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Comparative Analysis of Fuzzy ART and ART-2A
Network Clustering Performance

Thomas Frank, Karl-Friedrich Kraiss, and Torsten Kuhlen

Abstract—Adaptive resonance theory (ART) describes a family paper concentrates on the comparative analysis of clustering
of self-organizing neural networks, capable of clustering arbi- properties for several variants of ART-networks on two types
trary sequences of input patters into stable recognition codes. ot jnnyt patterns. Two-dimensional pattern sets illustrate the

Many different types of ART-networks have been developed to . _ . .
improve clustering capabilities. In this paper we compare cluster- geometric characteristics of ART-clustering and the internal

ing performance of different types of ART-networks: Fuzzy ART, ~representation of knowledge by prototypes. Sampled step
ART 2A with and without complement encoded input patterns, responses of second-order systems are used as an example

and an Euclidean ART 2A-variation. All types are tested with of high-dimensional input patterns, modeling ART properties

two- and high-dimensional input patterns in order to illustrate 1, o stering the shapes of time-dependent sensor signals.
general capabilities and characteristics in different system envi-

ronments. Based on our simulation results, Fuzzy ART seems
to be less appropriate whenever input signals are corrupted
by addititional noise, while ART 2A-type networks keep stable
in all inspected environments. Together with other examined = The common algorithm used for clustering in any kind of
features, ART-architectures suited for particular applications can ~ ART network is closely related to the well-knowkrmeans
be selected. algorithm [1]. Both use single prototypes to internally repre-
Index Terms—Adaptive resonance theory, clustering, clustering sent and dynamically adapt clusters. Theneans algorithm

Il. SELF-ORGANIZED CLUSTERING WITH ART-NETWORKS

analysis, neural networks, self-organization, sensor signals. clusters a given set of input patterns inko groups. The
parameterk thus specifies the coarseness of the partition. In
| INTRODUCTION contrast, ART uses a minimum required similarity between

o patterns that are grouped within one cluster. The resulting

gLF'ORGAMZED clustering is a powerful tool when-n mperk of clusters then depends on the distances (in terms
ver huge sets of data have to be divided into separ@ie applied metric) between all input patterns, presented to

categories. The need for setting up such categories may arjg, network during training cycles. This similarity parameter

e.g., from the need to set up recognition codes for COMPIEX c5jiedvigilance p [3]. Fig. 1 illustrates the main stages of

system-state classes, or to discover separeitestersof data 5 simplified ART algorithm.

subsets with characteristic similarities (“data mining” [10]). The first step, thepreprocessingstage, is the creation of

In the field of neural networks, the adaptive resonance theapy input pattern as an array with a constant numbemof

(ART), introduced and developed by Carpenetral. from  glements. ART requires the same pattern size for all patterns,

the Center for Adaptive Systems, Boston University [3], iS¢  the dimension of the input space into which all cluster

a popular representative for self-organized clustering. So%egions shall be placed. Any of the already formed prototypes
outstanding features of ART, besides its clustering capabilities, ;¢ the same dimensiom. In addition. the elements of an
attract the attention of application engineers. Among thegg, ¢ pattern must fit constraints concerning, e.g., value bounds
are performance, economic usage of memory resources gfithe geometric length of the array as vector. These constraints
temporal stability of stored knowledge. Neural networks atge characteristics of the different types of ART networks
typically applied when standard statistical clustering methodgy are needed to make the input comparable to the cluster
fail on the interpretation of a given dataset, according E?rototypes. Once the input pattern is formed, it is compared
low performance or vast requirements of System resourcES.ne ,, stored prototypes in aearchstage. If the degree
However, neural networks follow internal rules, making theg¢ gimilarity between current input pattern and best fitting
applicability to a given problem_ predictable. The clusterlngrototypé J is at least as high as vigilange this prototype
performance of ART-networks is not well documented ify chosen to represent the cluster containing the input. The
the literature. It is ass_umed that clustering depends not O'Hé‘gree of similarity is typically limited to the range [0,1]. If
on the network architecture and parameters, but also @hjjarity between input pattern and best fitting prototype does
the dimensionality and nature of the clustered data. Thig fit into the vigilance intervalp, 1], a new cluster has to be

installed, where the current input is most commonly used as
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Fig. 1. Pattern processing by an ART network, consisting pfeprocess-
ing-, search, and adaptationstage. The search stage will be defined more W
precisely as a circuit ofhoice match andreset Termination of the algorithm I
is guaranteed by the initial values of prototypes.

enough, it is adapted by, e.g., slightly shifting the prototype’s

values toward the values of the input array. .
Specific ART neural networks, such as ART 2 [2] or Fuzzy F1 % @ e @
ART [7], more or less extend this basic layout to show a link

between the computational characteristics of the algorithms

and the biologically motivated connectionist approach. Con- |
cerning the description of the algorithms we used for ART

computer simulations in this paper, these extensions are not

; ; ; ; ; ig. 3. A simplified representation of the competitive learning network from
our primary focus. More detailed information on partlcmagig. 2. All inputs and outputs of; and F, are united in one arrow for any

network designs can be found in [2], [3], [7], and [14]. input or output vector. The adaptive weight-matW¥;; of all connections
The primary processing module of any ART network is between laye#; and F% is replaced by the<-symbol.

competitive learning networkas shown in Figs. 2 and 3 [3].

The m neurons of an input layeF; register the values of an One possibleway to compute net activitie;, and by that

input patternl = (41,42, -+, im). Every neuron of an output o o4 re the similarity betwedrand W, is the weighted sum
layer F, receives dottom-upnet activityt;, built from all £7-

outputsS = I. The vector elements & = (¢1,---,t,) can be ™ )

seen as results of comparisons between input paktenad pro- tj = wa i (2)
tOtypeswl = (w117 Tty wlrn)a Tty W, = (wnb Tty wnrn)- =t

These prototypes are stored in the synaptic weights of thieriations on this measure are often employed because the
connections betweefi;- and I,-neurons. OnlyF,-neuron/,  valuet; exerts great influence on the resulting clusters. After
receiving the highest net activity;, sets its output to one, an F»-winner J has been found, the corresponding prototype
while all other output neurons remain zero Wy = (wis, -, wyy) is adapted to the input patteln One
suitable method for adaptation is to moV€; slightly toward
input patternI

1 ity > max(t c k # )
i = {0 otherwise. 1

W =5 T+ (1 —p) - WP 3)
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The constantearning raten € [0, 1] is chosen to prevent pro- N N SR

totype W3 from moving too fast and therefore destabilizing Fz( 1 ) < J) N \“4—{ Reset}dT

the learning process. Prototypes for this kind of competitive = — — 4
Ul TT

learning network can be initialized either with random values
or with values of randomly chosen input patterns from the
training sequence.
Competitive learning networks of this kind tend toward Wji Wij
unstable categorization whenever the distances between single T
S

input patterns vary in too wide a range [3]. Additionally, there \Vj
is no way to control either the number of clusters produced i 4 .
by the network, or the minimum similarity of patterns inf ((TI\X/Z\\" o i\\ L m\,f
one cluster. The ART solves this problem by extending the' N " A&/ v

_ e
~. -

competitive learning network as shown in Fig. 4. A second set T
I

of connections is added, sendidg-output U back to layer
I . The synaptidop-downweights Wj; of these connections
are, besides a possible scaling factor, identical tht®m-up Fig. 4. Basic layout of an ART network. The competitive learning network

weightsWj;. Thetop-downnet activityV is usually calculated from Fig. 3 is extended by a second set of connections leadinfg aiutputs
by u; back to the input layer.

I1l. DESCRIPTION OFART-NETWORK ARCHITECTURES

The following section describes different ART-network ar-
chitectures capable of processing analog input patterns. Prop-
erties will be discussed for Fuzzy ART [7] and ART 2A [6],
as well as for some modified ART 2A algorithms. The ART
1 algorithm [3] is not discussed, as it is exclusively designed
V=U -W;=W; (5) for binary input patterns and therefore not comparable to all
other ART variants presented in this chapter. The predecessor

because alF;>-outputs, except: 7, are set to zero [see (1)]. Sof)]c ART 2A, ART 2 [2], is neglected, because ART 2A

input layerF, receives prototypdV ;, representing the Currentmcorporates nearly the same clustering characteristics while

winning cluster.J, as net activity. Now the most complexworkmg several orders of magnitude more efficiently in com-

part of signal processing in ART networks takes place, i.é)uter simulations [6]. Some features of the neural architectures

matching prototypeW with input patternL. This task is déscribed in the original publications are skipped, as they are

completed in ways characteristic to the different types o t relevant for this analysis.

ART networks and, as in ART 2 [2], uses extensions to the

internal structure of laye#}. This yields a single matching A Fuzzy ART

value, that is compared with theigilance p, defining the Referring to Fig. 1, any ART-type net can be characterized
minimum similarity between an input pattern and the prototypsy its preprocessing choice, match and adaptationrule,

of the cluster it is associated with. If the matching value iwherechoiceand matchdefine the search circuit for a fitting
smaller than vigilancep, the current winningfy-neuron is prototype. With Fuzzy ART [7], these rules are as follows.
removed from the competition by eesetsignal. The reset « Preprocessing

v, = Zuj CWjg, (4)
j=1

This leads to

signal forces the activation df;-neuron.J to zero and another All values of an input pattern must fit into the interval
Iy-neuron is activated, receiving the highest net actiyjtpf [0,1]

all nonreset output neurons. Once a prototype is found that

leads to a matching value with input patten at least as ir €[0,1] Vk. (6)

high as vigilancep, no further reset signal is applied and the
network attaingesonanceThe position of the last winnings,-
neuron indicates the final cluster for indiitand the associated
prototype is adapted. Fig. 1 summarizes these steps of a single
pattern processing by an ART-network. None of the output
neurons is reset at the beginning. z Ay = min{z,y}
The initial values of prototypes that have not yet been
accessed by an input pattern, provide for two key features.

1) Previously accessed prototypes are first compared to the A single net activity¢; can be seen as the degree of
input pattern before an uncommitted prototype is chosen. prototypeW;, being afuzzy subsetf input patterrl [14]

2) If none of the committed clusters matches the input
pattern well enough, search will end with the recruitment = M
of an uncommitted prototype. o+ |Wj|

» Choice

Bottom-up net activities, leading to a preliminary choice
of a prototype, are determined using the fuzzy conjunction
(M), which is defined by

X/\Y:(xl/\ylv"'vxrn/\yrn)-

(7)
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whereY is fuzzy subset oKX, if X AY =Y. The size avoided by normalizing inputs to a constant vector length [7],
of a vector(|X|) is determined by itd.;-norm, the sum [9]. One possible method is to use an Euclidean normalization
of its components. Thehoice parametery [7] provides to convert an input patterA into a coded inpul

a floating point overflow, iff W;| — 0. In [9] some

additional properties of Fuzzy ART with variations en - A - A

are pointed out, such as, e.g., lowest possible vector size Al Diey G

of prototypes. Simulations in this paper are performed o . ,
with a value ofa ~ O. The main disadvantage of this method is the complete loss

« Match of any information stored in the vector length of an input
The similarity of inputI and current winning prototype pattern. Therefore, a modified normalization variant called
W is measured by the degree bbeing a fuzzy subset complement coding typically used to set all input patterns to

of W;. Resonance and adaptation occurs, if a common vector length [4], [7], [9]. An original vectéx =
(ay,---,ax)is coded into an input pattedh= (i1, -+, i) by

a; >0 Vi ||A]>o0.

o< ITA Wyl ®) adding the complements of its elements to the original vector.
- I This doubles the dimension of all input patterns and prototypes
» Adaptation I=(A,A°)

The winning prototypeWj is adapted by moving its

values toward the common MIN vector bfand W 5 = (o, a1l —ay, o 1—a) e €[0,1] Vi (11)

Wgnevv) =n-(IA WSOld)) +(1—n) _Wgold)~ 9) The L;-norn? of complement encoded vectors of the same
dimension is constant, independent of the values of their
Thelearning raten € [0, 1] defines how quickly prototypes elements
converge to the common minimum of all input patterns as- ok
signed to the same cluster. With— 1 the network is working _
. . o => i
in a fast learningmode [7], stabilizing the network state after ~
a few presentations of all training patterns. In contrast, lower k k
learning rates lead to slow learningmode. ART-networks _ Z a; + Z 1—a
can simply be run in a purelassification modeyy setting e} pet

the learning rate of a previously trained network to zero, k k
which prevents all prototypes from being modified by new = Zai + k- Zai
input patterns. Uncommitted prototypes are initialized with a im1 im1
constant value =k

This ensures that search will end if a previously uncommittéésing complement coding, (8) reduces to
prototype is top-down compared with inpilitby (8), since T AWyl
IT A Wj3| = |I| then. The higher the initial value fow;; p < TJ
chosen, the lower the bottom-up net activifyresulting from )
an uncommitted prototype (7). By that, initial values — oo Uncommitted prototypes are still initialized according to (10).
guarantee thatll committed prototypes are compared with thgvorking in fast learning modén — 1), a prototypeW; in
input, before an uncommitted cluster is chosen as winner. Fuzzy ART represents the common MIN-vector of lalhput

A useful method to accelerate learning in ART networkpattemsIP, with p = 1.--7, assigned to the same clustgr
is to set the learning ratg = 1 whenever a previously in at least one presentation
uncommitted cluster is adapted to the current input vector.
Then inputl is identically copied as the first prototype of W; = min{l;,I,---,I;}
a new cluster if no other stored prototype matches the input  — (ypin{iy; -+ iy}, -+ mindivm, -+ -5 dm ). (14)
well enough. Committed prototypes might then be adapted
more slowly(n < 1), to preserve them from being corruptedysing complement coding, input patterlig = (Ap, AS)
by noisy input patterns. This method is calléabst-commit |ead to prototypes representing the common Méd MAX-
slow-recodd7] and is used for all simulations of Fuzzy ARTvectors of all uncoded patterns,,

networks in this paper.
1) Complement CodingCarpenter and Grossberg mention W; = (min{Aq, -+, A1}, min {A§, -+, Af})
a problem of cluster proliferation that can occur with Fuzzy = (min{Aq, -, A1}, max{Aq, -, A }9). (15)
ART [7]. Because vector elements of prototypes can only
become smaller by adaptation, a fuzzy ART network tends ygith lower learning rates, network prototypes converge more
create more and more prototypes over time that match inRiéwly to these MIN- and MAX-bounds.
patterns with higher values, while prototypes with very low
values might never be accessed further on. This behavior i8The L,-norm is defined byX|(") = /57, «r.

(13)
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i W « Choice
2 T2 Bottom-up net activities, leading to the choice of a
1 , prototype, are determined by
T I-W; if j indexes a
committed
t= prototype (20)
a-y." i otherwise
0<a<L N (22)
- T Jm.

Bottom-up net activities are determined differently for
previously committed and uncommitted prototypes. The
choice parameter > 0 again defines the maximum depth

\ of search for a fitting cluster. With: = 0, all committed

? prototypes are checked before an uncommitted prototype

0 — 1 > is chosen as winner. The simulations in this paper apply
I, W4 a = 0.

Fig. 5. Similarity in ART 2A is measured by anglg between input * Match

vector I and prototypeW ;. Input I is assigned to clusted if cos Resonance and adaptation occurs eithef i§ the index

2 cos 8 = vigilancep. of an uncommittedprototype or if J is a committed

prototype and
B. ART 2A

This section discusses another popular ART algorithm,
called ART 2A [6]. In contrast to Fuzzy ART, ART 2A < Adaptation
uses the angle between prototype vectors and input pattern Adaptation of the final winning prototype requires a shift
to find a fitting cluster. Fig. 5 illustrates the relationships for toward the current input pattern
two-dimensional input patterns. (new) (old)
The central functions of the ART 2A-algorithm, according Wi - N(” I+ (1 -n) Wy ) O<n=<l
to Fig. 1, are as follows. (23)

* Preprocessing
No negative input values are allowed and all uncoded
input vectorsA are normalized to unit Euclidean length,
denoted by function symbat

p<I.-Wjy=t;. (22)

ART 2A-type networks always uséast-commit slow-
recodemode. Therefore the learning rate is setjte- 1

if J is an uncommitted prototype and to lower values for
further adaptation. If contrast enhancement is used, (22)

I=2R(A)= A _ i w>0 Vi [Al>0. is modified to
Ein:ll ai2 || || WSHeW) — N(U . N(‘I’) + (1 _ 77) . WSOld))
(16) g = Jii f wi? > ¢ (24)
*7 10 otherwise.

Carpenter and Grossberg suggest an additional method

of noise suppression to contrast enhance characterigiance match and choice do not evaluate the values of un-
pattern features by setting all input values to zero, whicdommitted prototypes, there is no need to initialize them with
do not exceed a certain bi#s[2] specific values. ART 2A-related networks should not be used
in fast-learning mode withy = 1, because prototypes then

I= N(FO(}_Q(A)) (17) begin to jump’ between all patterns assigned to their cluster,
Fo(X); =45 if ;>0 (18) instead of converging toward their mean.
¢ 0 otherwise
[Fo(R(A))[| > 0. C. ART 2A-C: Complement Encoding with ART 2A

This kind of contrast enhancement does only make sense’he main disadvantage of ART 2A for many implemen-
if characteristic features of input patterns, leading to tations is the loss of all information coded in the length of
distribution on different clusters, are codexclusivelyin ~an input pattern, because all patterns are normalized to unit

their highest values. Witl# bounded by Euclidean length. In other words, ART 2A cannot distinguish
1 between two uncoded inputs; andA,, whereA; = ¢- Ag,
0<6< — (19) with ¢ > 0. Using complement encoding, as described in
m

Section 1lI-Al, all information stored in the length of an
the upper limit will lead to complete suppression of alincoded vectoA is coded into the direction of the resulting
patterns having the same constant value for all elementsctorI = (A, A°). Whitely et al. used this method to extend
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the recognition capabilities of ART 2A in processing analof. ART 2A-E: Euclidean Distances in ART 2A

sensor signals [12]. One way to include complement coding another way to preserve vector-length information in ART
into the ART 2A algorithm, is to use it as an additionahp pattern processing, is to replace the ART 2A-distance
preprocessing step before entering the algorithm. Unfortiayic with a Euclidean measurement of similarity and skip
nately, prototypes are normalized to unit length and adaptedf@ |ength normalization of inputs in the preprocessing and
normalized input patterns, when doing so. To keep a geometiganiation stage. A comparable approach is done in [11]. The
interpretation of prototypes as a measure olatodednput £ ,clidean algorithm used in this section, differs in some ways

patterns assigned to their cluster, normalization is moved frap [11] to keep it closer to the ART principles.
preprocessingand adaptationto the choice/matchfunction. - Preprocessing

The complete a}gonthm is as follows. All elements of an input vectdr should fit to the interval
¢ Preprocessing [0, 1]

I=(A,A°) a;€[0,1] Vi (25) i; € [0,1] Vi, (30)

« Choice
Bottom-up net activities are determined using the Eu-
clidean distance, normalized with the dimension of
an input vector. This keeps measurements of similarity
(26) independent from the number of vector elements. The
distance is subtracted from one to get= 1, if input
vector and prototypé¥; are identical

* Choice

R(I) - ®(W;) if j indexes a
committed
prototype

-y i otherwise

m

1
0<a< . 27) ti=1—\l_ > i —wii)? 31)
vm i=1
Uncommitted prototypes should be initialized with values
w;; > 1 to achieve a sufficiently deep search for a fitting
committed prototype.
* Match
The match function remains as in (28).
« Adaptation

* Match
As with ART 2A, resonance and adaptation occurs either
if J indexes aruncommittecprototype or if.J is already
committedand

p <ty (28)
WSnew) =7- I+ (1 _ 77) . WSOld) 0<n<1. (32)

« Adaptation ) . . .
Table | summarizes the ART-algorithms discussed. Choice-

and match-functions of ART 2A-type networks are listed only
for committed prototypes/clusters. All ART 2A-type network
simulations are done ifast-commit slow-recodeode, setting

In contrast to Fuzzy ART using complement encoding, ARF — | when adapting a previously uncommitted prototype and
2A-C prototypes remain a complement encoded pattern, even: 1 else.

when adapted to several different input patterns. This is shown

for two one-dimensional complement coded input patter

A = (a1,1—a1) andB = (b, 1 — by). Following (29), a rI\? COMPARATIVE ANALYSIS OF CLUSTERING PERFORMANCE
vectorC = 7- A 4 (1 — ) - B is also a complement coded This section presents clustering examples for all ART-

WSnew) =n. I+ (1 _ 77) . WSOld) 0<n<1. (29)

one-dimensional pattern architectures discussed in the previous section. Two types
of pattern sets, both consisting of 100 different patterns, are
C = (c1, ) used to analyze and compare clustering performances. Patterns
)

are presented in different random orders. A training sequence

with with a particular network and pattern set is stopped after
a=n-a+(l-n- b each pattern has been presentadinimumnumber of times.
and Therefore not all patterns are necessarily presented the same
co=n-(1—a))+ (1 —n) - (1-b) numbgr of times. This strategy t.akes into account that in
1 (peart+(1—n) D) many mspec?ed environments nether thg frequency nor the
U (Zanes order of particular system states is predictable. Unless it is
=l-a. explicitly mentioned, simulations with different network types

or network parameters are performed with the same random
Hence ART 2A-C prototypes represent a complement codedt constant order of patterns to keep the results comparable.
mean-vector of all input patterns assigned to the individu#hen a training sequence is completed, the final distribution
clusters. of the complete pattern set into clusters is tested with a
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TABLE |
SUMMARY OF THE ART-ALGORITHMS USED FORSIMULATIONS IN THIS PAPER

Fuzzy ART ART 2A-C ART 2A-E ART 2A
A
I = 2o =NA)
I = (AA% I = A Al
Preproc.
a; > 0V 4
a; € [0,1] Y i a; € {0,1] vV 1
A}l > 0
. IAW;j I-W; 3G —wj)?
Choice tl-_-l__-‘_ b — i £ = 1— (G i o .
’ Wil ] TR 7T V m ti=1-W;
IA Wyl
Match | J
- p<ty
WJ(HEW) - (new) (
Wj; =R{(n-1
. . (old)
Adapt n (I A W3t ) WJ(new) =q-1+ (1 _ n) B WJ(old) +(1 B T’) ' WJ(O[d))
(1) - Wl

single presentation of each individual pattern in the set, whilhe upper limit results from (12) and defines the initial

learning ratey is set to zero ¢lassification mode extension of a prototype after its first adaptation. With learning
raten = 1, the adaptation of a prototype toward an input
A. Clustering Performance for Two-Dimensional Data pattern not yet lying within its area, stretches the according

g_actangle to the minimum area, covering all patterns assigned

The first inspected pattern set consists of 100 twi . )
P b the same cluster for at least one time. Wjth- 1 a stable

dimensional patterns, representing uniformly distributed point%t K state i hed I traini it h
in a unit square. Pattern values are taken from the inter\géz work staté 1S reached, as soon as all training patterns have

[0.1,1.0] to fit the input restrictions of any described ART- en presented leJstfone tirrm;](a;slhot Igarnir;g{:}]). Fig. ?(?) 9D
network type. The spatial distribution of the data points doa@ows an examplée for one-shot learming of the complete 2-

not support an obvious distinction of clusters. So the clusterif :tlern set.ttThe patterns Weredpbrestﬁntedtm ak ra}[nldomt order,
performance in different simulations demonstrates clearly t 'l any pattern was processed Dy the network at feast once.

different geometric interpretations of the pattern space and {] ster 5is divided |nto_ two s_eparate areas, 5a and 5b, because
according prototype representations. Fuzzy ART and the AIQ‘? prototype rectangle is partially covered by that of cluster 2.

2A-type networks are discussed separately, because of tfgei?’_oulom'ﬁp net activities tare tf et tg :chelr max”.“‘:m yzlue
characteristic differences. ; , whenever an input pattern defines a point inside a

;=
1) Two-Dimensional Clustering with Fuzzy ARTh the prototype rectangle [see (7)]. If this point is inside more than
special case of area points as two-dimensional input patterﬂ

e rectangle, the prototype witbwest index jis chosen as

(15) defines four-dimensional Fuzzy ART-prototypes as reezy_mne@. The prototypes of the network, used in Fig. 6(a), are

angles, with the first two elements representing the lower left

corner, and the last two elements represerttiegcomplements Wi =(0.4,02,0.0,0.4)
of the upper right coordinates. A stable network state is =((0.4,0.2),(1.0,0.6)%)
reached, when all uncoded training pattefis= (a;,ay) are W = ((0.1,0.4), (0.8,0.7)%)
enclosed by at least one of these prototype rectangles. If a .

. W3 = ((0.3,0.7),(1.0,1.0)°)
complement coded input pattein= (a;,a2,1 — a;,1 — az) .
defines a poinf. inside a prototype rectangle, (9) will lead to W4 =((0.1,0.1), (1.0,0.2)%)
no further network modifications, sinden Wy = Wy then. W3 =((0.1,0.3),(0.3,1.0)°).

According to (13), resonance and adaptation§ occurs, if
With lower learning rates; in slow-learning mode, pro-
k< |TA Wy 33 ' .
prk<] 3l (33) totype rectangles do not tend to overlap that often. While
Hence the vigilance parametedefines a maximum extensionrectangles cover the input space more efficiently up to their
of a single rectangle [7], with a lower bound for tiig-norm maximum size, the overall number of stored prototypes is

of any committed Fuzzy ART-prototype
3The winning index might also be chosen at random, if more than one
p-k<|Wj|<k. (34) prototype leads to a maximum bottom up net activity.
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Fig. 6. Two-dimensional clustering performance for Fuzzy ART-networks. Circles mark the spatial positions of uncoded input patterns. Pretptyed a
as rectangles. Patterns assigned to a common cluster are marked with an underlying gray shade. Cluster 5 in (a) is split in two separate areas (5a and 5b)
The experiments illustrated in (e) and (f) differ in their random pattern-presentation order.

reduced. Fig. 6(b) shows clusters from a network with theumber of resulting clusters depends not only on vigilance
same vigilance, but lower learning rate than in Fig. 6(a), aftparameterp but also on the order of pattern presentation.
adaptation to the same random training sequence. Becaus® Two-Dimensional Clustering with ART 2A-Type Net-
training stopped when each pattern was presented at least woeks: ART 2A prototypes are continually modified as long
time, prototype rectangles do not cover all patterns, assigresithe network is presented with input patterns. The prototypes
to the cluster they represent. Fig. 6(c) shows clusters whitus never reach stable equilibria. An appropriate time to stop
pattern presentation is continued until each pattern is processw@ihing is reached, when all patterns are assigned to the same
at least ten times. Prototypes now reached their stable valudasters over two or more presentations. In most cases this state
indicated by the fact, that all training patterns are covered g/reached after few training cycles, independent of the nature
prototype rectangles. and size of the input patterns [12]. With the two-dimensional
With learning rateg) < 1, the number of clusters, as well agnput patterns used in this section, stability in this sense is
the distribution of patterns to clusters, might vary throughoalways reached with a combination of learning rate- 0.1
pattern presentation, as long as prototypes have not yet reachied a minimum of ten presentations per pattern. The geometric
their stable equilibrium. Fig. 6(d) and 6(e) shows intermediabeterpretation of ART 2A-type prototypes is a mean-vector of
states of the same network after each pattern of the trainiald) patterns assigned to the according clusters. Variations
sequence has been presented at least one and at least ten twneg. influence the number of presentations necessary to
The number of clusters increases from six to eight. Hightgad prototypes to this mean point. A rule-of-thumb is to
vigilances limit the maximum area in pattern space covered bliooser as high as possible, to still achieve stability in the
a single prototype rectangle and increase the total numberatiove mentioned sense, with the lowest necessary number
clusters on a static pattern set. Fig. 6(f) uses the same valoégpresentations per pattern. As mentioned before, a Fuzzy
for parameters; and p as Fig. 6(e). Each pattern is agairART-like one-shoflearning with» = 1 cannot be performed
presented at least ten times, but in a different random ordetith ART 2A-type networks, since clustering will not stabilize
The example demonstrates, that even lower vigilances do mdien a prototype is always set to the values of the last input
necessarily prevent cluster rectangles from overlapping. Tpattern assigned to the cluster it represents. Fig. 8 illustrates
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and a prototype, while ART 2A-E measures a Euclidean
distance between input pattern and prototype. This emphasizes
the fact that complement coding stores length information of
an uncoded pattern in the direction of a coded pattern. With
two-dimensional input patterns, the choice/match function (31)
of ART 2A-E defines a circle around any stored prototype,
with radius

r=(1-p)-vm=(1-p) V2 (35)

With Fig. 8(g)-8(i) the radii arer = 0.45 for p = 0.68

and r = 0.34 for p = 0.76. An input pattern is assigned
to the cluster with the smallest Euclidean distance to its
prototype and the pattern lying inside the according circle area.
Otherwise, the input pattern is lying outside any of the already
existing cluster circles, a new cluster with a new prototype is
set up. Cluster borders within more than one circle area are
defined by the centerline between the neighboring prototypes
(Fig. 7).

Some properties are common for all ART 2A-type networks.
Higher vigilances increase the number of clusters, set up on
the same pattern sequence. The number of clusters can vary
Fig. 7. Cluster borders in ART 2A-E are defined by the centerlines (thiéﬁ’ith the order of pattern presentation, as can be seen in the
lines) between prototype positions (crosses). Here illustrated for the clusteridddle and right column of Fig. 8. In contrast to Fuzzy ART,
example of Fig. 8(g). clusters are alwaysoherentin pattern space and never split

in two separate areas as with Fig. 6(a).
clustering results of ART 2A and the modified algorithms ART
2A-C and ART 2A-E. The networks were trained with twaB. Clustering Performance for Higher Dimensional Data
different values for vigilance parametgrand two different
random pattern sequences (A and B). Both sequences stopg

In Section IV-A ART-clustering with different network vari-

were chosen with no ot_her pre_dlct|0n but a numb(_ar of three fhta usually deal with input patterns of higher dimensions. One
four for the lower and five or six clusters for the higher valuq

hen traini ith patt A Protot i rEypical scenario is the clustering of analog sensor data. Here,
when fraining with patiérn sequence A. ~Totolype Posiliofhze 1441 is to discover the structure of technical or biological

3_re markedlwnh tcrtosses. E;/en trt]ﬁ ug_h tART fAth stores .fOLg'stem states as, e.g., in [8] or [12], by analyzing the shapes of
i |medr.15|ona' pr? ° ypel vee otrs, ed '3 erpret ation t,Eema'nSaLscéecific time dependent sensor signals. Input patterns in these
wo-dimensional complement encoded point In pattern Spathsag 4o not cover the whole multidimensional input space,

(see Section II-C). For example with Fig. 8(d), prototyp%ut tend to form groups in geometrically separated areas.

values of ART 2A-C are ART-networks are used to either discover stable categories of
W, =(0.81,0.33,0.19, 0.67) patterns with a minimum required similarity [8], or to set up
= ((0.81,0.33), (0.81,0.33)° recognition maps of an input space, _by supervised assignment
. of ART clusters to pattern classes, with variants of ARTMAPS
((0.33,0.73),(0.33,0.73) [4], [5], [12], [13]. In such applications the results of clustering
((0.80,0.83), (0.80, 0.83)° should not, or at most very slightly, depend on the random
= ((0.28,0.24), (0.28,0.24)°). order in pattern presentation. In addition, the network output
should be fairly independent of additional noise, since input
atterns built from sensor signals will always vary, even when
E)resenting exactly the same system state.

NN N N

W,
W3
Wy

The first thing to remark, when looking at Fig. 8, is th
way pattern space is separated into clusters by the differ

network-types. Since ART 2A normalizes all prototypes an Clustering capabilities of ART networks are examined,

uncoded input patterns to unit Euclidean length (17), a pattedging step responses of second-order systems (Fig. 9) as

I, = (0.4,0.5) appears the same to the network as a patte i example for a more general sensor signal shape. The
I = (0.8,1.0). As a consequence, clusters separate t

di ional | dials TFia. 8(2)-8 'sponse function is normalized so that the resulting oscillation
two-dimensional pattern space along radials [ ig. { (a)-8(c nverges around a value ¢ft) = 0.5
Vigilance p defines a maximum angle between input and
prototype vector of3 = 20° for p = 0.94 and 3 = 11.5° ft)=05-[1—ec >0t (cosg(t) + c-sin g(t))]
for p = 0.98 (see Fig. 5). _ . _ ) =wo- V1= (2t

ART 2A-C and ART 2A-E behave in a very similar fashion ¢
in separating pattern space into clusters, even if ART 2A-C c= ——
compares the angle between a complement coded input pattern V1i=¢%

(36)
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Fig. 8. Comparison of two-dimensional clustering performance for ART 2A-type networks. Circles mark the spatial positions of input pattegss; cross
mark the positions of prototypes. Patterns assigned to a common cluster are marked with an underlying gray shade. The common learning rate used for all
simulations isy = 0.1, with a minimum of ten presentations per input pattern in a random sequence.

Input vectors are formed out of 100 consecutive valuef(6f length of the step response in terms of inverse eigenfrequency
with ¢ = 1---100. A useful property of the step response is this varied from ten to 100 time intervals in steps of ten.
fact that it is completely defined by two physical parameter§he damping is varied fronf = 0.1 to { = 0.9 at ten
eigenfrequencyfo = wo /27 and damping;. Therefore, input equidistant intervals on a logarithmic scale. Step responses
patterns as shown in Fig. 9, as well as clusters, can be depiadédhe training-pattern set are equally distributed over this
in a two-dimensionalPT2-parameter plando illustrate the physical parameter plane, but represent points in discrete
influence of different network-parameter variations. The pericibareas of a 100-dimensional pattern space. So in contrast
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Fig. 9. Step responses of second-order systems (PT2) with different eigenfrequencies and dampings. Input patterns consist of 100 samples, taken at
equidistant times.
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Fig. 10. PT2 step response with period lengthfo = 40 and damping¢ = 0.13. The original signal (dotted line) is corrupted by a random white
noise with maximum amplitude 0.25.

to the two-dimensional pattern set of the previous sections3) Higher Dimensional Clustering with Fuzzy ARFig. 11
there are geometrical preferences for clustering, which shosldows clustering examples of step responses with Fuzzy ART
be discovered independently of the random order in pattém one-shoflearning mode, learning rate = 1, and slow-
presentation. Since exclusively damping and eigenfrequeriegrning mode, » = 0.01. The random pattern sequences
determine the shape of the trained step responses, netwavkse presented with a minimum of one presentation per
are expected to set up clusters, including shapes referenpattern withn = 1, and 200 presentations per pattern with
by neighboring points in the parameter plane. The training sgt= 0.01. Fig. 11(a) shows an example of one-shot learning
is presented in random orders, as with the two-dimensionaith vigilance set top = 0.65. The network set up seven
pattern set (see introduction of Section V). clusters on the pattern set. Besides cluster 1, patterns from all
Generalization capabilities of ART-networks are tested kpther clusters are distributed over up to five separate coherent
classifying the pattern set with previously trained networks arleas (gray shades) on the parameter plane, as shown for
learning ratep = 0, after any pattern has been corrupted witbluster 4. The cluster numbers represent the temporal order
a random white noise (see Fig. 10). The more noisy patterhsring training in which prototypes were accessed for the
are assigned to the clusters of their undisturbed origins, tfit time. Clusters in Fig. 11(b) are set up with the same
higher is the quality of generalization. network-parameters but a different random order in pattern
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Fig. 11. High-dimensional clustering performance of Fuzzy ART networks. Step responses of second-order systems are defined by their eigenfrequency
fo and damping¢, marked with circles on the parameter plane. Gray shades group neighboring patterns in the parameter plane, assigned to the same
cluster. Single Fuzzy ART clustersare often represented by more than one coherent area on the parameter plane. Experiments in (a) and (b) differ in
the random order of input pattern presentation.

presentation. The scene is again dominated by a huge clusipabilities of Fuzzy ART in real-world environments are
1 and four additional clusters, dividing the PT2-parameteather discouraging.

plane in distinctly different clusters. Only cluster 1 and 5 Properties of Fuzzy ART depend on the state of its pro-
are coherent, while clusters 2, 3, and 4 are split in up totypes. Fig. 12 shows examples of prototypes, according to
three seperate areas. Even in slow-learning mode, withtla¢ network of Fig. 11(b) and 11(c). Once prototype areas
least 200 presentations per pattern, Fuzzy-ART clusterihgve reached their stable equilibrium on the training pattern
remains incoherent in the physical parameter-plane and higkbt, the MIN- and MAX-components of any Fuzzy ART
dependent on the order of pattern presentation. In Fig. 11ptotype [see (15)] define the borders of an area, covering
seven clusters were set up, showing the same characteristitpatterns assigned to the associated clusters. The maximum
as with (a) and (b) in one-shot learning mode. Clusterirayea is again defined by (34). With = 0.65 and uncoded
tends to become more stable and coherent, when using higha&tterns, consisting of 100 elements, the limits for prototypes
vigilances as in Fig. 11(d), where only cluster 12 is definingre set to65 < |W;| < 100. With Fig. 12 the L,-norms

two separate coherent areas on the plane. Fig. 11(c) amd: |[Wq| = 65.013, |W2| = 65.214 and |W5| = 100.
11(f) demonstrate the assignment of noisy input patterns @uster 5 refers to the last installed prototype during training,
the clusters of Fig. 11(b) and 11(e). All input patterns werdapted to only one input patterg £ 0.9 and1/f, = 100
corrupted with a random white noise of maximum amplitudie Fig. 11(b)]. Once thel;-norm of a prototype reaches the
0.1, which is 2.5 times smaller than with Fig. 10. Mostower limit, no pattern is assigned to its cluster, with even one
of the noisy patterns are assigned to different clusters thelement lying outside the MIN-/MAX-borders. This is why
their undisturbed trained origins. Some patterns are even ibister 1 in Fig. 11(c) was accessed by none of the noisy input
assigned to a cluster at all, as to be seen in Fig. 11(f) wiglatterns, while cluster 5 attracts that many patterns. With a
all points/parameter-pairs not included by a gray shade. If meise-amplitude of 0.25 instead of 0.1, as shown in Fig. 11(c),
assume that input patterns still represent the same physihinoisy patterns are assigned to cluster 5. As a summary,
state of the underlying second-order system, the recognitiBnzzy ART recognition properties are highly sensitive to noise,
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prototype are drawn seperately, defining a hatched area, covering all input patterns assigned to the according cluster.

making its output unpredictable and indefinite, when inpuaata (see Fig. 8). Since the Euclidean length of input vectors
patterns in classification modg; = 0) differ even slightly does not vary in too wide a range, the relative shape of
from the trained patterns. patterns within the training set remains nearly the same, even
Some of the Fuzzy ART properties may change, when théhen normalized to unit Euclidean length. So all ART 2A-
training of a network is terminated before prototype rectanglége networks detect the same similarities and differences
have reached their stable equilibrium. This method woulaf the presented step responses. Networks were trained with
generally exclude thene-shot learningnode, where prototype a constant learning-rate af = 0.1 and a minimum of 20
areas will usually reach their maximum size after a singfgresentations per pattern. These values turned out to deliver
presentation of a complete patterns set. In addition, Fuzzy ARTototypes close to the means of the assigned input patterns,
loses its very useful property of indicating the completion afnd led to stable distribution of patterns to the same clusters
a training cycle through stability of prototypes. The questioover several training cycles. Fig. 14 shows prototypes of
then arises, how to appoint an appropriate time to stop trainid§RT 2A and ART 2A-E, according to Fig. 13(b) and (e).
4) Higher-Dimensional Clustering with Art 2A-Type NetThe differences in the quality of the shapes between both
works: Fig. 13 shows clustering examples of the PT2-stapetwork types are minimal. ART 2A-C prototypes approximate
responses for ART 2A and the Euclidean ART 2A-E. Althose of ART 2A-E, in as far as they have the same adap-
ART 2A-type networks, ART 2A with and without comple-tation rules. ART 2A-C prototypes consist of 200 elements.
ment encoded input patterns and ART 2A-E, behave vefhe last 100 elements define the complement of the first
similarly in clustering PT2 step responses, in spite of tHsee Section IlI-C).
different distance metrics. ART 2A-C and ART 2A-E al- Clusters of ART 2A-type networks are always coherent in
ready showed similarities when clustering two-dimension#iie physical parameter plane, just as they are in pattern space.
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Fig. 13. High-dimensional clustering performance of ART 2A-type networks. All physical parameter-pairs grouped by a gray shade represene a complet
cluster of 100-dimensional PT2-step responses. The simulations were done with a learning sate 6f1 and a minimum of 20 presentations per
pattern in two different random sequencdsand B. Noisy patterns were classified with = 0 and the trained networks from the middle column

of figures. Noise amplitude is set to 0.25.

So ART 2A-clusters do not only reflect geometrical neighborespect to the number of clusters created by a network. The
hoods but also similarities in physical signal parameters obmparison of Fig. 13(a) and (d) and Fig. 13(b) and (e), shows
the second-order systems. Up to a limit of dampingr 0.3 the similarity in the shapes of clusters on the parameter plane
the eigenfrequency of the input patterns is the main criteridor ART 2A and ART 2A-E. The same shapes turn out when
on which patterns are distinguished. Above that dampimjustering the pattern set with ART 2A-C and an appropriately
limit, clustering becomes more indefinite, with a tendenoghosen vigilance. Comparing the left and middle column in
to a constant relatiorf/fy. Vigilancesp were chosen with Fig. 13, clustering turns out to be rather independent of the
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Fig. 14. Prototype representations, referring to the ART 2A clusters of Fig. 13(b) and the ART 2A-E clusters of Fig. 13(e).

random order in pattern presentation, especially for low#te common MIN- and MAX-values of all patterns assigned to
vigilances and higher cluster sizes. the according cluster. Clusters separate the pattern space along
Generalization and recognition properties are illustratete pattern space axes. In contrast ART 2A measures the cosine
with a noise corrupted pattern set, classified by the traineéithe angle between input- and prototype-vector, separating
networks from the middle column of Fig. 13. Noise amplitudpattern space along radials. Using complement encoding with
is set to 0.25 (see Fig. 10). Patterns not assigned to the samT 2A (ART 2A-C), length and orientation of an uncoded
clusters as their undisturbed trained origin, are rather assignggut vector is stored as a higher dimensional coded pattern.
to nocluster at all than assigned to tiveongcluster (right col- The result is a distance metric comparable to the Euclidean
umn of Fig. 13). The disturbing influence of additional noisghetric of ART 2A-E. Properties of ART-networks depend
on the assignment of patterns to existing clusters increasgs, two main parametersy and 7. Vigilance p defines the
together with vigilance parameter[Fig. 13(i)]. Up to noise mijnimum similarity between patterns in one cluster in terms
amplitudes of about 0.15, pattern distribution did almost ngf the applied distance metric. Higher vigilances increase the
vary from that of the undisturbed patterns. That means, thgtal number of clusters set up on a static pattern set. If no
for many applications ART 2A-like network variants can bgeometric preferences are given for a specific pattern set, as
treated as rather insensitive against small variations on ingiyth the two-dimensional patterns in this paper, the number
patterns, representing the same state of the inspected systgfiyjysters is also slightly dependent on the order of pattern

presentation. Learning rate regulates adaptation of stored
V. CONCLUSION prototypes toward input patterns.

Leaving aside the biologically motivated aspects, ART Fuzzy ART networks reach a state of temporally stable
turns out to be an effective, transparent clustering algorithirototypes, indicating the end of a training cycle on a fixed set
Two different types of ART-networks, Fuzzy ART and ARTOf patterns. All network weights are fixed, when all training
2A, as well as two ART 2A-modifications, ART 2A-C andpatterns are enclosed by the MIN- and MAX-bounds defined
ART 2A-E, were inspected. Each variant is characterizdty the prototypes. The extension of prototypes is limited by
by its preprocessing-, choice-, match- and adaptation-rile vigilance parametgr. Once the maximum extension of a
(see Table I). Two-dimensional pattern sets illustrated thototype has been reached, no further patterns are assigned
geometric nature of ART-clusters. Fuzzy ART uses the degrtsethe according cluster not lying completely within the MIN-
of an input pattern being fuzzy subset of a stored prototypeand MAX-borders. This makes Fuzzy ART highly sensitive
measure the similarity between two patterns. When using coto- additional noise on trained input patterns and its output
plement encoded input patterns, prototypes converge towartpredictable. Even if the geometric distribution of input
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patterns in pattern space gives preferences for the distributi@ol T. Kohonen, E. Oja, O. Simula, A. Visa, and J. Kangas, “Engineering
of these patterns to clusters, Fuzzy ART clusters remain highly 2applications of the self-organizing magtoc. IEEE 1996, vol. 84, pp.

1358-1384.

dependent onthe '.'andom order of pattern presentation and tﬁrﬁi Y.-H. Pao,Adaptive Pattern Recognition and Neural Network&ead-
to be incoherent in pattern space. The example of sampled ing, MA: Addison-Wesley, 1989.

PT2-step responses in this paper illustrated that Fuzzy A

R[-f_-g] J. R. Whitely, J. F. Davis, A. Mehrotra, and S. C. Ahalt, “Observations
and problems applying ART2 for dynamic sensor pattern interpretation,”

clusters can even be incoherent in the physical parameter |egg Trans. Syst., Man, Cybernol. 26, pp. 423-437, 1996.

space.
For most applications, where pure self-organized clustering

[13] J. R. Williamson, “Gaussian ARTMAP: A neural network for fast in-
cremental learning of noisy multidimensional map§gural Networks
vol. 9, no. 5, pp. 881-897, 1996.

of a pattern set is required, ART 2A is the more appropriajes] A. zell, Simulation Neuronaler Netze Reading, MA: Addison-Wesley,

solution. If there are geometric preferences within a given pat-
tern set, ART 2A-type networks discover them, independently
from the random order of pattern presentation. ART 2A-type
clusters are always coherent in pattern space, and in additj
are also always coherent in the parameter plane of seco
order systems. Even if there is reiable network state as
with Fuzzy ART, after a few presentations of a pattern set
network state is reached, where single patterns will not cha
their clusters anymore, and prototypes represent a mean
all accorded input patterns. Decisions on which kind of AR
2A-type network should be chosen for a particular applicati
depend on the computational requirements of the algorithms
on specific platforms. If all inspected system information is

stored in the direction of input vectors, pure ART 2A is a fast

alternative; otherwise one of its variations should be choseg
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