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For industrial use, adaptive resonance theory (ART) neural networks have the potential of becoming an
important component in a variety of commercial and military systems. Efficient software emulations of
these networks are adequate in many of today's low-end applications such as information retrieval or
group technology. But for larger applications, special-purpose hardware is required to achieve the
expected performance requirements. Direct electronic implementation of this network model has
proven difficult to scale to large-input dimensionality owing to the high degree of interconnectivity
between layers. Here, a new hardware implementation design of ART1 is proposed that handles input
dimensions of practical size. It efficiently combines the advantages of optical and electronic devices to
produce a stand-alone ARTi processor. Parallel computations are relegated to free-space optics, while
serial operations are performed in VLSI electronics. One possible physical realization of this architec-
ture is proposed. No hardware has as yet been built.

Key words: Free-space optical processing, neural networks, adaptive resonance theory, ferroelectric
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1. Introduction

Adaptive resonance theory (ART) networks, a class of
neural networks developed by Carpenter and Gross-
berg' in 1987, are used to learn stably the classifica-
tion codes for streams of input patterns. Clustering
is the basic function performed by an ART network.2
These networks generate clusters in a self-organizing
manner, detect and treat novel patterns, and learn
generalizations of the patterns in a relatively small
number of presentation cycles.3 4 In Ref. 4 the theo-
retical upper limits for the number of presentation
epochs necessary to stabilize the learning of ART are
all large compared with those observed in practice.
For example, an operational system with over 1000
distinct complex input patterns always converges in
fewer than ten epoches. We focus on the specific
form of ART that handles binary-input patterns
known as ART1.

Currently ARTi networks are beginning to be used
in a growing number of industrial applications. At
The Boeing Company, Caudell et al.5 used ARTi
networks in an information retrieval system for the
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search and recall of similar engineering designs,
which is called the group-technology problem. Ba-
loch and Waxman6 used an ARTI network in a
modular way to control the behavior of mobile robots.

In all these applications, ART networks are imple-
mented in software simulations on conventional com-
puter systems, either in serial or in parallel. In
terms of execution time, the performance of these
simulations is acceptable either when small input
patterns are used or when the applications have no
restrictive turnaround-time requirements. The tem-
poral performance is usually not an issue when
classification or generalization performance is the
focus of research. However, when the simulations
grow to meet the requirements of problems found in
the real world, the brick wall of simulator perfor-
mance is quickly encountered. Thus we need to
consider physical implementations of these network
models.

Such an idea is not new. In the recent past, pure
electronic implementations of ARTi components and
systems have been proposed. Kaburlasos et al.7 have
constructed a microcontroller-based ARTi coproces-
sor for IBM PC's. Two parallel microcontrollers
simulate the solutions to the nonlinear differential
equations for two of the layers in the network.
Software was necessary to complete the functioning
ARTi network. The system is limited to 64 input
and 40 output neurodes. Tsay and Newcomb8 pre-
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sented a VLSI implementation of the two major
subsystems in the ARTi network: the short-term
and the long-term memories. The nonlinear differ-
ential equations are implemented by using comple-
mentary metal-oxide semiconductor (CMOS) devices
and circuits. A small system with four inputs and
four outputs was layed out and simulated by using
Magic, a VLSI simulation and analysis software tool.
The high interconnection density needed for the
ARTi model and the diversity of synapses within the
architecture limit the size of the input vector in
purely electronic implementations that use parallism.

Optics and electronics have also been previously
combined to address this interconnection problem.
Many of the limitations found in pure electronic
implementations of neural networks were thus re-
moved. Psaltis et al.9 implemented an optoelec-
tronic version of the Hopfield network by using an
optical matrix-vector multiplier. Caulfield and
Armitage 0 implemented a pseudo-optical version of
the ARTi network that used the optical associative
memory model; pseudo in that it does not learn in real
time. Recently Wunsch et al." proposed and tested
the first hybrid optoelectronic ARTi system that used
a VanderLugt, or 4F, optical correlator.12 In Ref. 11
an algorithmic formulation of the ARTi network was
implemented. The optics performed the bulk of the
computations needed for the algorithm by using the
intensity of the zero-shift correlation peak to repre-
sent vector dot products. In this system, all other
calculations needed for the network algorithm are
performed in a separate digital computer.

The following study takes the concept of an algorith-
mic implementation several steps further. After the
details of the ARTi neural network algorithm are
reviewed in Section 2, the design of an optoelectronic
architecture that implements the algorithm com-
pletely, without requiring a separate digital com-
puter, is presented in Section 3. The design of one
possible physical realization of this optoelectronic
architecture is then presented in Section 4, and a
method for using this device as a part of a larger
macrocircuit of ARTi network modules is discussed
in Section 5.

2. Algorithmic Form of ART1

The ARTi neural network model is canonically repre-
sented by a coupled set of ordinary nonlinear differen-
tial equations.' If appropriate restrictions are made
on the relationship between the dynamical time
constant, the learning rate, and the length of time the
input pattern is stable on the network input neu-
rodes, then this system of equations reduces to a
procedural algorithm.2 The dynamical time con-
stants are required to be much smaller than the
learning rate, which in turn are much smaller than
the stable presentation time. These restrictions lead
to a fast learning mode of operation in which the
learned weights in the system reach asymptotic stabil-
ity before a new input pattern is presented. The
impact of these restrictions on the implementation of

ART1 is enormous: the computational steps of the
algorithm can now be mapped directly onto an algo-
rithmic processor. Under these special conditions
for this model, we need not become embroiled in the
analog implementation of a complex dynamical sys-
tem. The mapping of the ARTI algorithm onto a
specific processor depends on many details, not the
least of which is the individual computational steps
required in the algorithm. To clarify these state-
ments, the remainder of this section describes the
ARTi algorithm. Section 3 discusses the partition-
ing of this algorithm between the optical and the
electronic components.

Figure 1 is a flow chart for the ARTi algorithm and
includes the main pattern presentation loop. Table
1 lists the functional operations. The network is
trained through repetitive presentation of a set of
training patterns. This algorithm autonomously

Fig. 1. Flowchart that embodies the processing of an ARTi
neural network: i is the index of the current input vector I being
presented to the network; arg max is a function that returns the
index of the maximum element in its list argument, effectively
implementing the competition within the F2 layer; Tk is a typical
template in the set of all n, templates; Ak is a list of binary flags that
determine which templates participate in the competition; P is a
small constant that biases the search process toward smaller
templates; k* is the current index of the winning F2 neurode; N is
the total number of F1 neurodes and is the dimensionality of the
input vector, p is the vigilance factor, ranging between 0 and 1; na is
the number of F2 neurodes still active in the competition; p is a
distinguishing name or label for I; Ck* is the membership roster for
cluster k* containing the names of all of the input vectors that were
attracted to Tk*; 1 is the unit vector.

10 October 1992 / Vol. 31, No. 29 / APPLIED OPTICS 6221

- -



Table 1. List of Principal Computational Operations Required to
Performing the ART1 Algorithma

No. Operation Electronics Optics %

lb I
2b Tk V
3c Tk-I v 91
4c ITkI V 8
5c Tk-=Tk*nI v <1
6c III <0.1
7c Tn = I v <0.1
8 arg max } ) <0.01
9 {Ai = 1; ,ni } V <0.01

10 Ck <-p V <0.01
11 > V <0.01
12 X V <0.01
13 / V <0.01
14 + V <0.01

aThese operations can be partitioned naturally between elec-
tronic and optical implementations, as indicated by the check
marks. The last column gives an approximate percentage of
execution time in the ARTi algorithm.

bRepresentation of information as a light intensity or transmis-
sivity.

cAssuming that Nbit = 1024 and n, = 100.

places binary input patterns (vectors) into clusters.
Each cluster is represented in neural memory as a
template prototype. A template is an abstraction of
the patterns in a cluster, and it is formed and
modified during the learning (training) process. The
number of clusters discovered by the network is
determined by the underlying structure or semantics
of the training set of input patterns, by the order of
presentation of input patterns, and by a system-level
threshold called the vigilance factor. During testing
of the trained network, neural memories or templates
are directly recalled when examples from known
clusters are presented. On the other hand, the
learning process remains forever plastic in this model,
even after training, which permits new or novel input
patterns to be learned without disturbing old memo-
ries.

The algorithm proceeds as shown in Fig. 1. A
binary input pattern I is presented to the system.
If this is the first presentation of the first pattern,
then this pattern becomes the first template, T1.
That is, I gets copied into T, and the number of
clusters n is set to 1; Tk* - I, where k* = 1 (Table 1,
operation 7). After this step, the system is ready for
the next input pattern.

Otherwise, a search must determine if I is close
enough to any one of the existing templates. A
best-first search is performed in the order of descend-
ing value of a normalized dot product (I Tk)/
(I + I01), where k* is the index of the template
under current consideration in the search (Table 1,
operations 3, 4, 13, and 14). (The factor is a small
constant to help bias the choice toward smaller
templates; it is numerically equal to the reciprocal of
N, the number of binary components of the input

vector.) The index k* is obtained by

[Ak(I . Tk)
arg maxI

kE=1,nc, [ 3 + ITk 

where the set of flags Ak is used to select the
templates that are permitted to compete for a match
with the input pattern; Ak 1 for active templates,
while Ak = 0 for inactive templates (Table 1, opera-
tions 8 and 12). The arg max function returns the
index of the maximum element in the argument list.
Within the presentation time of a pattern, all tem-
plates start off active, but become labeled inactive if,
after being selected in the best-first search, they fail
the close-enough test to I. This test requires that I
fall within a region of feature space around the
template Tk* to be considered a member of cluster k*.
This region is define by the inequality (I Tk*)/ III 
p, where p E [0, 1] is the vigilance factor for the
network (Table 1, operations 6, 11, and 13). A p
value of approximately 1 gives a network with high
discrimination, which forms many clusters. A value
of approximately 0 gives a network with low discrimi-
nation, which forms few clusters. If the vigilance
test is not satisfied for the cluster k*, then a reset
occurs; Ak* = 0, and the search continues.

If the vigilance test is satisfied, then the network is
in a state of resonance and the winning template Tk*
is updated through a simple learning process. The
new template gets the logical bit-wise AND of the old
template and the input pattern; Tk* <- Tk* n I (Table
1, operation 5). This learning model in ARTi is a
form of Hebbian learning,13 which is found in many of
today's self-organizing neural models. In addition
to this operation, the input pattern name is added to
the membership set for the k* cluster, and the active
cluster flags {AkJ are restored to unity (Table 1,
operations 9 and 10). That is, Ck* <-p and (Ak = 1,
1 < k < n, , wherep is the name of the current input
pattern and Ck* is the set of names of input patterns,
or the roster, of the members of the k*th cluster.
The name can be a number or an ASCII sequence.
Constructing the rosters for clusters provides informa-
tion useful in many practical applications. After this
step, the system is ready for the next input pattern.

If none of the existing clusters pass the vigilance
test for input pattern I, then a new cluster is formed.
That is, the novel pattern I gets copied into Tknew, and
the number of clusters n is incremented by one;
Tknew <- I, where knew = nc + 1 (Table 1, operation 7).
The novel input pattern name is added to a new roster
for the knewth cluster, and the active cluster flags Ak
are restored to unity (Table 1, operations 9 and 10).
That is, Cknew - p and Ak = 1, 1 < k < n}. After
this step, the system is again ready for the next input
pattern.

As is evident in the above discussion, the ART1
algorithm has a mixture of both serial and parallel
operations. The vigilance test and the search pro-
cess remain serial-operations independent of any
particular hardware implementation scheme. The
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best that hardware can do for ARTi is to drive the net
execution time in the parallel portions of the algo-
rithm to as near zero as possible. Section 3 discusses
the partitioning of these operations between elec-
tronic and optical hardware to achieve high perfor-
mance.

3. Optoelectronic Architecture

The second column of Table 1 summarizes the math-
ematical operations found in the ARTi algorithm.
As we can see, several of these operations are matrix-
vector multiplications. In fact, the major computa-
tional load arises from the computation of the vector
dot products and norms. Fortunately, optical com-
puting systems can perform these types of operations
efficiently, as is indicated in the fourth column of the
table. It is shown in this section that all vector and
matrix-vector operations can be performed in paral-
lel by using a modification of a well-known optoelec-
tronic processor. To date, no hardware prototypes
of this system have been constructed to our knowl-
edge, although research is progressing in that direc-
tion.

A. Optical Matrix-Vector Multiplier

In 1985 Farhat and Psaltis' 4 proposed and demon-
strated the use of the optical matrix-vector multipli-
cation processor (OMVMP) in a neural network sys-
tem. Figure 2 shows the basic components of this
conceptually simple system. The processor per-
forms a multiplication between a vector whose compo-
nents are represented by the intensity of the emitter
array and a matrix whose components are repre-
sented by the transmission coefficients of the pixels in
the two-dimensional (2-D) spatial light modulator
(SLM). Lens 1 is symbolic of a cylindrical lens
system that distributes each of the vector's compo-
nents along the columns of the matrix. The multipli-
cation is performed componentwise as the light from
the linear array is differently attenuated through

each of the SLM pixel cells. The second cylindrical
lens system (Lens 2) collects the exiting light along
the row direction and integrates the sums on an array
of detectors oriented perpendicularly to the emitter
array. The output of the detectors is the resulting
matrix-vector product. In this system the compo-
nents of the vector and the matrix can be either
binary or analog; the resulting accuracy in both cases
depends on the specific devices used.

As is also shown in Fig. 2, the OMVMP is typically
controlled by a digital computer, which contains in its
memory images of the vector and the matrix to be
multiplied, as well as the controlling program. The
vector and the matrix are loaded into the optical
processor through electronic interface devices, and
the resulting product is read back into memory from a
controller for the detector array. In a sense this
configuration uses the optical processor as a coproces-
sor to a digital computer.

To see how this system can be used as a coprocessor
in the execution of the ARTi algorithm, refer to Fig.
3. In the figure it is assumed that the input pattern
I is a 2-D binary image, and one possible way that it
can be mapped onto the one-dimensional (1-D) emit-
ter array is shown. We also see how the first mem-
ory template T1 is mapped onto the 2-D SLM device.
With this assignment, the OMVMP will compute the
dot products [(I T), 1 < k < ni. These dot prod-
ucts are read from the detector into memory, and the
remainder of the algorithm is executed within the
digital computer. This is a mode of operation simi-
lar to that used by Wunsch et al.1 for the 4F optical
correlator implementation of an ART 1 network.

1- D Emitter Array

Ii

0=1
L=°

First Template T,

1 T I I
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1-'rogr
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Fig. 2. One possible way to use an optical matrix-vector multi-
plier as a coprocessor to compute several of the parallel operations
required for the ARTi algorithm.

To 1 1 1 1 1 1 1 1 1 ] 1
T1 T1 1 T 2 T 1 5* ______ ..._________________ TIN____

T2'J T21 T22*o 1_

T3 T3. _ ___ __; 
2-D Spatial Light Modulator

(SLM)

Fig. 3. How binary images and templates can be loaded into the
optical processor arrays. Note that the To all-transmission row is
used to compute the input vector norms. T-T 3 , memory tem-
plates; Ij, input pattern.
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A simple change in the use of the basic OMVMP
permits this processor to compute the vector norms
III and Tk 1, 1 < k < nJ required in the ARTI
algorithm. Figure 3 shows how I I can be computed
by providing an extra row on top of the 2-D SLM that
is fully transmissive. This is equivalent to loading
the unit vector 1 into the extra row on the SLM.
The first detector in the focal plane of Lens 2 then
integrates (I 1), which is identical to III. To com-
pute the norms of the templates, we must take a
second sequential step. The input emitter array
must be set to the unit vector. With this vector on
the input, the detectors then integrate (1 Tk), which
is again identically equal to the norms I Tk,
1 k n.

Thus in two steps, most of the parallel operations
listed under Optics in Table 1 can be computed by this
coprocessor. The remaining operations are (1) new
template copy and (2) existing template update.
Since in the OMVMP the input vector and the
templates must also be stored in the computer's
memory, both of these operations could be performed
in software by a serial computer. Amdahl's law,15

which states that the maximum speedup possible
through parallelism in an algorithm is set by the
remaining serial operations, advises us to seek paral-
lel implementations for these remaining ARTI opera-
tions. Subsection 3.B describes further modifica-
tions to the OMVMP that make these calculations
possible within an optoelectronic processor.

B. Augmented Optical Matrix-Vector Processor

Several major modifications to the basic components
of the OMVMP are shown in Fig. 4. With the
addition of VLSI analog processing, these compo-
nents become relabeled as (1) a smart-input array (SI
array), (2) a smart SLM array (SSLM), and (3) a
smart-output array (SO array). These new devices
permit the copy and update operations to be per-
formed optoelectronically and thus eliminate the

Index
Output

Fig. 4. Schematic architecture that uses optics to compute all the
operations checked for optics in Table 1. The remainder of the
computation is performed in analog electronics. Note the use of a
smart SLM that is controlled by light signals in the forward and
reverse directions. The mode control signals pathway is the only
nonoptical communications between chips and could be imple-
mented as a small cable. The output of the system is the index of
the resonating cluster.

need for a digital computer. Let us consider each
modification separately.

The SO array, shown in Fig. 5, replaces most of the
functionality of the digital computer by a single VLSI
CMOS chip. This chip incorporates a linear array of
detectors, a linear array of emitters, an array of
analog storage registers, analog scalar arithmetic
operators, and a winner-take-all network. The lat-
ter implements the arg max function required in the
algorithm. The registers store the input norm III
computed through the first transparent row in the
SLM and the template norms I Tk that are computed
by loading the unit vector on the SI array. These
values are used at various stages in the ARTi algo-
rithm and are combined with the dot products by
using analog scalar arithmetic operators to feed the
winner-take-all network, which is also implemented
in analog circuits. Specialized control circuitry regu-
lates the reset and search processes and controls the
logic of the comparison operations. In addition, a
single mode control signal, discussed below, is sent
back to the SI array along a small cable.

Control of the SSLM is performed by the SO array
indirectly through modulation of its emitters Bk,
which shine light back through Lens 2 to illuminate a
row on the modulator. Figure 6 shows a diagram of
a cell on the SSLM. The reverse illumination helps
perform the conjunction of the input pattern and the
winning template, and it helps the copying of an input
pattern into a new template. These operations oc-
cur in the cells of the SSLM when the reverse
illumination highlights a template row and the SI
array is in the appropriate mode of operation.

A blowup diagram of the SI array is given in Fig. 7,
in which we see the four modes of operation con-

I TI I .T2 IeT 3 I 1T4
1 V1 V B2 TB3 B4

detectos Q 1 ; |eitr

vigil..new

Factor P (03 N)

Analog Winner-Take-All Circuitry
_

Control Circuitr

Mode Signal External
to Smart Input Reset Input

Ary _ __

Cluster Indices Output

ldetector 0 terminal
M em.iter analoreiter

-sitch _ cotrl line

Fig. 5. Block diagram of the smart-output (SO) array chip design
that would replace the digital computer and control the optical
processor. Since this device simulates a winner-take-all neural
network, only one output is on at a time. If the output is coded in
binary, for example, then the number of pins on the chip package
will not limit the maximum number of clusters. B-B 4, emitter
outputs; 0, threshold.
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Fig. 6. Close-up of a reflective smart pixel on the SSLM imple-
mented with ferroelectric liquid crystals (FLC's). Note that the
flip-flop memory element has a set ON power-up circuit and that a
threshold 0 is globally bussed to each pixel. The summing circuit
combines and thresholds the optical signals from the SI array and
the SO array, along with an electrical signal representing the state
of the flip flop. If the threshold is exceeded, a single clock pulse
toggles the state.

trolled by the signal from the SO array. During the
computation of the input-pattern-template dot prod-
ucts and the norm of the input pattern, the SI array is
operated in mode 0. In this mode the emitter array
illuminates the columns of the SSLM with the binary-
input pattern previously clocked into the array's local
buffers by means of a rapid shift register action.
When operated in mode 3, all emitters are turned on
to compute en masse the norms of the templates.
Note that the SO array is not reverse illuminating the
SSLM during these two modes of operation.

During the copy and update operations, the SO
array will have selected a template row on the SSLM
for modification, owing to either a match with an
existing template or a novel pattern detection. This
selection manifests itself through the reverse illumi-
nation of a template row on the SSLM. Referring
again to Fig. 6, we see that the state (i.e., pass/on or
block/off ) of each pixel on the SSLM is determined by
the state of a local flip-flop memory element. At
power-up time, each state is set to logical ON by a

Mode
Control Line

0-
0-

Serial Data
Input

1 2---

Fig. 7. Schematic details of the SI array. Note that the binary
input pattern is clocked through a shift register to reach each
emitter pixel. The four modes of operation are given in the inset
and are controlled by the mode control lines.

reset circuit. The state of the pixel is toggled when a
threshold amount of light is received on the pixel's
photodetector. The threshold is adjusted so that no
state change occurs when only the forward or the
reverse illumination is present alone. Both must be
simultaneously active before a toggle of a SSLM cell
state can occur.

To copy an input pattern into a row on the SSLM,
the SO array illuminates the correct row, while the SI
array in mode 1 illuminates the columns to be toggled
with the negation of the input pattern. Since the
initial state of each pixel in an unused row is ON, the
template pixels in the selected row and selected
columns are toggled to the OFF state if the template
pixel was initially ON and the input pixel OFF. A
truth table of the state transitions is shown in Table
2. To perform the conjunctive update operation,
the SO array illuminates the correct row, while the SI
array, again in mode 1, illuminates the columns to be
toggled with the negation of the input pattern. This
operation is illustrated in Table 3, which shows the
performance of an in-place conjunction of the tem-
plate and the input pattern. The tables also show
that the binary information stored on the SSLM does
not change when the reverse illumination is removed,
as indicated by the rows with Bk = 0-

The designs of these three devices, combined with
the two cylindrical lens systems, constitute a proces-
sor that could efficiently implement the entire ARTi
algorithm. Table 4 reaffirms this by presenting the
steps in the algorithm that would be used in the
optoelectronic processor. Note that the copy and
update operations differ only in the cluster index used
to backilluminate the SSLM. Section 4 presents the
concept of a physical implementation of this system
by using ferroelectric liquid-crystal spatial light mod-
ulators (FLC-SLM's).

4. Design for Optoelectronic Implementation

FLC's act to rotate the plane of polarization of
transiting light. The degree of rotation depends on
the strength of the longitudinal electric field and the
length of the path through the material. The correct
combination of thickness and field strength can pro-
duce a switchable mirror or a SLM. Devices now

Table 2. Truth Table Showing the Copying Operation Required to
Generate a New Cluster Templatea

Tk ` I

Bk I,, jb Tkinitial c Tkfinal

1 1 0 1 2 1
1 0 1 ld 3d od

o 1 o 1 1 1

0 0 1 1 2 1

aBk is the output of the kth emitter on the SO array, and is ON
when the kth template is to be created.

bSI array mode = 1, inverted input pattern.
cThreshold for toggle of SSLM pixel flip-flip _ 2.5 and ,, = Bk +

In + Tinitial.
dValues for the only condition in which a change of state of a

template pixel occurs.
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Table 3. Truth Table Showing the Operation Required to Update a
Cluster Template,

Tk - Tk n I

Bk In, Ib Tkfinitial Ce Tkffinal

1 1 0 1 2 1
1 0 1 ld 3d od

1 1 0 0 1 0
1 0 1 0 2 0
0 1 0 1 1 1
0 0 1 1 2 1
0 1 0 0 0 0
0 0 1 0 1 0

aBk is the output of the kth emitter on the SO array, and is ON
when the kth template is to be updated.

bSI array mode = 1, inverted input pattern.
cThreshold for toggle of SSLM pixel flip-flip _ 2.5 and Y, = Bk +I oinitial
dValues for the only condition in which a change of state of a

template pixel occurs.

exist that integrate FLC-SLM's on the surface of
CMOS VLSI integrated ircuits. 16-9 When com-
bined with silicon photodetectors, this class of device
has the potential to implement the active components
in the aforementioned architecture.

Figure 8 demonstrates how three FLC-SLM hybrid
devices could perform the functions of the SI, SO, and

SSLM arrays. The light source floods the FLC-
SLM's on the SI and SO arrays with polarized light.
This way the devices may act as emitters by reflecting
the light toward the SSLM while modulating the
polarization. Polarizing beam splitters pass rotated
polarization beams and deflect the unrotated beams
back toward the light source. A third polarizing
beam splitter in front of the SSLM combines the
polarized beams from the two emitting arrays, which
permits threshold logic to be performed during the
template copy and update operations.

This optical system does not require a coherent
light source since no interference phenomenon is
used in the processing. A narrow wavelength band
may be required to achieve reasonable contrast ratios
with the FLC-SLM's. Consequently, high-power
light-emitting diode arrays may supply the input
illumination.

This processor can potentially occupy a small vol-
ume. If the lenses are replaced with solid gradient-
index elements, the implementation concept shown
in Fig. 8 could occupy a volume of less than 10 cm3.
Alignment would be frozen by cementing the ele-
ments together into a solid structure. No computers
would be required for operation, although external
circuitry would be necessary to clock in the input
array and to make use of the outputs.

Table 4. Mapping of the ARTi Algorithm Into Processing Steps of the Optical Processor

Step SO Array SI Array SSLM

SEARCH AND MATCH operation
1. Output mode = 0 to SI array Shift in input, mode a 0 Subthreshold
2. Integrate detectors Emitters ON
3. Store input norm
4. Normalize dot products with template norms
5. If no active clusters, then GOTO COPY Mode changing Superthreshold, pixel toggling
6. Winner-take-all finds max index
7. If FAIL first inequality, then GOTO COPY Mode changing Superthreshold, pixel toggling
8. If FAIL second inequality, proceed as follows:

(1) Decrement number of active clusters
(2) If none left, then GOTO COPY Mode changing Superthreshold, pixel toggling
(3) Otherwise, inhibit winning cluster and

GOTO step 5
9. Resonance, output cluster

10. GOTO UPDATE Mode changing Superthreshold, pixel toggling
11. GOTO step 1

COPY operation
a. Output mode = 1 to SI array Invert input, mode = 1 Subthreshold
b. Backemitter ON for next available cluster index Emitters ON Pixels toggle
c. Backemitter OFF
d. Output mode = 2 to SI array All ones, mode = 2 Subthreshold
e. Integrate detectors Emitters ON
f. Store template norms
g. GOTO step 1

UPDATE operation
a. Output mode = 1 to SI array Invert input, mode = 1 Subthreshold
b. Backemitter ON for winning cluster index Emitters ON Pixels toggle
c. Backemitter OFF
d. Output mode = 2 to SI array All l's, mode = 2 Subthreshold
e. Integrate detectors Emitters ON
f. Store template norms
g. GOTO step 1
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Fig. 8. One possible physical implementation of an
network by using FLC-SLM CMOS devices. P.B
beam splitter.

The approximate temporal performar
implementation concept may be calculat
Table 1 we conclude that the dominant
operations is generated by the parallel dot
row 3 and by the template norms in row 4.
assumption that one 8-bit MULTIPLY o
equivalent to approximately ten ADD opel
can make an order-of-magnitude estim
number of operations necessary to proces
pattern: Nope = 10 MtemplatesNbits, where
the maximum number of possible templat
is the length of the input vector. For 
Mtemplates = 100 and Nbit5 = 1024, then the
operations is approximately 1 x 106. T
that a standard Sun SPARCStation 2 coi
- 25 input vectors/s.

The approximate cycle time for the pr(
also be calculated. Upon analysis of t1
Table 4, we see that the cycle time is domin
integration times of the detectors in the
In fact, the cycle time can be estimated to
2Tintegration. This is derived from the fac
input pattern requires two parallel detect
tions. The integration time Tintegration I
pends on the specific properties of the det
time constants of the analog circuits, the
signal-to-noise ratio required by the algo
the specific application in which the netwc
Since the total signal level is controlled by
sity of the illumination source, a great deal
exists in estimating the minimum permitta'
tion times. A value in the range 10-5-1(
unreasonable for currently available det
light sources. Using this range of time
example sizes Of Mtemplates = 100 and Nbit5
calculate the approximate number of ope
second for this optical processor to be Rop,
1011. Although this estimate is based on a

simplifying assumptions, it implies that this proces-
sor could potentially cluster upwards of 101/106 =
105 input images/s of size 1024 binary pixels.

Operational errors in classification occur in this
system when either fixed-pattern noise or nonuni-
form illumination is too large. To begin to study the

_-_ __ effects of these on system performance, consider a
Monte Carlo simulation that was conducted on a
digital computer. Figure 9 shows the frequency of
error caused by uniform additive random fixed-

: 7 pattern noise on the SI array, the SSLM, and the SO
array. An error is defined as the case in which an
input pattern is placed in a wrong cluster. Each
curve in the figure represents the average behavior of

_ a large number of simulations with random input
vectors of a fixed size, in which the range of random
variation is systematically increased. For each of

SView - these simulations, two templates are matched against
- Side~ie- the input pattern. The templates and the input
ARTi neural pattern all have the same norms. In truth, the first
s., polarizing template exactly matches the input, while the second

template differs from the first by a preset number of
bits. The difference between the templates is varied
to construct the family of smooth curves shown in the

bce of this figure (each curve is labeled with the Hamming
ted. From distance between templates). These simulation re-
number of suits show that ARTi requires approximately ±1%
products in uniformity for no errors to occur in the hardest

With the discrimination case (a template Hamming distance of
peration is 1 out of 1024 bits). The number of errors grows
rations, we slowly as the size of the nonuniformity increases.
ate of the The system behaves more robustly for clusters that
3one input are better separated, as indicated by larger Hamming
Mtemplates is distances. It is difficult to generalize these results to
es and Nbit5 cases with larger number of clusters owing to the
example, if nature of the ARTI similarity measures.
number of
his implies
ild process

ocessor can
Le steps in
ated by the
SO array.

be T,le 
L that each
or integra-
trongly de-
tectors, the
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rithm, and
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Fig. 9. Results of sets of Monte Carlo simulations, each comput-
ing the frequency of misclustering as a function of the fractional
half-range of additive-fixed-pattern noise on the SI array and the
SSLM. The noise was picked from a uniform random distribution
over the indicated range. A random input pattern of fixed size is
submitted to an ARTi module that is preset with two cluster
templates, one being identical to the input. The templates are
also of fixed size equal to that of the input pattern. The curves are
labeled with the Hamming distance between the two competing
cluster templates.
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Figure 10 shows the results of a second set of
Monte Carlo simulations that explore the sensitivity
of the template update operation to uniform additive
random fixed-pattern noise. A large number of sim-
ulations were performed with an increasing range of
variation in the noise, which produced the smooth
curve. The vertical axis gives the average number of
bit errors at each variance. A bit error is counted
when an incorrect toggle occurs or when a correct
toggle does not occur. No errors appear until the
half-width of the variation exceeds 20%. If the
system is designed with nonuniformities compatible
with low classification error, then update errors will
not occur.

5. Discussion

A design for an optical implementation of the ARTi
neural network has been presented. This design has
the advantages of a totally optoelectronic implementa-
tion: optical interconnects (fan-in and fan-out), VLSI
analog processing, low power consumption, and com-
pact monolithic packaging. No software would be
required for the control of the algorithm. The input
pattern is clocked into the input buffer, and after a
delay of approximately 2 Tintegration, the classification
code appears on the output of the SO array. The
design has the potential to classify 105 small images/s
into many tens of classes, while remaining resilient to
new or novel input patterns. The technology to
build the components of this design are within the
reach of today's technology.

The major disadvantage of this design is in the
mapping of a 2-D image onto the 1-D input buffer
array. In many applications, input images will be
larger than the 32 x 32 pixel image array used in the
example of Section 4. Typical images of 256 x 256
pixels are not unusual in the applications of ARTi
mentioned in the introduction. This size image
would require a SLM with 64,000 pixels along one
axis. With pixel sizes of 10 pum x 10 plm, a slab of
silicon 65 cm long would be required, clearly not
within the reach of wafer-scale circuits.

35(

._
a)

30C

255

20C

155

105

51

lImi=T 1=1024
No. of trials Experimcnt= 10000

)ooI /

Updat-b'3

50I Em Ir /

. .2 .3 .4 5 . .; .8n .9

Fractional Half-Range

Fig. 10. Results of a set of Monte Carlo simulations that com-
putes the frequency of toggle errors during a template update
operation as a function of the fractional half-range of additive
fixed-pattern noise on the SSLM and the SO array. The noise was
picked from a uniform random distribution over the indicated
range. The vertical axis is the average number of bit errors.

- - - - - - - -__ - - - - -Second Layer of
ART1 Modules

Fig.11. Illustration of a simple macrocircuit that combines ART1
modules into a hierarchy.

As demonstrated by the research of Healy and
Caudell,20 the smaller size of the input image is not
necessarily a limitation. Their research shows that
macrocircuits formed from combinations of ARTi
modules can be designed to compute complex logical
functions of the input pixel images. The simplest
example of a macrocircuit is a hierarchy of ARTi
modules. An example of this hierarchical structure
is shown in Fig. 11 for a 128 x 128 pixel image. The
image is partitioned into small nonoverlapping
patches, each patch being fed to individual 32 x 32
ARTI modules. The outputs of this layer of sepa-
rate ARTi modules are then funneled into a single
ARTi module that combines the lower level results.
The vigilance parameters are adjusted so that this
architecture acts as a voting machine, with the higher
ARTi module producing an output code for the most

Second Layer First Layer
(1 Module) (one of 16 Modules)

Output 

[3 God~~~I..T
''I ' ' 9 C7 1Z1!.

Write-with-light
SI Array

Combiner
Optics

Fig. 12. Optical processors cascaded together to form a macrocir-
cuit of ARTi neural networks. Note that the SI array has been
modified to include detectors that permit optical writing of the
input vector. This extra circuitry also provides a mechanism for
reading the learned templates stored on the SSLM.
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popular interpretation of the input object. More
complicated functionality has been designed into
network macrocircuits.21

Figure 12 shows how this architecture can be
implemented with the optoelectronic processor.
The temporal performance of such a hierarchical
implementation is reduced by a factor proportional to
the number of layers. A modification of the SI array
design is necessary to optically cascade these modules.
In addition to the electronic serial loading of the input
vector, an optical parallel load, or write-with-light,
mode is required. At each pixel in this linear array, a
photodetector is added that can be clocked to read the
pattern of light on the array and to load this informa-
tion into the input buffers. Additional optics are
necessary to map the square subimage onto a linear
vector and to arrange the outputs of the first layer for
input to the second layer. This modular approach
overcomes the main size limitation of these devices.
Macrocircuits for practical size applications can be
constructed from these building blocks.

Conclusion

Adaptive resonance theory neural networks are be-
coming an important component of neural network
industrial applications. Electronic implementation
of these network models has proven difficult to scale
to large-input dimensionality. Here a new implemen-
tation of ART1 has been proposed that efficiently
combines optical and electronic devices. All parallel
computations were performed by the optics, while
serial operations were performed in electronics.
One possible physical implementation of this architec-
ture has been proposed. Macrocircuits can be con-
structed from these modules to perform complex
logical functions. Based on the write-with-light mod-
ification, this system can also be modified to permit
readout and readin of the learned templates on the
SSLM, which permits mass production of trained
systems.

The author acknowledges the helpful suggestions
of Karel Zikan, John Bell, Donald Wunsch II, David
Capps, Kris Johnson, Kelvin Wagner, Janusz Kowa-
lik, and the journal reviewers.
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