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Classification of Malignant and Benign Masses
Based on Hybrid ART2LDA Approach

Lubomir Hadjiiski,* Member, IEEE Berkman Sahinenviember, IEEE
Heang-Ping Chan, Nicholas Petridkember, IEEE and Mark Helvie

Abstract—A new type of classifier combining an unsupervised have shown that the positive predictive value (i.e., ratio of the
and a supervised model was designed and applied to classifi-number of breast cancers found to the total number of biopsies)
cation of malignant and benign masses on mammograms. The is only 15% to 30% [2]-[4]. It is important to increase the

unsupervised model was based on an adaptive resonance theory =~ . . . . . e
(ART2) network which clustered the masses into a number of positive predictive value without reducing the sensitivity of

separate classes. The classes were divided into two types: ondreast cancer detection. Computer-aided diagnosis (CAD) has
containing only malignant masses and the other containing a mix the potential to increase the diagnostic accuracy by reducing

of malignant and benign masses. The masses from the malignantthe false-negative rate while increasing the positive predictive
classes were classified by ART2. The masses from the mixe alues of mammographic abnormalities

classes were input to a supervised linear discriminant classifier - L9 . .
(LDA). In this way, some malignant masses were separated Classifier design is an important step in the development

and classified by ART2 and the less distinguishable benign and of a CAD system. A classifier has to be able to merge
malignant masses were classified by LDA. For the evaluation of the available input feature information and make a correct
classifier performance, 348 regions of interest (ROI's) containing eyaluation. Commonly used classifiers for CAD include linear

biopsy proven masses (169 benign and 179 malignant) were used. . . . : ’
Ten different partitions of training and test groups were randomly discriminants (LDA) [5], [6] and backpropagation neural net

generated using an average of 73% of ROI's for training and WOrks (BPN) [7]-{9] which have been shown to perform well
27% for testing. Classifier design, including feature selection and in lesion classification problems [10]-[22]. These classifiers
weight optimization, was performed with the training group. are generally designed by supervised training. However, these
The test group was kept independent of the training group. The e of classifiers have limitations dealing with the nonlin-

performance of the hybrid classifier was compared to that of e . - . e
an LDA classifier alone and a backpropagation neural network earities in the data (in case of LDA) and in generalizability

(BPN). Receiver operating characteristics (ROC) analysis was When a limited number of training samples are available

used to evaluate the accuracy of the classifiers. The average area(especially BPN). Another classification approach is based on
under the ROC curve (A.) for the hybrid classifier was 0.81 as ynsupervised classifiers, which cluster the data into different
compared to 0.78 for the LDA and 0.80 for the BPN. The partial ¢j55505 pased on the similarities in the properties of the input
areas above a true positive fraction of 0.9 were 0.34, 0.27 and . i
0.31 for the hybrid, the LDA and the BPN classifier, respectively. [cature vectors. Therefore, unsupervised classifiers can be used
These results indicate that the hybrid classifier is a promising t0 analyze the similarities within the data. However, it is

approach for improving the accuracy of classification in CAD difficult to use them as a discriminatory classifier [29], [30].

applications. They also have limited generalizability when the training
Index Terms— Computer-aided diagnosis, hybrid classifier, Sample set is small.
mammography, neural networks. We propose here a hybrid unsupervised/supervised struc-

ture to improve classification performance. The design of
this structure was inspired by neural information processing
AMMOGRAPHY is the most effective method for principles such as self organization, decentralization and gen-
detection of early breast cancer [1]. However, theralization. It combines the adaptive resonance theory network

specificity for classification of malignant and benign lesionART2) [26], [27] and the LDA classifier as a cascade system
from mammographic images is relatively low. Clinical studieART2LDA). The self-organizing unsupervised ART2 network

" - ved 3 27 1099: revised October 26. 1999 Ta_utomatically decomposes the input samples into classes with
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position and data decomposition can improve classification X XX X, Features
accuracy [23] as well as model accuracy [24]. However,
decomposition can also reduce the prediction accuracy due to

overfitting the training data. We will demonstrate in this paper

that the proposed hybrid structure can reduce the overfitting wy
problem and improve the prediction capabilities of the system.

The performance of the hybrid ART2LDA classifier will be

compared with those of an LDA alone or a BPN classifier. .

The rest of the paper is organized as follows. In Section Il ¥ :Z;"'Wv
the ART2 unsupervised network is described. A hybrid
ART2LDA classifier is introduced in Section Ill. Section IV
describes the data set used in this study. The results are
presented in Section V. Section VI contains discussion of

these results. Finally, Section VII concludes this investigation.
Fig. 1. Structure of the ART2 network.
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Il. ART2 UNSUPERVISEDNEURAL NETWORK
lséructure by adding a new class. An additional parameter, the

The ART2 is a self-organizing system that can simula | . 410 d ine th £l ina 1261 Th
human pattern recognition. ART2 was first described by Grogdghance, Is used to determine the type of learning [26]. The

berg [25] and a series of further improvements were carri&gllance pgrametepYig IS a threshold valye that is compared

out by Carpenter, Grossberg, and coworkers [26]-[28]. T %the maximum act|v§1t|0n va_llup,,. If pr is larger tharp.,

ART2 network clusters the data into different classes based Of7 " th? Input vecto_r is considered to _belong to clasghe

the properties of the input feature vectors. The members wittﬁﬂaptat'on of the weights connected with class performed

a class have similar properties. The process of ART2 netwdiR follows:

learning is a balance between the plasticity and stability rew — old 4 ey gyoldy fori=1,---,n (2

dilemma. Plasticity is the ability of the system to discover

and remember important new feature patterns. Stability wéherey is a learning rate. The adaptation of the clasgeights

the ability of the system to remain unchanged when alrea(R), aims at maximization of the, value for the particular

known feature patterns with noise are input to the system. Timput vector. In an iterative manner the weights are adjusted

balance between plasticity and stability for the ART2 trainingo that the activation values produced for similar input vectors

algorithm allows fast learning [28], i.e., rare events can heill be maximum only for the class to which they belong and

memorized with a small number of training iterations withouhese maximum activation values will be higher thag,.

forgetting previous events. The more conventional training If the maximum activation valug,. is smaller tham. i, it is

algorithms, such as back propagation [7]-[9], perform sloan indication that a novelty has appeared and a new class will

learning, i.e., they tend to average over occurrences of simitse added to the ART2 structure. The new weights connecting

events and require many training iterations. the input with the new clas§: + 1) are initialized with the
The structure of the ART2 system is shown in Fig. 1. kcaled input feature values of this novelty. In such a way, the

consists of two parts: the ART2 network and the learning stagetivation valuep,.41 will be maximum (p,. = pr4+1) higher

Suppose that there areinput features:; (i = 1,---,n) andk  than p,i; when computed for this novelty in further training

classes in the ART2 network. When a new vector is presentiégrations. The value of the vigilance parametgp determines

to the input of the ART2 network, an activation valpefor the resolution of ART2. It can be chosen in the range between

classj is calculated as zero and one. In the case that, is relatively small, only
" very different input feature vectors will be distinguished and

P = Z Tiwij, j=1,k 1) _separated in different classes. gf;q is_re_lative!y large, the
o1 input feature vectors that are more similar will be separated

into different classes. The value pf;; is selected differently

wherew;; is the connection weight between inguand class ngending on the particular application.

4. The activation value is a measure of the membership of t
particular input feature vector to clagsThe higher the value
p; is, the better the input vector matches clasEhe maximum Il ART2LDA CLASSIFIER
valuep, is selected from alp; (i = 1,---,%) to find the best ~ Despite the good performance of ART2 for efficient clus-
class match. Furthermore, in order to balance the contributitering and detection of novelties, the fast learning approach
to the activation value from all feature components, the inpaan cause problems associated with the generalization capa-
feature values applied to the ART2 system are scaled betwdsdlity of the system and the correct classification of unknown
zero and one [30]. This normalization will allow detection otases. Supervised classifiers such as linear discriminants or
similar feature patterns even when the magnitudes of the infnatckpropagation neural network classifiers can have better
feature components are very different. generalization capability than ART2, because they are trained
The learning stage of the ART2 system can influence thg averaging over similar event occurrences. However, the
weights of the selected class or the complete ART2 netwddarning process in these traditional learning algorithms tends
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to erase the memory of previous expert knowledge when a new X

type of expertise is being learned. Therefore, these classifiers

do not have as good an ability to correctly classify rare events

as ART2 [28], [29]. ART2
In order to improve the accuracy and generalization of a S.(x)

classifier, we propose to design a hybrid classifier that com-

bines the unsupervised ART2 network and a supervised LDA

classifier. This hybrid classifier (ART2LDA) utilizes the good

resolution capability of ART2 and the good generalization

Is x classified to be

capability of LDA. The ART2 first analyzes the similarity of in a malignant class =
the sample population and identifies a subpopulation that may
be separated from the main population. This will improve the
performance of the second-stage LDA if the subpopulation LDA
causes the sample population to deviate from multivariate f(x)
normal distributions for which LDA is an optimal classifier. l
Therefore, the ART2 serves as a screening tool to improve
the homogeneity of the sample distributions by classifying Yar= /()
outlying samples into separate classes. Fig. 2. Structure of the ART2LDA classifier.

The ART2LDA hybrid classifier can be described as

yar = g(f2(x) fr(@) + 1 = g(f2(x)) (3) at the University of Michigan. The criterion for inclusion

wherez is the input vector/; (-) is the LDA classifier f,(-) is ©f @ mammogram in the data set was that the mammogram
the ART2 classifier, ang(-) is a binary membership function, contained a biopsy-proven mass. The data set contained 348
which labels the classes identified by ART2 to be one of tfeammograms with a mixture of benigin = 169) and
two types: malignant class or mixed class. A particular clagdlignant(n = 179) masses. On each mammogram, a region
is defined as malignant if it contains only malignant member@f interest (ROI) containing the mass was identified by a
It is defined as mixed if it contains both malignant and benigigdiologist experienced in breast imaging. The visibility of
members. The membership function is defined as follows: the masses was rated by the radiologist on a scale of 1 to 10,
where the rating of 1 corresponds to the most visible category.
(4) The distributions of the visibility rating for both the malignant
and benign masses are shown in Fig. 3. The visibility ranged

The type of a given class is determined based on ART&m subtle to obvious for both types of masses. It can be
classification of the training data set. observed that the benign masses tend to be more obvious than

The structure of the ART2LDA classifier is shown in Fig. 2the malignant ones. Additionally the likelihood of malignancy
The ART2 classifies the input samptento either a malignant for each mass was estimated based on its mammographic
or a mixed class. Depending on the class type the functigppearance. The radiologist rated the likelihood of malignancy
g(-) determines whether the LDA classifier will be usedon a scale of 1 to 10, where 1 indicated a mass with the most
If = is classified into a mixed class, the final C|aSSifiC&tiOBenign appearance. The distribution of the ma"gnancy rating
will be obtained based on the LDA classifier. However, i§f the masses is shown in Fig. 4.
z is classified by ART2 into a malignant class, then the The data set can be considered as representative of the
mass will be considered malignant, without using the LDfatient population that is sent for biopsy under current clinical
classifier. Therefore, in the ART2LDA structure, the ARTZyriteria. Some characteristics of many malignant and benign
is used both as a classifier and a supervisor. This can fgsses can be visually distinguished by radiologists. However,
seen in (3). The first term in (3}(/f2(x))/1(x), is the LDA  there is also a nonnegligible fraction of malignant masses that
classifier multiplied by the ART2 control pag(f2(x)). The  are very similar to benign masses (the low malignancy rating
second term in (3)(1 — g(fa(x))), gives the classification yegion in Fig. 4). The estimated likelihood of malignancy of
result of the ART2 stage. Ify(x) is a malignant class, then majignant and benign masses that are sent for biopsy basically
g9(f2(x)) = 0, the LDA stage is eliminated, and the classifiegyerjaps over the entire range. This is consistent with the fact
outputy.sz, is equal to 1. On the other hand, fb(x) iS @ that in order not to miss malignant masses radiologists must
mixed class, theg(f2(x)) = 1, the ART2 term is eliminated, \ecommend biopsy for even very low suspicion lesions.
and the final classification is determined by the LDA classifier Three hundred and five of the mammograms were digitized
(war = fi(z)). with a LUMISYS DIS-1000 laser scanner at a pixel resolution
of 100 um x 100 um and 4096 gray levels. The digitizer
was calibrated so that gray level values were linearly and
inversely proportional to the optical density (OD) within the
A. Data Set range of 0.1 to 2.8 OD units, with a slope-60.001 OD/pixel

The mammograms used in this study were randomly sealue. Outside this range, the slope of the calibration curve
lected from the files of patients who had undergone biopsidecreased gradually. The OD range of the digitizer was 0

(c) = 0, if c¢is a malignant class
g\ = 1, if cis a mixed class.

IV. METHODS
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40 the subsets to deviate from an exact 3:1 ratio. The data set

; was repartitioned randomly ten times. On average, 73% of the
- BNEE Benign : . L .

35 - Malignant samples were grouped into the training set and 27% into the
a0 test set. The training and test results from the ten partitions
, were averaged to reduce their variability.
25
20
15

10

region of at least 40 pixels wide from any point of the mass
border. A fully automated method was then used for segmen-
tation of the mass from the breast tissue background within

Number of Masses

i B BN N the ROI. The rubber band straightening transform (RBST) was

7 8 9 10 previously developed [12] to map a band of pixels surrounding

Visibi!ity the mass onto the Cartesian plane (a rectangular region). In the
transformed image, the border of mass appears approximately

Fig. 3. The distribution of the visibility ranking of the masses in the datasé®S @ horizontal edge and spiculations appear approximately
The ranking was performed by an experienced breast radiologist (1: vexg vertical lines. The transformation of the radially oriented

‘R | B. Feature Extraction
: B | : A rectangular ROI was defined to include the radiologist-
8 I I ; identified mass with an additional surrounding breast tissue
0 : . I

obvious, 10: very subtle). textures surrounding the mass margin to a more uniform
orientation facilitates the extraction of texture features.

80 R e Rt The texture features used in this study were calculated from

spatial gray-level dependence (SGLD) matrices [10]-[12],

s Benign | .. .
Matignant [31], and run-length statistics (RLS) matrices [32] computed

from the RBST images. Thé¢i, j)th element of the SGLD
matrix is the joint probability that gray leveisandj occur in

50 ¢ : a direction at a distance @f pixels apart in an image. Based
on our previous studies [10], a bit depth of eight was used in
the SGLD matrix construction, i.e., the four least significant
bits of the 12-bit pixel values were discarded. Thirteen texture

| I - measures, including correlation, energy, difference entropy, in-
l I = I

70 ;

60

R verse difference moment, entropy, sum average, sum entropy,

Number of Masses

j inertia, sum variance, difference average, difference variance,
| Bt and two types of information measure of correlation were used.
- l Lo These measures were extracted from each SGLD matrix at
6 7 8 9 10 ten different pixel pair distanceel = 1,2, 3,4,6,8,10,12,16
: : and 20) and in four directions (@ 45°, 90°, and 138).
Ma“gnancy Rankmg Therefore, a total of 520 SGLD features were calculated
Fig. 4. The distribution of the malignancy ranking of the masses in tH@r €ach image. The definitions of the texture measures are
dataset. The ranking was performed by an experienced breast radiologistgfiven in the literature [10]-[12], [31]. These features contain
very likely benign, 10: very likely malignant). information about image characteristics such as homogeneity,
contrast, and the complexity of the image.
to 3.5. The remaining 43 mammograms were digitized with RLS texture features were extracted from the vertical and
a LUMISCAN 85 laser scanner at a pixel resolution of 50orizontal gradient magnitude images, which were obtained
sm x 50 um and 4096 gray levels. The digitizer wady filtering the RBST image with horizontally or vertically
calibrated so that gray level values were linearly and inversadyiented Sobel filters and computing the absolute gradient
proportional to the OD within the range of 0 to 4 OD unitsyalue of the filtered image. A gray level run is a set of
with a slope of—0.001 OD/pixel value. In order to process theonsecutive, collinear pixels in a given direction which have
mammograms digitized with these two different digitizers, ththe same gray level value. The run length is the number of
images digitized with LUMISCAN 85 digitizer were averagegixels in a run [32]. The RLS matrix describes the run length
with a 2 x 2 box filter and subsampled by a factor of twostatistics for each gray level in the image. Tlgj)th element
resulting in 100:m images. of the RLS matrix is the number of times that the gray level
In order to validate the prediction abilities of the classifiein the image possesses a run lengtly af a given direction.
the data set was partitioned randomly into training and tdst our previous study, it was found experimentally that a bit
subsets on a 3:1 ratio, under the constraints that both tepth of five in the RLS matrix computation could provide
malignant and the benign samples were split with the 3:1 ratiood texture characteristics [12].
and that the images from the same patient were grouped intd-ive texture measures, namely, short run emphasis, long run
the same (training or test) subset. These constraints causetphasis, gray level nonuniformity, run length nonuniformity,
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and run percentage were extracted from the vertical and TABLE |
horizontal gradient images in two directiorts= 0° and§ = N\‘/Jva?HOEF ngé';gigﬁ;ﬂ:;& Z%F;TI';ETEN SAA;:MCE;TREORUSPS
90°. Therefore, a total of 20 RLS features were calculated for N ovt

each ROI. The formal definition of the RLS feature measures ~ Data Group | Number of
can be found in [32]. No. selected Fin Fout
A total of 540 features (520 SGLD and 20 RLS) were — features
therefore extracted from each ROI. ! 12 L8 1.6
2 15 2.4 2.2
. 3 13 2.4 2.2
C. Feature Selection 4 18 oq )
In order to reduce the number of the features and to obtain 5 14 24 22
the best feature set to design a good classifier, feature selection 6 14 2.1 1.8
with stepwise linear discriminant analysis [33] was applied. o7 13 24 2.2
At each step of the stepwise selection procedure one feature _ 8 18 1.8 1.6
is entered or removed from the feature pool by analyzing 9 ] 14 24 22
its effect on the selection criterion. In this study, the Wilks’ _ 10 14 24 2.2

lambda (the ratio of within-group sum of squares to the total

sum (_)f squares [34]) was used as a selection criterion. T(IQTPFO). The partialAiO'g) indicates the performance of the
optimization procedure used a threshdlg for feature entry ¢jassifier in the high-sensitivity (low false negative) region
and a threshold',,; for feature removal. On a feature entry,hich is most important for clinical cancer detection task. In
step, the features not yet selected are entered into the selegiggliion the performance of the LDA stage of the ART2LDA

feature pool one at a time, the significance of the change in thgssifier was evaluated by the estimation of the area under
Wilks’ lambda caused by this feature is estimated basef'onyhe ROC curve. denoted as. (LDA), for the case samples

statistics. The feature with the highest significance is entersgssed onto the LDA classifier.
into the feature pool if its significance is higher thap. On

a feature removal step, the features which have already been V. RESULTS
selected are analyzed one at a time from the selected feature ] ] o
pool and the significance of the change in the Wilks’ lambda !N this section the ARTZLDA classification results for

is estimated. The feature with the least significance is remov@@ignant and benign masses will be presented and compared

from the selected feature pool if the significance is less th¥fih those of the LDA or BPN classifiers. The important
Fou:. Since the appropriate values &%, and F... are not point in this study is the fact that the test subset is truly

known a priori, we examined a range df,, and F,.; values independent of the training subset. Only the training subset

and chose the appropriate thresholds in such a way thatS 4/sed for feature selection and classifier training, and only
minimum number of features were selected to achieve a hiﬁ}? test subset is used for classifier validation. In order to
accuracy of classification by LDA for the training sets. Mordalidate the prediction abilities of the classifier, ten different

details about the stepwise linear discriminant analysis and artitions of the training and test sets were used. A different
application to CAD can be found in [10]-[12]. ART2LDA classifier was trained using each training set and

the corresponding set of selected features. The classification
result was estimated as the average performance for the ten
partitions.

To evaluate the classifier performance, the training andrFor a given partition of training and test sets, feature
test discriminant scores were analyzed using receiver opergdtection was performed based on the training set alone. The
ing characteristic (ROC) methodology [35]. The discriminafeature selection results for the ten different training groups are
scores of the malignant and benign masses were usedsR&wn in Table I. The average number of selected features was
decision variables in the LABROC1 program [36], whichi4. An average of two RLS features and twelve SGLD features
fit a binormal ROC curve based on maximum likelihoogyere selected for each of the training sets which represented
estimation. The classification accuracy was evaluated as 4, of all RLS features and 2.3% of all SGLD features,
area under the ROC curve,.. For the ART2LDA classifier, respectively. Both types of features (RLS and SGLD) are
the discriminant scores of all case samples classified in the twecessary in order to obtain good classification. The most often
stages are combined. All masses classified into the maligngslected RLS features for the ten training sets were: horizontal
group by the ART2 stage were assigned a constant posittgort run emphasis (four times), horizontal long run emphasis
discriminant score higher than or equal to the most malignaiix times), vertical run length nonuniformity (three times),
discriminant score obtained from the LDA stage . horizontal run length nonuniformity (three times). The most

The performance of ART2LDA was also assessed by esgiften selected SGLD texture measures for the ten training sets
mation of the partial area inded'””’) and compared with were: inverse difference moment (eight times), information
the corresponding performance index of the LDA and BPheasure of correlations one and two (19 times), difference
classifiers. The partial area ind(a)iio'g)) is defined as the areaaverage (nine times), and correlation (ten times). For a given
that lies under the ROC curve but above a sensitivity threshakture measure, features at different angles or distances may
of 0.9 (TPR = 0.9) normalized to the total area above TRF be selected, but these features are usually highly correlated so

D. Performance Analysis



HADJIISKI et al.: CLASSIFICATION OF MALIGNANT AND BENIGN MASSES 1183

—a— ART2LDA (i) —— LDA stage (tr) ~—+— ART2LDA (i) —— LDA stage (tr) \
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Fig. 5. ART2LDA and LDA classification results for training and test setfig. 6. ART2LDA and LDA classification results for training and test sets
from data group three as a function of the generated number of clasfesm data group one as a function of the generated number of classes.
Additionally the results for the LDA stage from the ART2LDA classifierAdditionally the results for the LDA stage from the ART2LDA classifier
are plotted. are plotted.

that they can be considered to be similar and counted togethase it appeared that in the test set there were two large

as described above. malignant outliers which degraded the LDA performance.
Only 15 classes at the ART2 stage in the ART2LDA was
A. ART2LDA Classification Results enough to cluster the outliers into a separate malignant class

@gld to improve the performance of the LDA stage and the

determines the dimensionality of the input vector of the AR verall result. The rest of the outher_s required more ART2
classifier and the dimensionality of the LDA classifier. B)? asses before_ _they were _clustered |_nt(_) separate classes and
applying different values for the vigilance parameter, ARTﬁ_Orr_e‘:tly clas_s|f|ed as mallg_n_ant. This 'S _the reason for the
classifiers with different number of classes were obtained. ﬁ‘,HmIar behavior of the classifiers for partltlon_s th_ree and one
this study, the vigilance parametey;, was varied from 0.9 " the range of 40 to 70 classes as seen in Figs. 5 and 6.
to 0.99, resulting in a range of 10 to 240 classes. The overdff*€n the number of classes was less than 70, thedesor
performance of the ART2LDA classifier was evaluated fotF1e LDA_stage(AZ(LDA)) was higher '_[han the LDA alone, but
different numbers of ART2 classes because different sub&8f @S Nigh as thel. for ART2LDA with less than 30 classes

of the samples were separated and classified by ART2 wr{é:hg 6). The best4, _v_alues for the test (_jata sets of the_ten
pvig Was varied. In Fig. 5, the classification results for thitaining and test partitions are presented in Table Il and Fig. 7.

ART2LDA are compared to the results from LDA alone forl '€ ART2LDA classifier achieved highet. values than the
A alone in nine of the ten partitions. The average is

the training and test set partition three. The classificatior?
accuracy, A, was plotted as a function of the number op-81 for ART2LDA and 0.78 for LDA alone. The standard

ART2 classes. For this training and test set partition, wh&gviations of theA, values for the ten groups range from
the number of classes was between 20 and 60, the ART2L[IA3 t0 0.05 for the ART2LDA classifier and from 0.04 to
classifier improved the classification accuracy for the test &> for the LDA classifier. .
in comparison to LDA. As the number of classes increased to' N Performance of ART2LDA was also assesossd by esti-
greater than 60, thel. value increased for the training datgnation of the partial area under the ROC cumé‘_ at a
set, but decreased for the test data set and was lower than T2t higher than 0.9. The results are presented in Table Il
of the LDA alone. The two solid lines in Fig. 5 show thig ~ and Fig. 7. In the lower part of Fig. 7, the!”* values of the
values for the LDA stage in the ART2LDA classifier for botHest set for the corresponding ten partitions of training and test
the training and test sets. It can be observed that theAgst sets are presented. The average #8t” value is 0.34 for the
for the LDA stage is higher than thé. for the LDA classifier ART2LDA and 0.27 for LDA. For nine of the ten partitions,
alone, but not as high a4, obtained by ART2LDA when the the A value was improved at the high-sensitivity operating
number of classes is small. region (TPF> 0.9) of the ROC curve.

In Fig. 6 the classification results of LDA and ART2LDA The classifier performance was also evaluated when the
for the partition one training and test sets are shown. In tRT2LDA classifiers were designed using a fixed number

For the ART2LDA classifier, the number of selected featur
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TABLE 1 TABLE IV

CLASSIFIERS PERFORMANCE FOR THETEN TEST SETS. THE A AVERAGE A, AND AVERAGEA(ZO‘Q) CLASSIFICATION RESULTS FOR THETEN TEST
VALUES REPRESENT THETOTAL AREA UNDER ROC QURVE SeTs. CLASSIFIERS WERE DESIGNED USING A FIXED NUMBER OF ART2 CLASSES
Data Group ~ LDA | ART2LDA BPN ART2LDA(1) LDA ART2LDA
No. ; No. of classcs 15 20 30 40 | 50 60
Lo oy 083 _085 [ 080 _ A, 078 | 080 | 080 | 080 | 0.80 | 0.78 | 0.77
2 0.78 0.80 0.82 0.77 A 027 | 030 | 031 | 033 | 033 | 031 | 03I
3 0.74 0.78 0.77 0.78
4 0.77 0.77 0.75 0.77
5 0.77 0.78 0.76 0.77
2 3:8 82? 825 gg; ART2LDA classifiers presented in Table IV. The maximum
s 0.77 0.80 0.74 075 averageAiO'g) value is 0.33 and it remains constant between
9 0.77 080 | 0.81 0.80
o T ose | om T om | oso 30 and 40 cl_asses. .
Mean | 078 | 08l 080 | 079 An alternative way to evaluate the performance of a classi-

fier is its classification accuracy when a decision threshold for
o5 malignancy is selected based on the training set. For instance,
o oA (i\é)A . LDA (A a decision threshold may be selected such that all positive
2LDA (Az) ART2LDA (Az ()Og) samples from the training set are classified correctly i.e., at a
—e— ART2LDA(1) (AZ) o . . -
~ sensitivity of 100%. The ART2LDA with this decision thresh-

09 ¢ ] old is referred to as ART2LDA(1). For a given training and
o8l E test partitioning, ART2LDA classifiers with different number
K 1 of classes in the ART2 stage were obtained (Figs. 5 and 6). For
0.7 3 each of these models the decision threshold for a sensitivity of
B 1 100% was selected from the training set and the corresponding
06 E ART2LDA(1) classifier was obtained. Then the ART2LDA(1)
N s | 1 classifier (with a specific number of classes in the ART2 stage)
< ° s 1 that correctly classified the maximum number of malignant
0.4 F 3 masses in the test set is selected. By using all samples of
g 1 the test set, thel, value is calculated for the corresponding
0371 g ART2LDA model. TheA. values for the ART2LDA(1) classi-
A : fiers for the test sets of the ten data partitionings are shown in
s ] Tables Il and lll. For five of the partitions the overall value
o i [ i S S N H for ART2LDAC(1) is higher than that of LDA alone (Table II).
12 38 4 5 6 7 8 9 10 The averaged. value was 0.79. The partial areas above the
Data Group Number TP fraction of 0.9,4°"%, for the ten test data sets obtained

by the ART2LDA(1) classifier are also shown in Fig. 7. The

Fig. 7. AverageA. classification results for the 10 test sets. The top graprﬁRTZLDA(l) achieved the highest averagé0~9) value of
represent the ART2LDA and LDA4. values for the total area under the

ROC curve. The bottom graphs represent the ART2LDA, ART2LDA(1) ang'35 compared to ART2LDA and LDA (Table Iii).
LDA A. values for the partial area of the ROC curve above the true positive

fraction of 0.9. B. BPN Classification Results
TABLE Il _A mu!tllayer_perceptron back-propagatlon neural network
CLASSIFIERS RESULTS FOR THETEN TEST SETS. THE A with a single hidden layer and a single output node was used
VALUES REPRESENT THEPARTIAL AREA OF THE ROG, CLRVE for comparison with the ART2LDA classifier. The number

A 0A9) . .
ABOVE THE TRUE PoSITIVE FRACTION OF 0.9 (A2 of selected features determined the number of input nodes to

Data Group | 1DA | ARTZLDA BPN' | ART2LDACL the BPN. The same ten training/test set partitions (as in the
T 0.14 023 031 0.26 case of ART2LDA) were used for the training and validation
2 g . . .
2 a2 0 - o of the BPN classifiers. BPN's with their number of hidden
4 0.19 021 0.19 021 nodes ranging from two to ten were evaluated to obtain the
2 .2 .24 . . ..

1 oz 9.2 o o best architecture. Back-propagation training was used. Each

_ 7 0.32 031, 0.38 0.30 of the BPN’s was trained for up to 18000 training epochs.
.32 3 0.25 0.38 .

- ff, 310 823 0.40 019 At every 1000 epochs the neural network weights were saved
10 | 044 0.60 0.38 0.60 and the classification result for the corresponding test set was
~ Mean 0.27 034 031 035

evaluated. This design procedure was repeated for each of the
ten training/test groups. For each group, the best test result
of ART2 classes. Thet,, and ALY results, averaged overamong all the BPN architectures (different number of hidden
the ten test partitions, are presented in Table IV. The averagedes) and all the training epochs examined was selected.
A, with the ART2LDA classifier, compared to that of LDAThe average testl. over the ten groups for the BPN was
alone, was again improved between 15 and 40 classes. Dh&0, compared to 0.81 for ART2LDA (Table Il). The standard
maximum averaget, of 0.80 was achieved between 20 andeviations of thed, values for the ten groups range from 0.04
40 classes. The averageio'g) results are improved for all to 0.05 for the BPN. The average partiaio'g) for the BPN
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was 0.31, compared to 0.34 for ART2LDA (Table Ill). The When the partial area of the ROC curve above the true posi-
A, and ALY of the ART2LDA classifier were higher thantive fraction (TPF) of O.Q(Aio'g)) was considered as a measure
those of the BPN in six of the ten training/test groups. of classification accuracy, the advantage of ART2LDA over
LDA alone became even more evident. By removing and cor-
rectly classifying the outliers, the accuracy of the classification
was increased at the high sensitivity end of the curve.

In the present study, a new classifier (ART2LDA) was The classifier performance was evaluated when the
designed and applied to the classification of malignant a@dRT2LDA classifiers were designed using a fixed number
benign masses. The results indicated that the ART2LD#f ART2 classes. The results showed improved performance
classifier had better generalizability than an LDA classifiesf the ART2LDA in a range between 20 and 40 ART2
alone. The ART2 classifier grouped the case samples that weligsses. Both the average and the averagelgw) reached
different from the main population into separate classes. Th&naximum within this region, and the maximum average
minimum number of classes needed to start the clustering £{d the averagﬁg&f)) values remained unchanged between 30
outliers into separate classes depended on how different gy 40 classes. These results indicated that the performance
outliers were from the rest of the sample population. For thg 5 nybrid ART2LDA classifer was robust and stable and
ten different partitions of training and test sets used in thig,d be potentially useful in real clinical applications.
study, the minimum number varied between 13 and 15 classeSye have performed statistical tests with the CLABROC
When the number of ART2 classes was less than this minimyp,gram to estimate the significance in the differences between
number of classes, the ART2 classifier generated only mixgfh 4 values from the ART2LDA., the LDA alone, and the
malignant-benign classes and all samples were transferrecHQN,”aS well as in the differences in the pamépﬂ) from the
the LDA stage. In that case, the ART2LDA was equivalenf,.oq classifiers. The statistical tests were performed for each
to the LDA classifier _alone. When a higher number of Classf??dividual data set partition because the correlation among the
were generateq, an increased number of cases that mlghtdg sets from the different partitions precludes the use of
considered outliers of the general data population was remov Pﬂ(gem,s paired test with the ten partitions. We found that the

: - S
(clustered in separate classes). For the ten training sets Ydffferences in both cases did not reach statistical significance
ecause of the small number of test samples and thus the large

in this study, the malignant outliers were gradually removelgl
when the number of classes increased. The training acclrdt ndard deviation in thel, values. However, the consistent
improvements in4. and AL by the ART2LDA (9 out of

increased when the number of classes increasedarabuld
reach the value of 1.0. However, a large number of AR‘Iji%p - . .

o D data set partitions in both cases for LDA and six out of
classes led to overfitting the training sample set and poor . .

o e te]n data set partitions in both cases for BPN) suggest that the
generalization in the test set. The classification accuracy .0 rovement was not by chance alone. and that the accurac
ART2 for the test set tended to decrease when the numbeﬂ'?lD \1 i vtv ¢ ky d be i ' d by th lfJ y
classes was greater than about 70. The large number of cla& % classilication task could be improved by the use of an

R

also led to a reduction in the generalizability of the secon@- 2 networK -In addition, one advantgge of the ART2LDA
stage LDA: the training of LDA with a small number of'S that the t'ra|n|ng process .|s more efficient than that of the
samples would again result in overfitting the training set, arel " especially when there is a subset of outlying samples. In
poor generalizability in the test set. This effect was observSdCh @ case, the BPN will require a large number of training
when more than 60 or 70 classes were generated by ARGOChS to minimize the error function. .
(see Figs. 5 and 6). ART2LDA can be trained to classify the samplel cases |n.t0
The classification accuracy of ART2LDA increased initiallyf"0re than two classes, such as a class of normal tissue regions
with an increased number of classes and then decrealkgddition to malignant and benign masses. There will be an
after reaching a maximum. The correct classification of tHBcrease in the complexity of training and a larger training
outliers by the ART2 in combination with an improvemen§amp|e size will be desired, but these requirements will be
in the classification by the LDA resulted in the increasegemparable for the different classifiers. In a clinical situation,
accuracy. When the number of ART2 classes was furthéghe classification task is performed on all computer-detected
increased, the effects of overfitting by the ART2 and the LDJesions, the classifier has to distinguish the falsely detected
became dominant and the prediction ability of the ART2LDA0ormal tissue from malignant or benign lesions. However,
decreased. In some cases the second-stage LDA predictfomay be noted that a classifier that can distinguish only
was much worse than the ART2. In other cases the ARTRalignant and benign masses is applicable to the scenario
could not generalize well. The generation of a high number #fat the radiologist identifies a suspicious lesion on the mam-
classes is therefore impractical and unnecessary both frormagram and would like to have a second opinion about its
computational and a methodological point of view. likelihood of malignancy before making a diagnostic decision.
For the optimal number of classes (usually less than 50 fbherefore, the development of a classifier that can differentiate
the data sets used) th&. value for the second-stage LDA inmalignant and benign masses is the research of interest for
the ART2LDA was better than an LDA classifier alone, but inany investigators.
was not as good as the overall from the ART2LDA. It is Similarly, ART2 can be trained to discover and remove a
evident that the ART2 was a useful classifier for improvemeptire benign mass class. The approach will be similar to the
of the second-stage classification. task of classifying and removing the pure malignant classes,

VI. DISCUSSION
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as described in this study. However, our approach of removingnsisting of 348 films (179 malignant and 169 benign)
the malignant classes will reduce the chance of misclassifisgas randomly partitioned into training and test subsets. Ten
tion of malignant masses. In breast cancer detection, the cditerent random partitions were generated. For each training
of false-negative (missed cancer) is very high. Therefore, oset, texture features were extracted and feature selection was
goal in classifier design is to be conservative. By removingerformed. An average of features were selected for each
the malignant classes in the first stage, any misclassificatigroup. A hybrid ART2LDA classifier, an LDA, and a BPN

to these classes will be regarded as malignant. The remainmere trained by using each of the ten training sets. Bhe
classes will be classified again with the second-stage classifiatue under the ROC curve for the test sets, averaged over
so malignant masses will be less likely to be missed. the ten partitions, was higher for ART2LDAA, = 0.81)

The problem of classification of malignant and benignompared to those of the LDA alorfel. = 0.78) and of the
masses has been studied by many investigators. RangayB&MN (A, = 0.80). A greater improvement was obtained when
et al. [15] used Mahalanobis distance classifer (a modificatidghe partial ROC area above a true-positive fraction of 0.9 was
of an LDA classifier) and the leave-one-out method to evaluatensidered. The average partidl for ART2LDA was 0.34,
the classification of 54 masses. Fogelal. [16] compared as compared to 0.27 for LDA and 0.31 for BPN. Additionally,
LDA and BPN classifiers using the leave-one-out method afar the ART2LDA classifiers that correctly classified the
139 masses (malignant and benign classification). Highnamaximum number of malignant masses in the test sets with
et al. [17] used a morphological feature called a halo tdecision threshold defined with the training set, the average
classify 40 masses as malignant and benign. Eual. [22] partial A. was 0.35. These results indicate that the hybrid
employed BPN and a rule-based classifier to classify 95 massksssifier is a promising approach for improving the accuracy
using the leave-one-out evaluation method. Sahéter. [12] of classifiers for CAD applications.
used an LDA classifier and the leave-one-out method to
classify 168 masses. An important difference between the ACKNOWLEDGMENT
classifier designed in this study and the previous studies i
the CAD field is the method of feature selection. In th
above mentioned studies [12], [15]-[17], [22] and several othWr8

ublished studies [18]-[21] the features were selected from t . .
2ntire data set firs[t, ;n([j trlen the data set was partitioned i uld like to thank C. E. Metz, Ph.D., for providing the
training and test sets. This meant that at the feature select PROC1 and CLABROC programs.
stage of the classifier design, the entire data set was used as a
training set. Depending on the distribution of the features and
the total number of samples used, the test results in the$g H. C. Zuckerman, “The role of mammography in the diagnosis of breast
studies might be optimistically biased [37]. In our current canser’ inBreast Canser, Diagnosis and TreatmehtM. Ariel and J.
study, the entire data set was initially partiioned into training,, p g.lel?(;)[;éﬁg,s‘;Th’(\el%més\i(t?\;g:p'\rAeC(gi;éﬁ\\?gTeIiII‘uéQ(?r’ng%n:ﬁlggr_alpi;.mer.
and test sets and then feature selection was performed only J. Roentgenal.vol. 158, pp. 521-526, 1992.
on .the training set. Th|s method will result in a p.es'SImIStIC'[?’] 5&2}@&?{ Egﬁnv'pq:aigl,el\\/ﬁf 4’,\/';?”;8%?1‘)23?1%32?31 recommend
estimate of the classifier performance when the training set {g m. Moskowitz, “impact of a priory medical detection on screening for
small [37]. However, it will provide a more conservative but  breast cancer,Radiology vol. 184, pp. 619-622, 1989.
realistic estimation of the classifier performance in the gener } FPQ'_ g'"D""SQ;”2L“dcr;,?|§°{_'&'gz?tﬁn”?:'?’ss'iiﬁ'gaet‘i"(’)rf‘;rr‘% Hsifg‘rfé Alr?;f,'sis
patient population. We can expect that the performance would New York: Wiley, 1973.
be improved if the classifier in this study were designed usin{il P. J. Werbos, “Beyond regression: New tools for prediction and anal-

. . . . ysis in the behavioral sciences,” Ph.D. dissertation, Harvard Univ.,
a large data set. Since our main purpose in this study Was campridge, MA, 1974.
to compare the ART2LDA classifier with the commonly used[8] D. Rumelhart, G. E. Hinton, and R. J. Williams, in D. E. Rumelhart,

i ; imicti Ed., Parallel and Distributed Processing Cambridge, MA: MIT Press,
LDA and BPN, we did not attempt to quantify how pessimistic 1986, vol. 1. p. 318,

our results were in this StUdY- _ _ . ~[9] J. Herz, A. Krogh, and R. Palmeintroduction to the Theory of Neural
The most important contribution of this paper is to in-  Computation Reading, MA: Addison-Wesley, 1991.

T _ )] H.P.Chan, D. Wei, M. A. Helvie, B. Sahiner, D. D. Adler, M. M. Good-
troduce a new approach that utilizes a two stage unsup sitt, and N. Petrick, “Computer-aided classification of mammographic

vised—supervised hybrid classifier. We believe that the hybrid masses and normal tissue: Linear discriminat analysis in texture feature
approach will improve classification when the sample distribu-  space,’Phys. Med. Biol.vol. 40, pp. 857876, 1995.

. . . fren : 1] D. Wei, H. P. Chan, M. A. Helvie, B. Sahiner, N. Petrick, D. D. Adler,
tion contains SpropmatlonS that may be difficult for a smgl[é and M. M. Goodsitt, “Classification of mass and normal breast tissue

classifier to classify. It will be useful for similar classification  on digital mammograms: Multiresolution texture analysMgd. Phys.
tasks although different classifiers may be used in each stagze vol. 22, pp. 1501-1513, 1995. _ _

f the hvbrid struct [I2] B. Sahiner, H. P. Chan, N. Petick, M. A. Helvie, and M. M. Goodsitt,
0 € nybria structure. “Computerized characterization of masses on mamograms: The rubber
band sraightening transform and texture analy$ig't. Phys.vol. 25,
no. 4, pp. 516-526, Apr. 1998.

[13] B. Sahiner, H. P. Chan, D. Wei, N. Petick, M. A. Helvie, D. D. Adler,

VIl. CoNcLUSION and M. M. Goodsitt, “Image feature selection by a genetic algorithm:

A new classifier combining an unsupervised ART2 and Application to classification of mass and normal breast tissifetl.

. . . Phys, vol. 23, no. 10, pp. 1671-1683, Oct. 1996.
a supervised LDA has been designed and applied to t)8) i 'p. chan, B. Sahiner, N. Petrick, M. A. Helvie, K. L. Lam, D. D.

classification of malignant and benign masses. A data set Adler, and M. M. Goodsitt, “Computerized classification of malignant
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