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Abstract :  
Da ta  from most  industrial processes contain contributions at  multiple scales in t ime 
and frequency. In contrast,  most  existing methods for fault detection are best  for 
detecting events at only one scale. This paper  provides experimental  validation and 
insight into a new method of process fault detection based on the integration of 
multiscale signal representat ion and scale-specific clustering-based diagnosis. The  
multiscale ART-2 (MSART-2) algorithm models normal process operation as clusters 
of wavelet coefficients at different scales. It  detects a process change when one or 
more wavelet coefficients of test  da ta  violate similarity thresholds with respect to 
clusters of normal  da ta  at tha t  scale. Especially in industrial situations where the 
nature  of the abnormal  features is not known a priori, MSART provides bet ter  
average performance due to its ability to adapt  to the scale of the features. In 
contrast  to most  other multiresolution schemes, this framework exploits clustering 
behavior  of wavelet coefficients of multiple variables for the purpose of scale selection 
and feature extraction. Detailed performance comparisons, based on rigorous Monte- 
Carlo simulations as well as industrial da ta  from a large scale petrochemical  process, 
are provided. Our results show tha t  MSART-2 significantly improves the detection 
performance of the ART-2 detection algorithm over a broad range of process 
anomalies. Results are compared with single-scale and multiscale versions of PCA 
for benchmarking purposes. 

Keywords: Wavelets, Adaptive Resonance Theory (ART), Principal Component  
Analysis (PCA),  Process Monitoring and Fault Diagnosis 

1. I N T R O D U C T I O N  

In an environment  where most  process maneuvers  
are au tomated ,  algori thms to detect and classify 
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abnormal  trends in process measurements  are of 
critical importance from the point of view of safe 
and economical plant operation.  These algorithms 
use information extracted from previously anno- 
ta ted process da ta  for predicting, preferably in 
real time, the s tate  of the process when only unan- 
notated measurements  are available. This task is 
referred to as fault diagnosis or anomaly detection 
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and isolation in the statistical process monitoring 
community. Clearly, one can draw close parallels 
to the above objective from fields as diverse as 
e-commerce (fraud detection), network security 
(intrusion detection), and wireless communication 
(signal detection). It is not surprising, then, that 
algorithms designed for each of these varied ap- 
plications often rely on the same repository of 
pattern recognition/statistical modeling methods, 
such as neural networks and PCA, for learning 
the characteristics of the data. This work focuses 
on one such method, namely Adaptive Resonance 
Theory (ART), and reports significant perfor- 
mance gains in terms of faster, noise-tolerant de- 
tection under the proposed multiscale framework. 
The current work, however, is not specific to ART 
and has the potential to benefit other parallel ap- 
plications across different domains and modeling 
methods listed above. 

Common approaches to fault detection can be 
classified as causal analysis-based or clustering- 
based. Causal analysis-based approaches oper- 
ate on discretized or fuzzified measurements and 
residuals. Examples of methods belonging to this 
category are the signed directed graph approach, 
fault tree approach, belief networks, etc. These 
methods model the fault-symptom relationship as 
a directed causal link (Wilcox and Himmelblau, 
1994; Park and Seong, 1994; Qian, 1990; Yu and 
Lee, 1991; McDowell et al., 1991). The links can 
be used to model qualitative and semi-qualitative 
relationships as well as logical and probabilistic 
relations. They are primarily used for fault iden- 
tification. For example, a signed directed graph 
(SDG) represents the system state variables and 
malfunctions as nodes that are joined by arcs that 
represent the causal relationships. Fuzzy logic is 
often used in these architectures to represent the 
uncertainty and the graded presence or absence 
of faults. Bayesian Belief Networks are also one 
of the successful approaches (Rojas-Guzman and 
Kramer, 1994). 

In contrast, clustering-based approaches are based 
on the observation that most real-world large- 
scale industrial processes, by their inherent na- 
ture, are not precisely defined in the space of 
sensor measurements. Within a loosely defined 
region, any given process may follow any of the 
several possible paths depending on a large num- 
ber of known or unknown factors. There may 
exist several such regions, possibly disjoint, be- 
cause of factors such as various combinations of 
input feed characteristics, changes in the desired 
nature of output, variations in the environmental 
conditions, and so on as shown in Figure la. 
Clustering-based models approximate these com- 
plex, multivariate modes of operation as regions 
in sensor space as opposed to deriving a precise 
functional relationship and are, thus, well suited 

for diagnosis of industrial processes (Whiteley et 
al., 1996; Kavuri and Venkatasubramanian, 1993) 
and form the basis of this work. 

1.1 ART-based  Fault Detect ion 

The ART family of networks (Carpenter and 
Grossberg, 1987; Carpenter et al., 1991c; Carpen- 
ter et al., 1991a; Carpenter et al., 1991b; Car- 
penter et al., 1992) includes some of the few 
clustering algorithms that explicitly address the 
issue of stable adaptation and incremental learn- 
ing with changing process behavior. Typical real 
world processes often drift from one operating 
regime to the other, exploring previously unknown 
equilibria in response to the ever-ch~ging envi- 
ronment. When new information is available in 
terms of the latest process data, an ART-based 
fault detector can choose to modify its current 
clusters or add new clusters. This incremental 
modification takes place in a way which ensures 
that the network remains stable as well as capable 
of adaptation to the changing process conditions. 
ART and ARTMAP-based networks have been 
investigated for process modeling and diagnosis of 
multivariate chemical data by several researchers 
such as Wienke and co-workers (Wienke and Buy- 
dens, 1995; Wienke and Buydens, 1996; Wienke 
et al., 1996), Hopke and co-workers (Song et 
al., 1998), as well as Wang and co-workers (Wang 
et al., 1999), in addition to the previous work by 
the authors (Whiteley and Davis, 1992) (Figure 
lb). 

ART-based clustering algorithms are especially 
sensitive to noise because of the inherent fea- 
ture enhancement ability of ART coupled with 
the ability to remember rare events. The work 
by Frank et. al. (Frank et al., 1998) studied the 
clustering performance of fuzzy ART and ART- 
2 in the presence of noise and concluded that 
responsiveness to novel behavior can lead to non- 
optimal mapping because of the uncertain dis- 
tinction between "novelty" and "noise". Thus, the 
properties of Adaptive Resonance Theory that led 
to advantages in a noise-free environment do not 
necessarily offer similar benefits for noisy map- 
pings (Marriott and Harrison, 1995). Several ART 
and ARTMAP variants have been proposed in the 
past to tackle this issue. The PROBART network 
proposed by Marriot and Harrison (Marriott and 
Harrison, 1995) stores probabilistic information 
about the node associations between ART layers 
to achieve a better performance in noisy map- 
pings. A modified ARTMAP by Lim and Harrison 
(Lim and Harrison, 1997) was shown to approach 
Bayes optimal classification rates. The work by 
Srinivasa (Srinivasa, 1997) proposed a PROBART 
variant that improved its generalization ability in 
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the context of high noise. Gaussian ARTMAP 
by Williamson (Williamson, 1996) combined a 
Gaussian classifier and an ARTMAP network by 
appropriately changing the definitions of ART 
choice and match functions. Recently, Wang and 
co-workers (Wang et al., 1999) have proposed the 
use of wavelet feature extractors in place of the 
original data preprocessing and feature enhance- 
ment units within ART-2. 

The current work approaches the problem of noise 
in ART mappings of digital signals in a manner 
fundamentally different than the research efforts 
discussed above. The proposed multiscale hierar- 
chy of ART networks does not modify the inter- 
nals of ART-2 in any way. As a result, the benefits 
of our mechanism are likely to be applicable even 
if any of the above ART variants were used as the 
basic unit of the hierarchy. Indeed, previous appli- 
cations of our multiscale hierarchy have illustrated 
significant improvement in the performance of lin- 
ear diagnosis methods based on PCA, Dynamic 
PCA, and a univariate Neyman-Pearson (NP) 
classifier (Bakshi, 1998; Bakshi et al., 1999; Kano 
et al., 2002). For an ideal case of a univariate 
Ganssian IID signal, the NP classifier can be theo- 
retically proven to yield higher detection accuracy 
over a broad range of mean shifts if used with the 
proposed hierarchy (Aradhye et al., 2000). This 
work combines the advantages of ART networks 
such as the ability to model nonlinear, disjoint 
process mappings and the incremental training 
ability with the benefits offered by multiresolution 
processing such as noise tolerance and quicker as 
well as more robust detection of events. 

1.2 Wavelet Decomposition and Change Detection 

Wavelets and multiresolution signal analysis (Mallat, 
1989; Strang, 1989) have triggered developments 
in a range of process systems engineering re- 
lated domains such as trend extraction (Bakshi 
and Stephanopoulos, 1994), process modeling 
(Palavajjhala et al., 1996), sensor validation (Luo 
ct al., 1998), noise reduction (Palavajjhala et 
al., 1996), etc. Advantages of these applications 
arise from the fact that most naturally occurring 
process signals are, in effect, a combination of var- 
ious signal components corresponding to different 
events occurring at different localizations in time 
and frequency (Figures 2a and 2b). For example, 
equipment degradation occurs over wide time in- 
tervals and low frequencies. In contrast, sensor 
noise is spread across all frequencies and times. 
Events such as equipment failures are sharp, sud- 
den changes that are localized in time but display 
components across all frequencies. As a result, 
specialized processing of the signal at different 
scales benefits tasks such as noise filtering and 
diagnosis. 

A large body of published literature has inves- 
tigated the use of wavelets for various forms 
of change detection. For example, the work by 
Crouse et. al. (Crouse et al., 1998) proposed 
a wavelet-domain Hidden Markov Model for 
univariate statistical signal processing. Swami, 
Sadler, and co-workers (Sadler et al., 1998; Sadler 
and Swami, 1999; Sadler and Swami, 1998; Swami, 
1996; Swami and Sadler, 1998b; Swami and Sadler, 
1998a) have presented multiscale methods for 
step detection and estimation. Other researchers 
(Denjean and Castanie, 1994; Chou and Heck, 
1994) have investigated wavelet-based shockwave 



116 H.B. Aradhye et al. / Annual Reviews in Control 26 (2002) 113-127 

i r , ,  F r i i i i , 
i ~ I 

! I I 
i ~ 1  I E q u i p m e n t  

] I I 

/ I S e n s o r  
I ; F a i l u r e  

I E q u i p m e n t  [ 
I F a i l u r e  ; 

', 
I D i s t u ~ a n c e  

P r o c e s s  

S i g n a l  

; I 

i N i I i  i i , 

(a) Scales of Signal Components of a Typical Process 

Fig. 2. Multiresolution Analysis of a Typical Process 

detection, mean value jump detection, monitoring 
of mechanical systems, and so on. These appli- 
cations of multiresolution methods,  including this 
work, are based on selection of wavelet coefficients 
for the purpose of retaining as much of the un- 
derlying process signal- and as little of the noise- 
as possible. Unlike these previous developments, 
however, the proposed multiscale hierarchy ex- 
ploits clusters of wavelet coefficients of multiple 
process variables to provide a systematic way of 
selecting the most  relevant scales. Because of fun- 
damental  functional relationships such as process 
chemistry, energy and mass balances, measure- 
ments in mult ivariate processes are correlated. 
If these intervariable correlations are linear, the 
resulting wavelet coefficients will be linearly cor- 
related as well (Bakshi, 1998). Similarly, if the 
process variables are non-linearly correlated, the 
wavelet coefficients will be non-linearly correlated. 
The current work proposes to take advantage of 
these correlations and clustering behavior in the 
wavelet space for higher detection accuracy cou- 
pled with noise reduction. 

2. BACKGROUND 

2.1 Adaptive Resonance Theory 

ART-2 is an unsupervised clustering mechanism 
proposed by Carpenter  and Grossberg (Carpenter 
and Grossberg, 1987). Conventional clustering al- 
gori thms were designed to be synthesized off-line 
and lack the mechanism to adapt  to dynamically 
evolving patterns.  The objective of the analog 
ART-2 network is to "self-organize stable pat-  
tern recognition codes in response to arbi t rary  
sequences of input pat terns" .  I t  imparts  human- 
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Equipment Failure 
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like memory at tr ibutes which result in signifi- 
cant information management  and system main- 
tenance benefits. Later developments in the ART 
family of algorithms, such as ARTMAP and Fuzzy 
ARTMAP (Carpenter et al., 1991c; Carpenter  et 
al., 1991a; Carpenter  et al., 1991b; Carpenter  et 
al., 1992), extended the basic principles of adap- 
tive resonance for the purpose of supervised clas- 
sification and function approximation.  

For the purpose of diagnosis, the ART input space 
corresponds to the measurements  of multiple pro- 
cess variables available at any time. Functional 
dependencies and constraints across process vari- 
ables can be modeled as clusters of training da ta  
in this space: the underlying assumption being 
tha t  abnormal behavior violates either these func- 
tional dependencies or the operating constraints. 
In either case, measurement  vectors corresponding 
to anomalous behavior lie outside the clusters 
of normal data. When enough labeled da ta  are 
available about  a previously unknown abnormal  
operation, the ART-2 cluster space can be incre- 
mentally updated with prototypes  tha t  character- 
ize the new behavior. Each cluster is associated 
with a particular process behavior in the form of a 
lookup table. The output  space is thus the discrete 
space of possible diagnoses or classes. 

The similarity measure is an ART-2 distance met-  
ric used to quantify the extent of match between 
the current measurement  vector and the near- 
est cluster prototype.  A similarity measure of 1 
indicates an exact match, whereas a similarity 
measure of 0 indicates no match.  The vigilance pa- 
rameter  is a cut-off such that  a similarity measure 
greater than or equal to the vigilance is considered 
an acceptable match. A similarity measure below 
the vigilance represents an "unknown" process 



H.B. Aradhye et aL / Annual  Reviews in Control 26 (2002) 113-127 117 

condition. Implementation of ART-2 for fault di- 
agnosis by Davis and co-workers uses a variable 
number of hyper-spherical clusters which are of 
fixed size. The lack of any orientation, incremental 
training, and overlapping coverage are some of 
its features distinct from other clustering-based 
diagnosis algorithms (e.g., (Kavuri and Venkata- 
subramanian, 1993)). It has been shown to be 
able to work consistently well over a wide range 
of simulated as well as real-life process situa- 
tions (Whiteley and Davis, 1992; Whiteley and 
Davis, 1993; Whiteley et al., 1996). 

Due to the feature enhancement abilities of ART- 
2 clustering mechanism, however, an ART-2 based 
fault detector  is vulnerable to process noise. For 
example, consider a multivariate, linearly corre- 
lated, noisy simulated process shown in Figure 
3a. Abnormal operation was simulated as a mean 
shift added to all four variables from time-steps 
176 through 225. Only normal data  were used 
for training, so that  the abnormal data  were ex- 
pected to be detected as an unknown event. Due 
to noise, however, we can see that  normal and 
abnormal operations were not clearly separated. 
An ART-2 network was trained with indepen- 
dently generated normal data  and was subjected 
to the test data. At each time step, the ART- 
2 similarity measure between the current four- 
dimensional data  vector and stored cluster proto- 
types of normal data  formed the basis for anomaly 
detection. For the given test data, the ART-2 sim- 
ilarity measures versus time are shown in Figure 
3b-top. A similarity measure below the vigilance 
parameter  indicated the absence of an acceptable 
winner cluster, and hence an "abnormal" state 
(Detection Flag = 1), as shown in the bot tom 
graph. A similarity measure above the vigilance 
parameter  indicated that  a matching normal clus- 
ter was, indeed, found (Detection Flag = 0). We 
can see that  many abnormal points were classified 
as normal (missed alarms). ART-2 diagnosis for 
such a noisy mapping was, thus, not robust. There 
was one false flag. 

The use of several types of noise reduction filters, 
including wavelet-based filters, presents itself as a 
potential  solution to the above noise vulnerability. 
This solution encounters the following two prob- 
lems. First, the noise reduction or filtering step is 
clearly separated from the multivariate diagnosis 
step. The filtering step, thus, does not benefit 
from intervariable clustering behaviors that  are 
typically present in real-life multivariate processes 
as shown in Figure la.  Secondly, the diagnosis step 
is indifferent to which signal components were re- 
tained in the filtering step. To work around these 
issues, our approach integrates filtering and non- 
linear modeling for diagnosis. It also offers spe- 
cialized processing according to the scales of the 
signal components retained in the filtered signal. 

2.2 Wavelets 

A well-known representation of a family of wavelet 
basis functions is: 

o=+ 1o( ) 
= vf  ~ (1) 

where s and u represent the dilation and trans- 
lation parameters,  respectively, and @(t) is the 
mother wavelet. 

If the translation parameter  in a family of wavelets 
is discretized dyadically, u = 2ink, the wavelet 
decomposition downsamples the coefficients at 
each scale. By convolution with the corresponding 
filters, any signal can be decomposed into its 
contributions at multiple scales as a weighted sum 
of dyadically discretized orthonormal wavelets. 

y ( t )  = 

L N 

m-~--rrto k~--I 
N 

k--1 

(2) 

where, y is the measurement, m0 is the finest scale, 
L is the coarsest scale, dmk are the detailed signal 
coefficients at scale m, and aLk are the scaled 
signal coefficients. We have typically chosen mo 
to be 1 for the examples studied in this paper. 

Figure 4 illustrates the potential of wavelet de- 
composition for the task of fault detection of in- 
dustrial process signals. As stated earlier (Figure 
2a and 2b), a typical process signal is composed 
of a superimposition of several components such 
as sensor noise, disturbances, equipment degrada- 
tion, and so on. By projecting the signal at in- 
creasingly coarser levels of resolution, the wavelet 
transform allows us to analyze each of these com- 
ponents at their respective frequencies and at  the 
appropriate locations in time. Figure 4 shows suc- 
cessive approximations of the signal from Figure 
2a using Haar wavelets and dyadic discretization. 
Equipment degradation can be observed at the 
lowest scaled signal a4. Sudden events such as sen- 
sor and equipment failures can be observed across 
all detailed signals. For instance, the equipment 
failure from time-steps 35 through 40 can be seen 
at d2[10], d315], and da[3]. 

Decomposition of a signal by wavelets with dyadic 
downsampling implies that  every measurement 
cannot be decomposed as soon as it is obtained. 
This can cause a time delay in many on-line ap- 
plications of wavelets such as on-line filtering and 
statistical process monitoring. This time delay can 
be eliminated by decomposing the signal without 
downsampling, i.e., by discretizing the translation 
parameter  as u -- k. The wavelet coefficients 
lose their orthonormali ty but  permit  the devel- 
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opment of t ruly on-line multiscale methods. Our 
earlier work (Aradhye et al., 2000) has shown 
that  wavelet decomposition with downsampling 
is more useful for monitoring of highly autocor- 
related or non-stat ionary measurements, whereas, 
decomposition without downsampling is useful for 
diagnosis of uncorrelated or mildly autocorrelated 
measurements. In this work, we focus exclusively 
on transformations without downsampling as the 
emphasis here is on quick, online detection of 
faults. 
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Fig. 4. Representation of Process Signals at Suc- 
cessive Levels of Approximation 

3. ALGORITHM DESCRIPTION 

Figure 5 shows a schematic diagram of the 
MSART-2 approach for online anomaly detection. 
Given the vigilance parameter  p and the num- 
ber of scales L, the following approach allows 
us to construct  the ART-2 feature maps. Let P 
be the number of process variables in a multi- 
variate process. All the constituent networks of 
the MSART-2 scheme cluster the data  over a P -  
dimensional space of either the wavelet coefficients 
of these P variables on different scales, or the 
signals reconstructed by various combinations of 
wavelet coefficients. 

3.1 Training 

Consider an N x P matrix ytrain of normal 
training data, where N is the number of training 
samples. During the training phase, the following 
steps synthesize normal clusters and thus capture 
the normal behavior of the process. We first apply 
the 1-D wavelet transform to each of the P vari- 
ables to obtain detailed signal coefficients rain dtrr,t,p 

and the scaled signal coefficients aL,t, ptrain, where 
m = 1 , . . . , L ,  t = 2L, . . . ,N ,  a n d p  = 1 , . . . , P .  
The illustration in Figure 5 uses a wavelet de- 
composition with L = 4. We then construct L + 
1 training matrices that  contain the correspond- 
ing detailed and scaled signal coefficients. ART- 
2 clustering is applied to each of these training 
matrices independently. Let the resulting cluster 
prototypes in the wavelet domain be represented 
as ARTDm, m = 1 , . . . ,  L, and ARTAL, respec- 
tively. We thus have L + 1 ART-2 networks that  
constitute the Scale Selection Layer of wavelet- 
domain detectors. For example, Figure 5 shows 
a Scale Selection Layer composed of ARTD1,  
ARTD2, ARTD3, ARTD4, and ARTA4, which 
represent clusters of wavelet coefficients of normal 
data  at the respective scales. 

At any time t > 2 L, the signal can be recon- 
structed in 2 L+I ways, depending on which of the 
L + 1 scales were selected for reconstruction. For 
each of the 2 L+I  combinations, the coefficients 
corresponding to selected scales are retained for 
reconstruction. The remaining coefficients are re- 
duced to zeros. Inverse wavelet transform is then 
applied. In this fashion, we generate training data  
matrices of reconstructed signals for each of the 
2 L+] combinations. 

Finally, 'we apply ART-2 clustering to each of 
these reconstructed training matrices indepen- 
dently to obtain cluster prototypes and associated 
weights in signal space filtered to retain the se- 
lected combination of scales. These 2 L+I ART- 
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2 networks, A R T Y i ,  i = 1 , . . . ,  2 L+I, constitute 
the Diagnosis Layer of detectors. In Figure 5, 
diagnoses of the 5 Scale Selection networks lead 
to 25 = 32 possible ways in which the signal could 
be reconstructed. Correspondingly, the Diagnosis 
Layer in Figure 5 is composed of 32 ART-2 net- 
works, each of which represents clusters of normal 
data reconstructed in one of the 32 possible ways. 

When all scales are selected for reconstruction, 
the original signal matrix y t ~ i n  is exactly repro- 
duced for rows corresponding to t > 2 L. The cor- 
responding Diagnosis Layer network is the same as 
the network used by Whiteley and Davis (1996). 
Hence the time-domain ART-based detector is a 
special case of the multiscale hierarchy presented 
in this work. A more detailed discussion of the 
algorithm and associated examples can be found 
in (Aradhye, 2001). 

3.2 Online Testing 

Having trained the Scale Selection Layer and Di- 
agnosis Layer ART networks, we are now in a po- 
sition to carry out online detection. At each time 
t, the following steps allow us to detect abnormal- 
ities using the proposed MSART-2 approach. 

First, apply wavelet transform to decompose the 
P-dimensional signal vector y~eSt into wavelet 
coefficients "*m,t,pZeSt and aL,t,p .t~st Figure 5 shows a 
decomposition of a dyadic window of the test 
signal .,te~t into coefficients ~ s t  ~8~ and ~ t  l , t  , ' ' ' ,  4,t 
a t e s t  

4,t  • 

Each of the scale selection networks then provides 
a diagnosis at the corresponding scale, based on 
whether the similarity between the input vec- 
tor and the stored normal cluster prototypes is 
above the vigilance threshold. Only if the net- 
work A R T D m  provides an "abnormal" diagnosis, 
the coefficients mest ~m,t,v, P = 1, . . .  ,P ,  axe retained 
for reconstruction. Similarly, only if the network 
A R T A L  provides an "abnormal" diagnosis, the 
coefficients a t e s t  L,t,p are retained for reconstruction. 
For example, in Figure 5, the d2 coefficient vector 
is deemed "normal" by ARTD~.  Hence, prior to 
the application of the inverse wavelet transform, 
the d2 coefficients of all variables are reduced to 
zeros. 

Lastly, apply inverse wavelet transform to the 
wavelet coefficients selected for reconstruction. 
The vector S,~ est, comprised of the reconstructed 
values for the P process variables, is presented 
as input to one of the 2 L÷I A R T ~ I  Diagnosis 
Layer detectors corresponding to the combination 
of scales selected for reconstruction. For instance, 
the chosen Diagnosis Layer network in Figure 
5 is trained on normal data that was wavelet- 
decomposed and reconstructed without the (/2 
coefficients. Thus, the selected Diagnosis Layer 
network compares the reconstructed test signal at 
time t with prototypes of normal signals decom- 
posed and reconstructed in exactly the same way. 
The resulting "normal" or "abnormal" diagnosis 
is provided to the user. 
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3.3 Parameter  Selection 
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4. MONTE-CARLO PERFORMANCE 
COMPARISON 

The tuning parameters in MSART include the 
depth of decomposition, the type of wavelet, and 
the vigilance values of individual ART networks. 

With increasing depth of the wavelet decomposi- 
tion, the ability of MSART to detect large shifts 
deteriorates due to the increasing time delay in 
obtaining the wavelet and scaling function coeffi- 
cients at coarser scales. The ability to detect small 
shifts improves at greater depths due to greater 
separation between the stochastic variation and 
deterministic mean shift at coarser scales. As a 
rule of thumb, the depth of decomposition should 
correspond to the scale of the slowest/coarsest 
event expected in the data. 

This paper has only focused on the use of Haar 
wavelets, but  the approach may easily be used 
with other types of wavelets. The use of smoother, 
boundary-corrected wavelets may provide better  
performance than Haar wavelets due to better  
feature extraction and decorrelation abilities. Fur- 
thermore, extension to libraries of basis functions, 
such as wavelet packets, may permit MSART to 
automatically select the best family of basis func- 
tions from the library. 

Different values of the vigilance parameter result 
in different overall false alarm rates. As is the case 
with most fault detection algorithms, if the false 
alarm rate for MSART is decreased (via increasing 
the vigilance parameter),  the missed alarm rate 
increases. Tolerances to false alarms may vary for 
different process systems, and hence the choice 
of the vigilance value is application-specific. In 
general, it is possible to plot an operating curve 
of the false alarm rate vs. the missed alarm 
rate by experimenting with a range of vigilance 
values for the same process. According to process- 
specific tolerances, an appropriate value for the 
vigilance parameter  can be chosen by selecting a 
point on this operating curve. The experiments 
discussed in this paper use the same set of ART 
configuration parameters,  including the vigilance 
value, for all the Scale Selection Layer as well as 
Diagnosis Layer networks. All scales, thus, provide 
equally important  information about detection of 
an event. As a result, the algorithm performs 
well as a general detection algorithm that  can 
detect a broad range of events. With more specific 
information about the faults at hand, one may 
want to tailor the MSART detection system to 
specific types of events by adjusting the ART 
parameters at the relevant scales. 

The Average Run-Length (ARL) curve is a stan- 
dard for comparing the detection delays of two 
algorithms while keeping the false alarm rate 
constant. To generate the ARL curves, shifts of 
varying magnitudes were introduced at t = 0 to 
three illustrative process models provided in Table 
1. For subsequent time-steps, simulated abnormal 
data were subjected to diagnosis by ART-2 as 
well as MSART-2 with L -- 2. The time-step 
at which the shift was first detected (i.e., run- 
length) was recorded for each magnitude of shift 
for both detection algorithms. This simulation was 
repeated for 1000 instances and the run-lengths 
were averaged. Figure 6 shows a plot of ARL 
against the ratio of shift magnitude to the stan- 
dard deviation of noise. As the shift magnitude 
increases, both algorithms take less time-steps for 
detection. For a broad range of shift magnitudes, 
however, MSART-2 detects the shift earlier. For 
small shifts, the process noise hampers the ability 
of ART-2 to consistently detect the shift. For very 
large shifts, however, ART-2 is seen to perform 
slightly better  as the shift is easily separable from 
the inherent noise in the mapping. 

5. INDUSTRIAL CASE STUDIES ON 
REAL-LIFE DATA 

Results from the earlier section illustrated the 
utility of the proposed algorithms primarily with 
the help of simulated process models and/or  spe- 
cific detection limits. The analysis presented in 
this section displays the capability of our algo- 
rithms when compared with uniscale methods on 
univariate/multivariate real-life industrial data, 
collected from a large-scale petrochemical plant, 
over a broad range of false alarm rates. This anal- 
ysis thus provides a detailed comparison of the 
performance of these methods on a broad range 
of detection operating regimes. In some cases, 
we also compare the performance of the human 
operator with that  of the MSART algorithm. The 
depth of decomposition L was chosen to be 3. 

Our detector implementations have been largely 
successful in tackling the above issues for a pro- 
cess of such a large scale. The following section 
describes a comparative study of the performance 
of the uniscale and multiscale versions of ART and 
PCA detectors. Note that  for industrial case stud- 
ies, the beginning and end of the events have to 
be manually determined with the help of operator 
annotations. This process is subjective and the 
results can be potentially influenced by the deter- 
mination of the event duration. However, these 
examples help reinforce the conclusions drawn 
from the simulated case studies, for which exact 
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Table 1. Simulated Processes for Monte Carlo ARL Performance Comparison 

Univariate Process Linear Process Nonlinear Process 
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Fig. 6. Monte Carlo ARL Curves for Performance Comparison 

information about the onset and reset of abnormal 
operation was available. 

5.1 A Valve Leak Mal func t ion  

Figure 7 shows the sensor readings during an 
abnormal process operation caused by a leaking 
valve. This event manifests itself primarily in 
three non-redundant sensors, trends of which are 
shown. As can be clearly observed, different sen- 
sors respond to the same root cause with different 
scales and delays due to differences in the under- 
lying physical quantities being measured and also 
due to the process control scheme in place. 

The performance curve from Figure 8 shows the 
average missed alarm rate plotted against the 
average false alarm rate. Different false alarm 
rates were achieved by changing the respective 
threshold parameters for the detection algorithms 
in question, namely PCA, MSPCA, ART, or 
MSART. For each false alarm rate, the corre- 
sponding average missed alarm rate was calcu- 
lated for each abnormal event and plotted for each 
algorithm. It is obviously desirable to have the 
lowest possible missed alarm rate for a given false 
alarm rate. 

The process variables involved in this event are 
linearly correlated, stationary, and approximately 
Gaussian. The underlying statistical assumptions 
for PCA are thus satisfied, leading to an expecta- 
tion that it would model the process better than a 
generic neural, non-linear learning technique such 

y(t) = z ( t )  = N(0,1) 

Nonlinear Multivariate Process 

10" 

10 

".. . . .  ART-2 

0 1 2 
Magnitude of Shift (l.dC) 

as ART. This expectation is seen to hold true, as 
PCA outperforms ART for the detection of this 
event. The proposed multiscale versions of these 
algorithms, MSPCA and MSART outperform the 
respective single-scale versions. Due to the lin- 
ear correlation between wavelet coefficients, cor- 
responding to a linear correlation between process 
variables, MSPCA results in fewer false alarms 
than MSART. 

valve Lelk Mal func t~n  
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Fig. 7. Sensor Data for the ValveLeak Event 

5.2 A Cold Weather  Mal func t ion  

Figure 9 shows our next industrial example, which 
involves a valve failure due to an unexpectedly 
lower ambient temperature. This is a univariate 
example which approximately obeys the assump- 
tions of stationarity and unimodal Gaussian dis- 
tribution. PCA is again seen to miss fewer alarms 
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Fig. 8. Comparison of Performance for the Valve- 
Leak Event 

when compared to ART as seen in Figure 10. 
Similarly, MSPCA performs better than MSART. 
As was the case of the previous example, the mul- 
tiscale versions of PCA and ART outperformed 
the corresponding uniseale detectors. 
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Fig. 10. Comparison of Performance for the Cold- 
Weather Event 

5.3 A Change in Furnace Feed Even t  

Our third example corresponds to a "normal but 
unusual" univariate process operation associated 

with a change in furnace feed. It was typically 
observed multiple times every day and lasted a 
few hours. Figure 11 shows several instances of 
this event. Although a high-level description of the 
sensor trend is seen to be similar for all instances, 
the event clearly showed characteristics for which 
multiscale analysis would be valuable, since the 
event lasted for varying intervals for different 
instances and rose to different magnitudes with 
differing approach and reset rates. 

The performance curves for this event are shown 
in Figure 12. Unlike previous two examples, we 
observe that ART performs better than PCA, 
possibly due to deviations from ideal assumptions 
such as stationarity and Gaussian distribution. 
These deviations were seen to affect MSPCA more 
strongly than PCA, perhaps due to the Strong 
auto-correlation in the data. However, MSART 
continues to outperform ART. The nonlinear 
modeling capability of ART makes it insensitive 
to non-stationarity and non-Gaussian behavior, 
and these benefits appear to hold in the wavelet 
domain as well. 
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Fig. 11. Sensor Data for the Change in Furnace 
Feed Event 
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5.4 A Feed Mal func t ion  

The data presented in Figure 13 show a distinctly 
nonlinear and multi-modal correlation in the bi- 
variate sensor space. The process is seen to ex- 
ist in three disjoint normal regimes. As a result, 
detector based on ART is expected to perform 
better than PCA for this process. Figure 14 shows 
this assertion to be true. Although the multiscale 
versions of these algorithms are seen to perform 
better, the improvement is more significant in the 
case of ART due to the nonlinear nature of the 
variable correlation. 
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MSART algorithm detected the abnormal event 
hours in advance of the human operator. 

Another example is provided with the help of 
Figures 16 and 17. This bivariate event was caused 
by a sensor "acting up", i.e., providing erroneous 
reading. It can be seen that the MSART algorithm 
is a few minutes faster than the human operator, 
which is a significant fraction of the event dura- 
tion. 
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Fig. 15. Operator Detection of the ValveLeak 
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Fig. 13. Sensor Data for the FeedMalfunction 
Event 
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6. COMPARISON WITH HUMAN 
OPERATOR 

To provide a perspective of detection performance 
of the algorithms proposed in this work, we have 
provided two examples where the detection delay 
of a human operator is compared with that of our 
MSART algorithm. Figure 15 shows the detection 
flag of the MSART algorithm for the valve leak 
event (Figure 7) with 0 being normal and "1 
being abnormal diagnosis. It can be seen that the 
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7. CONCLUSION AND DISCUSSION 

This work combines the advantages of ART net- 
works such as the ability to model nonlinear, 
non-Gaussian, disjoint process mappings and the 
incremental training ability with the benefits of- 
fered by multiresolution processing such as noise 
tolerance, and quicker, more robust detection of 
events. Our results indicate tha t  MSART-2, as 
compared to ART-2, is a general approach tha t  
is preferable for problems where it is necessary to 
detect all changes drawn from processes of various 
statistical characteristics. Our experiments with 
industrial da ta  reveal tha t  while ART-based diag- 
nosis can comfortably detect unusual and abnor- 
mal operat ion earlier than  the human operator,  
the MSARTo2 algorithm can further reduce the 
detection delay while keeping the false alarm rate 
constant.  

For a wavelet decomposition involving L scales, 
the worst-case computat ional  requirement for 
MSART-2 is approximately  L + 2 times the com- 
putat ion for the ART-2 detector. The worst-case 
storage requirement for MSART-2 is in fact ap- 
proximately L + 1 + 2 L+I times the storage re- 
quirement for ART-2. 

Application of the ART-2 and PCA SPCs to in- 
dustrial da ta  brought  out several features of inter- 
est regarding their function. The industrial data  
used in this work consisted of measurements  from 
a total  of 509 sensors distributed across different 
process units with close inter-connections. The 
readings of all the 509 sensors were provided every 
minute, with significant events annotated by the 
plant operators  loosely as "normal",  "unusual", 
and "abnormal" ,  and then specifically such as 
"furnace decoking", "charge drier cool", etc. SPC 
engines using PCA, ART, MSPCA, and MSART 
were built to detect these deviations from the 
normal process operation. This section provides 
a sense of the difficulties involved and lessons 
learned from the real-time industrial deployment 
of these SPC algorithms. 

First  of all, even with the best of efforts by the en- 
gineer, the sheer scale of the process often caused 
annotat ions to be inconsistent. An event listed 
as "unusual" for one day, for instance, may be 
omit ted entirely for the next day. Hence, the da ta  
used for training had to be very carefully screened 
before use. Often, the information available to the 
opera tor  came from sources outside of the 509 
sensors and hence similar events ended up hav- 
ing different annotations.  Although these issues 
adversely affected all SPCs being compared, the 
ART-based detectors were found to be specifi- 
cally sensitive to contradicting annotations and 
overlapping class definitions. During incremental 
training, if new data  overlapped in the sensor 

space with previous clusters that  belonged to a 
different class, the previous clusters were often 
completely overwritten, thus generating incorrect 
interpretations for future cases. 

Secondly, some of the sensors may have been 
dysfunctional and exhibited erratic variations in 
their normal signatures, say of the order of 20% 
to 30% of the instrument span over a period of 24 
hours. Removal of erratic or non-critical sensors 
and formulating the detector models again very 
significantly improved the detector performance 
in terms of false alarms. Selection of sensors tha t  
are a part  of the detection models thus proved to 
be a very important  aspect of the fault detection 
mechanisms. 

Though most operations in the plant were contin- 
uous, the sensor trends were not entirely steady 
state. Often, there were slow drifts that  were not 
completely captured by the da ta  listed as "nor- 
mal" in the training set, and hence were flagged 
by the detectors during the test phase. This gen- 
erated a large number of notifications (on the 
order of 100 per day for a set of 370 sensors) that  
were unwelcome to the plant operators.  Often, a 
sudden change, such as a set-point change, was 
deliberately introduced in the process by the plant 
operators.  I t  was not possible to exhaustively pro- 
vide examples of all such changes in the training 
data. Hence such changes were often flagged as 
abnormal by the detector, al though they were in 
reality a par t  of the day-to-day plant operations. 
Exponential  mean-filtering was used to make the 
ART and PCA detectors robust to mean-shifts 
and process drifts to a certain extent. However, 
it also masked genuine process anomalies that  did 
need to be flagged by the detector. Hence the 
exponential filtering was later removed. 

Since the sensor signals were being sampled per 
minute, the detector algorithms were expected to 
diagnose each snapshot of sensor da ta  within a 
small fraction of a minute. However, the diagnosis 
operation in ART is an exhaustive search process. 
The t ime taken for a decision grows exponentially 
with the complexity of the search space, which 
is, in turn, a function of the dimensionality of 
the space in terms of the number of process vari- 
ables and the nature of cross-variable relation- 
ships. However, as is the case with many  large- 
scale problems, the relationships across process 
variables were mostly localized and related to the 
spatial position of the sensor in a process unit. 
To be able to manage scale and related issues 
such as speed, it was necessary to decompose the 
task of diagnosis into smaller subsets which were 
solved with smaller ART and PCA detectors. The 
decomposition was generated based on operator  
knowledge and reduced the associated structural  
and computat ional  complexity to a large extent. 
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These ]ocused SPCs resulted in a better diagnostic 
performance as well as were easier to train. In ad- 
dition, the ART detector could adequately classify 
between different abnormal behaviors for input 
spaces with low dimensionality and less number 
of classes to distinguish between. However, it led 
to false alarms when the detector was trained 
with many different events. This problem was also 
solved with this focused detection approach. 

Lastly, there was an expectation that the de- 
tector algorithm provide a list of sensors that 
contributed the most to the detector decision. A 
knowledge of the contributing sensors enables the 
operator to track the root cause of the abnormal- 
ity. For PCA and MSPCA, a mechanism for calcu- 
lating the contribution charts (Miller et al., 1998) 
has been developed. For ART and MSART, sim- 
ilar calculations based on the directions in the 
sensor space that most contribute to the differ- 
ence between actual and expected sensor readings 
lead to a list of three most contributing sensors. 
Although ad hoc, this method often provided an 
accurate list of contributing sensors. 

The observations listed above are not specific to 
this particular industrial implementation. This 
work has been one of the first of its kind in terms 
of the complexity of the process and the scale of 
the deployment in terms of the number of sensors 
and process units involved. Future exercises of 
this kind can benefit significantly from the lessons 
learned from this deployment. 

NOMENCLATURE 

Symbol Description 
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Wavelet dilation parameter 
Wavelet translation parameter 
Mother wavelet function 
Measured signal 
Scale 
Finest scale 
Coarsest scale 
Number of samples 
The k th scaling function at scale m 
k th detailed signal coefficient at scale 
m 
k th scaled signal coefficient 
Detailed signal coefficient vector at 
scale m 
Scaled signal coefficient vector 
ART vigilance parameter 
Number of process variables 
Training data matrix 
The detailed signal coefficient of 
training data for variable p, at scale 
m, and time t 
The scaled signal coefficient of train- 
ing data for variable p and time t 
The Scale Selection Layer ART net- 
work trained on the detailed signal 
coefficient vector at scale m 
The Scale Selection Layer ART net- 
work trained on the scaled signal co- 
efficient vector 
The i th Diagnosis Layer network 
The detailed signal coefficient of test 
data for variable p, at scale m, and 
time t 
The scaled signal coefficient of test 
data for variable p and time t 
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