluster. The pdf
approximation is made based on these centroids only.

This paper introduces a variation of the probability esti-
mation phase of FAM and identifies the resulted network as
FAMR to distinguish it from the original architecture, FAMR
is an incremental learning system for general classification
and nonparametric estimation of the probability that an input
belongs to a given class. The architecture of the network is
able to incrementally *grow’ and to sequentially accommodate
input-output sample pairs. Each training pair has a relevance
factor assigned to it. This factor is proportional to the impor-
tance of the respective pair in the learning process. Using a
relevance factor adds more flexibility to the training phase,
allowing ranking of sample pairs according to the confidence
we have in the information source. The training sequence may
include sample pairs from sources with different levels of
noise.

Experimental results have demonstrated that FAMR favor-
ably compares with FAM and PFAM, both as a classifier and
as a probability estimator.

In Section II, we briefly discuss how the FAM architecture
was used for probability estimation. Section III introduces our
modification of the FAM algorithm. In Section IV we present
the experimental results comparing the FAMR model to FAM
and PFAM. Section V concludes with some closing remarks.

II. FAM AS AN INCREMENTAL PROBABILITY ESTIMATOR

Carpenter, Grossberg, and Reynolds’ FAM [6] can estimate
posterior probabilities via formation and associations between
intermediate categories. We present here only the necessary
details.

FAM includes a pair of ART modules (ART, and ART})
that create stable recognition categories in response to arbitrary
sequences of input patterns. These modules are linked by
an inter-ART module called Mapfield whose purpose is to
determine whether the correct mapping has been established
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from inputs to outputs or not. The ART, and ART), vigilance
parameters p,, respectively pp, control the matching mecha-
nism inside the modules.

During learning, FAM updates its Mapfield weights to
estimate the probability that an input belongs to a given output
class: the strength of the weight projecting from the selected
ART, category to the correct ART} category is increased,
while the strength of the weights to other ART}, categories
are decreased. A Mapfield vigilance parameter p, calibrates
the degree of predictive mismatch, necessary to trigger the
search for a different ART, category. If the weight projecting
- from the active ART, category through the Mapfield to the
active ART}, category is smaller than pgy, (vigilance test), then
the system responds to the unexpected outcome through the
so-called match tracking, that triggers an ART, search for a
new input category.

Once an ART, category J is chosen, whose prediction of
the comrect ART, category is strong enough, match tracking
is disengaged, and the network is said to be in a resonance
state. In this case, Mapfield learns by updating the weights of
associations between ART, and ART) categories. According
to this updating scheme, weight w“}; is a non-decreasing
function of the frequency of associations between the jth
ART, category and the kth ART}, category during the training
phase.

This last feature is made more explicit in PROBART [7],
where Mapfield weight w?} is exactly the frequency of asso-
ciations between the jth ART, category and the kth ART}
category. Therefore, wjb/ Fw;b| is the empirical estimate of
the posterior probability P(k|j) that ART category 7 is
associated to AKRT}, category k.

I, THE FAMR ALGORITHM
A. A probability estimation procedure

A stochastic approximation procedure described in [9] is
introduced and new theoretical results are developed. Let us
congider a sequence of independent experiments according
10 the finite probability distribution P(a1),..., P(as)}, where
P(a;) 2 0 is the probability of outcome a;, 3.1, Plai) =
L. These objective probabilities are not known and will be
estimated at each step based on the previous observations. A
criterion for a qualitative differentiation of the experiments is
represented by the relevance associated to each experiment.
The relevance gy is a real positive finite number directly
proportional to the importance of the experiment considered at
step t {t = 1,2,...}. This number may be either of objective
or subjective nature.

The following estimation procedure makes use of both
the results and the relevances of the present, and previous
experiments.

The subjective probability of outcome a; (i = 1 ..,m) at
step ¢ (t = 1,2,...) is given by:
t
(QOwo(az) + G’s5s(ai))
wi(aq) = = 4))

Q:

where: if at step ¢ we get outcome a;, 6:{e;) = 1 and §,(a;) =
0 for j # 4, woela:) > O is the initia) subjective probability,
Z%__l wola;} = 1; go > 0 is the initial relevance, and Q; =
zs——U qs-

Ateachstep ¢t (t =0,1,.. .) we have a probability vector
with wy(a;) 20 (i =1,...,n), 10 wifa;) = 1.

Relation (1) can be rewritten in a recursive form:

welai) = wi—1(as) + Ay (0(a:) — we1{a;)) (2)

where A: = ¢/Q: (£ = 1,2,...). The following result is from
[9]:
Theorem 1: wy(a;) L P{a;) in probability iff Q; - cc.
Consequently, w;(a;) is a correct biased estimator of P(a;)
Iiff §+ — oo. Further analysis of the estimate can be made if
we compute the mean square error:

ar(ai) = (1 - Ae) e 1(ai) + Plea)(1~ Plai)) 47 (3)

where o(0:) = E{w(a;) — P(e;))?. This expression gives
us the possibility of evaluating the rate of convergence.

For some additional conditions imposed to ¢, the dlrect
result can be strengthened:

Theorem 2: If qo € [0,b], ¢ € [a,b] (¢t = 12 ..}, for
two real values 0 < a < b < oo, then wy(a;) -5 P(al) with
probability one.

Sketch of proof: Equation (2) can be rewritten as a Robbins—
Monroe process. The proof is based on the Stochastic Approx-
imation Theorem.

In practice, the above restriction imposed 10 ¢, does not re-
strict our estimation procedure. The meaning of the conditions
in the previous theorems is: an observer who intends to learn
objective probabilities from examples has to have sufficient
conﬁdence in the results of the experiences.

Let wt( (a;) be the subjective probabilities at step ¢ (¢t =
1,2,...}, for n possible outcomes. What is happening if at
some step we get a new oufcome, ap4,? Assuming we have
w(g {a;) = 1I/m (& = 1,.
probabilities wE"H)(a i) for n + 1 possible outcomes may be
obtained by the following relations:

.,n), then the new subjective

w" (@ner) = a0/ (n+ Qe
wi"H)(ai) = wgn)(ai) - winﬂ)(anﬂ)/n, i=1,2,... ,n(4)

Relations (4) will be used in the dynamic allocation of
ART, categories (Step 2 in Algorithm 1.)

B. The FAM modification

A modification of the FAM, named FAMR, that enhances
the probability estimanon ability of FAM is presented.
Mapfield weight w? k can be considered an estimate of the
posterior probability P(k|j). This enables us to use formula
(2) to update the weights w;‘f‘c:
ab{old}

Wy ifj#J
wzf;{new) ab o!d) + At(l (old)) .
”W“u At} itk #K
(%)
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Is w?}c’ a good estimate of P(Iy|la), where I, and Iy
are intervals based around input pattern a and output pattern
b, respectively? As depicted by Marriott and Harrison the
feedback via match tracking alters this estimation [7]. One
way 1o avoid this problem is to eliminate match tracking. This
approach is used in PROBART and ensures that a given input
to ART, will always select the same category. Meanwhile,
eliminating match tracking allows for one-to-many mapping
between ART, and ART), categories, which may be important
in sitvations where more than one action result from a single
input [7].

If the conditions in Theorem 2 are fulfilled and match
tracking is not used, then for each ART, category j (j =

.,N,) and each ART, category k (k = 1,..., Np) we
have:

wip—P(k|j) with probability one. 6

Match tracking can be avoided by setting p,p = 0. Elimi-
nating match tracking is not always convenient, because match
tracking controls category proliferation in ART,. On the other
hand, one could hardly say anything about this probability
approximation in the presence of match tracking, since in this
case w“f is not necessarily a good estimate of the posterior
probability with respect to the already processed data. A
smaller value for pgp results in a better approximation. For
Pab = 0 the approximation is statistically correct. However, in
our experiments, match tracking has not significantly altered
probability estimation.

Let Q be the vecior [ ...Qn,]. No and Ny are the
number of categories in ART, and ART}, initialized to 0,
respectively. For incremental learning of one training pair, the
new procedure in Mapfield is given in Algorithm 1.

Since we initialize the weights 'w;f; with 1//Ny and not with
1, we have to modify the vigilance test. The new test is:

Ny w%e > pap (7

The rest of the FAM mechanism remains unchanged. The
resulted algorithm will be called FAMR (Fuzzy Artmap with
Relevance factor.) In [10], we have introduced a probability es-
timator based on a restricted FAMR version, where estimated
probabilities are strictly positive.

For pas = 0 (no match tracking), go = 0 g = q, 0 <
g <00 (t=1,2,...), probability estimate w2} is exactly the
empirical estimate of the posterior probability P(k{j). This
can be observed from the nonrecursive formula (1). Therefore,
PROBART is a particolar case of FAMR.

In our experiments, since we have used relatively large
training sets, the influence of the initial values (probabilities
and relevance) was insignificant. We have set go = 1 for
all experiments. The initial probabilities in Algorithm 1 are
equal. Generally, the initial values can influence the stability
of the system (i.e., how fast it learns), especially for the first
iterations,

Step 1. Accept vector pair (a, b) with relevance factor g.
Step 2. If necessary, create category K in ART):
Ny=Np+1
K=N,
if Np > 1 then -
wik = mig; forj=1,..., N
{append new compnnent to w2}

;‘f;: jk —J—fork—l
j=1,. {nonnallze}
endif
Step 3. If necessary, create category J in ART,:
No=Ng+1
J=N,
Qs = go {append new component to Q}
ka—l/Nbfork~1 LV
{append new line to w“b}
Step 4. J, K are winners or new added nodes.
if vigilance test (7) is passed then
{learn in Mapfield}

LK -1,

Qs=Qy +q

wih = wik + g5 (1 - wik

wi =wR (1- &) fork=1,..,No k# K
else

perform match tracking and restart from step 3
endif

Algorithm 1: One iteration in the new Mapfield algorithm

C. Application areas of the relevance factor

Ranking the importance of training examples in neural com-
puting has been considered by several authors. Gallant uses
an importance factor attached to each training sample [11].
Proportional to the importance factor, additional duplicates of
each training sample are created.

In FAMR, using a relevance factor is not equivalent to
repeatedly present a training sample to the system: the varia-
tion of w5% values is finer than in the case of repeating the
presentatlon of the training pair, since the relevance factor can
be a real value. Second, learning is faster, because we can
learn in one step instead of repeatedly learning the same pair.

How to assign a relevance factor to a training sample? An
answer could reside in ranking the sample pairs according to
the (subjective) confidence we have in the information source,
Two application areas are considered for such learning systems
with relevance factor:

1. When training neural networks with noisy data, a rel-
evance factor could be assigned to each learning pattern,
inversely proportional to the noise. Let us suppose that we
have a training sequence consisting of two sample pairs:
(a1 = 0.1,classindexr(a;) = 1) with g¢ = 1, and
(az = 0.3,classindex({as) = 2) with g2 = 1. We as-
sume that class_index{a,) is a correct association, whereas
class_index(agz) is a noisy association (that should be 1.)
After two iterations in the FAMR algorithm, assuming that
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only one ARTa category 1s generated, the new probability

vector will be
wit = (0.5 0.5] (8)

If we perform FAMR training with ¢; = 2 and ¢ = 1 (the
first pair is more relevant than the second one), we obtain:

w = [0.62 0.37] _ 9)

Let us classify pattern as. The second trained network
makes a better prediction, indicating class 1 with the highest
probability. In this example, the relevance factor acts as a noise
filter.

2. Training pairs are usually randomly selected. However,
it seems reasonable to expect that if correctly classified
examples are chosen near the decision boundaries then the
classifier will learn the boundaries better. This conjecture
has not been significantly explored, most probably because
the true boundaries are usually unknown at the beginning of
the training. Assuming we can generate points close to the
boundary, we could assign a relative higher relevance factor
to this samples. There are experimental results. reported [12]
showing that choosing examples from the boundary area does
not necessarily lead to better classification performances. That
remains an open area for further investigation.

IV. EXPERIMENTS AND RESULTS

A suite of experiments were performed to test the FAMR’s
ability for probability estimation and classification, compared
to FAM and PFAM. The classification was made based on
the probability estimation by hard-decision: an input pattern
belongs to the category with maximum posterior probability.
The performance of the probability estimator was quantified
by an average Brier score. The Brier score measures the
quality of the probability estimation by comparing it to the
real conditional probability [6]. The score u(g,p) is a function
of the estimated probability ¢ and the true probability p:

u(g,p) =1~ (g —p)* (10)

We have used only incremental learning, though the network
is able to improve its performance using off-line processing,
when the training set is reprocessed, or using Multiple Classi-
fier Systems. Unless otherwise specified, the used relevance
factor was 1. In the prediction phase, we took p, =
thus, any input pattern is assigned to an ART, category and
subsequently to an output class.

A. Circle-in-the-square

This problem requires a sysiem to identify which points of
a square lie inside and which lie outside a circle whose area
equals half that of the square. Patterns were generated inside
the square using an uniform distribution for each coordinate.
The points were classified according to their position relative
to the circle, whose center coincides with the center of the
square. Thus we have two classes of points: points located
inside the circle and points located outside the circle. For
computing the Brier score, 1000000 evenly spaced points were
generated inside the square.

. TABLE I
CIRCLE-IN-THE-SQUARE: AVERAGE VALUES OF ARTy CATEGORIES
NUMBER AND TEST SET RECOGNITION RATE FOR FAMR COMPARED TO
RESULTS FROM [5]. THE FAMR RESULTS REPRESENT AVERAGE VALUES
FOR 5 DIFFERENT TRAINING SETS.

Train size | ART, calegories number | Test set recognition rate (%)
FAMR Carpenter [3] FAMR Carpenter [5]
1000 18.2 21 930 92.5
10000 45.2 50 56.8 96.7
100000 111.6 121 98.1 98.0

The training sets contained 1000, 10000, and 100000 pat-
terns. The test set consisted of 100000 patterns in each case.
For each training set size, five different training sets were
generated and the average Brier score was computed at the end
of every training phase. The number of A R7, categories was
at most as large as reported in [5], but the performance was
superior. The results for the three training sets are presented in
Table I. As expected, the test set recognition rate and the Brier
score increased with the number of training patterns from an
average value of-93.0% and 0.9327 (for 1000 training pat-
terns) to 98.1% and 0.9810, respectively (for 100000 training
patterns.)

B. Noisy circle-in-the-square

We used a modified version of the circle-in-the-square prob-
lem in order to test the effectiveness of the relevance factor. We
considered three data sources (called A, B, C), each of them
producing the same humber of training samples. Each source
has an associated probability (pa, pg. and pc, respectively)
of producing wrong associations. We took (pa,ps,Pe) =
(0,0.2,0.35}. First, the relevance factor g; was set to 1, for
each information source. The average Brier score obtained for
6 different data sets was 0.89568. Subsequently, we considered
different relevance factors, in accordance to the noise level of
the three sources: (g4,qm,q0c) = (100,10,1), where gy is
the relevance factor associated with the data source X. The
average Brier score obtained for the 6 different data sets was
0.91896, higher than the previous case (Table II.) The total
number of training patterns was 10000 for each experiment,
and the Brier score was computed for 10000 points evenly
distributed inside the square.

Correlating the relevance factors to the degree of confidence
in each data source resulted in higher performances for the
system. The relatively small value of the average Brier score
is explained by the presence of noise.

In order to prove the advantage of taking into account
supplementary data sources, though these sources were noisy,
we developed another experiment. This experiment proved
more relevant when the number of available correct train-
ing samples was relatively small. First, we have generated
1000 associations using three data sources (A, B, C), each
with the same probability of producing training patterns,
(pa,ps,pc) = (0,0.2,0.35), and (g4, g8, gc) = (100,10,1).
The average Brier score for different training sets was 0.88370
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TABLE 11
_ AVERAGE BRIER SCORE FOR NOISY CIRCLE—IN-THE-SQUARE
ASSOCIATIONS. (pa, 05, pc) = (0,0.2,0.35), WHERE px 1S THE
PROBABILITY THAT DATA SOURCE X GIVES WRONG ASSOCIATIONS. gx 15
THE RELEVANCE FACTOR ASSOCIATED WITH DATA SOURCE X.

Test Average Brer score S
no. gA,98.9c) = (106, 10,1) [ (94,98,9c) =(1,1,1)
1 092164 0.89810
2 0.91672 0.89251
3 0.93540 0.90876
4 0.91018 0.88908
5 0.91298 0.89215
6 0.91682 0.89346
Average 0.91896 0.89568

{a) Nested spirals: (b} Nested spirals: test
training set . set
Fig. 1. Two nested spirals

for 1000 training patterns, above 0.88033, the value obtained
when using only the 1000/3 correct samples from source A to
train the FAMR.

C. Learning 1o tell two spirals apart

The two spirals [13] make three complete tirns in the plane,
totaling 194 points (the training set.) For the test set, we added
Gaussian noise centered in each point, with standard deviation
0.1.-The train and the test set are represented in Fig. 1(a) and
Fig. 1(b), respectively. .

Each Gaussian cluster contains 20 points giving a total
number of 3880 test patterns. The number of ART, categories
is 82, and the test set recognition rate has an average value
of 94.55% (using five differents test sets), while the clusters
are fairly close. As justified in [6], the Brier score is an un-
derestimate of FAMR performance because it does not reflect
the network’s ability of recomposing the complex underlying
geometrical shape.

D. Two Gaussians

This test [6] consists of estimating the posterior probability
of input patterns frem two normally distributed overlapping
classes (Fig. 2.) The input points are located inside the unit
square and they are drawn from two Gaussian distributions
centered in puy = (0.5,0.75) and pu2 = (0.5,0.25), with

covariance matrix
_ ({0157 0
= ( 0 0.152) (h

Fig. 2. Two bidimensional overlapping Gaussian distributions.

Using the FAM architecture [6]. the authors reported an
average Brier score of 0.984 using 1000 training patterns. The
average number of ART, categories is reported to be 8. For
a Maxnode strategy, the system evolved to 20 categories and
a Brier score of 0.979. ‘ ‘

We trained the FAMR for this benchmark. The initial value
for p, was set to 0.7 and p,, was set to 0. First, we used
a constant relevance factor 1, and obtained the average Brier
score 0.894, and an average number of 6.85 ART, categories.
It would be unfair to compare directly our results to the results
in [6] since, in our experiments, the training set was processed
on-line. In [6], the order dependence problem was alleviated by
retraining the system on different permutations of the training
set.

Second, we chose a relevance factor inversely proportional
to the distance between the pattern and the line bisecting the
segment of the two Gaussian centers. This way, we payed
more attention to training patterns with high classification
uncertainty from the overlapping area of the classes. The main
idea is how to make use of additional knowledge (the Gaussian
centers) in the learning phase. We did not obtained a significant
improvement and we believe that a deeper investigation is
necessary here. This problem is interesting because it is
connected to learning in hybrid systems, where explicit rules
are mixed with learning from examples.

E. Landsar satellite images

This part of the experiments was concerned with classifica-
tion of Landsat satellite images as used in Statlog project [14].
The dataset can be obtained from UCI Repository of Machine
Learning Databases and Domain Theories [15] and consists of
subsections of a scene drawn from the original satellite images.
The measurements comprise the intensities of four spectral
bands from the same scene. Given these values, the purpose
is to predict the target output of a pixel as belonging to one
of the six classes. This is a challenging benchmark problem
because of the noisy images. Each input pattern has 36 integer
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PERFORMANCE FOR THE LANDSAT DATA. THE FAM RESULTS ARE THOSE
REPORTED IN [17] AND THE PFAM RESULTS ARE FROM [ 16]. THE PFAM

TABLE Il

RESULTS ARE OBTAINED ON MULTIPLE NETWORKS.

test set recognition rate, and number of generated nodes. As
a classifier, FAMR favorably compares with PFAM. The true
benefits of using FAMR may come from using a relevance
factor assigned to the training samples, improving the quality
of the results, especially for probability estimation.

Usage of the mean square error (3) allows us to evaluate
the rate of convergence. Choosing an adequate variable rele-
vance factor can result in a faster convergence and a better
performance of the network. This is left for further research

Algorithm’ [ 7, =00]5,=09
FAM Test set recognition rate(%) 83.0 89.0
No. of ART, Categories 89 704
PEAM | Test set recognition rate (%) 814 89.0
No. of ART, Categories 87 518
FAMR | Test set recognition rate (%) 81.45 87.5
No. of ART, Categories 40 340

value attributes. The training set contains 4435 samples and
the test file has 2000 samples.

Lim and Harrison [16] used this dataset to compare PFAM’s
performance to that from [17]. In their off-line experiments
training patterns were randomized to produce different order-
ing sets. Each set was used to train a different PFAM network.
In the prediction mode, the results were averaged across five
individual networks.

In order to test the FAMR’s incremental learning ability, we
did not use different orderings of the training set as in [16]
and the criginal data was trained on a single network. Thus,
we did not eliminate the order—dependency.

For values of p, (7, is the initial value for p,) close to the
ones used in [16], [17], the results (test set recognition rate,
number of ART,, categories) are reported in Table III.

The results are rather good, compared 1o those from [16],
taking into consideration that the decision of only one system
was used. For instance, for g, = 0, the test set recognition
rate was close to the one reported in [16], but for a smaller
number of ART, categories, and also for an incremental (not
off-line) training.

The trade-off between a high recognition rate and a small
number of ART, categories is generally better in the case of
FAMR than in the case of FAM and PFAM.

V. CONCLUSIONS AND FUTURE WORK

The Mapfield algorithm developed here expands the range
of FAM applications by allowing us assignation of a relevance
factor to each training pair. The FAMR probability estimation
1s computationaily simple and converges with probability one
to the posterior probability. When the initial relevance is zero
and all other relevances are constant, FAMR is equivalent to
PROBART.

Compared to the FAM probability estimator, FAMR shows
similar or better performances with respect to the Brier score,
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