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Abstract—A new type of classifier combining an unsupervised
and a supervised model was designed and applied to classifi-
cation of malignant and benign masses on mammograms. The
unsupervised model was based on an adaptive resonance theory
(ART2) network which clustered the masses into a number of
separate classes. The classes were divided into two types: one
containing only malignant masses and the other containing a mix
of malignant and benign masses. The masses from the malignant
classes were classified by ART2. The masses from the mixed
classes were input to a supervised linear discriminant classifier
(LDA). In this way, some malignant masses were separated
and classified by ART2 and the less distinguishable benign and
malignant masses were classified by LDA. For the evaluation of
classifier performance, 348 regions of interest (ROI’s) containing
biopsy proven masses (169 benign and 179 malignant) were used.
Ten different partitions of training and test groups were randomly
generated using an average of 73% of ROI’s for training and
27% for testing. Classifier design, including feature selection and
weight optimization, was performed with the training group.
The test group was kept independent of the training group. The
performance of the hybrid classifier was compared to that of
an LDA classifier alone and a backpropagation neural network
(BPN). Receiver operating characteristics (ROC) analysis was
used to evaluate the accuracy of the classifiers. The average area
under the ROC curve (Az) for the hybrid classifier was 0.81 as
compared to 0.78 for the LDA and 0.80 for the BPN. The partial
areas above a true positive fraction of 0.9 were 0.34, 0.27 and
0.31 for the hybrid, the LDA and the BPN classifier, respectively.
These results indicate that the hybrid classifier is a promising
approach for improving the accuracy of classification in CAD
applications.

Index Terms— Computer-aided diagnosis, hybrid classifier,
mammography, neural networks.

I. INTRODUCTION

M AMMOGRAPHY is the most effective method for
detection of early breast cancer [1]. However, the

specificity for classification of malignant and benign lesions
from mammographic images is relatively low. Clinical studies
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have shown that the positive predictive value (i.e., ratio of the
number of breast cancers found to the total number of biopsies)
is only 15% to 30% [2]–[4]. It is important to increase the
positive predictive value without reducing the sensitivity of
breast cancer detection. Computer-aided diagnosis (CAD) has
the potential to increase the diagnostic accuracy by reducing
the false-negative rate while increasing the positive predictive
values of mammographic abnormalities.

Classifier design is an important step in the development
of a CAD system. A classifier has to be able to merge
the available input feature information and make a correct
evaluation. Commonly used classifiers for CAD include linear
discriminants (LDA) [5], [6] and backpropagation neural net-
works (BPN) [7]–[9] which have been shown to perform well
in lesion classification problems [10]–[22]. These classifiers
are generally designed by supervised training. However, these
types of classifiers have limitations dealing with the nonlin-
earities in the data (in case of LDA) and in generalizability
when a limited number of training samples are available
(especially BPN). Another classification approach is based on
unsupervised classifiers, which cluster the data into different
classes based on the similarities in the properties of the input
feature vectors. Therefore, unsupervised classifiers can be used
to analyze the similarities within the data. However, it is
difficult to use them as a discriminatory classifier [29], [30].
They also have limited generalizability when the training
sample set is small.

We propose here a hybrid unsupervised/supervised struc-
ture to improve classification performance. The design of
this structure was inspired by neural information processing
principles such as self organization, decentralization and gen-
eralization. It combines the adaptive resonance theory network
(ART2) [26], [27] and the LDA classifier as a cascade system
(ART2LDA). The self-organizing unsupervised ART2 network
automatically decomposes the input samples into classes with
different properties. The ART2 network has been found to
perform better compared to conventional clustering techniques
in terms of learning speed and discriminatory resolution for the
detection of rare events in many classification tasks [28]–[30].
The supervised LDA then classifies the samples belonging to
a subset of classes that have greater similarities. By improving
the homogeneity of the samples, the classifier designed for the
subset of classes may be more robust.

The ART2LDA design implements both structural and data
decomposition. Decomposition is a powerful approach that can
reduce the complexity of a problem. Both structural decom-
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position and data decomposition can improve classification
accuracy [23] as well as model accuracy [24]. However,
decomposition can also reduce the prediction accuracy due to
overfitting the training data. We will demonstrate in this paper
that the proposed hybrid structure can reduce the overfitting
problem and improve the prediction capabilities of the system.
The performance of the hybrid ART2LDA classifier will be
compared with those of an LDA alone or a BPN classifier.

The rest of the paper is organized as follows. In Section II
the ART2 unsupervised network is described. A hybrid
ART2LDA classifier is introduced in Section III. Section IV
describes the data set used in this study. The results are
presented in Section V. Section VI contains discussion of
these results. Finally, Section VII concludes this investigation.

II. ART2 UNSUPERVISEDNEURAL NETWORK

The ART2 is a self-organizing system that can simulate
human pattern recognition. ART2 was first described by Gross-
berg [25] and a series of further improvements were carried
out by Carpenter, Grossberg, and coworkers [26]–[28]. The
ART2 network clusters the data into different classes based on
the properties of the input feature vectors. The members within
a class have similar properties. The process of ART2 network
learning is a balance between the plasticity and stability
dilemma. Plasticity is the ability of the system to discover
and remember important new feature patterns. Stability is
the ability of the system to remain unchanged when already
known feature patterns with noise are input to the system. The
balance between plasticity and stability for the ART2 training
algorithm allows fast learning [28], i.e., rare events can be
memorized with a small number of training iterations without
forgetting previous events. The more conventional training
algorithms, such as back propagation [7]–[9], perform slow
learning, i.e., they tend to average over occurrences of similar
events and require many training iterations.

The structure of the ART2 system is shown in Fig. 1. It
consists of two parts: the ART2 network and the learning stage.
Suppose that there areinput features and
classes in the ART2 network. When a new vector is presented
to the input of the ART2 network, an activation value for
class is calculated as

(1)

where is the connection weight between inputand class
. The activation value is a measure of the membership of the

particular input feature vector to class. The higher the value
is, the better the input vector matches class. The maximum

value is selected from all to find the best
class match. Furthermore, in order to balance the contribution
to the activation value from all feature components, the input
feature values applied to the ART2 system are scaled between
zero and one [30]. This normalization will allow detection of
similar feature patterns even when the magnitudes of the input
feature components are very different.

The learning stage of the ART2 system can influence the
weights of the selected class or the complete ART2 network

Fig. 1. Structure of the ART2 network.

structure by adding a new class. An additional parameter, the
vigilance, is used to determine the type of learning [26]. The
vigilance parameter is a threshold value that is compared
to the maximum activation value . If is larger than
then the input vector is considered to belong to class. The
adaptation of the weights connected with classis performed
as follows:

for (2)

where is a learning rate. The adaptation of the classweights
(2), aims at maximization of the value for the particular
input vector. In an iterative manner the weights are adjusted
so that the activation values produced for similar input vectors
will be maximum only for the class to which they belong and
these maximum activation values will be higher than .

If the maximum activation value is smaller than , it is
an indication that a novelty has appeared and a new class will
be added to the ART2 structure. The new weights connecting
the input with the new class are initialized with the
scaled input feature values of this novelty. In such a way, the
activation value will be maximum higher
than when computed for this novelty in further training
iterations. The value of the vigilance parameter determines
the resolution of ART2. It can be chosen in the range between
zero and one. In the case that is relatively small, only
very different input feature vectors will be distinguished and
separated in different classes. If is relatively large, the
input feature vectors that are more similar will be separated
into different classes. The value of is selected differently
depending on the particular application.

III. ART2LDA C LASSIFIER

Despite the good performance of ART2 for efficient clus-
tering and detection of novelties, the fast learning approach
can cause problems associated with the generalization capa-
bility of the system and the correct classification of unknown
cases. Supervised classifiers such as linear discriminants or
backpropagation neural network classifiers can have better
generalization capability than ART2, because they are trained
by averaging over similar event occurrences. However, the
learning process in these traditional learning algorithms tends
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to erase the memory of previous expert knowledge when a new
type of expertise is being learned. Therefore, these classifiers
do not have as good an ability to correctly classify rare events
as ART2 [28], [29].

In order to improve the accuracy and generalization of a
classifier, we propose to design a hybrid classifier that com-
bines the unsupervised ART2 network and a supervised LDA
classifier. This hybrid classifier (ART2LDA) utilizes the good
resolution capability of ART2 and the good generalization
capability of LDA. The ART2 first analyzes the similarity of
the sample population and identifies a subpopulation that may
be separated from the main population. This will improve the
performance of the second-stage LDA if the subpopulation
causes the sample population to deviate from multivariate
normal distributions for which LDA is an optimal classifier.
Therefore, the ART2 serves as a screening tool to improve
the homogeneity of the sample distributions by classifying
outlying samples into separate classes.

The ART2LDA hybrid classifier can be described as

(3)

where is the input vector, is the LDA classifier, is
the ART2 classifier, and is a binary membership function,
which labels the classes identified by ART2 to be one of the
two types: malignant class or mixed class. A particular class
is defined as malignant if it contains only malignant members.
It is defined as mixed if it contains both malignant and benign
members. The membership function is defined as follows:

if is a malignant class
if is a mixed class.

(4)

The type of a given class is determined based on ART2
classification of the training data set.

The structure of the ART2LDA classifier is shown in Fig. 2.
The ART2 classifies the input sampleinto either a malignant
or a mixed class. Depending on the class type the function

determines whether the LDA classifier will be used.
If is classified into a mixed class, the final classification
will be obtained based on the LDA classifier. However, if

is classified by ART2 into a malignant class, then the
mass will be considered malignant, without using the LDA
classifier. Therefore, in the ART2LDA structure, the ART2
is used both as a classifier and a supervisor. This can be
seen in (3). The first term in (3), , is the LDA
classifier multiplied by the ART2 control part . The
second term in (3), , gives the classification
result of the ART2 stage. If is a malignant class, then

, the LDA stage is eliminated, and the classifier
output is equal to 1. On the other hand, if is a
mixed class, then , the ART2 term is eliminated,
and the final classification is determined by the LDA classifier

.

IV. M ETHODS

A. Data Set

The mammograms used in this study were randomly se-
lected from the files of patients who had undergone biopsies

Fig. 2. Structure of the ART2LDA classifier.

at the University of Michigan. The criterion for inclusion
of a mammogram in the data set was that the mammogram
contained a biopsy-proven mass. The data set contained 348
mammograms with a mixture of benign and
malignant masses. On each mammogram, a region
of interest (ROI) containing the mass was identified by a
radiologist experienced in breast imaging. The visibility of
the masses was rated by the radiologist on a scale of 1 to 10,
where the rating of 1 corresponds to the most visible category.
The distributions of the visibility rating for both the malignant
and benign masses are shown in Fig. 3. The visibility ranged
from subtle to obvious for both types of masses. It can be
observed that the benign masses tend to be more obvious than
the malignant ones. Additionally the likelihood of malignancy
for each mass was estimated based on its mammographic
appearance. The radiologist rated the likelihood of malignancy
on a scale of 1 to 10, where 1 indicated a mass with the most
benign appearance. The distribution of the malignancy rating
of the masses is shown in Fig. 4.

The data set can be considered as representative of the
patient population that is sent for biopsy under current clinical
criteria. Some characteristics of many malignant and benign
masses can be visually distinguished by radiologists. However,
there is also a nonnegligible fraction of malignant masses that
are very similar to benign masses (the low malignancy rating
region in Fig. 4). The estimated likelihood of malignancy of
malignant and benign masses that are sent for biopsy basically
overlaps over the entire range. This is consistent with the fact
that in order not to miss malignant masses radiologists must
recommend biopsy for even very low suspicion lesions.

Three hundred and five of the mammograms were digitized
with a LUMISYS DIS-1000 laser scanner at a pixel resolution
of 100 m 100 m and 4096 gray levels. The digitizer
was calibrated so that gray level values were linearly and
inversely proportional to the optical density (OD) within the
range of 0.1 to 2.8 OD units, with a slope of0.001 OD/pixel
value. Outside this range, the slope of the calibration curve
decreased gradually. The OD range of the digitizer was 0
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Fig. 3. The distribution of the visibility ranking of the masses in the dataset.
The ranking was performed by an experienced breast radiologist (1: very
obvious, 10: very subtle).

Fig. 4. The distribution of the malignancy ranking of the masses in the
dataset. The ranking was performed by an experienced breast radiologist (1:
very likely benign, 10: very likely malignant).

to 3.5. The remaining 43 mammograms were digitized with
a LUMISCAN 85 laser scanner at a pixel resolution of 50

m 50 m and 4096 gray levels. The digitizer was
calibrated so that gray level values were linearly and inversely
proportional to the OD within the range of 0 to 4 OD units,
with a slope of 0.001 OD/pixel value. In order to process the
mammograms digitized with these two different digitizers, the
images digitized with LUMISCAN 85 digitizer were averaged
with a 2 2 box filter and subsampled by a factor of two,
resulting in 100 m images.

In order to validate the prediction abilities of the classifier,
the data set was partitioned randomly into training and test
subsets on a 3:1 ratio, under the constraints that both the
malignant and the benign samples were split with the 3:1 ratio
and that the images from the same patient were grouped into
the same (training or test) subset. These constraints caused

the subsets to deviate from an exact 3:1 ratio. The data set
was repartitioned randomly ten times. On average, 73% of the
samples were grouped into the training set and 27% into the
test set. The training and test results from the ten partitions
were averaged to reduce their variability.

B. Feature Extraction

A rectangular ROI was defined to include the radiologist-
identified mass with an additional surrounding breast tissue
region of at least 40 pixels wide from any point of the mass
border. A fully automated method was then used for segmen-
tation of the mass from the breast tissue background within
the ROI. The rubber band straightening transform (RBST) was
previously developed [12] to map a band of pixels surrounding
the mass onto the Cartesian plane (a rectangular region). In the
transformed image, the border of mass appears approximately
as a horizontal edge and spiculations appear approximately
as vertical lines. The transformation of the radially oriented
textures surrounding the mass margin to a more uniform
orientation facilitates the extraction of texture features.

The texture features used in this study were calculated from
spatial gray-level dependence (SGLD) matrices [10]–[12],
[31], and run-length statistics (RLS) matrices [32] computed
from the RBST images. The th element of the SGLD
matrix is the joint probability that gray levelsand occur in
a direction at a distance of pixels apart in an image. Based
on our previous studies [10], a bit depth of eight was used in
the SGLD matrix construction, i.e., the four least significant
bits of the 12-bit pixel values were discarded. Thirteen texture
measures, including correlation, energy, difference entropy, in-
verse difference moment, entropy, sum average, sum entropy,
inertia, sum variance, difference average, difference variance,
and two types of information measure of correlation were used.
These measures were extracted from each SGLD matrix at
ten different pixel pair distances
and and in four directions (0, 45 , 90 , and 135 .
Therefore, a total of 520 SGLD features were calculated
for each image. The definitions of the texture measures are
given in the literature [10]–[12], [31]. These features contain
information about image characteristics such as homogeneity,
contrast, and the complexity of the image.

RLS texture features were extracted from the vertical and
horizontal gradient magnitude images, which were obtained
by filtering the RBST image with horizontally or vertically
oriented Sobel filters and computing the absolute gradient
value of the filtered image. A gray level run is a set of
consecutive, collinear pixels in a given direction which have
the same gray level value. The run length is the number of
pixels in a run [32]. The RLS matrix describes the run length
statistics for each gray level in the image. The th element
of the RLS matrix is the number of times that the gray level
in the image possesses a run length ofin a given direction.
In our previous study, it was found experimentally that a bit
depth of five in the RLS matrix computation could provide
good texture characteristics [12].

Five texture measures, namely, short run emphasis, long run
emphasis, gray level nonuniformity, run length nonuniformity,
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and run percentage were extracted from the vertical and
horizontal gradient images in two directions, and

. Therefore, a total of 20 RLS features were calculated for
each ROI. The formal definition of the RLS feature measures
can be found in [32].

A total of 540 features (520 SGLD and 20 RLS) were
therefore extracted from each ROI.

C. Feature Selection

In order to reduce the number of the features and to obtain
the best feature set to design a good classifier, feature selection
with stepwise linear discriminant analysis [33] was applied.
At each step of the stepwise selection procedure one feature
is entered or removed from the feature pool by analyzing
its effect on the selection criterion. In this study, the Wilks’
lambda (the ratio of within-group sum of squares to the total
sum of squares [34]) was used as a selection criterion. The
optimization procedure used a threshold for feature entry
and a threshold for feature removal. On a feature entry
step, the features not yet selected are entered into the selected
feature pool one at a time, the significance of the change in the
Wilks’ lambda caused by this feature is estimated based on
statistics. The feature with the highest significance is entered
into the feature pool if its significance is higher than . On
a feature removal step, the features which have already been
selected are analyzed one at a time from the selected feature
pool and the significance of the change in the Wilks’ lambda
is estimated. The feature with the least significance is removed
from the selected feature pool if the significance is less than

. Since the appropriate values of and are not
known a priori, we examined a range of and values
and chose the appropriate thresholds in such a way that a
minimum number of features were selected to achieve a high
accuracy of classification by LDA for the training sets. More
details about the stepwise linear discriminant analysis and its
application to CAD can be found in [10]–[12].

D. Performance Analysis

To evaluate the classifier performance, the training and
test discriminant scores were analyzed using receiver operat-
ing characteristic (ROC) methodology [35]. The discriminant
scores of the malignant and benign masses were used as
decision variables in the LABROC1 program [36], which
fit a binormal ROC curve based on maximum likelihood
estimation. The classification accuracy was evaluated as the
area under the ROC curve, For the ART2LDA classifier,
the discriminant scores of all case samples classified in the two
stages are combined. All masses classified into the malignant
group by the ART2 stage were assigned a constant positive
discriminant score higher than or equal to the most malignant
discriminant score obtained from the LDA stage .

The performance of ART2LDA was also assessed by esti-
mation of the partial area index and compared with
the corresponding performance index of the LDA and BPN
classifiers. The partial area index is defined as the area
that lies under the ROC curve but above a sensitivity threshold
of 0.9 (TPF normalized to the total area above TPF,

TABLE I
NUMBER OF SELECTED FEATURES FOR THETEN DATA GROUPS

WITH THE CORRESPONDINGFIN AND FOUT PARAMETERS

(1-TPF . The partial indicates the performance of the
classifier in the high-sensitivity (low false negative) region
which is most important for clinical cancer detection task. In
addition, the performance of the LDA stage of the ART2LDA
classifier was evaluated by the estimation of the area under
the ROC curve, denoted as (LDA), for the case samples
passed onto the LDA classifier.

V. RESULTS

In this section the ART2LDA classification results for
malignant and benign masses will be presented and compared
with those of the LDA or BPN classifiers. The important
point in this study is the fact that the test subset is truly
independent of the training subset. Only the training subset
is used for feature selection and classifier training, and only
the test subset is used for classifier validation. In order to
validate the prediction abilities of the classifier, ten different
partitions of the training and test sets were used. A different
ART2LDA classifier was trained using each training set and
the corresponding set of selected features. The classification
result was estimated as the average performance for the ten
partitions.

For a given partition of training and test sets, feature
selection was performed based on the training set alone. The
feature selection results for the ten different training groups are
shown in Table I. The average number of selected features was
14. An average of two RLS features and twelve SGLD features
were selected for each of the training sets which represented
10% of all RLS features and 2.3% of all SGLD features,
respectively. Both types of features (RLS and SGLD) are
necessary in order to obtain good classification. The most often
selected RLS features for the ten training sets were: horizontal
short run emphasis (four times), horizontal long run emphasis
(six times), vertical run length nonuniformity (three times),
horizontal run length nonuniformity (three times). The most
often selected SGLD texture measures for the ten training sets
were: inverse difference moment (eight times), information
measure of correlations one and two (19 times), difference
average (nine times), and correlation (ten times). For a given
texture measure, features at different angles or distances may
be selected, but these features are usually highly correlated so
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Fig. 5. ART2LDA and LDA classification results for training and test sets
from data group three as a function of the generated number of classes.
Additionally the results for the LDA stage from the ART2LDA classifier
are plotted.

that they can be considered to be similar and counted together
as described above.

A. ART2LDA Classification Results

For the ART2LDA classifier, the number of selected features
determines the dimensionality of the input vector of the ART2
classifier and the dimensionality of the LDA classifier. By
applying different values for the vigilance parameter, ART2
classifiers with different number of classes were obtained. In
this study, the vigilance parameter was varied from 0.9
to 0.99, resulting in a range of 10 to 240 classes. The overall
performance of the ART2LDA classifier was evaluated for
different numbers of ART2 classes because different subset
of the samples were separated and classified by ART2 when

was varied. In Fig. 5, the classification results for the
ART2LDA are compared to the results from LDA alone for
the training and test set partition three. The classification
accuracy, was plotted as a function of the number of
ART2 classes. For this training and test set partition, when
the number of classes was between 20 and 60, the ART2LDA
classifier improved the classification accuracy for the test set
in comparison to LDA. As the number of classes increased to
greater than 60, the value increased for the training data
set, but decreased for the test data set and was lower than that
of the LDA alone. The two solid lines in Fig. 5 show the
values for the LDA stage in the ART2LDA classifier for both
the training and test sets. It can be observed that the test
for the LDA stage is higher than the for the LDA classifier
alone, but not as high as obtained by ART2LDA when the
number of classes is small.

In Fig. 6 the classification results of LDA and ART2LDA
for the partition one training and test sets are shown. In this

Fig. 6. ART2LDA and LDA classification results for training and test sets
from data group one as a function of the generated number of classes.
Additionally the results for the LDA stage from the ART2LDA classifier
are plotted.

case it appeared that in the test set there were two large
malignant outliers which degraded the LDA performance.
Only 15 classes at the ART2 stage in the ART2LDA was
enough to cluster the outliers into a separate malignant class
and to improve the performance of the LDA stage and the
overall result. The rest of the outliers required more ART2
classes before they were clustered into separate classes and
correctly classified as malignant. This is the reason for the
similar behavior of the classifiers for partitions three and one
in the range of 40 to 70 classes as seen in Figs. 5 and 6.
When the number of classes was less than 70, the testfor
the LDA stage (LDA)) was higher than the LDA alone, but
not as high as the for ART2LDA with less than 30 classes
(Fig. 6). The best values for the test data sets of the ten
training and test partitions are presented in Table II and Fig. 7.
The ART2LDA classifier achieved higher values than the
LDA alone in nine of the ten partitions. The average is
0.81 for ART2LDA and 0.78 for LDA alone. The standard
deviations of the values for the ten groups range from
0.03 to 0.05 for the ART2LDA classifier and from 0.04 to
0.05 for the LDA classifier.

The performance of ART2LDA was also assessed by esti-
mation of the partial area under the ROC curve at a
TPF higher than 0.9. The results are presented in Table III
and Fig. 7. In the lower part of Fig. 7, the values of the
test set for the corresponding ten partitions of training and test
sets are presented. The average test value is 0.34 for the
ART2LDA and 0.27 for LDA. For nine of the ten partitions,
the value was improved at the high-sensitivity operating
region (TPF 0.9) of the ROC curve.

The classifier performance was also evaluated when the
ART2LDA classifiers were designed using a fixed number
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TABLE II
CLASSIFIERS PERFORMANCE FOR THETEN TEST SETS. THE Az

VALUES REPRESENT THETOTAL AREA UNDER ROC CURVE

Fig. 7. AverageAz classification results for the 10 test sets. The top graphs
represent the ART2LDA and LDAAz values for the total area under the
ROC curve. The bottom graphs represent the ART2LDA, ART2LDA(1) and
LDA Az values for the partial area of the ROC curve above the true positive
fraction of 0.9.

TABLE III
CLASSIFIERS RESULTS FOR THETEN TEST SETS. THE Az

VALUES REPRESENT THEPARTIAL AREA OF THE ROC CURVE

ABOVE THE TRUE POSITIVE FRACTION OF 0.9 (A
(0:9)
z )

of ART2 classes. The and results, averaged over
the ten test partitions, are presented in Table IV. The average

with the ART2LDA classifier, compared to that of LDA
alone, was again improved between 15 and 40 classes. The
maximum average of 0.80 was achieved between 20 and
40 classes. The average results are improved for all

TABLE IV
AVERAGEAz AND AVERAGEA

(0:9)
z CLASSIFICATION RESULTS FOR THETEN TEST

SETS. CLASSIFIERSWERE DESIGNEDUSING A FIXED NUMBER OF ART2 CLASSES

ART2LDA classifiers presented in Table IV. The maximum
average value is 0.33 and it remains constant between
30 and 40 classes.

An alternative way to evaluate the performance of a classi-
fier is its classification accuracy when a decision threshold for
malignancy is selected based on the training set. For instance,
a decision threshold may be selected such that all positive
samples from the training set are classified correctly i.e., at a
sensitivity of 100%. The ART2LDA with this decision thresh-
old is referred to as ART2LDA(1). For a given training and
test partitioning, ART2LDA classifiers with different number
of classes in the ART2 stage were obtained (Figs. 5 and 6). For
each of these models the decision threshold for a sensitivity of
100% was selected from the training set and the corresponding
ART2LDA(1) classifier was obtained. Then the ART2LDA(1)
classifier (with a specific number of classes in the ART2 stage)
that correctly classified the maximum number of malignant
masses in the test set is selected. By using all samples of
the test set, the value is calculated for the corresponding
ART2LDA model. The values for the ART2LDA(1) classi-
fiers for the test sets of the ten data partitionings are shown in
Tables II and III. For five of the partitions the overall value
for ART2LDA(1) is higher than that of LDA alone (Table II).
The average value was 0.79. The partial areas above the
TP fraction of 0.9, , for the ten test data sets obtained
by the ART2LDA(1) classifier are also shown in Fig. 7. The
ART2LDA(1) achieved the highest average value of
0.35 compared to ART2LDA and LDA (Table III).

B. BPN Classification Results

A multilayer perceptron back-propagation neural network
with a single hidden layer and a single output node was used
for comparison with the ART2LDA classifier. The number
of selected features determined the number of input nodes to
the BPN. The same ten training/test set partitions (as in the
case of ART2LDA) were used for the training and validation
of the BPN classifiers. BPN’s with their number of hidden
nodes ranging from two to ten were evaluated to obtain the
best architecture. Back-propagation training was used. Each
of the BPN’s was trained for up to 18 000 training epochs.
At every 1000 epochs the neural network weights were saved
and the classification result for the corresponding test set was
evaluated. This design procedure was repeated for each of the
ten training/test groups. For each group, the best test result
among all the BPN architectures (different number of hidden
nodes) and all the training epochs examined was selected.
The average test over the ten groups for the BPN was
0.80, compared to 0.81 for ART2LDA (Table II). The standard
deviations of the values for the ten groups range from 0.04
to 0.05 for the BPN. The average partial for the BPN
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was 0.31, compared to 0.34 for ART2LDA (Table III). The
and of the ART2LDA classifier were higher than

those of the BPN in six of the ten training/test groups.

VI. DISCUSSION

In the present study, a new classifier (ART2LDA) was
designed and applied to the classification of malignant and
benign masses. The results indicated that the ART2LDA
classifier had better generalizability than an LDA classifier
alone. The ART2 classifier grouped the case samples that were
different from the main population into separate classes. The
minimum number of classes needed to start the clustering of
outliers into separate classes depended on how different the
outliers were from the rest of the sample population. For the
ten different partitions of training and test sets used in this
study, the minimum number varied between 13 and 15 classes.
When the number of ART2 classes was less than this minimum
number of classes, the ART2 classifier generated only mixed
malignant-benign classes and all samples were transferred to
the LDA stage. In that case, the ART2LDA was equivalent
to the LDA classifier alone. When a higher number of classes
were generated, an increased number of cases that might be
considered outliers of the general data population was removed
(clustered in separate classes). For the ten training sets used
in this study, the malignant outliers were gradually removed
when the number of classes increased. The training accuracy
increased when the number of classes increased andcould
reach the value of 1.0. However, a large number of ART2
classes led to overfitting the training sample set and poor
generalization in the test set. The classification accuracy of
ART2 for the test set tended to decrease when the number of
classes was greater than about 70. The large number of classes
also led to a reduction in the generalizability of the second-
stage LDA; the training of LDA with a small number of
samples would again result in overfitting the training set, and
poor generalizability in the test set. This effect was observed
when more than 60 or 70 classes were generated by ART2
(see Figs. 5 and 6).

The classification accuracy of ART2LDA increased initially
with an increased number of classes and then decreased
after reaching a maximum. The correct classification of the
outliers by the ART2 in combination with an improvement
in the classification by the LDA resulted in the increased
accuracy. When the number of ART2 classes was further
increased, the effects of overfitting by the ART2 and the LDA
became dominant and the prediction ability of the ART2LDA
decreased. In some cases the second-stage LDA prediction
was much worse than the ART2. In other cases the ART2
could not generalize well. The generation of a high number of
classes is therefore impractical and unnecessary both from a
computational and a methodological point of view.

For the optimal number of classes (usually less than 50 for
the data sets used) the value for the second-stage LDA in
the ART2LDA was better than an LDA classifier alone, but it
was not as good as the overall from the ART2LDA. It is
evident that the ART2 was a useful classifier for improvement
of the second-stage classification.

When the partial area of the ROC curve above the true posi-
tive fraction (TPF) of 0.9 was considered as a measure
of classification accuracy, the advantage of ART2LDA over
LDA alone became even more evident. By removing and cor-
rectly classifying the outliers, the accuracy of the classification
was increased at the high sensitivity end of the curve.

The classifier performance was evaluated when the
ART2LDA classifiers were designed using a fixed number
of ART2 classes. The results showed improved performance
of the ART2LDA in a range between 20 and 40 ART2
classes. Both the average and the average reached
a maximum within this region, and the maximum average
and the average values remained unchanged between 30
and 40 classes. These results indicated that the performance
of a hybrid ART2LDA classifer was robust and stable and
could be potentially useful in real clinical applications.

We have performed statistical tests with the CLABROC
program to estimate the significance in the differences between
the values from the ART2LDA, the LDA alone, and the
BPN, as well as in the differences in the partial from the
three classifiers. The statistical tests were performed for each
individual data set partition because the correlation among the
data sets from the different partitions precludes the use of
student’s paired test with the ten partitions. We found that the
differences in both cases did not reach statistical significance
because of the small number of test samples and thus the large
standard deviation in the values. However, the consistent
improvements in and by the ART2LDA (9 out of
10 data set partitions in both cases for LDA and six out of
ten data set partitions in both cases for BPN) suggest that the
improvement was not by chance alone, and that the accuracy
of a classification task could be improved by the use of an
ART2 network. In addition, one advantage of the ART2LDA
is that the training process is more efficient than that of the
BPN, especially when there is a subset of outlying samples. In
such a case, the BPN will require a large number of training
epochs to minimize the error function.

ART2LDA can be trained to classify the sample cases into
more than two classes, such as a class of normal tissue regions
in addition to malignant and benign masses. There will be an
increase in the complexity of training and a larger training
sample size will be desired, but these requirements will be
comparable for the different classifiers. In a clinical situation,
if the classification task is performed on all computer-detected
lesions, the classifier has to distinguish the falsely detected
normal tissue from malignant or benign lesions. However,
it may be noted that a classifier that can distinguish only
malignant and benign masses is applicable to the scenario
that the radiologist identifies a suspicious lesion on the mam-
mogram and would like to have a second opinion about its
likelihood of malignancy before making a diagnostic decision.
Therefore, the development of a classifier that can differentiate
malignant and benign masses is the research of interest for
many investigators.

Similarly, ART2 can be trained to discover and remove a
pure benign mass class. The approach will be similar to the
task of classifying and removing the pure malignant classes,
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as described in this study. However, our approach of removing
the malignant classes will reduce the chance of misclassifica-
tion of malignant masses. In breast cancer detection, the cost
of false-negative (missed cancer) is very high. Therefore, our
goal in classifier design is to be conservative. By removing
the malignant classes in the first stage, any misclassification
to these classes will be regarded as malignant. The remaining
classes will be classified again with the second-stage classifier
so malignant masses will be less likely to be missed.

The problem of classification of malignant and benign
masses has been studied by many investigators. Rangayyan
et al. [15] used Mahalanobis distance classifer (a modification
of an LDA classifier) and the leave-one-out method to evaluate
the classification of 54 masses. Fogelet al. [16] compared
LDA and BPN classifiers using the leave-one-out method and
139 masses (malignant and benign classification). Highnam
et al. [17] used a morphological feature called a halo to
classify 40 masses as malignant and benign. Huoet al. [22]
employed BPN and a rule-based classifier to classify 95 masses
using the leave-one-out evaluation method. Sahineret al. [12]
used an LDA classifier and the leave-one-out method to
classify 168 masses. An important difference between the
classifier designed in this study and the previous studies in
the CAD field is the method of feature selection. In the
above mentioned studies [12], [15]–[17], [22] and several other
published studies [18]–[21] the features were selected from the
entire data set first, and then the data set was partitioned into
training and test sets. This meant that at the feature selection
stage of the classifier design, the entire data set was used as a
training set. Depending on the distribution of the features and
the total number of samples used, the test results in these
studies might be optimistically biased [37]. In our current
study, the entire data set was initially partitioned into training
and test sets and then feature selection was performed only
on the training set. This method will result in a pessimistic
estimate of the classifier performance when the training set is
small [37]. However, it will provide a more conservative but
realistic estimation of the classifier performance in the general
patient population. We can expect that the performance would
be improved if the classifier in this study were designed using
a large data set. Since our main purpose in this study was
to compare the ART2LDA classifier with the commonly used
LDA and BPN, we did not attempt to quantify how pessimistic
our results were in this study.

The most important contribution of this paper is to in-
troduce a new approach that utilizes a two-stage unsuper-
vised–supervised hybrid classifier. We believe that the hybrid
approach will improve classification when the sample distribu-
tion contains subpopulations that may be difficult for a single
classifier to classify. It will be useful for similar classification
tasks although different classifiers may be used in each stage
of the hybrid structure.

VII. CONCLUSION

A new classifier combining an unsupervised ART2 and
a supervised LDA has been designed and applied to the
classification of malignant and benign masses. A data set

consisting of 348 films (179 malignant and 169 benign)
was randomly partitioned into training and test subsets. Ten
different random partitions were generated. For each training
set, texture features were extracted and feature selection was
performed. An average of features were selected for each
group. A hybrid ART2LDA classifier, an LDA, and a BPN
were trained by using each of the ten training sets. The
value under the ROC curve for the test sets, averaged over
the ten partitions, was higher for ART2LDA
compared to those of the LDA alone and of the
BPN A greater improvement was obtained when
the partial ROC area above a true-positive fraction of 0.9 was
considered. The average partial for ART2LDA was 0.34,
as compared to 0.27 for LDA and 0.31 for BPN. Additionally,
for the ART2LDA classifiers that correctly classified the
maximum number of malignant masses in the test sets with
decision threshold defined with the training set, the average
partial was 0.35. These results indicate that the hybrid
classifier is a promising approach for improving the accuracy
of classifiers for CAD applications.
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