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A Computational Neural Approach to Support the
Discovery of Gene Function and Classes of Cancer
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Abstract—Advances in molecular classification of tumours may
play a central role in cancer treatment. Here, a novel approach to
genome expression pattern interpretation is described and applied
to the recognition of B-cell malignancies as a test set. Using cDNA
microarrays data generated by a previous study, a neural network
model known as simplified fuzzy ARTMAP is able to identify
normal and diffuse large B-cell lymphoma (DLBCL) patients.
Furthermore, it discovers the distinction between patients with
molecularly distinct forms of DLBCL without previous knowledge
of those subtypes.

Index Terms—Bioinformatics, cancer classification, data mining,
gene expression analysis, neural networks.

I. INTRODUCTION

T HE systematic classification of types of tumours is cru-
cial to achieve advances in cancer treatment and research.

The specification of therapies according to tumour types dif-
ferentiated bypathogeneticpatterns may maximize the efficacy
of the treatment and minimize toxicity on the patients [1], [2].
Several limitations about the conventional classification tech-
niques based on morphological features of the tumour have been
reported in the literature [1]. Moreover, by analyzing complex
patterns defined by molecular markers, it has been demonstrated
that there are subtypes ofacute leukaemia, prostate cancer, and
non-Hodgkin’s lymphomas[2].

Thus, there are two useful tasks in cancer classification:
prediction of classes and discovery of classes. The prediction
task consists of the assignment of particular tumour samples
to known types of cancer, and the discovery task refers to the
identification of unrecognized subtypes.

In order to achieve a better insight into the problem of cancer
classification, systematic approaches based on global gene ex-
pression analysis have been proposed [1], [2].

A. Gene Expression Profiling, Cancer Classification, and
Related Research

Over the past ten years many scientists have combined efforts
in theHuman Genome Projectin order to process and categorise
gene sequences, but far fewer researchers have approached the
problem of how genes actually contribute to disease using large-
scale sequencing and expression data. These massive sources of
information extracted from the genome project contain the keys
to address fundamental problems relating to the prevention and
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treatment of diseases, biological evolution mechanisms, and the
understanding of particular functional elements in the human
organism. The knowledge of the coding sequences of virtually
every gene in an organism is an exciting opportunity to develop
methods to study the role of a gene in a specific organism or
biological function.

One of such methods consists of the monitoring of the level
of expression of a gene. It has been shown that specific patterns
of gene expression occur during different biological states such
asembryogenesis, cell development and during normal physio-
logical responses in tissues and cells [3].

Generally speaking the expression of a gene provides a mea-
sure of “how active” a specific gene is under certain biochem-
ical conditions [4]. This level of expression is related to the rel-
ative concentration of messenger , which en-
codes the gene under consideration [3], [4].

The study of gene expression of genes one by one has already
provided a wealth of biological insight [5]. Thus, the next chal-
lenge has been to analyze the expression of many of the genes
in parallel, in order to identify expression patterns at the level
of the whole genome of an organism [4], [5].

The generation of quantitative expression patterns of many
genes can be achieved by using techniques based oncomple-
mentary DNA microarrays[4], [6]. Schenaet al., for
instance, describe a method for monitoring gene expression, in
which differential expression is demonstrated by a simultaneous
two-color hybridization scheme [4]. Without going into details,
this method is based on the preparation of fluorescent DNA
probes from two mRNA sources by using a method known asre-
verse transcription[6]. One set of probe is the “reference probe”
and the other is obtained from the tissue where the gene expres-
sion needs to be examined (experimental sample). These probes
are prepared in the presence offluoresceinand lissamine-la-
beled nucleotide analogs, respectively, for instance [4]. The two
probes are mixed in equal proportions and allowed to hybridise
to a microarray consisting of a series of “known cDNAs” de-
posited on glass slides. After hybridization, the fluorescence
patterns scanned allow to represent a ratio of hybridization of
the experimental cDNA probe to the reference probe, that is
to say, the relative abundance of the gene in the experimental
sample compared with the reference sample. Thus, this method
provides a measure of gene expression for a specific sample. The
reader is referenced to Schenaet al. [4] and Eisen and Brown
[6] to find detailed information about the process of gene ex-
pression monitoring.

Approaches that allow experts to have a systematic under-
standing of the processes under study are required in order to
exploit the full potential of genome-scale experiments [7]. A
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number of authors have used hierarchical clustering to organize
genes intophylogenetictrees or dendrograms [2], [8]. Eiseet al.,
for instance, implement a clustering method based onpairwise
average-linkagecluster analysis [5]. One of the main disadvan-
tages of this type of clustering techniques is that the identifica-
tion of categories and informational associations is left to the
observer. Additionally, the complexity of the cluster visualiza-
tion task can be directly proportional to the number of elements
to be grouped. Recently, a number of expression pattern anal-
ysis techniques have been based on machine learning models.

Machine learning techniques such as neural networks are
adequate for this type of analysis for their well-known pattern
recognition and data organization capabilities [9], [10]. Ad-
vanced neural learning algorithms have not only improved the
accuracy, reliability and efficiency of many pattern recognition
and data mining systems, but they also present several advan-
tages for the implementation of decision support systems in
physiological genomics [9], [11]. Tamayoet al.have illustrated
the value of Kohonen’s self-organizing feature maps (SOFMs)
[12] to interpret gene expression patterns during yeast growth
cycle andhaematopoieticdifferentiation [13]. They identify
predominant gene expression patterns in those biological
processes that suggested, for instance, novel hypotheses about
haematopoietic differentiation useful for the treatment ofacute
promyelocytic leukaemia. Also based on a SOFM, Golubet
al. [1] approach the problem of molecular classification of
cancer. They propose a procedure that automatically discovers
the distinction betweenacute myeloid leukaemia and acute
lymphoblastic leukaemiabased on the clusters obtained after
training the network with a small set of cases.

Some of the disadvantages of this approach can be summa-
rized as follows.

• The topology of the network has to be predefined by the
user, and it is not adapted according to the distribution of
the data under consideration;

• the learning process is governed by a number of param-
eters highly dependent of the user (learning rates and
number of learning cycles, for instance). Moreover, the
user has to define the time-dependence of a number of
parameters;

• training the network with a small number of samples can
significantly reduce its prediction capabilities. Similarly,
the training phase may become computationally expensive
by processing massive data sets characterized by high-di-
mensional representations.

B. Classification of Diffuse Large B-cell Lymphoma (DLBCL)
Using Gene Expression Data

A recent effort to understand how genes contribute to disease
approaches the discovery of subclasses of DLBCL by using ex-
pression analysis [2].B-lymphocytesare a fundamental compo-
nent of the body’s immune system. DLBCL is a malignancy of
matureB-lymphocytes, with a high annual incidence in western
countries. It has been shown that the discovery of subclasses in
DLBCL has not been successful by relying exclusively on mor-
phological features [2]. Alizadehet al. [2] demonstrate that the
molecular profile of a tumor obtained from cDNA microarrays

can indeed be interpreted as a robust and clearer picture of the
tumour’s biology. Additionally, they demonstrate the existence
of two molecularly distinct forms of DLBCL that indicate dif-
ferent stages of B-cell differentiation.

The class prediction and class discovery techniques presented
in this paper are tested on the DLBCL domain. They are based
on the analysis of the cDNA microarray data generated by Al-
izadehet al. in the study referenced above.

C. Aims of this Research

This research aims to implement an automated approach to
the prediction and discovery of classes of cancer based on the
processing of gene expression data. The proposed technique
consists of an artificial neural learning model known assim-
plified fuzzy ARTMAP(SFAM) [14], which addresses some of
the weak aspects shown by traditional gene expression analysis
methods. This approach may provide an effective, efficient and
inexpensive option to support diagnosis tasks and research. The
objective of the prediction task is to distinguish normal subjects
from those with DLBCL by using a number of genes with known
or suspected roles in the development of the disease. The objec-
tive of the discovery task is to identify subtypes of cancer from
a population of subjects with DLBCL.

The remainder of this article is organized as follows. Sec-
tion II presents an introduction to the SFAM model. Section III
describes the data and methods implemented in this research.
Section IV shows the prediction and discovery results obtained
from several network architectures. Section V presents a dis-
cussion of the results, and their implications to the process of
molecular classification of cancer and gene expression analysis.
This section also presents possible future work to be developed.

II. I NTRODUCTION TO THESFAM MODEL

A SFAM is a version of the fuzzy ARTMAP neural network
model [14], [15]. SFAM was designed to improve the compu-
tational efficiency of the fuzzy ARTMAP model with a min-
imal loss of learning effectiveness [14]. The “fuzzy” component
in the name of this network refers to the fact that its learning
process implements fuzzy logic operations in order to achieve a
number of key pattern matching and adaptation functions [14].
The essential two-layer network architecture of a SFAM is de-
picted in Figs. 1–3. During learning, input data are presented to
the SFAM, together with their respective teaching stimuli (cate-
gories to learn). The raw input data flows to a complement coder,
which normalizes and expands the input to twice its original
size. This expanded input vector, I, then is located into theinput
layer. Weights from each node of theoutput layerreach
down to “sample” the input layer. During the learning phase
these weights form the associations between the input patterns
and their corresponding category based on a number of adapta-
tion steps. Thecategory layerholds the categories or classes that
the network has to learn. In the SFAM model, a single-output
node can only encode (point to) a single category in the cate-
gory layer. Moreover, the SFAM does not directly associate in-
puts at the input layer and the category layer. Such input patterns
are firstly self-organized in “prototypical clusters” represented
by the nodes in the output layer. Thus, if a cluster in the output
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Fig. 1. A SFAM neural network before starting a learning process.

Fig. 2. A SFAM neural network after the first input pattern has been learned.

Fig. 3. A SFAM neural network after a number of learning steps.

layer does not match with the teaching category described in the
category layer, a re-set signal is generated at the output layer,
forcing the input pattern to be re-classified into an appropriate
node (cluster) in the output layer. If no such output node ex-

ists, a new output node is created to classify the input. In this
way, one output node is linked to only one category, but one
category may be encoded by several nodes in the output layer.
The user-selectable parameter,, or vigilance parameter, deter-
mines how close a match is required between an input pattern
and output node that encodes a category. The vigilance param-
eter, , has value between zero and one, and indirectly controls
the size of the output layer that will form during the learning
phase. Generally, a higher value ofprovides a better classifi-
cation performance, although this must be balanced against the
potential proliferation of output nodes. The reader is referenced
to Kasuba [14] and Downset al. [16] to find detailed informa-
tion about the learning algorithm of the SFAM and its advan-
tages in comparison to other pattern classification approaches.

As a way of illustration, Figs. 1–3 depict a number of situa-
tions during the learning process of a SFAM. Fig. 1 illustrates
the initial state of a SFAM before learning to classify two cate-
gories, and . In this case, there are no nodes represented
in the output layer until the network has its first opportunity to
“learn” a pattern. Once an input pattern is presented, an output
node is formed to represent it (Fig. 2). Such an output node is
linked to the category label indicated in the category layer. The
matching and/or creation of output nodes as well as the adapta-
tion of weights are based on the steps outlined above [14]. After
a number of learning steps, the network consists of a number
output nodes that encode a number of input patterns. Fig. 3 il-
lustrates this situation without showing the weight connections
of nodes and . The output nodes can also be seen as sub-
classes of the taught categoriesand (Fig. 3). For instance,
nodes and encode (cluster) input patterns that belong to
category , while groups patterns that belong to category

.
At the end of the learning phase, supervisory stimuli are re-

moved, and the network can be tested by using new input pat-
terns that “recall” previously learned associations.

In comparison to other neural network approaches, SFAM of-
fers several advantages for the development of automated pat-
tern recognition tools in gene expression analysis. Such advan-
tages are summarized as follows.

1) In contrast to Kohonen self-organizing maps and back-
propagation networks for instance, SFAM is a neural net-
work based on a self-adaptive topology, which is highly
independent of the user.

2) SFAM has demonstrated to improve significantly both the
effectiveness and efficiency of several medical applica-
tions [16].

3) In contrast to Kohonen self-organizing maps and back-
propagation networks for instance, the network structure
is determined automatically from the domain data.

4) SFAM consists of only one constant user-dependent pa-
rameter.

5) SFAM, its originating models and related versions can
operate in both supervised and unsupervised learning
modes.

6) Successful learning can be achieved with only one pass
through the data set [14], [16].

7) The SFAM does not perform optimization of an objective
function, therefore, it is not constrained by the problem



AZUAJE: COMPUTATIONAL NEURAL APPROACH TO SUPPORT THE DISCOVERY OF GENE FUNCTION AND CLASSES OF CANCER 335

of local minima that can occurs with back-propagation
networks [16].

III. M ATERIALS AND METHODS

A. Obtaining the Gene Expression Data

The expression levels from a number of genes with sus-
pected roles in processes relevant in DLBCL were used as
features for the automatic classification of a number of B-cell
samples. The data consisted of 63 cases (45 DLBCL and 18
normal) described by the expression levels of 23 genes such
asCD10, BCL-6, TTG-2, IRF-4, andBCL-2. These data were
obtained from a recent study published by Alizadehet al. [2],
who identified subgroups of DLBCL based on the analysis
of the patterns generated by a specialized cDNA microarray
technique [2], [6]. The full data and experimental methods
are available on the World-Wide Web site of Alizadehet al.
(http://llmpp.nih.gov/lymphoma).

B. The SFAM Model

The SFAM, preprocessing and evaluation programs were
written in C and Java. The SFAM algorithm was imple-
mented based on the algorithmic descriptions presented in [14].

C. Prediction of Classes

The SFAM neural network was implemented to predict
two classes of subjects: normal and DLBCL, based on data
described above. The prediction performances were calculated
by applying the data sampling method known asround robin
or leave-onemethod [17]. This method can be summarized
as follows: if there are input patterns (cases or samples),
the network performs its learning process on (1) of them,
and then it is tested on the input pattern that has been left out.
This process is repeatedtimes so that every input pattern in
the database is used as a testing example. Thus, the prediction
performances obtained from thecases are averaged in order
to visualise the general prediction performance of a network.
The main advantage of this technique is that it takes into
account almost all the informational patterns available to train
the network, without affecting the statistical significance of the
testing results.

Several architectures were implemented to perform super-
vised learning processes for different values of. Afterwards the
systems were tested and evaluated based on theiraccuracy, sen-
sitivity andspecificity. Moreover, a system performing a voting
strategy of the predictions made by a group of selected archi-
tectures was implemented.Accuracyrelates to the full group
of true positives TP(DLBCL subjects correctly classified), and
true negatives TN(normal subjects correctly classified), to the
total number, , of tested cases. Thus, accuracy measures the
ability of the SFAM to produce correct answers and is defined
as follows:

Accuracy (1)

Sensitivityrelates to the observed frequency of true positives,
, to the frequency of false negatives, (DLBCL sub-

jects classified as normal).Sensitivitymeasures the ability of

TABLE I
CLASSIFICATION OF NORMAL AND DLBCL SUBJECTSUSING FIVE

GENES: PREDICTION RESULTS

the model to correctly identify the occurrence of a target sub-
ject (DLBCL in this case); it is defined as follows:

Sensitivity (2)

Specificitycalculates a ratio based on the number true nega-
tives, , and thefrequency of false positives FP(normal sub-
jects classified as DLBCL).Specificitymeasures the ability of
the model to separate the target class, DLBCL, from the normal
class; it is defined as follows:

Speci�city (3)

D. Discovery of Classes

SFAM networks were trained to categorise two classes of sub-
jects: normal and DLBCL, based on the gene expression data
described above. Afterwards, their output layers were exam-
ined in order to visualise the subclasses or clusters self-orga-
nized during the learning process. Thus, at the end of a learning
process a SFAM may recognize subclasses derived from the pre-
defined classes without any additional knowledge. Furthermore,
the gene expressions of the samples in each cluster are ana-
lyzed in order to discover possible associations between sub-
types of DLBCL and the expressions of the genes under consid-
eration. The significance of the differences between the expres-
sion levels of the obtained clusters was established by means of
the well-knowntwo-tailed t-test.

IV. RESULTS

A. Prediction of Classes

Table I shows some of the prediction results obtained after
performing the experiments explained in Section III-C. The fol-
lowing genes with suspected roles in DLBCL were used as in-
puts for the SFAM network: BCL-6, BCL-2, CD20, TTG-2, and
IRF-4. The different values for are shown in the first column.

The best prediction performance was obtained by using a
0.95, which was also able to achieve the highest specificity.
The best prediction performances for DLBCL subjects were ob-
tained from the networks using 0.5, 0.7 and a voting
strategy, but their ability to predict normal cases was drastically
reduced. The voting strategy generates a prediction based on the
voting of individual predictions made by each network. The pre-
diction performances of classes were not affected by the order
of presentation of the input patterns.
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Fig. 4. Discovery of classes: clusters of normal and DLBCL subjects obtained
at the end of a learning process with� = 0.3 and five input features.

Fig. 5. Discovery of classes: clusters of DLBCL subjects described in terms
of recent identified DLBCL subtypes [2] with� = 0.3 and five input features.

B. Discovery of Classes

Fig. 4 depicts the clusters obtained in the output layer of a
SFAM at the end of a learning process with 0.3. The ex-
pressions of the genes BCL-6, BCL-2, CD20, TTG-2, and IRF-4
were used as input features for the SFAM network. The normal
subjects are grouped into nodes and , while the DLBLC
subjects are categorised into three clusters (nodes, , and

). Clusters , , and categorise 22, 14 and 9 subjects,
respectively.

The next step is to analyze the composition of the DLBCL
clusters in order to discover possible relevant biological re-
lationships. A recent study performed by Alizadehet al. [2]
demonstrated that the DLBCL subjects analyzed here belong
to distinct molecular subtypes of DLBCL. Such a research
comprised a systematic study of gene expressions in this type
of malignancy. The two subclasses of DLBCL identified by
Alizadehet al. are known as:germinal centre B-like DLBCL
(GC B-like DLBCL)and activated B-like DLBCL, which are
characterized by expression patterns representative of different
stages of B-cell differentiation [2].

Fig. 5 describes the DLBCL clusters obtained from Fig. 4 in
terms of the molecular subtypes mentioned above. Cluster
comprises all of the GC B-like subjects, except one that was
categorised into cluster . Furthermore, and represent
the clusters encoding the activated B-like subjects.

Based on the resulting DLBCL clusters, the corresponding
normalized gene expressions levels of the subjects are compared
in order to discover possible associations between them. Ta-
bles II and III illustrate the relationship between DLBCL clus-
ters (subtypes of DLBCL) and their corresponding gene expres-
sion levels. They compare the GC B-like cluster against the first
and second clusters of activated B-like subjects, respectively.
The means and standard errors of the normalized expression
levels for each cluster are portrayed. Additionally, statistical

TABLE II
SUMMARY OF THE DIFFERENCESBETWEEN GC B-LIKE AND ACTIVATED

B-LIKE (O ) CLUSTERS(MEAN � SEOF THE NORMALISED EXPRESSION

LEVELS). � = 0.3 AND FIVE INPUT FEATURES

SE: standard error. N.S. no significance.

TABLE III
SUMMARY OF THE DIFFERENCESBETWEEN GC B-LIKE AND ACTIVATED

B-LIKE (O ) CLUSTERS(MEAN � SEOF THE NORAMLISED EXPRESSION

LEVELS). � = 0.3 AND FIVE INPUT FEATURES

SE: standard error.

Fig. 6. Discovery of classes: clusters of normal and DLBCL subjects obtained
at the end of a learning process with� = 0.5 and 23 input features.

tests are performed to show the significance of the differences
indicated by each subclass of DLBCL (column 4).

Fig. 6 depicts the clusters obtained in the output layer of a
SFAM at the end of a learning process with 0.5. This time
the clustering process uses the expression levels from 23 genes
as input features. These genes are shown in the left column of
Table IV.

Fig. 7 describes the DLBCL clusters obtained from Fig. 6 in
terms of the subtypes GC B-like and activated B-like DLBCL.
Clusters and are mainly composed by GC B-like and
activated B-like subjects, respectively. Tables IV and V compare
cluster (normal) against clusters and , respectively, in
terms of the expressions of 23 genes with suspected roles in the
process of DLBCL. Table VI compares the expression levels of
clusters and .

Table IV shows that the expression levels of genes CD22,
JAW1, BCL-6, APR, IL-10, c-myc, BLC-2, cyclin D2, CD44,
IL-6, TTG-2, and IRF-4 were significantly different in the
normal cluster and the DLBCL cluster . Moreover, there
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TABLE IV
SUMMARY OF THE DIFFERENCESBETWEENNORMAL (O ) AND DLBCL (O )
CLUSTERS(MEAN � SEOF THENORMALISED EXPRESSIONLEVELS). � = 0.5

AND 23 INPUT FEATURES

SE: standard error. N.S. no significance.

Fig. 7. Discovery of classes: clusters of DLBCL subjects described in terms
of recent identified DLBCL subtypes [2], with� = 0.5 and 23 input features.

were significant differences between the normal cluster O1 and
the DLBCL cluster , in terms of the expression levels of
genes APS, BCL-6, PKC delta, APR, c-myc, BCL-2, CD44,
IL-6, TTG-2, and IRF-4 (Table V). Table VI illustrates the
significance of the differences between the expression levels
of genes PC43, PKC delta, BCL-2 and TTG-2 describing the
DLBCL clusters and .

V. DISCUSSION ANDCONCLUSION

These results suggest that a simplified neuro-fuzzy approach
can be useful for the prediction and discovery of cancer cate-
gories based on gene expression patterns. Despite the small size
of the data sets and the disproportion of the number of normal
and DLBCL subjects, one of the implemented architectures was
able to distinguish between those categories with a considerable
degree of accuracy (prediction task). The prediction ability of

TABLE V
SUMMARY OF THE DIFFERENCESBETWEENNORMAL (O ) AND DLBCL (O )
CLUSTERS(MEAN � SEOF THENORMALISED EXPRESSIONLEVELS). � = 0.5

AND 23 INPUT FEATURES

SE: standard error. N.S. no significance.

TABLE VI
SUMMARY OF THE DIFFERENCESBETWEEN THEDLBCL CLUSTERSO AND

O (MEAN � SE OF THE NORMALISED EXPRESSIONLEVELS). � = 0.5
AND 23 INPUT FEATURES

SE: standard error. N.S. no significance.
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this approach may be better evaluated by including more sub-
jects from both classes. Similarly, the application of alternative
sampling procedures may provide a better visualization of the
prediction performance of the model. The implementation of
this type of automated classification systems may significantly
contribute to the decision support tasks performed in a clin-
ical environment. They may provide diagnostic tools to confirm
or clarify unusual cases. The improvements of their prediction
capabilities on diverse subclasses, may also collaborate in the
maximization of treatment efficacy and the reduction of toxi-
city to the patients.

This computational model was able to identify DLBCL clus-
ters, which are linked to a number of biological findings recently
reported [2]. The SFAM network has shown to identify molec-
ular subtypes of DLBCL without any previous knowledge about
their existence. Thus, this class discovery approach not only
identified the distinction between normal and DLBCL subjects,
but also two subtypes of DLBCL by using the expression levels
of five genes. One of the DLBCL categories recognized by the
SFAM encodes the GC B-like DLBCL subtype, while the other
ones represent subjects belonging to the category of activated
B-like DLBCL. The differences between the obtained DLBCL
clusters have demonstrated to be significant in terms of the gene
expressions under study. Further experiments using the expres-
sion levels from 23 genes have also showed the significance of
the differences between the obtained clusters. The results por-
trayed in Tables IV–VI confirm that a number of genes can be
used as markers to differentiate between normal and DLBCL
subjects, and between subtypes of DLBCL subjects.

This automated discovery technique may support the crucial
research task of identifying subtypes of cancer. It may provide
a better understanding of the biological functions of specific
genes in the development of disease. The analysis of the ob-
tained clusters confirms the suspected roles of the selected genes
in processes relevant to DLBCL. These results suggest (Tables II
and III), for instance, that the expression levels of genes CD10,
BCL-6 and TTG-2 are higher in GC B-like than in activated
B-like DLBCL. Similarly, the expression levels exhibited by
IRF-4 and BCL-2 were significantly higher in the clusters en-
coding activated B-like DLBCL subjects. The genes CD10 and
BCL-6 are well-established germinal centre markers [18]. Addi-
tionally, BCL-6 has been demonstrated to be the most frequently
translocated gene in DLBCL [2]. Similarly, TTG-2, IRF-4, and
BCL-2 have been shown to be translocated genes in lymphoid
malignancies [19].

Future work should comprise the implementation of predic-
tion and discovery procedures involving expression patterns of
higher dimensionality (thousands of genes for instance). These
automated methods may represent not only a promising tool to
explore genetic mechanisms in the development of a type of
cancer, but also to support the search for key processes (genes)
that differentiate multiple classes of cancer [7]. Therefore, other
aspects that deserve further investigations include the automatic
discovery of attribute relevance or weight, i.e., the importance
of a gene for the prediction of a category, and the implemen-
tation of advanced gene selection procedures. Furthermore, the
SFAM-based model should be compared against other advanced
machine learning approaches [11] and alternative quality eval-

uation procedures will be considered. The results and software
systems of this and future research will be publicly available on
the Internet.

The techniques implemented in this research may yield sig-
nificant benefit in the improvement of decision support systems
in cancer classification, and provide a better insight into the
process of genome-wide expression analysis.

REFERENCES

[1] T. T. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gassenbeck, J. P.
Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D.
Bloomfield, and E. S. Lander, “Molecular classification of cancer: Class
discovery and class prediction by gene expression monitoring,”Science,
pp. 531–537, 1999.

[2] A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosen-
wald, J. C. Boldrick, H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G.
E. Marti, T. Moore, J. Hudson, Jr., L. Lu, D. B. Lewis, R. Tibshirani,
G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger, J. O. Ar-
mitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C. Bird, D.
Botstein, P. O. Brown, and L. M. Staudt, “Distinct types of diffuse large
B-cell lymphoma identified by gene expression profiling,”Nature, vol.
403, pp. 503–511, 2000.

[3] P. J. Russel,Fundamentals of Genetics, 2nd ed. San Francisco: Ad-
dison Wesly Longman Inc., 2000.

[4] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, “Quantitative
monitoring of gene expression patterns with a complementary DNA mi-
croarray,”Science, vol. 270, pp. 467–471, 1995.

[5] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,”The Pro-
ceedings of the National Academy of Sciences of U.S.A., vol. 95, pp.
14 863–14 868, 1998.

[6] M. B. Eisen and P. O. Brown, “DNA arrays for analysis of gene expres-
sion,” Meth. Enzymol., vol. 303, pp. 179–205, 1999.

[7] F. Azuaje, “Interpretation of genome expression patterns: Computa-
tional challenges and opportunities,”IEEE Eng. Med. Biol. Mag., p.
119, Nov. 2000.

[8] W. M. Fitch and E. Margoliash, “Construction of phylogenetic trees,”
Science, vol. 155, pp. 279–284, 1967.

[9] B. Ripley, Pattern Recognition and Neural Networks. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[10] F. Azuaje, W. Dubitzky, P. Lopes, N. Black, K. Adamson, X. Wu, and
J. White, “Predicting coronary disease risk based on short-term RR in-
tervals meausurements: A neural network approach,”Artif. Intell. Med.,
vol. 15, pp. 275–298, 1999.

[11] F. Azuaje, W. Dubitzky, N. Black, and K. Adamson, “Discovering rel-
evance knowledge in data: A growing cell structure approach,”IEEE
Trans. Syst., Man, Cybern. B, vol. 30, pp. 448–460, June 2000.

[12] T. Kohonen,Self-Organizing Maps. Heidelberg, Germany: Springer,
1995.

[13] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmistro-
vsky, E. Lander, and T. R. Golub, “Interpreting patterns of gene expres-
sion with self-organizing maps: Methods and applications to hematopoi-
etic differentiation,”Proc. National Academy of Sciences of U.S.A., vol.
96, pp. 2907–2912, 1999.

[14] T. Kasuba, “Simplified fuzzy ARTMAP,”IEEE AI Expert, pp. 19–25,
Nov. 1993.

[15] G. A. Carpenter, S. Grossberg, J. H. Markuzon, J. H. Reynolds, and D.
B. Rosen, “Fuzzy ARTMAP: A neural network architecture for incre-
mental supervised learning of analog multidimensional maps,”IEEE
Trans. Neural Networks, vol. 3, pp. 698–712, Sept. 1992.

[16] J. Downs, R. Harrison, R. Kennedy, and S. Cross, “Application of the
fuzzy ARTMAP neural network model to medical pattern classification
tasks,”Artif. Intell. Med., vol. 8, pp. 403–428, 1996.

[17] F. Tourassi and C. Floyd, “The effect of data sampling on the perfor-
mance evaluation of artificial neural networks in medical diagnosis,”
Med. Decision Making, vol. 17, pp. 186–192, 1997.

[18] D. Weir, Handbook of Experimental Immunology, D. Weir,
Ed. Oxford, U.K.: Blackwell Scientific, 1996.

[19] H. W. Mittrucker, T. Maysuyama, A. Grossman, T. M. Kündig, J. Potter,
A. Shahinian, A. Wakeham, B. Patterson, P. S. Ohashi, and T. W. Mak,
“Requirements for the transcription factor LSIRF/IRF4 for mature B and
T lymphocyte function,”Science, vol. 275, pp. 540–543, 1997.



AZUAJE: COMPUTATIONAL NEURAL APPROACH TO SUPPORT THE DISCOVERY OF GENE FUNCTION AND CLASSES OF CANCER 339

Francisco Azuaje(M’96) received the B.Sc. degree
in electronic engineering in from Simon Bolivar
University, Caracas, Venezuela, in 1995. He per-
formed graduate studies on Policy and Management
of Technological Innovation (Central University
of Venezuela, Caracas, Venezuela, in 1996). He
received the Ph.D. degree in computational intelli-
gence from the University of Ulster at Jordonstown,
Newtownabbey, U.K. in 2000.

He is currently a Lecturer at the Department of
Computer Science, Trinity College, Dublin, Ireland,

where he develops research in the areas at the intersection of computer sci-
ence and life sciences. One of his fundamental topics of research is to inves-
tigate computational techniques to solve challenging problems in biology and
medicine (for example, genomic data mining and linking genotype to pheno-
type), as well as the application of biological knowledge to design new com-
putational methods and architectures. He has published several papers in con-
ference proceedings, journals and books related to computational intelligence
applications in biology and medicine.

Dr. Azuaje is a Guest Editor of IEEEEngineering in Medicine and Biology.


