332 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 48, NO. 3, MARCH 2001

A Computational Neural Approach to Support the
Discovery of Gene Function and Classes of Cancer

Francisco AzuajeMember, IEEE

Abstract—Advances in molecular classification of tumours may treatment of diseases, biological evolution mechanisms, and the
play a central role in cancer treatment. Here, a novel approach to ynderstanding of particular functional elements in the human
genome expression pattern interpretation is described and applied organism. The knowledge of the coding sequences of virtually

to the recognition of B-cell malighancies as a test set. Using cDNA . S it tunity to d |
microarrays data generated by a previous study, a neural network every gene in an organism Is an exciting opportunity to develop

model known as simplified fuzzy ARTMAP is able to identify Methods to study the role of a gene in a specific organism or
normal and diffuse large B-cell lymphoma (DLBCL) patients. biological function.

Furthermore, it discovers the distinction between patients with One of such methods consists of the monitoring of the level
molecularly distinct forms of DLBCL without previous knowledge ¢ expression of a gene. It has been shown that specific patterns
of those subtypes. . - . . .
of gene expression occur during different biological states such
Index Terms—Bioinformatics, cancer classification, datamining, asembryogenesjgell development and during normal physio-
gene expression analysis, neural networks. logical responses in tissues and cells [3].
Generally speaking the expression of a gene provides a mea-
l. INTRODUCTION sure of “how active” a specific gene is under certain biochem-
ical conditions [4]. This level of expression is related to the rel-

HE systematic classification of types of tumours is Cls4ive concentration of messengBVA (mRN A), which en-
cial to achieve advances in cancer treatment and resea(;:g'hes the gene under consideration [3], [4] '

The specification of therapies according to tumour types dif- The study of gene expression of genes one by one has already
ferentiated bypathogenetipatterns may maximize the efficacy

f the treat t and minimize toxicit th tients 111, 12 rovided a wealth of biological insight [5]. Thus, the next chal-
of the treatment and minimize toxicity on the patients [1], [ %nge has been to analyze the expression of many of the genes

Several limitations about the conventional classification tecf)-
nigues based on morphological features of the tumour have b

reported in the literature [1]. Moreover, by analyzing complex T
patterns defined by molecular markers, it has been demonstradgﬂ

that there are subtypes afute leukaemigprostate cancer, and mentary DNA(cDN A) microarrays[4], [6]. Schenzet al., for

no_:_\r-wHod?rl](m S Iympthome[Q].f | tasks i lassificati instance, describe a method for monitoring gene expression, in
us, there are two usetul lasks in cancer classticaliofy,;qp, giferential expression is demonstrated by a simultaneous

predlctlon.of classes anq discovery of c-Iasses. The predictign, o ojor hybridization scheme [4]. Without going into details,
task consists of the assignment of partlcular tumour Sampigg; method is based on the preparation of fluorescent DNA
to known types of cancer, and the discovery task refers to & bes from two MRNA sources by using a method knoweas

identification of L{nrecognlzed'su'btypes. verse transcriptioff6]. One set of probe is the “reference probe”

In (_)r_der_to achieve a k_)etter insight into the problem of CanC&hd the other is obtained from the tissue where the gene expres-
cIaSS|_f|cat|on, systemauc approaches based on global 9€NE G&h needs to be examined (experimental sample). These probes
pression analysis have been proposed [1], [2]. are prepared in the presencefhforesceinand lissamine-la-
beled nucleotide analogeespectively, for instance [4]. The two
probes are mixed in equal proportions and allowed to hybridise
to a microarray consisting of a series of “known cDNAs” de-

Over the past ten years many scientists have combined eff@tsited on glass slides. After hybridization, the fluorescence
in theHuman Genome Projett order to process and categorisgatterns scanned allow to represent a ratio of hybridization of
gene sequences, but far fewer researchers have approacheththexperimental cDNA probe to the reference probe, that is
problem of how genes actually contribute to disease using large-say, the relative abundance of the gene in the experimental
scale sequencing and expression data. These massive sourcearople compared with the reference sample. Thus, this method
information extracted from the genome project contain the kegsovides a measure of gene expression for a specific sample. The
to address fundamental problems relating to the prevention aedder is referenced to Scheetaal. [4] and Eisen and Brown

[6] to find detailed information about the process of gene ex-
pression monitoring.

arallel, in order to identify expression patterns at the level
e whole genome of an organism [4], [5].

he generation of quantitative expression patterns of many
es can be achieved by using techniques basexmple-

A. Gene Expression Profiling, Cancer Classification, and
Related Research
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number of authors have used hierarchical clustering to organcan indeed be interpreted as a robust and clearer picture of the
genes inthylogenetidrees or dendrograms [2], [8]. Eiseal, tumour’s biology. Additionally, they demonstrate the existence
for instance, implement a clustering method baseg@airwise of two molecularly distinct forms of DLBCL that indicate dif-
average-linkageluster analysis [5]. One of the main disadvanferent stages of B-cell differentiation.

tages of this type of clustering techniques is that the identifica- The class prediction and class discovery techniques presented
tion of categories and informational associations is left to thie this paper are tested on the DLBCL domain. They are based
observer. Additionally, the complexity of the cluster visualizasn the analysis of the cDNA microarray data generated by Al-
tion task can be directly proportional to the number of elementsadehet al. in the study referenced above.

to be grouped. Recently, a number of expression pattern anal-

ysis techniques have been based on machine learning modeats. Aims of this Research

Machine learning techniques such as neural networks aerhis research aims to implement an automated approach to

adequate for this type of analysis for their well-known patterg o prediction and discovery of classes of cancer based on the

recognition and datg organigation capabilities [9.]’ [10]. A processing of gene expression data. The proposed technique
vanced neural learning algorithms have not only improved t nsists of an artificial neural learning model knownsis-

accuracy, re_ligbility and efficiency of many pattern recogniti?%iﬁed fuzzy ARTMARSFAM) [14], which addresses some of
and data mining systems, .bUt they al.S(.) present several ad B weak aspects shown by traditional gene expression analysis
tage§ for .the |mplementat|on of decision suppo_rt SyStems Jhthods. This approach may provide an effective, efficient and
phhyS|o|Iog|c]? }I(gt:]nomu,:s [9]|’f [11]. Tf"“.“aﬁ“ al.have |IIustr§;[)egMi expensive option to support diagnosis tasks and research. The
the value of Kohonen's seli-organizing feature maps ( 5 jective of the prediction task is to distinguish normal subjects

[12] to interpret gene_ex_prgssion P"’?“ems during ygast grovsﬁ m those with DLBCL by using a number of genes with known
cycle andhaematopoietiaifferentiation [13]. They identify .or suspected roles in the development of the disease. The objec-

predominant gene expression patterns in those biologi laof the discovery task is to identify subtypes of cancer from
processes that suggested, for instance, novel hypotheses al %pulation of subjects with DLBCL
haematopoietic differentiation useful for the treatmert@ite 1o \amainder of this article is oréanized as follows. Sec-

promyelocytic leukaemiaAlso based on a SOFM, Golukt gon Il presents an introduction to the SFAM model. Section Ill

al. [1] approach the problem of molecular classification g escribes the data and methods implemented in this research.

cancer. They propose a procedure that automatically d'scovggttion IV shows the prediction and discovery results obtained

The dr:Stt')TCt'tqnlbeliW eericute dmye[;'d Ileuktaemwtl)ta_nd daCl];'tt‘?rom several network architectures. Section V presents a dis-
ymphoblastic leukaemiaased on the Clusters obtained altel sqion of the results, and their implications to the process of

training the network with a small set of cases. molecular classification of cancer and gene expression analysis.

rizign;: ]%fll?vssdlsadvantages of this approach can be SUMRRS section also presents possible future work to be developed.

» The topology of the network has to be predefined by the
user, and it is not adapted according to the distribution of
the data under consideration; A SFAM is a version of the fuzzy ARTMAP neural network

« the learning process is governed by a number of parafmodel [14], [15]. SFAM was designed to improve the compu-
eters highly dependent of the user (learning rates af@tional efficiency of the fuzzy ARTMAP model with a min-
number of learning cycles, for instance). Moreover, thighal loss of learning effectiveness [14]. The “fuzzy” component
user has to define the time-dependence of a numberidfthe name of this network refers to the fact that its learning
parameters; process implements fuzzy logic operations in order to achieve a

« training the network with a small number of samples capumber of key pattern matching and adaptation functions [14].
significantly reduce its prediction capabilities. Similarly,The essential two-layer network architecture of a SFAM is de-
the training phase may become computationally expensiéted in Figs. 1-3. During learning, input data are presented to

by processing massive data sets characterized by hightfie SFAM, together with their respective teaching stimuli (cate-
mensional representations. goriesto learn). The raw input data flows to a complement coder,

which normalizes and expands the input to twice its original
B. Classification of Diffuse Large B-cell Lymphoma (DLBCLfize' This. e;](pande(: input veﬁtor,clj, th?nri]s Iocateld intdnbe:}
Using Gene Expression Data ayer. We‘!g ts(W”) rom each node of theutput layerreac
down to “sample” the input layer. During the learning phase

A recent effort to understand how genes contribute to diseakese weights form the associations between the input patterns
approaches the discovery of subclasses of DLBCL by using ed their corresponding category based on a number of adapta-
pression analysis [2B-lymphocytegare a fundamental compo-tion steps. Theategory layeholds the categories or classes that
nent of the body’s immune system. DLBCL is a malignancy dhe network has to learn. In the SFAM model, a single-output
matureB-lymphocyteswith a high annual incidence in westermode can only encode (point to) a single category in the cate-
countries. It has been shown that the discovery of subclassegany layer. Moreover, the SFAM does not directly associate in-
DLBCL has not been successful by relying exclusively on moputs at the input layer and the category layer. Such input patterns
phological features [2]. Alizadeét al.[2] demonstrate that the are firstly self-organized in “prototypical clusters” represented
molecular profile of a tumor obtained from cDNA microarray$y the nodes in the output layer. Thus, if a cluster in the output

Il. INTRODUCTION TO THESFAM MODEL
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ists, a new output node is created to classify the input. In this
way, one output node is linked to only one category, but one
category may be encoded by several nodes in the output layer.

Category layer

Match The user-selectable paramejeror vigilance parameter, deter-
tracking mines how close a match is required between an input pattern
Output layer and output node that encodes a category. The vigilance param-

eter,p, has value between zero and one, and indirectly controls
the size of the output layer that will form during the learning
. phase. Generally, a higher valueprovides a better classifi-
P)Vigilance  -~tion performance, although this must be balanced against the
4 ‘\Izv\\ e potential proliferation of output nodes. The reader is referenced
to Kasuba [14] and Downst al.[16] to find detailed informa-
tion about the learning algorithm of the SFAM and its advan-
ﬁ tages in comparison to other pattern classification approaches.
] Input data of size d [ As a way of illustration, Figs. 1-3 depict a number of situa-
tions during the learning process of a SFAM. Fig. 1 illustrates
Fig. 1. A SFAM neural network before starting a learning process. the initial state of a SFAM before learning to classify two cate-
gories,C; andCs. In this case, there are no nodes represented
in the output layer until the network has its first opportunity to
“learn” a pattern. Once an input pattern is presented, an output
node is formed to represent it (Fig. 2). Such an output node is
linked to the category label indicated in the category layer. The
Match . .
tracking matching and/or creation of output nodes as well as the adapta-
tion of weights are based on the steps outlined above [14]. After
a number of learning steps, the network consists of a number
Top-down weights _Jf, i . Reset output nodgs that gncod_e a number of input patterns. Fig._ 3il-
4 lustrates this situation without showing the weight connections
. p Yvigilance  of nodesO; andO5. The output nodes can also be seen as sub-
L~ ol classes of the taught categor@&sandC, (Fig. 3). For instance,
nodesO; andO, encode (cluster) input patterns that belong to
‘ Complement coder [ categoryC, while O3 groups patterns that belong to category
T e
: At the end of the learning phase, supervisory stimuli are re-
‘ Input data of size 4 1 moved, and the network can be tested by using new input pat-
Fig. 2. A SFAM neural network after the first input pattern has been Iearnezﬁms that “re_call” previously learned associations.

In comparison to other neural network approaches, SFAM of-
fers several advantages for the development of automated pat-
G G tern recognition tools in gene expression analysis. Such advan-

* tages are summarized as follows.

Match 1) In contrast to Kohonen self-organizing maps and back-
tracking propagation networks for instance, SFAM is a neural net-
work based on a self-adaptive topology, which is highly
- independent of the user.
Top-down weights - J, 1 "\ W), Wi Reset‘ 2) SFAM has demonstrated to improve significantly both the
Yy
%Vigilame

Reset

Input layer

’ Complement coder l

Category layer

Qutput layer

Input layer

Category layer

Output layer

effectiveness and efficiency of several medical applica-

; . ; tions [16].

‘\A'\\//' 2 3) In contrast to Kohonen self-organizing maps and back-
\ Complement coder ‘ propagation networks for instance, the network structure

ﬁ is determined automatically from the domain data.
4) SFAM consists of only one constant user-dependent pa-
rameter.

5) SFAM, its originating models and related versions can
operate in both supervised and unsupervised learning
modes.

layer does not match with the teaching category described in the6) Successful learning can be achieved with only one pass

category layer, a re-set signal is generated at the output layer, through the data set [14], [16].

forcing the input pattern to be re-classified into an appropriate 7) The SFAM does not perform optimization of an objective

node (cluster) in the output layer. If no such output node ex-  function, therefore, it is not constrained by the problem

Input layer

‘ Input data of size d l

Fig. 3. A SFAM neural network after a number of learning steps.
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of local minima that can occurs with back-propagation TABLE |
networks [16] CLASSIFICATION OF NORMAL AND DLBCL SUBJECTSUSING FIVE
’ GENES PREDICTION RESULTS
“l M ATERIALS AND METHODS SFAM Prediction accuracy Prediction sensitivity Prediction specificity
architecture (%) (%) (%)
A. Obtaining the Gene Expression Data
p=0.1 65 84 17
The expression levels from a number of genes with su p=03 70 89 2
pected roles in processes relevant in DLBCL were used p=05 73 91 28
features for the automatic classification of a number of B-ce p=07 7 91 22
samples. The data consisted of 63 cases (45 DLBCL and p =095 76 82 61
normal) described by the expression levels of 23 genes s Voting strategy 71 o1 22

asCD10 BCL-6 TTG-2 IRF-4, andBCL-2 These data were

obtained from a recent study published by Alizadglal. [2], ] ]

who identified subgroups of DLBCL based on the analysfg'e model to_corr_ectly |der_1t|_fy the_ occurrence of a target sub-
of the patterns generated by a specialized cDNA microarrigft (DLBCL in this case); it is defined as follows:

technique [2], [6]. The full data and experimental methods o

are available on the World-Wide Web site of Alizadehal. Sensitivity = TP/(TP + FN). @

(hep:/Aimpp.nih.govilymphoma). Specificitycalculates a ratio based on the number true nega-

tives,T’N, and thefrequency of false positives KRormal sub-
B. The SFAM Model jects classified as DLBCL)Specificitymeasures the ability of

The SFAM, preprocessing and evaluation programs wefige model to separate the target class, DLBCL, from the normal
written in C++ and Java. The SFAM algorithm was impleclass: it is defined as follows:

mented based on the algorithmic descriptions presented in [14].
Specificity = TN/(TN + FP). 3)

C. Prediction of Classes

The SFAM neural network was implemented to predi
two classes of subjects: normal and DLBCL, based on data
described above. The prediction performances were calculate®FAM networks were trained to categorise two classes of sub-
by applying the data sampling method knownrasnd robin jects: normal and DLBCL, based on the gene expression data
or leave-onemethod [17]. This method can be summarizedescribed above. Afterwards, their output layers were exam-
as follows: if there aren input patterns (cases or samplesyned in order to visualise the subclasses or clusters self-orga-
the network performs its learning process an-() of them, nized during the learning process. Thus, at the end of a learning
and then it is tested on the input pattern that has been left quiocess a SFAM may recognize subclasses derived from the pre-
This process is repeatedtimes so that every input pattern indefined classes without any additional knowledge. Furthermore,
the database is used as a testing example. Thus, the predidiiéngene expressions of the samples in each cluster are ana-
performances obtained from thecases are averaged in ordetyzed in order to discover possible associations between sub-
to visualise the general prediction performance of a netwoitypes of DLBCL and the expressions of the genes under consid-
The main advantage of this technique is that it takes inesation. The significance of the differences between the expres-
account almost all the informational patterns available to tragion levels of the obtained clusters was established by means of
the network, without affecting the statistical significance of thée well-knowntwo-tailed t-test
testing results.

Several architectures were implemented to perform super- IV. RESULTS
vised learning processes fordifferentvalue,s.d&fterwards the A. Prediction of Classes
systems were tested and evaluated based orgit@iracy sen- o )
sitivity andspecificity Moreover, a system performing a voting Table | shows some of the prediction results obtained after
strategy of the predictions made by a group of selected arcRrforming the experiments explained in Section I11-C. The fol-
tectures was implementediccuracyrelates to the full group lowing genes with suspected roles in DLBCL were used as in-
of true positives TRDLBCL subjects correctly classified), andPuts for the SFAM network: BCL-6, BCL-2, CD20, TTG-2, and
true negatives TNnormal subjects correctly classified), to thdRF-4. The different values fqr are shown in the first column.
total number,V, of tested cases. Thus, accuracy measures thel € best prediction performance was obtained by using-a

ability of the SFAM to produce correct answers and is definé99, which was also able to achieve the highest specificity.
as follows: The best prediction performances for DLBCL subjects were ob-

tained from the networks using= 0.5, = 0.7 and a voting
Accuracy = (TP +TN)/N. (1) strategy, but their ability to predict normal cases was drastically
reduced. The voting strategy generates a prediction based on the
Sensitivityrelates to the observed frequency of true positivegoting of individual predictions made by each network. The pre-
TP, to the frequency of false negativeE/N (DLBCL sub- diction performances of classes were not affected by the order
jects classified as normalgensitivitymeasures the ability of of presentation of the input patterns.

Discovery of Classes
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TABLE I
SUMMARY OF THE DIFFERENCESBETWEEN GC B-LIKE AND ACTIVATED
B-LIKE (O4) CLUSTERS(MEAN £ SE OF THE NORMALISED EXPRESSION
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T L | S 1] |
i r | sewewnen || enwwen " Gene GC B-like DLBCL Activated B-like Significance
: & l_ i cluster (03) DLBCL cluster (0y)
i1 Ty, i el
: CD10 0.56 + 0.04 0.48 + 0.06 N.S
BCL-6 0.73 £0.03 0.52%0.05 p<0.005
o rsrmnad saibest & DEBCL aubgee TTG-2 0.67 + 0.03 0.50 + 0.06 p<0.01
i ] ) ) IRF-4 0.42 £ 0.04 0.59 % 0.03 p<0.002
Fig. 4. Discovery of classes: clusters of normal and DLBCL subjects obtain BCL2 0.38 £ 0.04 051 % 0.05 p<0.05
at the end of a learning process wjth= 0.3 and five input features.

s
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SE: standard error. N.S. no significance.

LEVELS). p = 0.3AND FIVE INPUT FEATURES

TABLE I
SUMMARY OF THE DIFFERENCESBETWEEN GC B-LIKE AND ACTIVATED
B-LIKE (O5) CLUSTERS(MEAN £ SE OF THE NORAMLISED EXPRESSION

] i 2 Gene GC B-like DLBCL Activated B-like Significance
73 1 cluster (03) DLBCL cluster (0s)
F
o GC B-like & Aciiveied Belike CD10 0.56 £ 0.04 0.19£0.04 p <0.001
BCL-6 0.73+0.03 0.49 £ 0.06 p <0.002
Fig. 5. Discovery of classes: clusters of DLBCL subjects described in tern TTG-2 0.67£0.03 0.210.05 p<0.001
of recent identified DLBCL subtypes [2] with = 0.3 and five input features. IRF-4 0.42 +0.04 0.75 + 0.03 p<0.001
BCL-2 0.38 +0.04 0.68 £ 0.02 p<0.001
B. Discovery of Classes
. . . . SE: standard error.
Fig. 4 depicts the clusters obtained in the output layer of a
SFAM at the end of a learning process wjith= 0.3. The ex- Mormal DLRCT
pressions of the genes BCL-6, BCL-2, CD20, TTG-2, and IRF- . Pty
were used as input features for the SFAM network. The norm 1
subjects are grouped into nod@s andO,, while the DLBLC
subjects are categorised into three clusters (N6#eLy, and | cexwmiva || cove | | E| | ------- .
Os3). ClustersOs, O4, andO; categorise 22, 14 and 9 subjects | c<sxi 0 sebarien | e
respectively. i, i, J
The next step is to analyze the composition of the DLBC L w4
clusters in order to discover possible relevant biological r SRR P & [ hi
o normal sutnect BN L. subgeri

lationships. A recent study performed by Alizadehal. [2]

demonstrated that the DLBCL subjects analyzed here belong 6. Discovery of classes: clusters of normal and DLBCL subjects obtained

to distinct molecular subtypes of DLBCL. Such a researctithe end of alearning process with= 0.5 and 23 input features.

comprised a systematic study of gene expressions in this type

of malignancy. The two subclasses of DLBCL identified byests are performed to show the significance of the differences

Alizadehet al. are known asgerminal centre B-like DLBCL indicated by each subclass of DLBCL (column 4).

(GC B-like DLBCL)and activated B-like DLBCL which are Fig. 6 depicts the clusters obtained in the output layer of a

characterized by expression patterns representative of differ8FAM at the end of a learning process wjith= 0.5. This time

stages of B-cell differentiation [2]. the clustering process uses the expression levels from 23 genes
Fig. 5 describes the DLBCL clusters obtained from Fig. 4 ias input features. These genes are shown in the left column of

terms of the molecular subtypes mentioned above. Cldser Table IV.

comprises all of the GC B-like subjects, except one that wasFig. 7 describes the DLBCL clusters obtained from Fig. 6 in

categorised into clustép,. Furthermore(0, andO; represent terms of the subtypes GC B-like and activated B-like DLBCL.

the clusters encoding the activated B-like subjects. ClustersO, and Og are mainly composed by GC B-like and
Based on the resulting DLBCL clusters, the correspondiregtivated B-like subjects, respectively. Tables IV and V compare

normalized gene expressions levels of the subjects are companedterO; (normal) against cluster3, andOg, respectively, in

in order to discover possible associations between them. Terms of the expressions of 23 genes with suspected roles in the

bles 1l and Il illustrate the relationship between DLBCL clusprocess of DLBCL. Table VI compares the expression levels of

ters (subtypes of DLBCL) and their corresponding gene exprestustersO, and Og.

sion levels. They compare the GC B-like cluster against the firstTable IV shows that the expression levels of genes CD22,

and second clusters of activated B-like subjects, respectivelpW1, BCL-6, APR, IL-10, c-myc, BLC-2, cyclin D2, CD44,

The means and standard errors of the normalized expresdio, TTG-2, and IRF-4 were significantly different in the

levels for each cluster are portrayed. Additionally, statisticalbbrmal clustelO; and the DLBCL cluste©,. Moreover, there
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TABLE IV TABLE V
SUMMARY OF THE DIFFERENCESBETWEENNORMAL (O1) AND DLBCL (O4)  SUMMARY OF THE DIFFERENCESBETWEEN NORMAL (O1) AND DLBCL (Os)
CLUSTERS(MEAN £ SE OF THE NORMALISED EXPRESSIONLEVELS). p = 0.5 CLUSTERS(MEAN £ SE OF THE NORMALISED EXPRESSIONLEVELS). p = 0.5

AND 23 INPUT FEATURES AND 23 INPUT FEATURES
Gene Normal claster (Oy) DLBCL cluster (Oy) Significance Gene Normal cluster (0y) DLBCL cluster (Og) Significance
CD21 0.40 + 0.06 0.44 £0.05 N.S CD21 0.40 + 0.06 0.46 & 0.05 N.S
Casein kinase gamma 2 0.50 £ 0.08 0.42+0.03 N.S Casein kinase gamma 2 0.50 +0.08 0.40+0.05 N.S
CD22 0.57+0.04 0.42 +0.04 p<0.02 CD22 0.57 £ 0.04 0.54 £ 0.05 N.S
WIP/HS 0.62 £0.05 0.66 + 0.04 N.S WIP/HS 0.62 £ 0.05 0.65 = 0.04 NS
JAW1 0.62 £0.03 0.48 +0.05 p<0.02 JAW1 0.62 +0.03 0.58 £0.03 NS
APS 0.54 £ 0.06 0.44 £ 0.05 NS APS 0.54 £ 0.06 0.34£0.05 p<0.02
PC43 0.50 £ 0.06 0.61 £0.03 N.S PC43 0.50+0.06 0.43 £0.05 N.S
BCL-6 0.73 £0.04 0.58 +£0.03 p <0.005 BCL-6 0.73 +0.04 0.57 +0.05 p<0.02
CD27 0.59 + 0.05 0.54 +0.03 N.S CD27 0.59 £ 0.05 0.55+£0.06 N.§S
PKC delta 0.63 +0.04 0.59 +0.04 N.S PKC delta 0.63 £0.04 0.40 £ 0.04 p<0.001
APR 0.31+0.02 0.46 £ 0.05 p<0.02 APR 0.31£0.02 0.43 £ 0.05 p <0.05
IL-10 0.49 = 0.06 0.64 +0.04 p <0.05 IL-10 0.49 £ 0.06 0.58 +£0.05 N.S
c-myc 0.32+0.05 0.45 = 0.04 p<0.05 c-myc 0.32 £ 0.05 0.48 £ 0.05 p<0.05
BCL-2 0.36 =0.05 0.50+0.04 p<0.05 BCL-2 0.36 £ 0.05 0.64 + 0.05 p <0.001
PBEF 0.38+£0.03 0.45=0.05 N.S PBEF 0.38+0.03 0.38+£0.05 N.S
Cyclin D2 0.29 +0.02 0.39 +0.04 p<0.05 Cyclin D2 0.29 £ 0.02 0.40 + 0.06 N.S
CD44 0.25+0.03 0.47 +£0.04 p <0.001 CD44 0.25 £ 0.03 0.37+0.05 p <0.05
IL-6 0.28 £ 0.05 0.48 +0.03 p <0.005 IL-6 0.28 £0.05 0.52 % 0.04 p <0.001
SP100 0.35+0.07 0.44 £ 0.04 N.S SP100 0.35 £ 0.07 0.52 £0.05 N.S
Ld2 0.28 +0.04 0.35+0.03 N.S Ld2 0.28 £ 0.04 0.27 & 0.05 N.S
CD10 0.54 £ 0.05 0.41 £0.04 N.S CD10 0.54 = 0.05 0.48 +0.07 N.§
TTG-2 0.69 + 0.04 0.53 +0.05 p <0.05 TTG-2 0.69 +0.04 0.31+0.05 p <0.001
IRF-4 0.41 +0.06 0.60 +0.03 p<0.01 IRF-4 0.41+0.06 0.57+0.05 p<0.05
SE: standard error. N.S. no significance. SE: standard error. N.S. no significance.
LB
; TABLE VI

SUMMARY OF THE DIFFERENCESBETWEEN THEDLBCL CLUSTERS(O,4 AND
Os (MEAN £+ SE OF THE NORMALISED EXPRESSIONLEVELS). p = 0.5
AND 23 INPUT FEATURES

| conanaon |-u-. | OHMIKERR

| OO EEEKEELY Gene DLBCL cluster (04) | DLBCL cluster (Og) Significance
[RLA NS I'.| L85 559
] - CD21 0.44 +0.05 0.46 £ 0.05 NS
L i Casein kinase gamma 2 0.42 +0.03 0.40 £ 0.05 N.S
o GC B-like. % Actrvabed B-like cD22 0.42+0.04 0.54£0.05 NS
Fig. 7. Discovery of classes: clusters of DLBCL subjects described in tern WIPHS 0.66:0.04 0.6520.04 NS
ofgrécént identifieé/ DLBCL subtypes [2], with= 0.5 aan 23 input features. Jawl 048005 0.58 +0.03 NS
APS 0.44 +0.05 0.34 £ 0.05 N.S
PC43 0.61=0.03 0.43+0.05 p <0.005
were significant differences between the normal cluster O1 a BCL-6 0.58.0.03 0.570.05 NS
the DLBCL clusterQg, in terms of the expression levels of cp27 0.54 + 0.03 0.55 + 0.06 NS
genes APS, BCL-6, PKC delta, APR, c-myc, BCL-2, CD44 PKC delta 0.50£0.04 0.40 £ 0.04 p <0.002
IL-6, TTG-2, and IRF-4 (Table V). Table VI illustrates the APR 0.46+0.05 0.43£0.05 NS
significance of the differences between the expression lev IL-10 0.64+0.04 0.58+0.05 NS
of genes PC43, PKC delta, BCL-2 and TTG-2 describing tt c-mye 045 %004 048+0.05 NS
DLBCL cIustersO4 and 06. BCL-2 0.50 £ 0.04 0.64 £ 0.05 p<0.05
PBEF 0.45+£0.05 0.38 £0.05 N.S
Cyclin D2 0.39+0.04 0.40 £ 0.06 N.8
V. DiscussioN ANDCONCLUSION D44 047 £ 0.04 0374 0,05 NS
These results suggest that a simplified neuro-fuzzy approz IL-6 0.48+0.03 0.52+004 NS
can be useful for the prediction and discovery of cancer cal SP100 044004 052005 NS
gories based on gene expression patterns. Despite the smalll Laz 035+003 0272 0.05 NS
of the data sets and the disproportion of the number of normr TC;)GIOZ g:;zgg: g:?:’ggz plsm
and DLB_CI__ subjects, one of the |mplemeqted grchﬂectures w RF4 060 0.03 057005 NS
able to distinguish between those categories with a considera

degree of accuracy (prediction task). The prediction ability ofsE: standard error. N.S. no significance.
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this approach may be better evaluated by including more sutation procedures will be considered. The results and software
jects from both classes. Similarly, the application of alternativa/stems of this and future research will be publicly available on

sampling procedures may provide a better visualization of thee Internet

prediction performance of the model. The implementation of The techniques implemented in this research may vyield sig-
this type of automated classification systems may significanthjficant benefit in the improvement of decision support systems

contribute to the decision support tasks performed in a clim cancer classification, and provide a better insight into the

ical environment. They may provide diagnostic tools to confirpprocess of genome-wide expression analysis.

or clarify unusual cases. The improvements of their prediction

capabilities on diverse subclasses, may also collaborate in the

maximization of treatment efficacy and the reduction of toxi- REFERENCES
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