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Abstract-One of the properties of FAM, which is a mixed 
blessing, is its capacity to produce new neurons (templates) 
on demand to represent classification categories. This property 
allows FAM to automatically adapt to the database without 
having to arbitrarily specify network structure, hut it also 
has the undesirable side effect that on large databases it can 
produce a large nehvork size that can dramatically slow down the 
algorithms training time. To address this problem we propose the 
use of the Hilbert space-filling curve. Our results indicate that the 
Hilbert spacefilling curve can reduce the training time of FAM 
hy partitioning the learning set without a significant effect on 
the classification performance or network size. Given that there 
is full data partitioning with the HSFC we implement and test 
a parallel implementation on a Beowulf cluster of workstations 
that'further speeds up the training and classification time on 
large databases. 

I. INTRODUCTION 

Neural Networks have been used extensively and success- 
fully to attack a wide variety of problems, As computing 
capacity and electronic databases grow, there is an increasing 
need to process considerably larger databases. In this context, 
the algorithms of choice tend to be ad-hoc algorithms or tree 
based algorithms such as CART and C4.5 [9]. Variations of 
these tree learning algorithms, such as SPRINT (Shafer, et al., 
[IO]) and SLIQ (Mehta, et al., [7]) have been successfully 
adapted to handle very large data sets. 

Neural network algorithms have a higher computational 
complexity and for some applications have prohibitive con- 
vergence times. Even one of the fastest training time neural 
network algorithms, the Fuzzy ARTMAP (FAM) algorithm, 
tends to lag in convergence time as the size of the network 
grows. 

The FAM algorithm corresponds to a family of neural 
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network architectures introduced by Carpenter, et al., 1991- 
1992 [3], [2] and has proven to be one of the premier neural 
network architectures for classification problems. Some of the 
advantages that FAM has, compared to other neural network 
classifiers, are that it learns the required task fast, it has the 
capability to do on-line learning, and its learning structure 
allows the explanation of the answers that the neural network 
produces. 

One of it's properties which is a mixed blessing, is its capac- 
ity to produce new neurons (templates) on demand to represent 
classification categories. This property allows FAM to auto- 
matically adapt to the database without having to arbitrarily 
specify network structure, but it also has the undesirable side 
effect that on large databases it can produce a large network 
size that can dramatically slow down the algorithms training 
time. It would be desirable to have a method capable of 
keeping the training set on a manageable size without seriously 
affecting FAMs convergence, classification and generalization 
properties. 

In this paper we propose the use of the Hilbert space- 
filling curves for processing the training set to he used with 
FAM classification (hFAM). Our research on Hilbert space- 
filling curves has shown that they can dramatically reduce the 
training time of FAM by partitioning the training set without a 
significant effect on the classification performance or network 
size. Skopal et al. [4] analyze different space-filling curves, 
amongst them the Peano curve, Z curve and the Hilbert curve, 
and also provide measures for their appropriateness. Moon et 
al. [8] argue and prove that the Hilbelt space-filling curve 
is the mapping that provides the least number of splits of 
compact sets from [0,1]" to [0,1]. This can be interpreted as 
stating that points that are close on the mapping will also be 
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close on the n-dimensional hypercube. Lawder 161 has taken 
advantage of this and used the Hilbert space-filling curve to 
develop a multMimensional indexing technique. 

This paper is organized as follows: First we review the 
Fuzzy ARTMAP architecture and parameters, then we ex- 
amine the computational complexity of FAM and analyze 
how and why a partitioning approach can considerably reduce 
the algorithms training time. After that we discuss space- 
filling curves in general and the Hilbert space-filling curve 
in particular and why this curve can be instrumental in im- 
proving the FAM algorithm's convergence time. Furthermore, 
experimental results are presented on a sequential machine and 
on a Beowulf cluster of workstations that illustrate the merit 
of our approach. We close the paper with a summary of the 
findings and suggestions for further research. 

11. THE FUZZY ARTMAP ARCHITECTURE 

The Fuzzy ARTMAP architecture consists of four layers or 
fields of nodes (see Figure I ) .  The layers that are worth de- 
scribing are the input layer (Fp),  the category representarion 
layer (I?;), and the output layer (F . ) .  The input layer of Fuzzy 
ARTMAP is the layer where an input vector of dimensionality 
2M, of the following form is applied 

e c  1 = (a, 4 = (al, az ,  . . . , aM., a l ,  a z , .  . . ,a&.) 

a: = 1 - a , ;  Vi E {1,2,. _ _  , M a }  

(1) 

(2) 
where: 

The assumption here is that the input vector a is such that 
each one of its components lies in the interval [O, I]. The 
layer F .  of Fuzzy ARTMAP is referred to as the category 
representation layer, because this is where categories (or 
groups) of input pattems are formed. Finally, the output layer 
is the layer that produces the outputs of the network. An output 
of the network represents the output to which the input applied 
at the input layer of FAM is supposed to be mapped to. 

There are two sets of weights worth mentioning in FAM. 
The first set of weights are weights from F; to Ff, des- 
ignated as w;,,(1 < j < N,,1 < i < 2M,), and 
referred to as top-down weights. The vector of weights w; = 
( w ; ~ ,  wyz,. . . , is called a template. Its functionality is 
to represent the group of input pattems that chose node j in the 
category representation layer of Fuzzy ARTMAP as their rep- 
resentative node. The second set of weights, worth mentioning, 
are weights that emanate from every node j in the category 
representation layer to every node k in the output layer. These 
weights are designated as W$ (called inter-ART weights). 
The vector of inter-ART weights emanating from every node 
j in  Fuzzy ARTMAP (i.e.,WTb = [W$, W$, . . . ,W&]) 
corresponds to the output pattern that this node j is mapped 
to. 

Fuzzy ARTMAP can operate in two distinct phases: 
the training phose and the performance phose. The 
training phase of Fuzzy ARTMAP can be described 
as follows: Given a list of inpudoutput. pairs, 
{(11,0'), . . . , (Ip,Op), . . . , (IPT, OPT)}, we want to 

Field F i  

t j 

Fig. 1. Fuzzy ARTMAP Diagram 

train Fuzzy ARTMAP to map every input pattem of the 
training list to its corresponding output pattern. To achieve 
the aforementioned goal we present the training list to Fuzzy 
ARTMAP architecture repeatedly. That is, we present I' to 
Fp, 0' to F., I' to Fp, 0' to Fi ,  and finally IPT to Fp, and 
OPT to F i .  We present the training list to Fuzzy ARTMAP 
as many times as it is necessary for Fuzzy ARTMAP 
to correctly classify all these input pattems. The task is 
considered accomplished (i.e., the learning is complete) when 
the weights do not change during a list presentation. The 
aforementioned training scenario is called off-line learning. 
The performance phase of Fuzzy ARTMAP works as follows: 
Given a list of input patterns, such as il,iz,. . . ,ips, we 
want to find the Fuzzy ARTMAP output produced when each 
one of the aforementioned test pattems is presented at its F p  
layer. In order to achieve the aforementioned goal we present 
the test list to the trained Fuzzy ARTMAP architecture and 
we observe the network's output. 

The operation of Fuzzy ARTMAP is affected by two net- 
work parameters, the choice parameter pa, and the baseline 
vigilance parameter p.. The choice parameter takes values 
in the interval ( 0 , ~ ) .  while the baseline vigilance parameter 
assumes values in the interval [O,I]. Both of these parameters 
affect the number of nodes created in the category represen- 
tation layer of Fuzzy ARTMAP. Higher values of p,, and 
pa create more nodes in the category representation layer of 
Fuzzy ARTMAP, and consequently produce less compression 
of the input patterns. There are two other network parameter 
values in Fuzzy ARTMAP that are worth mentioning. The 
vigilance parameter pa, and the number of nodes N, in 
the category representation layer of Fuzzy ARTMAP. The 
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vigilance parameter pa takes value in the interval [pa ,  11 and 
its initial value is set to be equal to pa . The number of nodes 
N, in the category representation layer of Fuzzy ARTMAP 
increases while training the network and corresponds to the 
number of committed nodes in Fuzzy ARTMAP plus one 
uncommitted node. 

Before training the topdown weights (the w,4's) of Fuzzy 
ARTMAP are set equal to 1, and the inter-ART weights (the 
W$s) are chosen equal to 0. One of the specific operands 
involved in all of these operations is the f u u y  min operand, 
designated by the symbol A. Actually, the fuzzy min operation 
of two vectors z, and y, designated as zAy,  is a vector whose 
components are equal to the minimum of components of x 
and y. Another specific operand involved in these equations is 
designated by the symbol I 1. In particular, 1x1 is the size of 
a vector x and is defined to be the sum of its components. 

A. The Fuzzy ARTMAP Learning Algorithm 

j in F;, as follows: 
Operation 1: Calculation of bottom up inputs to every node 

(3) 

after calculation of the bottom up inputs the node j,,, with 
the maximum bottom up input is chosen. 

Operation 2: The node j,,, with the maximum bottom up 
input is examined to determine whether it passes the vigilance 
criterion. A node passes the vigilance criterion if the following 
condition is met: 

11' A w;l 
2 Pa (4) 

11'1 
if the vigilance criterion is satisfied we proceed with operation 
3 otherwise node j,,, is disqualified and we find the next 
node in sequence in F; that maximizes the bottom up input. 
Eventually we will end up with a node j,,, that maximizes 
the bottom up input and passes the vigilance criterion. 

Operation 3: This operation is implemented only after we 
have found a node j,,, that maximizes the bottom-up input 
of the remaining nodes in competition and that passes the 
vigilance criterion. Operation 3 determines whether this node 
j,,, passes the prediction test. The prediction test checks 
if the inter-ART weight vector emanating from node j,,, 
(i.e.,Wj:"= = [W;:azl, Wf;"=,, . . . ,Wf;am,.6]) matches 
exactly the desired output vector 0' (if it does this is referred 
to as passing the prediction test). If the node does not pass the 
prediction test, the vigilance parameter p. is increased to the 
level of * + E  where E is a very small number, node j,,, 
is disqualified, and the next in sequence node that maximizes 
the bottom-up input and passes the vigilance is chosen. If, on 
the other hand, node j,,, passes the predictability test, the 
weights in Fuzzy ARTMAP are modified as follows: 

IliAw"l 

W,"max e W;naaz A I', + 0' ( 5 )  

Fuzzy ARTMAP training is considered complete if and only 
if after repeated presentations of all training inputloutput pairs 

to the network no weight changes are produced. In some 
databases noise in the data may create over-fitting so a single 
pass over the training set may be preferable. 

In the performance phase of Fuzzy ARTMAP only Opera- 
tions 1 and 2 are implemented for every input pattem presented 
to Fuzzy ARTMAP. 

E. Fuzzy ARTMAP pseudocode 
We will be interested in classification problems where we 

associate input patterns to category labels. The following 
pseudo code algorithm makes use of these assumptions and 
simplifies accordintly the FAM algorithm. 
FAM-TRAINING-PHASE(Patte?-ns, p ,  pa, €) 

1 templates e { }  
2 for each I in Patterns 
3 d o p t p  
4 rrpeat 
5 T,,, + & 
6 status + Foundiione 
7 
8 do if p ( I ,  w j )  2 p 

for each w j  in templates 

9 and T ( I ,  wj ,  pa) > T,,, 
10 then 
1 1  T,,, t V I ,  wj,  0,) 
12 %" + j 
13 status t FoundOne 
14 if status = FoundOne 
15 
16 then status t This I s IT  
17 else status t TryAgain 
18 
19 until status # TryAgain 
20 if status = ThisIsIT 
21 then 
22 
23 else 
24 
25 
26 return templates 

then if class(1) = class(wjnm=) 

P + P ( I ,  Wjm.,=) + E 

Wiwaem t Wj,.= A I 

templates t templates U { I }  

Where T ( I ,  w ,  p) is defined by equation 3 and p ( I ,  w) is 
defined by the left hand side of inequality 4. 

C. FAM time complexity analysis 
If we call r the average number of times that the repeat 

loop is executed for each input pattern. Then the number of 
times that a given input pattern I passes through the code will 
be: 

Time(1)  = O(r x ITemplatesl) (6) 

Also, under the artificial condition that the number of 
templates does not change during training it is easy to see 
that the time complexity of the algorithm is: 

T i m e ( F A M )  = O(r x PT x ITemplatesl) (7) 
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.Usually for a fixed type of database the FAM algorithm 
achieves a certain compression ratio. This means that the 
number of templates is actually a fraction of the number of 
patterns PT in the training set: 

ITemplatesl = KPT (8) 

and 
O ( F A M )  = 0 (rPTKcPT) = O(nrPT2) (9) 

Dividing the training set into p partitions will reduce the 
number of patterns in each partition to f and the number of 
templates in each partition to 

On a sequential machine the speedup obtained by partition- 
ing the training set into p subsets will be proportional to: 

on average. 

and on a parallel machine with p processors the speedup 
will be proportional to: 

111. SPACE-FILLING CURVES 
We will talk about a space filling curve SAf- as an mth- 

order approximation of the space-filling curve S in the Ma- 
dimensional space. An Madimensional space-filling curve 
with grid size N connects Nu" points and has Nu" - 1 
segments. Figure 2 shows the Sweep and Peano space-filling 
curves respectively. The grid size in these examples is 4, the 
number of dimensions Ma = 2 the number of points that they 
connect is 4' = 16 and the number of segments is 15. 

A curve S is space-filling iff 

Fig. 2. Sweep and Peano space-fi lling curves 

A. The Hilbert space-filling Curve 
We will denote the mth+xder approximation of the Ma- 

dimensional Hilbert space-filling curve as E$. Examples of 
the first 4 approximations of the 2dimensional Hilbert space- 
filling curve can be seen in figures 3 and 4. A 34imensional 
Hilbert space-filling curve approximation can be seen in figure 
5. The mth+rder approximation H 2  of the HSFC has a 

I 

I 

1 
Fig. 3. Fist 2 approximations of HSFC 

Fig. 4. Hilben space-fi lling Curve 

grid size of N = Zm, in practice divides and the MO- 
dimensional space into amMS boxes and orders them in a 
contiguous sequence. For a more detailed exposition of the 
clustering properties of this curve we refer the reader to [8]. 

B. The Hilbert space-filling for FAM partitioning 
Our approach is the following: we take the set of training 

pairs (Ir,O'), apply the Hilbert index T = X?(a), where 
a is the non complement coded part of I = (a,l  - a). 
The resulting values are added to an index file and sorted. 
Once sorted the index is split into p contiguous and equal 
sized partitions, each partition is processed independently. 
The complexity of the partitioning operation is equal to the 
complexity of the sorting algorithm used, for any reasonable 
sort this is O(PTlog(PT))  and therefore does not add to 
the complexity of the FAM learning process itself (at least 
O(PT2)) .  

IV. EXPERIMENT DESIGN 
Experiments where conducted on 3 databases: I real dataset 

and 2 artificial Gaussian data sets. All data sets where tested 
with training set sizes of 1000 x 2',z E { O ,  1,. . . ,9}, that is 
1,000 to 5 12,OOO patterns. The test set size was fixed at 20.000 
patterns. The number of partitions varied from p = 1 (vanilla 
FAM) to p = 32, partition sizes also increased in powers of 
2. The tests where conducted 32 independent times for each 
different ( p ,  PT) = (partition, training set size) pair. 

A. Forest CoverType Database 
The first database used for testing was the Forest CoverType 

database provided by Blackard [ I ] ,  and donated to the UCI 
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Fig. 5. Hilben 3D 

Machine Learning Repository. The number of attributes of 
each pattern is 54. There are no missing values on this data. 

V. EXPERIMENTAL RESULTS 

In figure 7 we can see a bar graph of the number of 
templates on the Y axis, the training set size on the X axis 
(in thousands of patterns), and on the Z axis the number of 
partitions. Differences on the Z indicate that the number of 
partitions do not affect considerably the compression ratio. 
This is also confirmed in figures 8. 

Fig. 7. Number of Templates on Covertype Data 

The classification of the partitioned data is very similar 
from the classification of the non-partitioned ( I  partition) data 
figure 9. The Tree Covertype database classification continues 
to improve up t o  512,000 patterns, clearly indicating that the 
database is sufficiently complex as to need a large training set 
size. This behavior is not observed on the Gaussian artificial 
data (5% or 15% data), which peaks performance at 32,000 
patterns and makes the classification performance graph flat 
and uninteresting. 

Fig. 6.  Wsualimtion of Forest GverType data 

Patterns 1 through 512,000 where used for training, The 
testing set for all trials where patterns 561,001 to 581,000. A 
visualization of the first 3 dimensions of the Forest Covertype 
can be seen in figure 6, different tones correspond to differ- 
ent classes. Classification performance for different machine 
learning algorithms for this database usually hovers around 
75%. 

B. Gaussian Databases 

The Gaussian data was artificially generated using the polar 
form of the Box-Muller transform with the R250 random 
number generator by Kirkpatrick and Scholl [5] .  We generated 
2 class 16 dimensional data. 532,000 patterns where generated 
for each Gaussian database. 512,000 pattems where used for 
training, the last 20.000 where used for testing. One Gaussian 
database had a 15% overlap while the other had a 5% overlap. 

Fig. 8. Number of Templates on S% Overlap Gaussian Data 

Figure 10 shows the speedup of the partitioned FAM with 
p partitions running in parallel using equation ??. The best 
speedups obtained where in the order of 100. 
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Fig. 9. Classification Performance of Forest Cover database 

The speedup for the same data using a sequential processing 
machine can be seen in figure 1 I ,  we can see that the speedup 
for an single processor is in the order of p (17 for 32 
processors) as indicated by equation I O  and the speedup of 
the parallel implementation is in the order of p 2  (100 for 32 
processors) as indicated by equation 11. 

Fig. IO. Hilbert Parallel Partitioning Speedup on Covertype Data 

VI. CONCLUSIONS 

We presented the FAM algorithm applied to classification 
tasks on large databases and saw that it’s training time tends 
to slow considerably when the size of the database grows. By 
analyzing the algorithm we proposed the use of Hilbert space- 
filling curves to attack this problems. experimental results on 3 
databases confirm our projections: classification performance 
is not affected, in fact, it is improved for the real database 
results, although this was not an objective in our study. Com- 
pression ratio is only slightly affected, and convergence time is 
improved linearly on the sequential machine and quadratically 
on the parallel machine. Nevertheless there is still room for 
improvement, in this study we applied a network partitioning 
approach to the training set. We believe that combining this 

with a network partitioning approach is the next step to achieve 
optimal workload balance in the parallel implementation, this 
is one of the directions of our current research. 

. .  

Fig, 11. Hilbert Sequential Partitioning Speedup on Covertype Data 
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