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A boosting and pruning system and method for utilizing a
plurality of neural networks, preferably those based on
adaptive resonance theory (ART), in order to increase pat-
tern classification accuracy is presented. The method utilizes
a plurality of N randomly ordered copies of the input data,
which is passed to a plurality of sets of booster networks.
Each of the plurality of N randomly ordered copies of the
input data is divided into a plurality of portions, preferably
with an equal allocation of the data corresponding to each
class for which recognition is desired. The plurality of
portions is used to train the set of booster networks. The
rules generated by the set of booster networks are then
pruned in an intra-booster pruning step, which uses a pair-
wise Fuzzy AND operation to determine rule overlap and to
eliminate rules which are sufficiently similar. This process
results in a set of intra-booster pruned booster networks. A
similar pruning process is applied in an inter-booster prun-
ing process, which eliminates rules from the intra-booster
pruned networks with sufficient overlap. The final, deriva-
tive booster network captures the essence of the plurality of
sets of booster networks and provides for higher classifica-
tion accuracy than available using a single network.
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CLASSIFICATION METHOD AND
APPARATUS BASED ON BOOSTING AND
PRUNING OF MULTIPLE CLASSIFIERS

TECHNICAL FIELD

The present invention relates to neural networks used for
pattern recognition. More particularly, the invention dis-
closed herein provides a highly accurate classification
method and apparatus for position and recognition sensing
which uses a boosting and pruning approach for adaptive
resonance theory (ART) based neural networks. The present
invention is chiefly applicable to pattern recognition prob-
lems such as automobile occupant type and position recog-
nition and hand signal recognition.

BACKGROUND OF THE INVENTION

In the recent past, research has been applied to the use of
artificial neural networks (ANN) as a nonparametric regres-
sion tool for function approximation of noisy mappings.
ANNSs have been successfully applied in a large variety of
function approximation applications including pattern
recognition, adaptive signal processing, and the control of
highly nonlinear dynamic systems. In pattern recognition
applications, ANNs are used to construct pattern classifiers
that are capable of separating patterns into distinct classes.
In signal processing and control applications ANNs are used
to build a model of physical system based on data in the form
of examples that characterize the behavior of the system. In
this case, the ANN is essentially used as a tool to extract the
mapping between the inputs and outputs of the system
without making assumptions about its functional form.

The most common type of ANN used in function approxi-
mation problems is the feedforward type. Although these
networks have been successfully used in various
applications, their performance is dependent on a problem-
specific crafting of network architecture (e.g. the number of
hidden layers and the number of nodes in each hidden layer)
and network parameters (e.g. learning rate). These networks
operate in a batch-processing mode (or an off-line mode),
where the entire training data are presented in training
epochs until the mean square energy of the network is
minimized to a user-defined level by adjusting the weights
of the network. These weight adjustments (or learning) are
typically based on some form of gradient descent and are
prone to be stuck in local minima. Thus, there is no
guarantee of network convergence to the desired solution.
Further, once the network has been trained, the only way to
accommodate new training data is to retrain the network
with the old and new training data combined.

Adaptive resonance architectures are neural networks that
self-organize stable recognition categories in real time in
response to arbitrary sequences of input patterns. The basic
principles of adaptive resonance theory (ART) were intro-
duced in Grossberg, “Adaptive pattern classification and
universal recoding, II: Feedback, expectation, olfaction, and
illusions.” Biological Cybernetics 23 (1976) 187-202. A
class of adaptive resonance architectures has since been
characterized as a system of ordinary differential equations
by Carpenter and Grossberg, “Category learning and adap-
tive pattern recognition: A neural network model, Proceed-
ing of the Third Army Conference on Applied Mathematics
and Computing, ARO Report 86-1 (1985) 37-56, and “A
massively parallel architecture for a self-organizing neural
pattern recognition machine.” Computer Vision, Graphics,
and Image Processing, 37 (1987) 54-1 15. One implemen-
tation of an ART system is presented in U.S. application Ser.
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No. PCT/US86/02553, filed Nov. 26, 1986 by Carpenter and
Grossberg for “Pattern Recognition System”.

More recently, a novel neural network called the fuzzy
ARTMAP that is capable of incremental approximation of
nonlinear functions was proposed by Carpenter et al. in G.
A. Carpenter and S. Grossberg, “A massively parallel archi-
tecture for a self-organizing neural pattern recognition
machine,” Computer Vision Graphics, Image Process., Vol.
37, pp- 54-115, 1987. The number of nodes in this network
is recruited in a dynamic and automatic fashion depending
on the complexity of the function. Further, the network
guarantees stable convergence and can learn new training
data without the need for retraining on previously presented
data. While the fuzzy ARTMAP and its variants have
performed very well for classification problems, as well as
extraction of rules from large databases, they do not perform
very well for function approximation tasks in highly noisy
conditions. This problem was addressed by Marriott and
Harrison in S. Marriott and R. F. Harrison, “A modified
fuzzy artmap architecture for the approximation of noisy
mappings,” Neural Networks, Vol. 8, pp. 619-41, 1995, by
designing a new variant of the fuzzy ARTMAP called the
PROBART to handle incremental function approximation
problems under noisy conditions. The PROBART retains all
of the desirable properties of fuzzy ARTMAP but requires
fewer nodes to approximate functions.

Another desirable property of the ANN is its ability to
generalize to previously untrained data. While the
PROBART network is capable of incremental function
approximation under noisy conditions, it does not generalize
very well to previously untrained data. The PROBART
network has been modified by Srinivasa in N. Srinivasa,
“Learning and Generalization of Noisy Mappings Using a
Modified PROBART Neural Network,” IEEE Transactions
on Signal Processing, Vol. 45, No. 10, October 1997, pp.
2533-2550, to achieve a reliable generalization capability.
The modified PROBART (M-PROBART) considerably
improved the prediction accuracy of the PROBART network
on previously untrained data even for highly noisy function
approximation tasks. Furthermore, the M-PROBART allows
for a relatively small number of training samples to approxi-
mate a given mapping, thereby improving the learning
speed.

The modified probability adaptive resonance theory
(M-PROBART) neural network algorithm is a variant of the
Fuzzy ARTMAP, and was developed to overcome the defi-
ciency of incrementally approximating nonlinear functions
under noisy conditions. The M-PROBART neural network is
a variant of the adaptive resonance theory (ART) network
concept, and consists of two clustering networks connected
by an associative learning network. The basic M-PROBART
structure is shown in FIG. 1. For any given input-output data
pair, the first clustering network 100 clusters the input
features, shown in the figure as an input feature space 102
having N features, in the form of hyper-rectangles. The
vertices of the hyper-rectangle are defined by the values of
the input features and the dimensions of the hyper rectangle
are equal to the number of input features. The size of the
hyper-rectangle is defined based on the outlier members for
each cluster. The corresponding output, shown in the figure
as an output feature space 104 having M features, is also
clustered by the second clustering network 106 in the form
of a hyper-rectangle. An associative learning network 108
then correlates these clusters. The clustering networks 100
and 106 are represented by a series of nodes 110. In the
original Fuzzy ARTMAP network, only many-to-one func-
tional mappings were allowed. This implies that many
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hyper-rectangles that form input clusters could be associated
with a single hyper-rectangle on the output side but not the
other way around. Further, for any given input, only one
cluster (i.e., the maximally active or the best match cluster)
was allowed to be active on the input side and a prediction
was based on the associated output cluster for that maxi-
mally active input cluster. This mode of prediction is called
the winner-take-all (WTA) mode of prediction. It has been
shown that by replacing the WTA mode of prediction with
a distributed mode of prediction combined with allowing
one-to-many mappings between the input and output
clusters, the M-PROBART was capable of better prediction
capabilities than Fuzzy ARTMAP under noisy conditions.

The associative learning network in the M-PROBART has
the simple function of counting the frequency of
co-occurrence of an input and output cluster. Thus, if an
input cluster is very frequently co-active with an output
cluster, then the frequency of their association (or the
connection between the two clusters) is increased by the
associative network to reflect the importance of the asso-
ciation. During prediction, each test input activates several
clusters in the input clustering network with activity pro-
portional to the degree of match between the input and each
cluster center. This forms a distributed pattern of activity at
the input clustering network. This activity is weighted by the
strength (or frequency) of its association to a given output
cluster to arrive at the most probable output cluster predic-
tion. Another interesting aspect of the M-PROBART algo-
rithm is that each association between an input cluster and
output cluster can be directly interpreted as a rule. The firing
strengths for each rule is provided by the product of the
cluster activity and the frequency of association between the
input and output cluster of that rule. While the
M-PROBART algorithm is able to outperform the Fuzzy
ARTMAP algorithm for both functional approximation and
classification tasks, much like the Fuzzy ARTMAP algo-
rithm it has a key drawback in that for high prediction
accuracy requirements, the number of input and output
clusters formed becomes prohibitively large (order of thou-
sands of rules). Thus, it is impractical to implement for real
world problems.

With the increasing functionality of neural networks, the
number and variety of applications to which they are applied
is also expanding. Neural networks may be applied to
pattern recognition applications such as character
recognition, speech recognition, remote sensing, automotive
occupant sensing, recognition of an object via physical
feature sensing, and medical analysis, to name a few. For
each of these applications, classification algorithms are
available based on different theories and methodologies used
in the particular area. In applying a classifier to a specific
problem, varying degrees of success with any one of the
classifiers may be obtained. To improve the accuracy and
success of the classification results, different techniques for
combining classifiers have been studied. Nevertheless, prob-
lems of obtaining high classification accuracy within a
reasonable time exist for the present classifier combination
techniques and an optimal integration of different types of
information is therefore desired to achieve high success and
efficiency. This need is particularly strong in situations that,
by their nature, require a high degree of accuracy and a fast
classification response, such as automobile safety systems.

To generate a faster, more accurate classification system,
combinations of multiple classifiers have been employed in
a technique known as boosting. The boosting technique
essentially converts a neural network with non-zero error
rate into an ensemble of neural networks with significantly

10

15

20

25

30

35

40

45

50

55

60

65

4

lower error rate compared to a single neural network. In
early combination techniques, a variety of complementary
classifiers were developed and the results of each individual
classifier were analyzed by three basic approaches. One
approach uses a majority voting principle, where each
individual classifier represents a score that may be assigned
to one label or divided into several labels. Thereafter, the
label receiving the highest total score is taken as the final
result. A second approach uses a candidate subset combining
and re-ranking approach, where each individual classifier
produces a subset of ranked candidate labels, and the labels
and the union of all subsets are re-ranked based on their old
ranks in each subset. A third approach uses Dempster-Shafer
(D-S) theory to combine several individual classifiers.
However, none of these approaches achieve the desired
accuracy and efficiency in obtaining the combined classifi-
cation result.

Therefore, it is an object of the present invention to
provide a two-stage boosting and pruning approach to both
reduce the number of rules formed by the M-PROBART and
also considerably improve its prediction accuracy.

References of interest relative to M-PROBART, Fuzzy
Artmap, and boosting of neural networks include the fol-
lowing:

1) N. Srinivasa, “Learning and Generalization of Noisy
Mappings Using a Modified PROBART Neural
Network”, IEEE Transactions on Signal Processing, vol.
45, no. 10, pp. 2533-2550, October 1997,

2) G. A. Carpenter, S. Grossberg, N. Markuzon, J. H.
Reynolds and D. B. Rosen, “Fuzzy Artmap: A Neural
Network Architecture for Incremental Supervised Learn-
ing of Analog Multidimensional Maps”, IEEFE Transac-
tions on Neural Networks, vol. 3, pp. 698-712, 1992.;

3) H. Drucker, R. Schapire and P. Simard, “Boosting Per-
formance in Neural Networks,” International Journal of
Pattern Recognition and Artificial Intelligence, vol. 7, no.
4, pp. 705-719, 1993.

SUMMARY OF THE PRESENT INVENTION

In accordance with the present invention, a neural net-
work boosting and pruning method is presented, which
improves the accuracy of adaptive resonance theory (ART)
based networks. A set of training data having inputs with
correct classifications corresponding to the inputs is pro-
vided. Next, the data is ordered into a plurality of differently
ordered data sets, and each of the differently ordered data
sets are divided into a plurality of data portions. A plurality
of booster networks B, , is then associated with each of the
plurality of differently ordered data sets with x representing
a particular booster type and y representing the particular
data set with which the particular booster is associated. The
first booster network in each data set is then trained using
one of the data portions. After training, the first booster
network is tested using the data in another data set. Next, a
series of booster networks are trained and tested, with each
subsequent booster network receiving the mistakes of the
previous booster network along with a portion of the correct
decisions made by all of the previous booster networks. The
number of booster networks utilized depends on the par-
ticular application and the necessary classification accuracy.
The rules from all of the booster networks of a particular
booster type x are then pruned in an intra-booster pruning
process, where rules having a sufficient overlap with other
rules are eliminated, resulting in a series of intra-booster
pruned networks. The rules from intra-booster pruned net-
works are then pruned in an inter-booster pruning process,
similar in operation to the intra-booster pruning process,
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resulting in a single residual booster. The present invention
is preferably embodied using M-PROBART-type booster
networks, and utilizes a pair-wise Fuzzy AND operator in
the intra and inter-booster pruning processes to eliminate
rules having sufficient overlap.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 provides an overview of the structure of the basic
M-PROBART neural network;

FIG. 2 provides a macroscopic overview of an embodi-
ment of the present invention demonstrating the relationship
between the input data and the final set of rules produced;

FIG. 3 provides a detailed flowchart of the boosting
portion of a three-booster embodiment of the present inven-
tion presented in FIG. 2;

FIG. 4 provides a detailed flowchart of the boosting
portion of a five-booster embodiment of the present inven-
tion presented in FIG. 2;

FIG. 5 demonstrates the intra-booster pruning aspect of
the embodiment of the present invention presented in FIG.
2;

FIG. 6 demonstrates the inter-booster pruning aspect of
the embodiment of the present invention presented in FIG.
2;

FIG. 7 presents a table showing the performance a three-
booster M-PROBART embodiment the present invention as
applied to automotive occupant sensing in comparison with
a single M-PROBART neural network, a single
M-PROBART neural network with direct pruning, a three-
booster M-PROBART embodiment with one pruning stage,
and with the commercially available decision tree program,
C5.

DETAILED DESCRIPTION

The present invention relates to combinations of classi-
fiers such as associative learning networks, as well as to
apparatus incorporating them therein. The following
description is presented to enable one of ordinary skill in the
art to make and use the invention and to incorporate it in the
context of particular applications. Various modifications to
the preferred embodiment, as well as a variety of uses in
different applications will be readily apparent to those
skilled in the art, and the general principles defined herein
may be applied to other embodiments. Thus, the present
invention is not intended to be limited to the embodiments
shown, but is to be accorded the widest scope consistent
with the principles and novel features disclosed herein.

The present invention describes a highly accurate recog-
nition and position sensing system, and has a wide range of
potential applications including automotive occupant
sensing, feature and gesture recognition, and in security
systems, among many others. To improve accuracy and
reliability, the invention modifies a classification system,
typically a neural network such as the M-PROBART neural
network by providing a boosting and pruning method to
enhance the accuracy of its predictions. Although is inven-
tion is widely applicable to various classification systems, it
will be discussed herein as applied to neural networks. A
basic overview of an embodiment of the present invention is
shown in FIG. 2. As shown, a set of training data 200 is
copied into Y differently ordered data sets 202. The number
y is an integer representing a particular one of the Y different
ordered data sets 202. Each particular one y of the Y
differently ordered data sets 202 is a randomly ordered copy
of same set of training data 200. Although the random
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ordering is generally the preferred method of ordering the
data, the data may also be ordered by other methods. It is
essential, however, that the data in each particular one y of
the Y differently ordered data sets 202 be arranged in an
order different than that of the others. Each of the Y
differently ordered data sets 202 is provided to a plurality X
of booster networks 204 comprised of a set of individual
booster networks B, , 206, where the subscript x is an
integer representing the number of the booster type for the
particular booster. The number Y, the number of differently
ordered data sets 202 also represents the total number of a
particular type of booster x within the system. Preferably, the
same number of particular booster types X is present for
each of the Y differently ordered sets 202. After the boosting
process, the set of rules generated from the individual
booster networks B, 206 of a particular booster particular
type x are pruned in an intra-booster pruning process into a
set of intra-booster pruned booster networks B, 208.
Subsequently, the rule set from the intra-booster pruned
booster networks B, 208 is further pruned in an inter-booster
pruning process into a terminal network 210 which includes
the final rule set. The order in which the intra-booster and
inter-booster are preformed may be interchanged depending
on the particular application. Thus, it is possible to prune all
of the rules for a particular plurality X of booster networks
204 prior to pruning the rules for the booster networks of a
particular booster type x. In the following description, the
boosting and pruning processes are explained in greater
detail.

(2) Boosting

The boosting process is shown in detail in FIGS. 3 and 4.
FIG. 3 demonstrates an embodiment using a system which
results in three boosters, and which the inventors have found
to be a preferred embodiment for use in the application of
vehicle occupant classification for the controlled deploy-
ment of airbags. FIG. 4 provides an expanded embodiment
that results in five boosters, and is used as an illustration that,
by comparison with FIG. 3, provides a clear picture of the
method by which the boosting process may be expanded to
provide any number of boosters. By providing a means for
tailoring the number of boosters, the present invention may
be applied to a wide range of applications. The particular
embodiment used for a specific application may be designed
to provide a suitable accuracy level.

The booster networks used in the present invention are
preferably based on Adaptive Resonance Theory (ART), and
are more preferably of the M-PROBART type. In essence,
the boosting technique presented here converts a single
neural network with a non-zero error rate into an ensemble
of neural networks with significantly lower error rate com-
pared to a single neural network. As previously stated, the
embodiment shown in FIG. 3 generates three neural network
boosters. The three neural networks are generated using one
of the Y differently ordered data sets 202, as also shown in
FIG. 2. Thus, FIG. 3 represents the boosting operation as
applied to a particular one y of the Y differently ordered data
sets 202. The particular y differently ordered data set is
partitioned into two portions, a first portion D, 302, a second
portion D, 7529 304. Both portions include data and the
associated correct ground truth classifications. A total data
set D, 306 contains all of the data and associated correct
classifications from the Y differently ordered data input set
202. Note that the division of the Y differently ordered data
sets 202 into two portions is demonstrated for illustration of
the preferred embodiment only, and is not intended to limit
the present invention. As will be outlined for FIG. 4, the
number of portions may be selected based on the needs of a
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particular embodiment. In this more general case, D, ,
represents the number of total data portions for a particular
y differently ordered data set, with n being chosen as equal
to 2 and 4 for FIGS. 3 and 4, respectively. Note that the
division of the data into the n portions does not rely on any
particular method or order. However, it is desirable to
distribute the data evenly into the n portions based on the
classification so that the data samples are evenly distributed
among the portions.

In FIG. 3, the data and associated correct classifications of
the first portion D, are used to train the first booster network
308. As previously stated, the division of the data into the n
portions does not rely on any particular method or order.
Thus, for practical purposes the first portion D; 302 and the
second portion D, 304 are interchangeable, and are numeri-
cally labeled here simply for illustration. After the first
booster network 308 is trained, the second portion D, 304 is
passed to the first booster network 308 to determine its
mistakes. Next, a first derivative training set 310 is con-
structed. A portion, preferably half, of the first derivative
training set 310 includes data upon which mistakes were
made by the first booster network 308 on the second portion
304. The other portion of the first derivative training 310 set
includes data and classifications from the first portion D,
302. The first derivative training set 310 is used to train the
second booster network 312. Next, the total data set D is
passed to both the first booster network 308 and the second
booster network 312 to determine their mistakes. The mis-
takes of the first booster network 308 and the second booster
network 312 on the total data set D, are then combined to
form a second derivative training set 314. The second
derivative training 314 is then used to train the third booster
network 316.

A method by which the number of data portions and
booster networks may be expanded is given in FIG. 4. It is
important to note that the first data portion is used as a
training set for the first booster only and that each of the
sequential D, , portions are run through the booster net-
works to determine their mistakes. The derivative training
sets each include the mistakes of the previous booster and a
preferably equal portion of data upon which all of the
previous boosters arrived at correct classifications. Thus, for
example, the third derivative training set 400 receives the
mistakes of the previous booster network 402 along an equal
portion of data upon with correct decisions were made by the
first three booster networks, 404, 406, and 402, respectively.
As stated previously, the amounts of data upon which correct
decisions were made is matched class-wise to the amount of
data upon which mistakes were made.

In order to characterize the contents of each subsequent
derivative training set, the following method is useful. First,
the mistakes of the previous booster are included, along with
a, preferably but not necessarily, equal portion of data upon
which prior boosters arrived at correct classifications. The
first booster in the system is always unique, as the correct
classifications from the first data portion are arrived at
through training rather than testing. These correct classifi-
cations are the result of system initialization with the first
training set, so it is not completely accurate to generally
label them correct “decisions” (although in some cases they
may be). Thus, these classifications may also be labeled
“initialization” classifications. Each of the mistakes, initial-
ization classifications, and correct classifications has an
associated weight, which indicate the portion of data
received from that classification as opposed to others. The
formula by which the contents of the training sets for a
particular order may be determined is thus,
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Tey = WLxy)M(Bey(Derr,y)) +

x—1(x=1>0)

W20 )CBL DL+

J=1

(W2 j,x,y) C(Bx— ji 1,y (D ji1,y))

where:

y represents the a particular one of the Y differently
ordered data sets;

X represents a particular booster network type within the
plurality X of booster networks associated with a
particular one of the Y differently ordered data sets;

1 represents the training set level;

] 1s a summation index which ranges from 1 to x-1 where
x-1>0 (j represents the total number of booster net-
works B,  from which correct examples are used for
the particular training set T, ,;

y represents the data order;

T, is the contents of the training data used in the ith
training set;

w represents independently selectable apportionment fac-
tors which apportion the amount of data upon which
mistakes were made and the amount of data for which

correct classifications were made;

M(B, , (*)) represents data upon which a mistake was
made by the previous booster network;

C(B,, (*)) represents data that was properly classified by
a particular booster;

B, , represents the booster from which the data originated;
and

D represents the portion of data that was used.

Note that the second term in the equation, namely
(W, ,JC(B; (D, ,)) is the term related to what could be
called the “initialization” classifications.

Preferably, the weights are chosen such that the weight
applied to the data upon which mistakes were made is equal
to the sum of the weights applied to the initialization data
and the properly classified data. Furthermore, it is desirable
to choose the weights of the initialization data and the
weights of the properly classified data such that they are all
equal.

Also, as with the illustration in FIG. 3, the total data set
D is then distributed to all of the booster networks, with all
of their mistakes being collected in a derivative training set
408 in order to train the terminal booster 410.

Referring back to FIG. 2, each of the Y differently ordered
data sets 202 of data is used to develop a set of boosters as
outlined in FIG. 3. In the preferred embodiment as used in
vehicle occupant classification systems, a total of Y=5
differently ordered data sets 202 of data, each used to
develop three booster networks of the M-PROBART variety,
has been found to provide sufficient classification accuracy
for “smart” airbag deployment. This is because
M-PROBART networks are incremental learning networks
that learn a given input as it is presented (in other words,
only one pass through the dataset is required). As a result,
the cluster structure depends significantly on the order of
data input presentation. When a given training data set is
presented to two M-PROBART neural networks with dif-
ferent input orderings, two cluster structures in the input and
output clustering networks, and corresponding output pre-
dictions may differ, even if the accuracy of the two networks
is the same. Overall prediction accuracy can benefit from
this order dependence though a simple voting strategy
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where, for the test input, the prediction with the largest
number of votes from among all of the M-PROBART
networks is the final prediction. Voting tends to improve
performance by canceling errors of the networks near noisy
regions or decision boundaries while at the same time
providing a measure of certainty for a given prediction.
Although the discussion in this paragraph has discussed the
boosting networks in the context of M-PROBART networks,
other types of networks may be equally applicable. Using an
ensemble of three booster networks, the ensemble is pro-
hibitively large and requires significant computation power
to arrive at a prediction for any given test input. To over-
come this problem, a two-stage pruning procedure, consist-
ing of intra-booster pruning and inter-booster pruning is
used. These stages will be discussed in detail below.
(b) Intra-Booster Pruning and Inter-Booster Pruning

The pruning component of the present invention helps to
extract the essence of the learned knowledge from the
ensemble of networks and results in a significant reduction
in network size, but does not degrade the improvements in
prediction accuracy due to boosting. Referring to FIG. 2, in
the first stage of pruning, called intra-booster pruning, the
rules generated by the equivalent booster networks from
each set of boosters (B,,y across the y particular ordered data
sets where x is held constant), are pruned into a smaller set
of rules, which yield essentially the same accuracy as the
un-pruned set of rules. Although illustrated as a set of three
booster networks 500, 502, and 504 in FIG. 5, this method
could be applied to any number of equivalent booster
networks. This is demonstrated in FIG. 2 by the arrowed
connections between the boosters in the boosting process
204 and the boosters generated by the first pruning operation
206. FIG. 5 further illustrates this process with a set of three
equivalent booster networks 500, 502, and 504 in FIG. 5, an
intra-booster pruning process 506, and a final, pruned rule
set 508. However, this method could be applied to any
number of equivalent booster networks. The rules generated
by the booster networks for a given class take the following
form:
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[W,AW,|>p for two rules, £, and j that have the same output class,
where A is the fuzzy AND operation and |*| corresponds to
the summation over all of the features of the weight vectors.
The fuzzy AND operator essentially computes a component-
wise minimum of the weights W, and W,. If the inequality
is satisfied, and both rules include the same output class, C,,,
then one of the rules may be pruned. The threshold value {3
iS a user-set constant that is selected to cause pruning for
rules with a particular level of overlap. The number of
remaining pruned booster rule sets is equal to the number of
types of booster networks.

The inter-booster pruning stage uses the same method as
described for intra-booster pruning. In this stage, the rule
sets from the remaining pruned booster rule sets are pruned
into a residual booster. With M-PROBART neural networks
as the boosters, the threshold value { in the relationship may
be set independently of that from used in the relationship
from the first pruning stage, and is denoted in FIG. 6 as y to
further illustrate this independence. In FIG. 6, 600, 602, and
604 illustrates the intra-booster pruned networks, while the
inter-booster pruning process and the residual booster are
represented by 606 and 608, respectively. As with the
intra-booster pruning process, the inter-booster pruning pro-
cess may be applied to any number of boosters.

Once the intra-booster and intra-booster pruning has been
completed, the remaining residual neural network comprises
the essence of the boosters generated during the boosting
process, yet includes only a fraction of the rules. Thus,
multiple neural networks have been used to boost accuracy
over that available with a single neural network by gener-
ating a larger, more complete set of rules, and then the larger
set has been pruned for overlaps to yield a single residual
neural network with a high degree of accuracy. The final
result is a highly accurate learning system.

The present invention has been applied in the context of
automotive occupant recognition and position sensing algo-
rithms.

Performance evaluations have been conducted using one-
dimensional infrared range profile sensor data for smart

Rule 1: IfF,;isW,; ANDF,is W,; AND...F,is W, ,, then the class of Rule 1 is Cpy;

Rule R: If F; is W, AND F, is W,z AND ... F, is W, ;, then the class of Rule 2 is C,,,

where F, is a given input feature, W, is a scalar weight
associated with a particular feature in a given rule to
generate a particular classification output C,, f is the par-
ticular feature for which the weight is assigned, and R is the
particular rule for a given booster type. The rules are
grouped into pruning groups by their resulting classifica-
tions. Each of the rules in each pruning group is checked
with the other rules in the same pruning group in a pair wise
manner to determine if it overlaps sufficiently with one or
more of the other rules to justify being pruned from the
pruning group, and thereby eliminate it from the set of rules.
The order in which the rules are checked in the pair wise
manner is generally arbitrary, but may be set in a particular
manner for a particular application. During the pair wise
pruning process, the relationship used to determine rule
overlap is chosen based on the particular type of neural
network used for the boosting process. With M-PROBART
neural networks as the boosters, the preferred relationship
tested is whether:
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airbag applications in automobiles. The sensor data con-
tained forty features: twenty beams with range information
of the occupant in the seat measured from a fixed location in
the car and twenty additional signals measured at each beam
location to provide a measure of the strength/intensity of the
signal reflected from the car seat back to the sensor. Two
separate data sets were initially collected on an automobile
using these sensor features. In the first set, called occupant
recognition data, the classification task was to decide
whether to enable or disable an airbag based on the type of
occupant. For example, the airbag should be disabled if a
rear-facing infant seat was placed on the seat. In the second
set, called occupant position data, the classification task
remains the same but now is based on the position of the
occupant with respect to the instrument panel in front of the
seat. For example, if the occupant is too close to the panel,
the decision must be to disable the airbag, and if the
occupant is sufficiently far from the panel, the decision must
be to enable the airbag. The present invention has been
applied to these classification tasks.
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The performance of the present invention in the sensing
and recognition tasks discussed above is summarized in
FIG. 7. Two indices were used to evaluate performance. The
first index was accuracy in prediction performance on test
data (i.e. not the training data set). It can be seen from FIG.
7 that the accuracy of prediction on the test set from the
present invention was better than that from a single
M-PROBART network, than that resulting from directly
pruning the rules of the single M-PROBART network with-
out boosting, and than that resulting from boosting with only
intra-booster pruning for both the data sets. The second
index used was the number of rules (i.e., the number of
nodes). The present invention reduces the number of rules
by a factor of five when compared to a single M-PROBART
network. In summary, these rules demonstrate the benefits of
the present invention as compared to other network meth-
ods. The present invention also generated higher recognition
rates than decision trees generated by the commercial pro-
gram C5 with a comparable number of rules.

What is claimed is:

1. A neural network classifier boosting and pruning
method including the steps of:

(a) providing a set of training data having inputs with

correct classifications corresponding to the inputs;

(b) ordering the set of training data into a plurality Y of
differently ordered data sets, where Y is the total
number of differently ordered data sets and y represents
a particular one of the Y differently ordered data sets;

(¢) dividing each of the Y differently ordered data sets into
a set of N particular data portions D, . where N
represents the total number of data portions into which
the particular data set y was divided and n identifies a
particular data portion among the N data portions
derived from a particular data set y;

(d) associating a plurality X,y of booster classifiers B,
for each particular data set y, where X represents the
total number of booster types associated with each
particular data set y and X represents a particular
booster type, the plurality X,y of booster classifiers B, ,
for each particular data set y including a terminal
booster;

(e) training one of each plurality X,y of booster classifiers
B, , with a particular data portion D,, , resulting in a
plurality of rules;

(f) testing the booster classifier B, , trained in step (€)
utilizing another particular data portion, D,, ,, said
testing resulting in correctly classified data and mis-
takenly classified data;

(g) creating a particular training data set T, , correspond-
ing to each particular data set y, the contents of which
are defined by:

n,y’

Try = Wixy)M (Bry(Der1,y)) +

x—1(x—1>0)

2,00)CBL DL+ Y

g

W2y ) OB i1,y (D ji1,y))

where M(B, , (*)) identifies data upon which mistakes
were made by the associated booster classifier B, ,
C(B,, (*)) identifies data for which correct classifica-
tions were made by the associated booster classifier
B, ,, and w represents independently selectable appor-
tionment factors which apportion the amount of mis-
takenly classified data and the amount of correctly
classified data, and j is a summation index which ranges
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from 1 to x-1 where x-1>0 and represents the total
number booster classifiers B, | from which correct
examples are used for the particular training set T, ;

(h) training one of the plurality X,y of booster classifiers
B, , associated with each particular data set y with the
particular training data set T, , created in step (g) which
corresponds to the same particular data set y, resulting
in a plurality of rules;

(i) testing the booster classifier B, , trained in step (h)
utilizing another particular data portion D,, , from the
same particular data set y, said testing resulting in
correctly classified data and mistakenly classified data;

(j) repeating steps (g) through (i) X-3 additional times
until a total of X-1 booster classifiers B, , have been
trained and tested for each particular data set y;

(k) testing the X-1 booster classifiers B, , trained in steps
(e) through (j) for each particular data set y utilizing the
particular data portion y associated with each X-1
booster classifiers B, , said testing resulting in cor-
rectly classified data and mistakenly classified data;

(1) creating a residual training set Ty , for each particular
data set y including the mistakenly classified data
resulting from step (k);

(m) training the terminal booster for each particular data

set y utilizing the residual training set Ty , created in

step (1); resulting in a plurality of rules for use in a

classification apparatus for receiving data for classifi-

cation and, based on the classficiation data, outputting
classfications.

2. A neural network classifier boosting and pruning

method as set forth in claim 1, further including the steps of:

(n) pruning the rules of all of the booster classifiers B,
of a particular booster type x by eliminating those rules
which are sufficiently similar in an intra-booster prun-
ing stage, and resulting in a series of intra-booster
pruned classifiers B,;

(0) pruning the rules of all of the intra-booster pruned
classifiers Bby eliminating those rules which are suf-
ficiently similar in an inter-booster pruning stage,
resulting in a single residual booster B.

3. A neural network classifier boosting and pruning
method as set forth in claim 2, wherein the intra-booster
pruning step (n) and the inter-booster pruning step (o) utilize
the operation,

[w,Aw |>p for all rules which have the same classifications,

where i and j designate two different rules, the rules having
a plurality of features, and each one of the plurality of
features having an associated particular and independent
weight w, where A is the fuzzy AND operation, where |¢|
corresponds to the pair-wise summation over all of the
features of the weight vectors, and where [} represents a
user-chosen constant which determines the level of similar-
ity between two rules which triggers pruning.

4. A neural network classifier boosting and pruning appa-
ratus created by the method of claim 2.

5. A neural network classifier boosting and pruning
method as set forth in claim 3, wherein the user-chosen
constant [} is independently selectable for the inter-booster
pruning step (n) and the inter-booster pruning step (0).

6. A neural network classifier boosting and pruning appa-
ratus created by the method of claim 3.

7. A neural network classifier boosting and pruning
method as set forth in claim 5, wherein the booster classifiers
B, , are M-PROBART neural networks.
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8. A neural network classifier boosting and pruning appa-
ratus created by the method of claim S.

9. A classifier boosting and pruning apparatus created by
the method of claim 7.

10. A neural network classifier boosting and pruning
method as set forth in claim 1, further including the steps of:

(n) pruning the rules of all of the classifier boosters B,
for each particular data set y by eliminating those rules
which are sufficiently similar in an inter-booster prun-
ing stage, resulting in a series of inter-booster pruned
classifiers B,

(o) pruning the rules of all of the inter-booster pruned
classifiers B, by climinating those rules which are
sufficiently similar in an intra-booster pruning stage,
resulting in a single residual booster B.

11. A neural network classifier boosting and pruning
method as set forth in claim 10, wherein the inter-booster
pruning step (n) and the intra-booster pruning step (o) utilize
the operation,

[w,Aw |>p for all rules which have the same classifications,

where i and j designate two different rules, the rules having
a plurality of features, and each one of the plurality of
features having an associated particular and independent
weight w, where A is the fuzzy AND operation, where |9|
corresponds to the pair-wise summation over all of the
features of the weight vectors, and where [} represents a
user-chosen constant which determines the level of similar-
ity between two rules which triggers pruning.

12. A neural network classifier boosting and pruning
apparatus created by the method of claim 10.

13. A neural network classifier boosting and pruning
method as set forth in claim 11, wherein the booster clas-
sifiers B, , are M-PROBART neural networks.

14. A neural network classifier boosting and pruning
apparatus created by the method of claim 11.

15. A neural network classifier boosting
apparatus created by the method of claim 13.

16. A neural network classifier boosting
apparatus created by the method of claim 1.

17. A neural network classifier boosting and pruning
method for position and recognition sensing and classifica-
tion including the steps of:

(a) providing a set of training data having inputs with
correct classifications corresponding to the inputs;

and pruning

and pruning

(b) ordering the set of training data into a plurality Y of
differently ordered data sets, where Y is the total
number of differently ordered data sets and y represents
a particular one of the Y differently ordered data sets;

(¢) dividing each of the Y differently ordered data sets into
a set of N particular data portions D, ,, where N
represents the total number of data portions into which
the particular data set y was divided and n identifies a
particular data portion among the N data portions
derived from a particular data set y;

(d) associating a plurality X,y of booster classifiers B,
for each particular data set y, where X represents the
total number of booster types associated with each
particular data set y and X represents a particular
booster type, the plurality X,y of booster classifiers B, ,
for each particular data set y including a terminal
booster;

(e) training one of each plurality X,y of booster classifiers
B, , with a particular data portion D,, , resulting in a
plurality of rules;
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(f) testing the booster classifier B, , trained in step (e)
utilizing another particular data portion D, , said test-
ing resulting in correctly classified data and mistakenly
classified data;

(g) creating a particular training data set T, , correspond-
ing to each particular data set y, the contents of which
are defined by:

Tey = WLxy)M(Bey(Derr,y)) +

x—1(x=1>0)

W20 )CBLDL )+

J=1

(W21, ) OB i1,y (D1, y))

where M(B, , (*)) identifies data upon which mistakes
were made by the associated booster classifier B, ,,
C(B,, (*)) identifies data for which correct classifica-
tions were made by the associated booster classifier
B, ,, and w represents independently selectable appor-
tionment factors which apportion the amount of mis-
takenly classified data and the amount of correctly
classified data, and j is a summation index which ranges
from 1 to x-1 where x-1>0 and represents the total
number booster classifiers B, , from which correct
examples are used for the particular training set T, ,;

(h) training one of the plurality X,y of booster classifiers
B, , associated with each particular data set y with the
particular training data set T, , created in step (g) which
corresponds to the same particular data set y, resulting
in a plurality of rules;

(i) testing the booster classifier B, , trained in step (h)
utilizing another particular data portion D,, , from the
same particular data set y, said testing resulting in
correctly classified data and mistakenly classified data;

(j) repeating steps (g) through (i) X-3 additional times
until a total of X-1 booster classifiers B, , have been
trained and tested for each particular data set y;

(k) testing the X1 booster classifiers B, | trained in steps
(e) through (j) for each particular data set y utilizing the
particular data portion y associated with each X-1
booster classifiers B, | said testing resulting in correctly
classified data and mistakenly classified data;

(1) creating a residual training set Ty , for each particular
data set y including the mistakenly classified data
resulting from step (k);

(m) training the terminal booster for each particular data
set y utilizing the residual training set Ty, created in
step (1); resulting in a plurality of rules for receiving
position and recognition related data and outputting
highly accurate recognition and position sensing and
classification information.

18. A neural network classifier boosting and pruning

method as set forth in claim 17, further including the steps
of:

(n) pruning the rules of all of the booster classifiers B,
of a particular booster type x by eliminating those rules
which are sufficiently similar in an intrabooster pruning
stage, and resulting in a series of intra-booster pruned
classifiers B,;

(0) pruning the rules of all of the intra-booster pruned
classifiers B, by eliminating those rules which are
sufficiently similar in an inter-booster pruning stage,
resulting in a single residual booster B.
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19. A neural network classifier boosting and pruning
method as set forth in claim 18, wherein the intra-booster
pruning step (n) and the inter-booster pruning step (o) utilize
the operation,

|W,-AW,-|>[5 for all rules which have the same classifications,

where I and j designate two different rules, the rules having
a plurality of features, and each one of the plurality of
features having an associated particular and independent
weight w, where A is the fuzzy AND operation, where |9|
corresponds to the pair-wise summation over all of the
features of the weight vectors, and where [} represents a
user-chosen constant which determines the level of similar-
ity between two rules which triggers pruning.

20. A neural network classifier boosting and pruning
apparatus created by the method of claim 18, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

21. A neural network classifier boosting and pruning
method as set forth in claim 19, wherein the user-chosen
constant [} is independently selectable for the inter-booster
pruning step (n) and the inter-booster pruning step (0).

22. A neural network classifier boosting and pruning
apparatus created by the method of claim 19, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

23. A neural network classifier boosting and pruning
method as set forth in claim 21, wherein the booster clas-
sifiers B, , are M-PROBART neural networks.

24. A neural network classifier boosting and pruning
apparatus created by the method of claim 21, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

25. A neural network classifier boosting and pruning
apparatus created by the method of claim 23, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

26. A neural network classifier boosting and pruning
method as set forth in claim 17, further including the steps
of:

(n) pruning the rules of all of the classifier boosters B,
for each particular data set y by eliminating those rules
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which are sufficiently similar in an interbooster pruning
stage, resulting in a series of inter-booster pruned
classifiers B,

(0) pruning the rules of all of the inter-booster pruned
classifiers B, by climinating those rules which are
sufficiently similar in an intra-booster pruning stage,
resulting in a single residual booster B.

27. A neural network classifier boosting and pruning
method as set forth in claim 26, wherein the inter-booster
pruning step (n) and the intra-booster pruning step (o) utilize
the operation,

[w,Aw |>p for all rules which have the same classifications,

where I and j designate two different rules, the rules having
a plurality of features, and each one of the plurality of
features having an associated particular and independent
weight w, where A is the fuzzy AND operation, where |¢|
corresponds to the pair-wise summation over all of the
features of the weight vectors and where f§ represents a
user-chosen constant which determines the level of similar-
ity between two rules which triggers pruning.

28. A neural network classifier boosting and pruning
apparatus created by the method of claim 26, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

29. A neural network classifier boosting and pruning
method as set forth in claim 27, wherein the booster clas-
sifiers B, , are M-PROBART neural networks.

30. A neural network classifier boosting and pruning
apparatus created by the method of claim 27, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

31. A neural network classifier boosting and pruning
apparatus created by the method of claim 29, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.

32. A neural network classifier boosting and pruning
apparatus created by the method of claim 17, for use in
highly accurate recognition and position sensing and clas-
sification of occupants in an automotive airbag system.



