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Abstract

Lithofacies identi®cation supplies qualitative information about rocks. Lithofacies represent rock textures and are
important components of hydrocarbon reservoir description. Traditional techniques of lithofacies identi®cation from

core data are costly and di�erent geologists may provide di�erent interpretations. In this paper, we present a low-
cost intelligent system consisting of three adaptive resonance theory neural networks and a rule-based expert system
to consistently and objectively identify lithofacies from well-log data. The input data are altered into di�erent forms

representing di�erent perspectives of observation of lithofacies. Each form of input is processed by a di�erent
adaptive resonance theory neural network. Among these three adaptive resonance theory neural networks, one
neural network processes the raw continuous data, another processes categorical data, and the third processes fuzzy-

set data. Outputs from these three networks are then combined by the expert system using fuzzy inference to
determine to which facies the input data should be assigned. Rules are prioritized to emphasize the importance of
®ring order. This new approach combines the learning ability of neural networks, the adaptability of fuzzy logic,
and the expertise of geologists to infer facies of the rocks. This approach is applied to the Appleton Field, an oil

®eld located in Escambia County, Alabama. The hybrid intelligence system predicts lithofacies identity from log
data with 87.6% accuracy. This prediction is more accurate than those of single adaptive resonance theory
networks, 79.3%, 68.0% and 66.0%, using raw, fuzzy-set, and categorical data, respectively, and by an error-

backpropagation neural network, 57.3%. 7 2000 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Lithofacies (rock type) identi®cation is important for

many geological and engineering disciplines (Chang,
1999). Lithofacies can be used to correlate the import-
ant characteristics of a geologic unit, such as mineral-

ogy, depositional fabric, fossil content, or inferred
origin (Rider, 1996). For petroleum reservoir charac-
terization, the primary task is to identify lithofacies of

the reservoir rocks. The purpose of this paper is to
describe an automated method of predicting reservoir
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rock characteristics from commonly available well-log
data.

There are generally two kinds of petroleum reser-
voirs: carbonate and siliciclastic. The former is com-
posed chie¯y of limestone or dolomite and the latter,

sand or sandstone. However, more detailed reservoir
classi®cation is required for e�cient reservoir develop-
ment. Conventionally, one identi®es lithofacies by

direct observation of cores. Cores are costly to collect,
core recovery is commonly less than one hundred per-
cent, and cores seldom encompass the entire strati-

graphic interval of interest. Also, core description can
be extremely time-consuming. Therefore, a lower-cost
method not requiring cores but providing similar or
higher accuracy is desirable. In this paper we use well

logs, which provide indirect information about the sub-
surface and are far less expensive. Well logs are record-
ings of geological properties of subsurface rock

formations at depth retrieved by electrical, physical, or
radioactive devices. Well-log measurements can be
classi®ed into logfacies. Logfacies are de®ned as the

collective set of log responses, re¯ecting both the rock
and ¯uid properties, allowing discrimination among
beds or sedimentary units. Logfacies commonly corre-

spond to lithofacies when they are calibrated with core
descriptions. Thus, logfacies may be constructed as
surrogates for lithofacies. Classi®cations that learn to
identify logfacies can then be used to predict lithofacies

in non-cored wells or non-cored intervals in cored
wells.
Associating well-log data with lithofacies can be dif-

®cult due to the heterogeneous nature of rocks, es-
pecially carbonate rocks. Compared with siliciclastic
lithofacies, carbonate lithofacies show subtle changes

in well-log responses; thus, their identi®cation using
log data is more demanding. Also, lithofacies can be
de®ned using any set of rock properties. However,
only lithofacies de®ned by variations in properties that

a�ect well-log response can be identi®ed using well-log
data. Fortunately, some useful rock properties, e.g.,
porosity and bulk density, a�ect well-log response.

Well-log data are used in this paper to correlate the
lithofacies.

2. Neural networks

Conventional computing algorithms or statistical
methods have been shown inadequate for certain geo-

logical problems (Baldwin et al., 1990; Bloch, 1991;
Doveton, 1994; Moline and Bahr, 1995) especially in
carbonate reservoir characterization. Some researchers

in geology have recently employed back propagation
neural networks (BPNNs) in an attempt to improve on
past performance in solving such problems (Rogers et

al., 1992, 1995; Yang et al., 1996). However, BPNNs

have several signi®cant disadvantages. First, conver-
gence during training is slow and there is no guarantee
of reaching the user-de®ned acceptable error range.

Second, the cost of retraining the networks when new
information is presented can be prohibitive. Further,
when test data are located outside the training data

range, BPNNs cannot classify them; thus, the discrimi-
nating ability is not assured. BPNNs adequately deal

with well-bounded and stable problems, because train-
ing sets may cover the entire expected input space.
Unfortunately, in reservoir characterization problems,

variables commonly are neither well-bounded nor
stable. New lithofacies and new values of important

rock properties are often encountered. This is particu-
larly true of carbonate reservoirs like those of the
Smackover Formation (from which the present

example is taken), because carbonate reservoirs exhibit
patchy heterogeneity at a variety of scales (e.g.,
Kopaska-Merkel and Mann, 1992).

Neural networks learning may be broadly grouped
as supervised and unsupervised. In supervised learning,

the network learns from a training set consisting of
inputs and the desired outputs. Learning is accom-
plished by adjusting the network weights so that the

di�erence between the desired and network computed
outputs is minimized. BPNNs are examples of super-

vised learning. Unsupervised learning requires only
input data. During the learning process, the network
weights are adjusted so that similar inputs produce

similar outputs. Kohonen's self-organizing maps
(SOMs) and adaptive resonance theory (ART) neural
networks are examples of unsupervised learning. They

extract statistical regularities from the input data auto-
matically rather than using desired outputs to guide

the learning processes. Several researchers employed
pattern recognition with unsupervised-learning neural
networks as pattern-recognizers; e.g., SOMs and ART

neural networks (Baldwin et al., 1990; Chang et al.,
1998), to solve a lithofacies identi®cation problem.
There are commonly two distinct modes of operation

in pattern recognition: training and production (Loo-
ney, 1996). In the training mode, recognizers are

trained with training data (e.g., well-log data), and
data are grouped in clusters. For this study, clusters
represent logfacies. After calibrating these logfacies

with the corresponding core descriptions, relationships
between logfacies and lithofacies are established. In the

production mode, trained recognizers recognize the
logfacies from input data and determine lithofacies
based on the relationships established in the training

phase. In designing the recognizer, determination of
the signi®cant attributes fed to the recognizer is very
important. In this study, geological experts provided

lithofacies de®nitions and their attributes. The geologi-
cally de®ned lithofacies used were chosen because they
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are readily recognized, geologically meaningful, and
di�er in signi®cant properties that a�ect both well-log

response and reservoir quality (Kopaska-Merkel et al.,
1992; Markland, 1992; Kopaska-Merkel and Hall,
1993).

We chose ART neural networks rather than SOMs
as the logfacies-recognizer because the ART networks
are capable of incrementally increasing the number of

clusters if needed (Fausett, 1994; Bigus, 1996). This is
a very important feature since the studied variables are
not well-bounded as discussed previously. Hence, we

propose a logfacies-recognizer system consisting of
three adaptive resonance theory, ART2, neural net-
works, and one group-decision expert system using
fuzzy if±then rules to identify lithofacies from the out-

put logfacies.

3. ART2 neural networks

ART2 is a neural network algorithm derived from
adaptive resonance theory (Carpenter and Grossberg,
1987). It is a clustering algorithm accepting both con-

tinuous and binary data. There are many variants of
ART2; in this study, we employed the ART2 algorithm
in Fausett (1994). ART2 can learn about signi®cant

new classes, yet remain stable in response to previously
learned classes. This characteristic enables ART2 to
meet the challenges of geological problems where unex-

pected natural variations are common. Slow-learning-
mode ART2 s are employed to prevent category pro-
liferation (Carpenter et al., 1995.1). ART2 uses a vigi-

lance parameter supplied by domain experts (geologists
and geophysicists in this context) acting here as a
threshold value to ®lter those inputs that do not match
any stored logfacies (Carpenter and Grossberg, 1987).

The value of vigilance parameter ranges from 0.0 to
1.0. Varying the vigilance parameter values, dependent
upon users' experience, allows the ART2 to recognize

both abstract categories and speci®c individual cat-
egories (Kosko, 1997). When the vigilance parameter is
set to 1, the input pattern must match the prototype

exactly. Networks will report them with ``labels'' and
assign stored logfacies with the closest similarity as the
winners for these labeled inputs. Users should be cau-

tious making inferences based on labeled clusters. The
algorithm and network architecture of ART2 are dis-
cussed in Appendix A. Although fuzzy sets and degrees
of membership concepts are used in this study, no Fuz-

zyART algorithm is used (Kosko, 1997).
Studying a system using multiple sources (sensors)

of observation can further enhance understanding of

the system if these sources provide di�erent perspec-
tives of behaviors of the system (Benediktsson et
al., 1990; Serpico and Roli, 1995; Chang, 1999). In

this study, the inputs consist of depth and the fol-
lowing logs: density, neutron, sonic, and velocity-de-
viation logs. The velocity-deviation log is calculated

from the sonic log and the neutron-porosity or den-
sity log. It is used to account for the e�ects of

pore type in carbonate rocks (Anselmetti and Eberli,
1999). Combinations of these inputs compose each
set of observations of logfacies. To obtain multiple

observations, we arti®cially alter the form of inputs
into raw, categorical, and fuzzy-set inputs. Raw
inputs are the most commonly used and can be

original (discrete-valued or continuous-valued) or
transformed (e.g., logarithmic or normalized) data.

Categorical data are used to emphasize the signi®-
cant features in the corresponding categories rather
than the actual values. In categorical data represen-

tation, a given input can be assigned to one only
speci®c category. However, most geological data are
continuous, rather than crisp values; they exhibit

gradual transitions from one category to another
category. To apply data to multiple categories with

di�erent degrees of membership, fuzzy sets are
employed providing transitions among categories of
data.

For the ®rst ART2, all input values are normalized
(i.e., to the interval [0, 1]) and there are ®ve input

nodes, xi, i = 1 . . . 5. There are also ®ve input nodes,
yi, i = 1 . . . 5 for categorical numbers in the second
ART2. The nature of the boundaries between adjacent

categories can be extracted from the experts' knowl-
edge and/or training-well data. For instance, if the
range of neutron log values for bind/boundstone is

mostly between 18.5% and 25% then values near 18.5
and 25 are chosen as two neutron log category bound-

aries. Each variable is divided into consecutive num-
bered categories starting with 1. Number of categories
of depth, neutron log, density log, sonic log, and vel-

ocity-deviation log are 7, 5, 4, 5, and 6 categories, re-
spectively. Given a datum point Y=( y1, y2, . . . , y5), if
its depth belongs to category 2, neutron porosity cat-

egory 4, density porosity category 1, density porosity
category 3, and velocity-deviation category 6, then its

input values will be Y=(2, 4, 1, 3, 6).
The third ART2 consists of 34 input nodes, zi, i=1

. . . 34, each corresponding to one fuzzy set. There are

11, 6, 6, 6, and 5 fuzzy sets for depth, neutron log,
density log, sonic log, and velocity-deviation log, re-
spectively. The value zi is the degree of membership

with which an input datum belongs to the i-th fuzzy
set and values range from 0 to 1.

The values of vigilance parameters of three ARTs
are determined empirically considering domain experts'

1 Distributed ART and ARTMAP architectures, http://cns-

web.bu.edu/muri/year 1-report/4c.html.
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knowledge. The values are 0.995, 0.995 and 0.95 for
raw, categorical, and fuzzy-set ARTs respectively.

4. Group-decision expert system

A group-decision expert system is employed to deter-
mine the lithofacies produced from ART2 s Ð one

processes raw continuous data, another processes cat-
egorical data, and the third processes fuzzy-set data.
The outputs of these ART2 s are the logfacies to

which the given inputs belong. Fuzzy if±then rules are
employed because of their capability of processing lin-
guistic variables, and uncertainty associated with out-

puts (Chang et al., 1997). After calibrating these
logfacies with the corresponding core descriptions, the
relationships between logfacies and lithofacies are

established and stored. Table 1 shows these associ-
ations for outputs from all three ART2 s.
Several fuzzy rules were extracted from the training

well based on the relationships among logfacies and

lithofacies obtained as well as the geologic experts'
knowledge about the rocks in the ®eld. These fuzzy
rules are listed below, where R-cluster, C-cluster, and

F-cluster denote clusters produced from ART2 s pro-
cessing raw, categorical, and fuzzy-set data respect-
ively.

. Rule 1: IF F-cluster contains Wackestone, THEN
Final-lithofacies is Wackestone.

. Rule 2: IF R-cluster contains Packstone, or C-clus-

ter contains Packstone, or F-cluster contains Pack-
stone, THEN Final-lithofacies is Packstone.

. Rule 3: IF rule 1 not ®red, and F-cluster contains
Grainstone, THEN Final-lithofacies is Grainstone.

. Rule 4: IF rules 1 and 2 not ®red, and R-cluster
contains Bind/Boundstone, or C-cluster contains
Bind/Boundstone, or F-cluster contains Bind/

Boundstone, THEN Final-lithofacies is Bind/Bound-
stone.

. Rule 5: IF none of the above rules ®red, THEN

Final-lithofacies is lithofacies with maximum counts.

Rules are ®red based on the potential lithofacies
obtained from R-cluster, C-cluster, and F-cluster.

These rules are considered ``prioritized rules.'' The pur-

pose of using prioritized rules is to emphasize the im-
portance of the ®ring sequence and save computation

time. The priority of the rules is determined by the
rule number; i.e., rule 1 is checked ®rst, rule 2 next,

etc. Additionally, at some time, the next rule in line

will not be ®red because the previous ®rings have satis-
®ed some criteria. For example, if rule 1 is ®red, and

the presence of some wackestone is detected, then rule

3 and rule 4 will not be checked, because the presence
of wackestone implies that grainstone and bind/bound-

stone are unlikely to be present. Thus, rules are not
simply extracted from the training data, but also modi-

®ed with knowledge acquired by geologists in the ®eld.

In inferring a rule, the degree of ful®llment of the con-
ditions (output from ARTs with degree of certainty) is

also considered to measure the likelihood that its im-
plications are correct. If none of rules 1 to 4 ®red, a

counting algorithm that employs the majority-votes

concept is used. The frequencies of occurrence and the
degree of certainty of each occurrence from the three

ART2 s are computed and aggregated. The lithofacies

with the maximum aggregated value is selected. If
there is a tie, all the tied lithofacies are listed, and it is

inferred that multiple lithofacies coexisted or that a
lithofacies with intermediate characteristics existed.

Because the sampling interval is 0.3 meters, either in-

terpretation is plausible in patchy depositional systems
like that of the Smackover Formation in Alabama.

The following example illustrates the resolution of

®ring multiple rules. If rule 1 F-cluster is ®red with
Wackestone having a degree of membership of 0.5,

then the con®dence of ®nal-lithofacies as Wackes-

tone is 0.5. If rule 2 R-cluster is ®red with Pack-
stone having a degree of membership of 0.8, then

the con®dence of ®nal-lithofacies as Packstone has

Table 1

Associations between logfacies and lithofaciesa

R-Cluster C-Cluster F-Cluster

Logfacies Lithofacies Logfacies Lithofacies Logfacies Lithofacies

0 W/P 0 W/P 0, 10 W/P

1, 2, 6, 11 P/G 1, 6 G/B 1, 3, 7, 15, 18 P/G

3, 4, 8, 9 G 2 G 2, 4, 11, 12, 13, 14, 17 G

5, 10 G/B 3 P/G 5 G/B

7 P 4 B 6, 9 B

5 P 8, 16 P

a W, P, G and B indicate Wackestone, Packstone, Grainstone and Bind/Boundstone, respectively.
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certainty factor of 0.8. The one with the highest

certainty factor will be chosen as the ®nal result; in

this example, it is Packstone, certainty factor equal

to 0.8, rather than Wackestone, certainty factor

equal to 0.5.

To assess the reliability of the output from ART2,

special attention is given to output with the ``new-clus-

ter'' label. In cases in which some clusters are labeled

``new-cluster'', only clusters without labels are assessed.

In cases in which all are labeled, all clusters will be

assessed and treated equally. A special ``®nal-new-

lithofacies'' tag will be attached to the ®nal lithofacies,

Fig. 1. System diagram for logfacies-recognizer.
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if two or three clusters from the ART2 s were labeled,
indicating that the answers may be less reliable.
A system diagram employed for this paper is shown

in Fig. 1. The dashed-line components in the ®gure

process the calibration during the training mode but
stay inactive during the production mode. Fuzzy sets
can be determined by experts and/or experience. In

order to process the input information, corresponding
membership functions are used to transform the input
data into fuzzy sets. These functions can be of arbi-

trary shapes suiting the particular needs of an appli-
cation (Klir and Yuan, 1995). The triangular and
trapezoidal membership functions as shown in Fig. 2

were used in this study.

5. Source of data

The cores and well-logs used in this paper were from
wells (Alabama State Oil and Gas Board Permit ]3986,
]3854, ]4633, ]4835, and ]6247) in Appleton Field,

located in north-central Escambia County, Alabama
(Markland, 1992; Kopaska-Merkel and Hall, 1993).
The ®eld produces oil from varied carbonate strata of

the Smackover Formation at a subsea depth of ap-
proximately 3930 m. Cores were sampled at 0.3 m
intervals, except the core from well ]6247, which is

continuous. There are 157 core data points available in
the training well and 241 in the test wells.
Core examination revealed four major lithofacies in

the training well (]3986) (Dunham, 1962): wackestone,

packstone, grainstone, and bind/boundstone. Mud-
stone is not found in the training well but appears in
test well ]6247. The input data are composed of: (1)

depth, (2) neutron porosity, (3) density porosity, (4)
interval velocity, and (5) velocity-deviation.
The logfacies-recognizer was trained on the data

from well ]3986 and then tested on wells ]3854, ]4633,
]4835, and ]6247. A geologist described cores from all
®ve wells and identi®ed lithofacies without knowing

the recognizers' output. Subsequently, cores from test
wells were classi®ed using the lithofacies de®ned for
the training well by the recognizer.

6. Results and discussion

The geologist's core description and recognizer's pre-
diction are compared in Fig. 3. Discrepancies occur in

sporadic zones most of which are only 0.3 m thick.
Isolated 0.3 m intervals probably are too small to
a�ect hydrocarbon production and therefore their mis-

identi®cation is of no practical signi®cance. This is
because in carbonate rock units like the Smackover
thin units generally do not retain consistent character-

Fig. 2. Triangular and trapezoidal membership functions.
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Fig. 3. Comparisons between geologist's description and predictions.
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istics over distances on the order of the width of

Appleton Field (about 2.8 km) (University of Ala-

bama, 1991; Markland, 1992; Kopaska-Merkel and

Mann, 1992).

The amount and quality of core and well-log data

available for this study permitted appropriate tests of

the networks' capability to identify lithofacies from

well-log data. Table 2 lists the ®nal results of predic-

tion of lithofacies for test wells. Of 241 0.3 m cored

intervals in the test wells, 211 (87.6%) were correctly

predicted by the recognizer. Compared with the 79.3%

accuracy for the raw-data ART2, 68.0% accuracy for

the fuzzy-set-data ART2, 66.0% accuracy for the cat-

egorical-data ART2, and 57.3% for the BPNN, the

recognizer has shown promising success. The statistics

of prediction of these neural networks are listed in

Table 3. Because most oil and gas production wells are

either not cored or only partially cored through reser-

voir intervals, the successful prediction of lithofacies

by the recognizer system is of considerable value.

Three dimensional reservoir simulation models are

commonly constructed to predict oil and gas pro-

duction from ®elds. The output from the recognizer

system will enhance the completeness and accuracy of

input data available to construct such simulation

models at a very modest cost.

Mudstone is not found in well ]3986 (training well)

and is tagged ``®nal-new-lithofacies'' by the system. In

addition, if the system is forced to ®nd a ``best match''

for mudstone, mudstone samples are classi®ed as

impermeable packstone or wackestone, which are simi-

lar to mudstone in both origin and physical character-

istics. It is also noted that among 30 mis-classi®ed data

points, 22 were tagged with ``®nal-new-lithofacies.''

Namely, the system did provide a ``warning'' for most
of these mis-classi®cations. Due to natural variations
among wells, a total of 40 points were tagged ``®nal-

new-lithofacies.'' In other words, for 18 of the 40
points tagged ``®nal-new-lithofacies'', the ``best match''
classi®cation was judged to be correct. The system is

directed to make the best choices and reports the
assigned lithofacies with a ``®nal-new-lithofacies'' tag.
Among these 40 points, the well ]6247 has the maxi-
mum count (15 points; 37.5%) of ``®nal-new-cluster''

tags. This well may have signi®cantly di�erent subsur-
face physical properties from the training well (]3986).
This inferred di�erence is supported by the observation

that well ]3986 is a production well whereas well ]6247
is dry.

7. Conclusion

We have introduced an intelligent system which is a
hybrid of neural networks, fuzzy logic, and an expert
system. This system has the following advantages over
the traditional approaches. First, the recognizer system

e�ectively identi®es lithofacies using well-log data.
Lithofacies may be identi®ed automatically and objec-
tively using this system. Second, the system may be

more accurate than the pure neural network approach
where geological variation is complex, and the expert
knowledge of geologists is needed to be utilized. Third,

®nal lithofacies identi®cations made by group-decisions
using all ART2 s are more accurate than those made
by BPNNs or a single ART2. This is demonstrated

Table 2

Statistics of predictions of lithofacies in test wells

Well number Number of available data points Number of match data points Match (%)

3854 60 55 91.7

4633 74 71 95.9

4835 49 45 91.8

6247 58 30a 51.7

Total 241 211 87.6

a Eight points of Mudstone, not seen in the training well ]3986.

Table 3

Number of match data points from di�erent ARTs and group-decision system in test wells

Well number BPNN Raw-data ART Categorical-data ART Fuzzy-set-data ART Group-decision system

3854 22 48 48 42 55

4633 65 69 71 68 71

4835 36 41 44 27 45

6247 15 33 17 27 30
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with a real-world example. Finally, this intelligent sys-
tem may be tuned to yield di�erent degrees of details.

Acknowledgements

This work is supported, in part, by the US Depart-
ment of Energy through their EPSCoR Program, and

is published with the permission of the State Geologist
of Alabama. The authors thank reviewers of the Geo-
logical Survey of Alabama, JD Moore and DF Oltz.

Preliminary results of this study were presented in the
Arti®cial Neural Networks in Engineering Conference,
November, 1998, St Louis, Missouri, USA. The

authors thank reviewers of the Computers & Geos-
ciences, Brian Penn and the other anonymous reviewer
for their constructive comments.

Appendix A. ART2 Ð architecture and learning

algorithm

The basic architecture of the ART2 neural network
is shown in Fig. 4. The network consists of two major

layers (F1 and F2) and one resetting system. F1 and F2

layers are fully connected with the bottom-up weights

(bij) from F1 to F2, and the top-down weights (tji)

from F2 to F1. The F1 layer includes a combination of

six sublayers called W, X, V, U, Q, and P. W receives

signals from input data (or called input signals, S). X

normalizes signals and V performs noise suppression.

After noise suppression, the given signals will be nor-

malized again in U sublayer. P sends normalized sig-

nals to the F2 layer via bijs and receives signals from

F2 layer via tjis. Q normalized the sums of the signals

at P for the resetting condition. If a reset condition is

indicated, a reset signal will be sent to F2 to mark the

current active node as ineligible for competition and

operation of current input data will be stopped. A new

set of input pattern will then be input to the W. If

there is no reset and iteration count is 1, then the nor-

malized signals at P are sent to the F2 layer. If there is

no reset and iteration count is greater than one, then

the input pattern is accepted and top-down and bot-

tom-up weights will be updated, as resonance has been

established. The F2 layer determines the clusters where

the input patterns should be placed. The resetting sys-

tem provides control over the degree of similarity of

Fig. 4. Architecture of ART2.
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various criteria used. (Freeman and Skapura, 1991;
Fausett, 1994; Yang, 1996; Chang, 1999)

The ART2 algorithm is summarized as follows:

1. At the beginning of a learning trial, all activations
are set to zero.

2. The learning starts with one presentation of one
input pattern (called S) at one time.

3. The input patterns are sent to the F1 layer for nor-

malization in sublayer X and noise suppression in
sublayer V.

4. The signals from sublayer V continue to be sent to

units in sublayer U for normalization again.
5. Next, signals from U are sent to its associate units

in W and P sublayers.

6. Unit in W sums the signals it receives from U and
S, and feeds the sum to sublayer X for normaliza-
tion.

7. Unit in P sums the signals from U and from the F2

layer, and sends the summed signals to Q for nor-
malization.

8. Signals at P are sent to the F2 layer through bot-

tom-up connections by:

yj � b�ijPi for all j in F2

9. Now, a winner-take-all competition chooses the can-
didate unit (called YJ) to learn the input pattern S;

YJ=max(Yj).
10. If the candidate unit is a new one, the input S will

be accepted as the exemplar in the cluster, and the

updating procedure will be invoked next.
11. If the candidate unit already has a stored exem-

plar, say Z, signals of Z is then transformed

through top-down connections from F2 to sublayer
P of F1.

12. Now, the reset mechanism checks the similarity
between S and Z. The level of similarity required is

dependent on vigilance parameter r,ÿ with
0RrR1: If r is large the similarity condition
becomes very stringent, so many ®nely divided

clusters are formed. In addition to similarity
checks, other user imposed constraints will also be
checked.

13. After all the conditions for reset mechanism have
been checked, the candidate unit YJ either will be
accepted or rejected.

14. If YJ is accepted, then weights bij and tji will be

updated next.
15. If YJ is rejected, a reset signal is sent to F2. If YJ

is inhibited, another uninhibited unit of F2 is

selected, and a new cycle of pattern matching
begins (steps 9±15).

16. If there are no such uninhibited units left, a new

unit is formed, and S becomes the exemplar of that
cluster. The network next learns S by updating
weights with equations in step 17.

17. The network updates weights for the candidate
unit YJ:

tji � adui� f1� ad�dÿ 1�gtji

bij � adui� f1� ad�dÿ 1�gbji for all i

where a is learning rate and d is the activation of
winning F2 unit.

18. The procedure described above (steps 1±17) com-

pletes a learning trial
19. Repeat steps 1±17 for all input patterns.
20. Repeat steps 1±19 a great many times for ART2

net to stabilize.
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