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Constructive Feedforward ART Clustering
Networks—Part |l

Andrea Baraldi and Ethem Alpaydin

Abstract—Part | of this paper defines the class of constructive
unsupervised on-line learning simplified adaptive resonance
theory (SART) clustering networks. Proposed instances of class
SART are the symmetric Fuzzy ART (S-Fuzzy ART) and the
Gaussian ART (GART) network. In Part Il of our work, a third
network belonging to class SART, termed fully self-organizing
SART (FOSART), is presented and discussed. FOSART is a
constructive, soft-to-hard competitive, topology-preserving,
minimum-distance-to-means clustering algorithm capable of:
1) generating processing units and lateral connections on an
example-driven basis and 2) removing processing units and

» topology-preserving mapping as defined in [8] is not pur-
sued,;

 prototype parameter estimates may be affected by noise
points and outliers because learning rates are computed
independently of the actual distance separating the input
pattern from the cluster template.

Unlike NG, SOM employs internode distances in a fixed
output lattice rather than interpattern distances in input space to
compute learning rates. Noticeably, SOM deals with topolog-

lateral connections on a minibatch basis. FOSART is compared ical relationships (e.g., adjacency) among output nodes without

with Fuzzy ART, S-Fuzzy ART, GART and other well-known

employing any explicit model of internode (lateral) connec-

clustering techniques (e.g., neural gas and self-organizing map) in tivity. Despite its many successes in practical applications,
several unsupervised learning tasks, such as vector quantization, SOM has some limitations, most of which are acknowledged

perceptual grouping and 3-D surface reconstruction. These
experiments prove that when compared with other unsupervised

learning networks, FOSART provides an interesting balance

between easy user interaction, performance accuracy, efficiency,
robustness, and flexibility.

Index Terms—Absolute and relative membership function,
adaptive resonance theory, clustering, Delaunay triangulation,
soft-to-hard competitive learning, topology preserving mapping,

in [2).

» Termination is not based on optimizing any model of the
process or its data [9]. Indeed, it has been shown that an
objective function cannot exist for the SOM algorithm,
i.e., there exists no cost function yielding Kohonen’s adap-
tation rule as its gradient [10], [11]. SOM instead features
a set of potential functions, one for each node, to be in-

Voroni partition. S . - .
dependently minimized following a stochastic (on-line)

gradient descent [10]. In [12], a cost function that leads
to an update strategy that is similar to, but not precisely
the same as, that of SOM is discussed. This cost function,
originally introduced in a nonneural context to design an
optimal vector quantizer codebook for encoding data for

|I. INTRODUCTION

N PART I of this paper, the symmetric Fuzzy ART (S-Fuzzy

ART) and Gaussian ART (GART) networks are proposed
as two instances of the simplified adaptive resonance theory ' VE :
(SART) group of ART clustering algorithms (see Part I, Sec- transm|§3|on_ along a noisy channel [13], has recently been
tion VII). In Part Il of this paper, we present and discuss a novel ~ 9eneralized in [14]. _ _ _
constructive unsupervised on-line learning SART algorithm, * The size of the output lattice, the learning rate and the size
termed fully self-organizing SART (FOSART), designed to of the resonance neighborhood mu:;t be varied empirically
address all recommendations proposed in Part I, Section [vV-C, rom one data set to another to achieve useful results [9].
to overcome potential weaknesses of Fuzzy ART. * Topology preserving mapping as defined in [8] is not guar-

With respect to existing clustering algorithms, FOSART aims ~ anteed. .
at combining useful properties derived from well-known clus- * Prototype parameter estimates may be severely affected
tering networks such as neural gas (NG) [1], self-organizing PY hoise points and outllers.. _
map (SOM) [2], [3], and growing neural gas (GNG) [4], [5] (forGNG, which is capable of generating and removing neurons and
a review, refer to [6] and [7]). lateral connections dynamically, features an expressive power

NG is successful because it minimizes a known cost functid@tentially superior to that of NG and SOM. In GNG, lateral
which converges on the hardmeans quantization error via aconnections are generated according to the competitive Hebbian
soft-to-hard competitive model transition. NG employs no latearning rule (CHR) [8]. To remove links, generate neurons and

eral connection and a fixed number of processing units. LimitEemove neurons, GNG adopts heuristics based on mini-batch
tions of NG are that: statistics, i.e., statistics collected over subsets of the input se-

guence to average information over the noise on the data. Lim-
Manuscript received May 3, 1999; revised February 8, 2001. This work ngtlor?s qf GNG are that: .
supported in_par@ by the Italian Space Agency (ASI) under Contract 98-135. * it minimizes no known cost function;
A. Baraldi is with ICSI, Berkeley, CA, and ISAO-CNR, Bologna, ltaly. « its heuristics emp|0y up to seven user-defined parameters.
Unlike Fuzzy ART, which belongs to the ART 1-based group

E. Alpaydin is with ICSI, Berkeley, CA, and Bgazici University, Istanbul,
Turkey. )
of networks (see Part I, Section Ill) and to the class of hy-
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Fig. 1. Nonconvex data set consisting of 140 data points belonging to a circular ring plus three Gaussian clusters.

perbox clustering algorithms (see Part I, Section V), and un-
like GART, which belongs to the SART group of networks (see
Part I, Section VII) and to the class of maximum likelihood
(ML) probability density function estimators for Gaussian mix-
tures (see Part I, Appendix IV), FOSART is designed as a min- «
imum-distance-to-means clustering network [15], that tries to
minimize a sum-of-squares (also termed quantization or dis-
torsion) error. This means that FOSART generates a partition ¢
of data space where clusters’ receptive fields (regions of sup-
port) are parameterized in terms of their center of mass, i.e.,
FOSART belongs to the class of clustering-by-replacement al-
gorithms. It has been proved that clustering-by-replacement al-
gorithms, in which cluster prototypes are extrapolated, rather ¢
than selected, from the data set, can be more efficient than clus-
tering-by-selection techniques, where cluster selection finds a
proper subset of the input data set [16]. Our idea is that the ¢
combination of clustering-by-replacement with lateral-connec-
tion adaptation mechanisms may allow FOSART to deal with
nonconvex data structures (particularly relevant in perceptual ¢
grouping problems [17], [18], e.g., curved string-like or concen-

belongs to the SART clustering framework (see Part I,
Section VII-B) and can be implemented according to ver-
sion 2 of the efficient ART (EART) implementation frame-
work (see Part |, Section [I-B2);

employs a soft-to-hard competitive model transition,
which is adapted from NG, to minimize a quantization
error [1], [4];

generates processing elements (PEs) dynamically, on an
example-driven basis, according to the vigilance test of
class SART [in Part |, see (3) and Section VII-B], i.e., an
individual input example suffices to initiate the creation of

a new unit;

removes PEs dynamically, based on a mini-batch learning
framework, i.e., based on statistics collected over subsets
of the input sequence [4];

generates lateral connections between processing unit
pairs dynamically, based on an example-driven mecha-
nism derived from the CHR [4], [5], [8], [19], [20];

removes lateral connections between unit pairs dynami-
cally, based on a mini-batch learning framework.

tric structures such as those shown in Fig. 1) that may be difficilbte that while example-driven parameter adaptation is very
to detect with the hyperbox clustering approach of Fuzzy ARZensitive to the presence of noise, mini-batch learning gains in

Part Il of this paper is organized as follows: in Section Ikobustness by collecting statistics which are averaged over the
FOSART is presented. An experimental comparison betwegsise on the data.

FOSART, GART and other well-known clustering algorithms is

proposed in Section lll; conclusions are reported in Section IX. Distorsion Error Minimization in NG and FOSART

Given a presentation sequencerefunlabeled analog pat-
Il. FOSART ternsX; € RY, 4 = 1, ..., m, whered is the dimension-
ality of input space, unsupervised learning systems detect a set
In synthesis, FOSART: of parameters capable of modeling hidden data structures (e.g.,
* is a clustering-by-replacement and minimum-distance-tbrear substructures), statistical data regularities or probability
means clustering network (i.e., it tries to minimize a quardensity functions [4]. Among unsupervised learning tasks, the
tization error); problem of clustering is that of separating the unlabeled data
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set into groups (i.e., hidden data structures), called clusters, Egjuation (30) guarantees that

which samples within a cluster are more similar than samples R

from different clusters. Usually, vectc;r prototypes, also called 3k (d (Xi, W)) -1 (31)
reference or template vectoW; € R, j = 1, ..., ¢, with =

¢ < m, are generated to characterize the members of a clusteras . . L
a group. Since the goal of clustering is to group the data at ha\HH!Ch is not always the case, e.g., see (39). This implies that

rather than provide an accurate characterization of unobsery&gighting functionk;(d(X;, W)) is a mathematical tool pro-

(future) samples generated from the same probability distrip{/ding @ model for “network-wide internode communication by

tion, the task of clustering may fall outside the framework ofuPSuming that processing elements are coupled through feed-

predictive (inductive) learning. In spite of this, clustering anafideways (lateral) connections” [26]. _ o
ysis often employs unsupervised learning techniques originally ' € necessary condition that guarantees approximate mini-
developed for vector quantization, which is a predictive learnif§ization of (29) is [52]

problem [21].

aE wdis " X
In this framework, a frequent goal of clustering systems is dodls — 2 Z(Xi - Wj)k; (d (Xh W)) +R;=0
=1

N . . o OW;
the minimization of thedistorsion (quantization, reconstruc-
tion) error, identified as the mean square error (MSE), defined j=1...,¢c (32)
as
where
1 m 9 R
Egis =MSE=—3% || Xi = Wy m Ok, (d (X W))
i=1 Rj = Z Z(X, — VV}L)2 IW-
wl(i) € {1, ¢} (27) i=1 h=1 J
. . . N . i=1 ...,¢c (33)
wherem is the size of a finite data set and (¢) is the index of
best-matching templaf& ;) detected as If we assume that
X5 — Wera || < 11X5 — W]l Rj=0, j=1,...,¢ (34)

wl(i) €{L e}, 7=1,....¢ (28) then the iterative batch solution of (33) becomes

where symbo|||.||.2 — (X%—le(i))T(X_i—le(i)) idgntifies _ i X. ko (d (X W<€>))

the square Euclidean distance. Equation (27) describes a region (e+1) izt v Y

of support of an output unit as a Voronoi polyhedron centered on Wi T m N

its reference vector, the whole set of reference vectors providing 2—31 kj (d (ng W(E)))

a partition of the input space known as Voronoi tesselation [4], =

[8]. Voronoi tessellation is the dual of Delaunay triangulation, J=1 ..., ¢ (35)

which is a peculiar form of triangulation in vgrious geometrica\lklhere variablee identifies the number of processing epochs,
and functional respects [4], [22], [23]. Equation (27) can be €Ol " the number of times the finite data set is repeat-

sidered the hard competitive version of the more general, 58' ly presented to the network. It is easy to prove that if
competitivedistance—weighted sum-of-squares clustering Col%}(d(Xi, VAV@)) — 1 whenj = wl(i) based on (28), and
function[1], [9], [24] zero otherwise, then (34) is satisfied, (29) converges at (27)
m . and (35) becomes the classical hartheans (HCM) update
Eawais = »_ > |IXi = W;||°k; (d (Xi, W)) (29) expression. Notice that (35) computes any template vector
i=1j=1 as a convex combination of input patterns: since the convex
. combination of a nonconvex data set may lie well outside the
where symbol(X;, W) = {d(X;, W1), ..., d(X;, We)}  data manifold, it is obvious that (27) and (29) cannot perform
identifies the set of interpattern distances between data Egint\ye|| for nonconvex types of data [27].
and each vector prototype in codebddk = {Wy, ..., W}, If the assumption about vanishing tedi) holds, i.e., if (34)

where prototypews, j = 1, ..., c,.iS the center of mass of holds, the recursive batch gradient descent solution of (29) is
the region of support (receptive field) of thh processing gefined as

unit, while termk;(d(X;, W)) > 0 is adistance-weighting

function[25], also termedkernel function21], subjected to a WJ§€'+1) in(e) — ¢(e) aE‘i’“’(‘j;S
set of constraints specified in [21, p. 222], such that function OW;"
k;(d(X;, W)) is monotonically nonincreasing with distance m
d(X;, Wj) and monotonically nondecreasing with distances :Wj(e>+6(c) Z (Xi_wf')) k; (d(Xi, W(e)))
d(X;, Wn),h=1, ..., ¢, h # j. For example [9] oy
L 1=1...,¢c (36)
. . il _ d(Xi,Wj)Z
& (d (X” W)) ’ (30) where learning rate(e) has to satisfy the three conditions ap-

1
,El d(Xi, Wn)? plied to the coefficients of the Robbins—Monro algorithm for
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finding the roots of a function iteratively (in our case, the funowith (40), then (29) becomes equivalent to (27). This learning
tion whose roots are investigatedif ... /0W;). These con- strategy is the soft-to-hard competitive model transition imple-

ditions are [24, pp. 47 and 96], [28] mented by NG to minimize (27) while aiming at preventing the
00 00 set of reference vectors from being trapped in suboptimal states.
1) lim e(t) =0; 2) Ze(t) =o0; 3) ZGQ(t) < oo, Note that implementation of (39) is time-consuming: for
t—oo . . . .
=1 =1 each input pattern, computational complexity of neighbor-

For example, when(t) = 1/¢ (harmonic series) [4], [9], [24, hood-rgnking iSclOgc._ _However, it has been s_,hown, both
theoretically and empirically, that NG performs in almost the

p. 96], thene(¢) decreases monotonically withunder Rob- ) .
bins—Monro conditions. Condition 3) states that learning rat@me way when only few PEs are considered coupled at a time,

«(t) must decrease fairly quickly, while condition 2) limits thd-€- NGS performance is not affected when soft competitive

rate of decrease of the learning rate: indeed, if this rate of dg&ming involves only a few (five to ten) “top” positions in the

crease is too quick, then it could stop the progression of the algst ©f sorted distances [26]. _
rithm toward the minimum [29]. According to condition 2), the OUr &im is to adapt (37)—(40) to FOSART. First, FOSART

infinite sum of the learning rates diverges. This is tantamouﬂ?ner"?‘tes gnd rem(;]ves outpgtunltls dynamically at different pre-
to saying that even after a large number of input signals angntation timess. Thus, (40) is replaced by

correspon_d_inglly low values of the learning rate), arpitra_rily_ NG
large modifications of reference vectors may occur in principle, s

although they are most unlikely to occur [4]. When the data diﬁihereemm, Aini @ndA 51, are user-defined parameters (see Sec-

tribution is stationary, conditions 1) to 3) are necessary but rﬁg I1-C1) whilec® is a PE-based (local) variable counting the
: , :

e(.t> € i .
= Xini(Apin/Aini) /emin Ji=1 ..., ¢t) (41)

sufficient to guarantee that true (batch) and stochastic (on-ling e” of thejjth processing unit as the number of times the finite

g;,iif?;gf scent algorithms converge to a pointin the parame|nput data set has been iteratively presented to the system while

. . . : that processing unit exists (see further Section 1I-C1). Second,
In the NG algorithm [1], a sequential (stochastic, on-line) up- . .
) : in FOSART, (potentially) coupled PEs are those topologically

date process, whose goal is to avoid the storage of all data points . . .
connected through lateral connections, i.e., (potentially) cou-

by assuming that they are arriving one at a time, is derived fro'T'ed PEs belong to the same output map. Thus, in FOSART,

(36) by dropping the sum over input patterns [24]. A differerﬁ . ST
approach is to separate out from (36) the contribution of tﬁ%a given presentation tinte

o unie® i :
(m + 1)th data point [24], [30], which gives [52] 1) best-matching uni&, |, is detected;

2) soft-to-hard competitive update equations, (37)—(39) and

W§t+1) = WJ@ +p0 (X(t) - W}t)) . j=1,...,¢c (41), are applied to neural units belon?ing to the same
(37) map of best-matching unEL(U?(t), Wherewjt) = 1if pro-
where cessing unitz$" is directly linked toEflfi(t), i =2
k; (d (X(t), W(ﬂ)) if processing unit" is indirectly linked toE?) ,,, but

/3]@ = (38) directly linked to any processing unit featuring neighbor-

Zt: k; (d (X<T), W(T))) hood-ranking equal to one, etc.

=1 The advanta(ge of this strategy is that FOSART detects neigh-
In the NG algorithm, the distance-weighting function is definelors of unitE,ufi(t) efficiently (by means of lateral connections),
as [1] i.e., no time-consuming neighborhood-ranking is required. The

. N disadvantage is that the FOSART minimization of cost function
— . _ () . . .
kj (d (X(t)a W(t))) =k (U (X(t)’ W(t))) =k (U’ ) (27) has a less rigorous mathematical foundation than that of
— i (XO, WD) /A1) (39)

where(¢) is a scale parameter, monotonically decreasing wiﬁ‘f Generation of Lateral Connections

time, which controls the degree of overlap (degree of fuzzi- Delaunay triangulation is the only form of triangulation in
ness) between receptive fields aq(a) = 7;(X®, W®) is which the circumcircle of each triangle contains no other point
the neighborhood-ranking of vectw " such that-¥) — gif from the original point set than the vertices of this triangle [4].

. _ . ! The dual of Delaunay triangulation is a Voronoi diagram, de-
WJ.(t) is the best-matching template, |.&V,J§t) =w%  oth- y unay trianguration | ' diag

o . ® 1 wi(t)’ fined as the graph that connects, in the data space, each vector
erwiser;” =1 if W. is the secpnd best-matching templatepair that has adjacent Voronoi polyhedra (receptive fields). It
etc. A possible expression fot) is has been proved that Delaunay triangulation and its dual, the

() = )\im(Afm/Ami)t/t‘““" (40) \Voronoi diagram, solve or, at least, yield a starting point for ef-

ficiently solving proximity problems in a metric space (such as
wheret . is the maximum number of input presentationghek-nearest neighbor search, the Euclidean minimum spanning
while A;.; > Arin. Widely employed settings for these paramtree, the traveling salesman problem, etc.) [8], [22]. Moreover,
eters are\;,,; = 5, andAy;,, = 0.01 [1], [26], [31]. Delaunay triangulation has proved to be optimal for piecewise
It can be proved that (39) satisfies condition (34), i.e., (3Tihear function regression over a triangulation of the input sam-
and (38) hold [1]. In this case, whex{t) — A, = 0inline ples [22], [23].
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By projecting input patterns onto a network of processing  obtained when the vigilance parameter is lowered. In other
units such that similar patterns are projected onto units adja- words, p is a model of top-down external requirements
cent in the network and, vice versa, such that adjacent units in  (expectations, or prior knowledge) provided by the ex-
the network code similar patterns, topology preserving mapping ternal environment (supervisor) (see Part |, Section 1I-A).
(TPM) in the sense proposed in [8] plays an importantrole ina ¢ An edge ratio threshold» > 1 (see Section 1I-B). By
variety of natural as well as artificial distributed processing sys-  default,er = 1.62 (aurea section).
tems. Examples of TPMs in the nervous system are the retino-« To reach termination, FOSART requires a lower limit for
topic map in the visual cortex and the mapping from the body the number of training epochs during which each node has

surface onto the somatosensory cortex [32]. to survive,enin > 1, this parameter affecting the overall
The CHR is an example-driven connection rule such that if, number of training epochs required by the algorithm to
at presentation time, input patternX(*), extracted from input reach termination (consider that, in FOSART, units are
manifold X C R<, features output unitEgi £ andES% , as generated and removed dynamically as the number of
the best and second-best matching, respectively, then a lateral input pattern presentations,increases).
connection between this unit pair is established [8]. Under the ¢ Scale variables [seﬁEt), Jj=1,...,ct),in (41)] are
hypothesis that the distribution of reference vectors (codebook) bounded by parameters,; > ;. which control the
w® = (W W1 isdense o, i.e., for each input soft-to-hard competitive learning transition. By default,
X®), triangle A(X®), Wg)l(t), W‘(;)z(t)) lies completely on we employ Ain; = 0.5 and Ap;, = 0.01. Note that
X, itis proved that CHR forms an output graph (lattice) which ~ Arin = 0 is set by the application developer, i.e., it does
is theinduced Delaunay triangulationf codebookW () and not need to be user-definéd.
forms a perfectly TPM oft’ in the sense proposed in [8]. 2) Implementation Schemdé&OSART is implemented

GNG, which employs CHR [4], ignores the aboveccording to version 2 of the EART processing framework
requirement about codebooRV® being dense (e.g., proposed in Part I, Section II-B2.
see simulations at: http://www.neuroinformatik.ruhr-uni- Step 0. Initialization: Pattern countet is set to zero. One
bochum.de/ini/VIDM/research/gsn/DemoGNG/GNG.html). input patternX(*) is chosen (either sequentially or randomly)
To account for this constraint we propose a constrained CHIRm the input data set. Next, processing element (PE) counter
(CCHR) version, based on the following heuristic criterior¢(t 4+ 1) is set to one and processing u Lier1) is gener-

given input patterrK () and the best and second-best matchingoq such thaiv™?) . — X®_ Mini-batch PE-based (local)
y = .

units £} . andE") ., a lateral connection between this unit st
o T wl(t) w2(t)? (1) o e
pair is established i epoch countee, ", is initialized to zero. FOSART employs

PE-based epoch counters to compute PE-based learning rates. In
<t>H <er (42) FOSART,the “age” (localtime) of a processing unitis aninteger

value equal to the number of times the finite input data set has
whereer > 1 is a user-defined edge ratio threshold, such thpken iteratively presented to the system while that processing

tetrahedra in the induced Delaunay triangulation have circumigit exists. Mini-batch PE-based (local) best-matching counter,
dius-to-shortest edge ratio below thresheltdin a Delaunay tri- bmf,tﬁi), is initialized to one. Scale parameterin Gaussian
angulation, the circumradius-to-shortest edge ratio is a measgg@vation functions is set equal to

inversely proportional to the quality of a simplex, i.e., one would

like this ratio to be as close to one as possible [23]. Threshold o=1/p. (43)

er, which may be scale-dependent in perceptual grouping, has

a default value equal to 1.62, based on empirical evidence. Note

that this default value is the so-called aurea measure and is alspe; s examine the meaning of default values; = 0.5 andA .., = 0.01.

t (t) t (t)
|xO =W/ [x© - Wl

considered a quality bound in [23]. In (39), this default option implies that, while for the best-matching template
W) (., Whose rank is zero, learning rake,:()(d(X®, W®)) = 1
C. The FOSART Algorithm regardless ofe') . for the second best-matching templaféy(}) ,
. . . ) — - .
To overcome potential weaknesses of Fuzzy ART, FOSAR{OSe rank is one, if local epoch countef},, = 0 (or, respectively

, . . : > enin), such than') ;= As.i (o, tively< Asi), then leami
is consistent with the SART clustering framework proposed i <) SU¢h thatt..z..) + (o, respectivelys Ay;,.), then learning

. . . rate koo (d(X®, WB)) = exp(—1/0.5) = 0.135 [or, respectively,
Part |, Section VII-B, and tries to address all recommendatioRScy,(—1/0.01) = 3.27 - 10¢-** & 0]. In words, the learning rate of a

proposed in Section IV-C of Part I. second best-matching urﬂffgm decreases from 0.135 to zero as the (local)
For simplicity’s sake, we assume to deal with an analog dafgoch countes’) ,, increases from zero @.;... To summarize, in FOSART,
set which is finite. i.e.. the input data set consist8 ef m < oo scale parameteX,,,; controls the initial degree of overlap (i.e., the degree of
' . d NP . . fuzziness) between receptive fields of processing units (when this scale param-
analog data vectors iR“. This finite data set of siz1 iS re-  eter reduces to zero, receptive fields do not overlap and become equivalent to
peatedly presented to the clustering network until a terminatigronoi polyhedra). This is evident if we employ three valuea of; = 5, 0.5

criterion is satisfied. Each presentation sequence is termean%0.0l, respectively. In (39), for the second best-matching template whose

i i () _ @ i
L. . ® . rank is one, if local counter,; ,, = 0, sAuch that,.;.,, = Ain: according to
training epoch._ Adaptive p;':\rametewfj vi =1, c(t), (41), then leaming ratk., o (d(X ", W®)) = exp(—1/Am;) = 0.818,
also belong to input spade®. 0.135 and3.27 - 10-%9 ~ 0 when\,,; = 5, 0.5 and 0.01, respectively,
1) Input Parameters:FOSART requires the user to define: see (39). Note that whed.,.. = A;. = 0.01, FOSART is purely

.. . hard-competitive because only the learning rate of the winner category,
* An ART-based vigilance threshold as a relative number,, (X, W®)), is larger than zero (and equal to one), while

p € (0, 1], such that coarser grouping of input patterns is;(d(X®, W®)) = 0,vel” > 0,5 =1, ..., ¢(t),j # wl(t).
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Intuitively, (43) means that if vigilance thresholddecreases  2) Apply CCHR via (42). If (42) holds true, then:
then it causes coarser grouping by making Gaussian receptive ®

fields larger. When hard competitive learning is enforced a) If between output unitst;,, and Egg(t) a

among Gaussian units featuring the same spread parameter, lateral connectionLSi(t) w2t already exists,

then Voronoi tessellation of the input space is accomplished [4]. then increase its local best-matching counter
Step 1. Input Pattern Presentatiorthe pattern counter is in- bmgj—é; w2 = bm,(uf)lgt) w2y T 1

creased by one as= t + 1, and a new patterX(®) is chosen b) Otherwise (i.e., there is no ateral connection), link

(either sequentially or randomly) from the input set and pre- L,(ufi(t)ym(t) is generated and its best-matching

sented to the network.

Step 2. Detection of Processing Units Eligible for Reso-
nance—Activation Value Computation and Best-Matching Unit 3) Apply soft-to-hard competitive update equations,
Selection [See (1) in Part I]:Determine the best and second (37)—(39) and (41), to output units belonging to the same
best-matching units, if any, such that map of best-matching unEL(U? " i.e., to output units that

are topologically connected to the best-matching unit.

(t+1) 1.

local counter is set to one, i.é:mwl(t) w2t) =

wl(t) = arg max {AFFOSART (X(t), W@)}
G=1, s () ) unit 9 . Next, 7Y = 1 if processing unitE](t) is

wl(t)" '
= arg j=117r.1.i.171c(t) {HX(” - WJ@ } (44) directly linked toE,L(U?( b 7’§t) = 2 if processing uniiE](t)
is indirectly linked toE"") ., but directly linked to any

w2(t) = arg o, max {AFFOSART (X(t), W}t))} processing unit featuring neighborhood-ranking equal to
I=L s e(B); L) one, etc. (see Section II-A).
= arg min {HX“) - w
i=1, ..., c(t); jFwl(t) J

(45) iy :

} Step 4(b). Nonresonance Condition—New Processing Ele-
ment Allocation: If resonance condition (47) is not satisfied,

where the FOSART activation and match functions are the samee new processing unit is dynamically allocated to match ex-

function defined as ternal expectations. Thus, the PE counter is increase(k as
1) = ¢(t) + 1 and a new nodé?iz:j:i) is allocated and initial-
AFrosarr (X(t), WJ@) ized such thanf(:’ji = X® . Asaconsequence, FOSART re-

quires no randomization of initial templates since initial values

_ (t) () . . .
= MIFrosarr (X » W ) are data-driven. Finally, the PE-based epoch and best-matching
HX(t) _ WJ@ 2 counters;zi'gji) andbmffgji), are initialized to zero and one,

=exp | —+———"" ] €(0,1] (46) respectively.
o? Step 5. Controls at Epoch TerminatioWhen the entire
input data set is presented to the system, i.¢(t%m) == 0],

_ . _ where operatofs computes the remainder ofdivided bym,
where (46) is a normal absolute membership (NAM) functiofhen, the following operations occur:

that satisfies constraints applied by the SART clustering

framework to activation and match functions, see Part I, * superfluous cells are removed, such that ifoutputEgc»I'i)t
Section VII-B. Since FOSART activation and match functions  features local countém” ==0,j = 1, ..., «(t), i.e.,

are identical, it is obviously true that the former function E™® has not been the best-matching unit in any pattern
monotonically increases with the latter, and vice versa. Thus, asjsignment during the last processing epoch, then it is re-

it is proved that FOSART can be implemented efficiently  ,qved and PE countext) is decreased ag(t + 1) =
according to version 2 of the EART processing scheme (see, in ct) — 1.

Part|, Section II-B2 and Table I). _ _ + Superfluous lateral connections are removed, such that
Step 3. Resonance Domain Detection—Vigilance Testing [See Vi e {1, e@®)} Yh € {1, c(t 5} h # 3, if connec-

(3) in Part 1]: If vigilance test tion L"), exists and featurelsn”), == 0, i.e., connec-
, tion Lgt)h has not been selected by any pattern assignment
MFrosarr (X(t), W\(N)1(t)) 2 ps pe (0,1 (47) during the last processing epoch, then it is removed.
. P(E-b)ased( )epoch counters are incremented by one as
t+1 t P
is satisfied, then “resonance” occurs [goto Step 4(a)]. Other- ¢ =¢ t+Lyj=1.., o(t)-
wise, goto Step 4(b). e PE-based best-matching countbvsj('t),j =1, ..., ),

Step  4(a). Resonance  Condition—Reinforcement are reset to zero.

Learning: The following sequence of operations is per- * All connection-based best-matching counters'”)

3, h?
formed: Vie{l, et)},Yh € {1, c(t)}, h # j, are reset to zero.
. t) ..
1) The best-matclhmg counter of urﬁ‘é}l(t) isincreased by  giep 6. Check for Convergencéf: PE-based epoch counter
one, i-e-.bm,(uff(t; = bm,(ufi(t) + 1. egt) > eminyJ = 1, ..., ¢(t), then stop. Otherwise, goto Step 1.
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D. Potential Weaknesses of FOSART TABLE |
. . i HARD-COMPETITIVE FOSART. BPOCHS= 10. THIRTY PRESENTATIONS
Potential limitations of FOSART are listed below [6]. OF THE IRIS DATA SET

» Since FOSART employs some heuristic criteria in neigh-
borhood-ranking [see Step 4(a) in Section II-C2], then .
FOSART does not minimize any known objective func- =
tion, i.e., its termination is not based on optimizing any 3 | 3.00 | 0.00 1 0.240 | 0.0000 | 0.240 | 0.240
model of the process or its data [9].

* FOSART cannot shift codewords through noncontiguous >
Voronoi regions. This increases the chances of FOSART 3 | 5.41 | 0.96 3 0.518 | 0.0087 | 0.510 | 0.530
being trapped in local minima of the distorsion error.

* FOSART is order-dependent due to on-line learning and 12 | 11.83 | 0.80 3 0.615 | 0.0073 | 0.605 | 0.623
example-driven generation of reference vectors and lateral
connections.

* It combines mini-batch learning techniques, for neuron I1l. EXPERIMENTAL RESULTS
and synapse removal, with example-driven generation of

. In this section, FOSART is applied to the Iris and Simpson
neurons and synapses, the latter strategy being more F&¥a sets for comparison with Fuzzy ART and S-Fuzzy ART
sitive to the presence of noise than mini-batch learning.

. Besides vigilance thresholg and minimum epoch (see Part I, Section VI). Unlike Fuzzy ART and S-Fuzzy
numbere,..., FOSART employs two parameters; and ART, which are hyperbox clustering algorithms not applicable

Xini» Which are user-defined rather than data-driven (no&% vector quantization _tasks, FOSART is a m|n|mum-d|s-_
that A;:, is always set equal to a very small IC)Ositivéance—to-means clustering network that can be employed in

value, e.g., 0.01. see Section II-C1). These parametg?sdor quantization, entropy maximization and perceptual

can be considered as significant prior structures, i.e., dFPUPIng (see S;ec'uon I-E). X o worith
important property of the model that must be “hard-wired T OSART is also compared with another SART algorithm,

or built-in, perhaps to be tuned later by experience, b@d*RT (sé€ Appendix IV in Part I). Unlike FOSART, which
not learned in any statistically meaningful way” [33].  PUrsues soft-to-hard competitive learning to minimize a distor-
sion error, GART is purely hard competitive to maximize the

E. Potential Advantages of FOSART joint probab|llt¥ of a _Gaussmn mixture. Moreover, .t_o detect
) ) the best-matching unit, GART employs prior probability terms
Potential advantages of FOSART are listed below [6].  \yhich are ignored in FOSART (in other words, FOSART as-
* Owing to its soft-to-hard competitive implementationsumes that cluster types are equiprobable oa griori basis,
FOSART is expected to be less prone to being trappediig., before processing the data).
local minima and less likely to generate dead units thanFinally, in vector quantization and perceptual grouping tasks,
hard competitive alternatives [1], [4]. FOSART is compared with other well-known clustering algo-

+ Owing to its neuron removal strategy, it is robust againgthms found in the literature (e.g., NG, SOM, etc.).
noise, i.e., it avoids overfitting.

 Feedback interaction between attentional and orienting FosaRT

subsystems allows FOSART to self-adjust its network size . ) . .
depending on the complexity of the clustering task. Iris Data Set: In line with Part I, Section VI, FOSART is

- Owing to its ability to distribute initial reference vectordnPut with 30 different sequences of the Iris data set while a
in the input manifold uniformly, FOSART reduces the riskn@0rity vote mechanism provides a multiple-to-one class pre-

of dead unit formation and may reduce computation tinféiction function (multiple-category classification [16]).
with respect to traditional random or splitting by two ini- Vigilance threshold is adjusted with a trial-and-error pro-

ol

o(c¢) | no. ps 7 a(p) P oM

5.00 | 0.71 2 0.440 | 0.0102 | 0.430 | 0.450

tialization techniques [4], [34]. cedure until the number of detected clusters in every input se-
- FOSART is computationally efficient because its compiiuence equals the desired number of clustess 3, 5, 8, and
tation time increases linearly &&(t)+ no. of linkg(t)). 12, respectively.

« The expressive power of networks that incorporate Default values of scale parameters; andAy;, are 0.5 and
competition among lateral connections in a constructi&01, respectively, see Section II-C1. To test hby; affects
framework, like FOSART and GNG, is superior to that oFOSART, we employ three valuesf,; = 5, 0.5,and0.01, re-
traditional constructive (e.g., see [31], [35] and [36]) oBpectively, corresponding to decreasing intensities of soft com-
nonconstructive clustering systems (e.g., NG and SOM#tition among processing units, see Section II-C1.
which employ no lateral connection explicitly [4]. As a Average outputresults collected when the number of detected
consequence, FOSART, like GNG, features an applicatiéategories equaled the desired number of clusters are presented
domain extended to: 1) vector quantization; 2) entropi Tables I-VI, where, in addition to symbols already employed
maximization (where each reference vector has the sainelables Il and Il of Part |, acronymi/ SE stands for mean
chance of being the winner); and 3) structure detection @uantization square error.
input data to be mapped in a topologically correct way Tables | and Il describe the situation in which FOSART is
onto submaps of an output lattice pursuing dimensionalibyard-competitive by setting;,.; = Ayin = 0.01in (41). In this
reduction [4]. experiment, hard-competitive FOSART performs better than
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TABLE 1 TABLE V
HARD-COMPETITIVE FOSART. EPOCHS= 10. THIRTY PRESENTATIONS FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. Ain: = 5,
OF THE IRIS DATA SET Asin = 0.01. EPOCHS= 10
¢ E o(E) | Em | Exs | MSE | o(MSE) | MSE,, | MSEy ¢ z o(¢) | no. ps 7 a(p) . o

3 | 15.833 | 1.493 | 12 19 | 0.536 | 0.0157 0.526 0.569 3 3.30 | 0.55 3 0.201 | 0.0131 | 0.180 | 0.220

5 {17.667 | 3.319 | 15 24 |1 0.326 | 0.0163 0.312 0.347 5 5.02 | 0.81 3 0.330 | 0.0309 | 0.300 | 0.400

8 | 13.333 1 2.988 | 7 16 | 0.228 | 0.0103 0.219 0.249
8 7.36 | 1.25 3 0.459 | 0.0107 | 0.440 | 0.475

12 | 3.348 | 0.487 | 3 4 0.169 | 0.0050 0.163 0.178

121 11.68 | 1.15 3 0.521 | 0.0134 | 0.500 | 0.540

TABLE I
FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. A;,,; = 0.5,
Afin = 0.01. EPOCHS= 10

TABLE VI
FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. A;,; = 5,
Asin = 0.01. EPOCHS= 10

¢ | & |0 |no. ps o0 | om | oo .

P E o(E) E, | Exr | MSE | o(MSE) | MSE,, | MSExn
3 3.00 0.00 1 0.240 | 0.0000 | 0.240 | 0.240 3 | 25.916 | 10.512 | 14 45 | 0.747 0.1277 0.590 0.950
5 5.00 0.00 1 0.445 | 0.0000 | 0.445 | 0.445 5 10.388 | 5.042 6 25 0.346 0.0125 0.336 0.377

.947 2.437 7 14 | 0.235 0.0 0.230 0.242
8 7.91 1.18 3 0.500 | 0.0093 | 0.490 | 0.510 899 3 o

12} 3.722 0.751 3 5 0.175 | 0.0081 0.166 0.189

121 11.60 | 1.12 3 0.567 | 0.0196 | 0.560 | 0.624

reference vectors detected by hard-competitive FOSART when

FOSART. THRTY P TABLE IV S DATA SeT . the number of output clusters is three.
. THIRTY PRESENTATIONS OF THEIRIS DATA SET. A;,,; = 0.3, . . .
Ao = 0.01. EPOCHS= 10 To summarize, our experiments show that in terms of clas-

sification rate, an optimal value of;,; (degree of fuzziness)

—_ - exists for each data set. X;,,; is too large, i.e., if the degree
¢ £ oE) | Em | By | MSE | o(MSE) | MSEn | MSEM ot fi)77iness is t00 large, then all cluster templates tend to con-
3 | 15.833 | 1.551 ] 11 | 17 | 0.533 | 0.0050 | 0.526 | 0.555 VErge (collapse) on the center of gravity (grand mean) of the
data set. The comparison of Table Il in Part | with Table IV
5| 14.83311.239 ) 14 | 17 | 0.312 | 0.0029 | 0.310 | 0.317  gshows that FOSART may be preferable to S-Fuzzy ART in sev-
eral clustering situations both in terms of stability and accuracy.
The advantage of FOSART with respect to S-Fuzzy ART may
12| 3.733 | 0.457 | 3 | 4 |0.160| 0.0019 | 0.157 | 0.163  become relevant by considering the larger domain of applica-
tions of FOSART, which includes vector quantization (e.g., for
surface reconstruction), entropy maximization and perceptual
S-Fuzzy ART in terms of efficiency (smaller deviations in pergrouping (see further on this section).
formance), while in terms of accuracy it performs significantly Simpson Data Setin line with Part I, Section VI, FOSART
better in cases = 3 andc = 12 and worse in cases= 5 and is input with six different presentations of the Simpson data set.
¢ = 8 Whene = 3, the FOSART misclassification error isWhen user parameters are= 0.021, A;,; = 0.5 (default value)
in line with those of other clustering algorithms found in th@nd Az;,, = 0.01 (default value), FOSART detects three clus-
literature (see Part |, Section VI). ters. The corresponding confusion matrix is shown in Table IX,

Tables Ill and IV describe the situation in which FOSARWhereM SE = 12.70, o (M SE) = 1.07. In this case FOSART
employsX;,,; = 0.5 (default value) in (41). This parameter setis insensitive to the order of the input sequence, i.e., its robust-
ting allows FOSART to improve its performance when- 5, nesstochanges inthe order of presentation of the input sequence
while no improvement is recorded when= 8. Overall, the is superior to that featured by Fuzzy ART and S-Fuzzy ART (see
system seems to gain in stability. Tables IV and V in Part ).

Tables V and VI describe the situation in which FOSART em- When the number of detected clustersis five< 0.1, A\;; =
ploys A;,; = 5 in (41). Accuracy improves in cases= 5 and 0.3, Az;, = 0.01), the average confusion matrix reporting point
¢ = 8, but greatly worsens when= 3. In all clustering situa- allocations and, in parentheses, standard deviation per cell is
tions, lower accuracy, and stability (larger deviations in perfoequivalent to Table VI in Part |, where the number of misclassi-
mance) are recorded. fication points is equal to two. In this case, FOSART accuracy

Table VII shows the numerical values of the centers of the inferior to that featured by S-Fuzzy ART (see Table VIl in
three Iris classes, while Table VIII provides the mean values Bhrt ).

8 | 13.625 | 2.242 8 16 | 0.229 | 0.0095 0.217 0.249
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TABLE VI useful to illustrate the potential (subjective), but peculiar ability
CENTERS OF THETHREE IRIS CLASSES of FOSART in clustering nonconvex data sets.

Another interesting perceptual grouping application regards

Band 1 | Band 2 | Band 3 | Band 4 the two-spirals data set shown in Fig. 3 [19]. This noiseless
data set consists of 194 patterns belonging to two concentric
Sup. Label 1 5.006 3.428 1.462 0.246 spirals such that in the outer parts of the spirals data points from
one spiral are farther apart from each other than from points

Sup. Label 2 | 5.936 2.770 4.260 1.326 of the inner spiral [19]. The hypothetical task is to construct
a two-stage classifier, employing FOSART as its first stage,

Sup. Label 3 | 6.588 2.974 5.552 2.026 which is able to distinguish between the two spirals. This task

appears to be rather difficult for typical multilayer perceptrons
trained with backpropagation (BP) (see Table X, adapted from
[19]). Fig. 4 (to be compared with [19, Fig. 21]) shows the

TABLE Viil projection onto input space of the output graph generated by

HARD-COMPETITIVE FOSART. EPOCHS= 10. THIRTY PRESENTATIONS OF FOSART wh the t irals dat ti d with i t

THE IRIS DATA SET. NO. OF CLUSTERS = 3. MEAN VALUES OF when the two spirals aata set IS processed with Inpu
THE REFERENCEVECTORS parametersp = 0.88 ande,,;, = 1; output parameters are:

number of nodes- 148, A/ SE = 0.019, number of maps- 16.
In Fig. 4, receptive field centers are depicted as white squares,
lines represent projections of lateral connections and black
circles indicate input patterns. The overall result is consistent
with human perception of structures shown in Fig. 3, which
Sup. Label 2 | 5.9078 | 2.7510 | 4.4018 | 1.4319 ma_1k(_es this res_ult intere_sting and p_eCl_JIiar in _the panorama of
existing clustering techniques, despite its (obvious) dependence
Sup. Label 3 | 6.8388 | 3.0686 | 5.7230 | 2.0667 on parameter tweaking. In this example, FOSART guarantees
an important saving in computation time with respect to the
growing cell structure (GCS) algorithm [19], see Table X. Itis
interesting to note that GCS and its evolution, GNG [4], both
TABLE IX employ a mini-batch output unit generation criterion which:
FOSART.p = 0.021, Aiy; = 0.5 (DEFAULT VALUE) AND A i, = 0.01 1) averages over the noise on the data and 2) locates initial
(DEFAULT VALUE). EPOCHS= 10. SX PRESENTATIONS OF THESMPSON 1o mnlates within the convex hull of the input data. On the one

DATA SET. NO. OF CLUSTERS= 3. M SE = 12.70, 0o(MSE) = 1.07. . L.
AVERAGE CONFUSION MATRIX REPORTING POINT ALLOCATIONS AND, IN hand, GCS and GNG may require more training epochs than

Band 1 Band 2 | Band 3 | Band 4

Sup. Label 1 5.0061 3.4231 1.4701 0.2500

PARENTHESES STANDARD DEVIATION PER CELL FOSART to reach termination when a nonconvex input data
set is processed, since initial templates of GCS and GNG may
Cluster 1 | Cluster 2 | Cluster 3 lie outside a nonconvex input manifold (see simulations at
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VIDM/re-
Sup. Label 1 7 (0) 0 (0) 0 (0) search/gsn/DemoGNG/GNG.html). On the other hand,
FOSART locates initial templates on an example-driven basis,
Sup. Label 2 0 (0 8 (0 0 (0 i.e., FOSART is more sensitive than GCS and GNG to the
Sup. Label 3 0 ) 1 0 (0) presence of noise (see.Section.II—D) [4], [37].
Surface ReconstructionThe fifth data set employed to test
Sup. Label 4 0 (O 0 (O 2 (0 FOSART properties is 3-D and consists of 9371 vectors repre-
senting a digitized human face [38]. This data set is requantized
Sup. Label 5 | 0 (0) 0 (0) 6 © by FOSART in comparison with the NG algorithm employing

Hyperboxes for efficient initialization of reference vectors [39].
Fig. 5 shows the 3-D digitized human face employed as input
Perceptual Grouping:Let us apply FOSART to a perceptualsequence, while Fig. 6 depicts the digitized face resampled by

grouping problem in vision. In other words, FOSART is emFOSART which does not require any preprocessing. Input pa-
ployed to extract the global impression of an image, i.e., to demeters arep = 0.39, ey = 14. Output information is: no.
tect the “right” partition of an image into subsets [17]. Fig. &f nodes= 1745, no. of maps= 19, M SE = 2.98, number
shows projections onto input space of lateral connections a#-epochs= 15. Tables XI and Xll provide output statistics
tected by FOSART when the nonconvex and concentric datBFOSART and NG in this application setting. These tables
set shown in Fig. 1 is processed, where receptive field centetow that for any fixed number of epochs FOSART performs
are depicted as circles. Note that the inner concentric structbetter than NG with Hyperbox in terms of MSE minimization,
is clustered by a single and isolated reference vector. This he-, FOSART trains faster than NG with Hyperbox in this clus-
havior is made possible by CCHR, while it would be impossiblering case. Owing to its ability to localize initial reference vec-
with traditional CHR. Due to the subjective nature of clusterintprs which lie on the input manifold, FOSART requires no input
problems, it is obviously true that results shown in Fig. 2 delata preprocessing and fewer training epochs than NG with Hy-
pend on parameter tweaking, i.e., these results have no alyserbox to converge. Moreover, FOSART is not affected by the
lute relevance or validity. Nonetheless, we consider these respitssence of dead units. Finally, projections onto input space of
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Fig. 2. FOSART processing of the nonconvex data set. Output information is: 11 templates, three maps, training @pochs

14 I 1 {
13 1 . . . L
12 S : =

11 4 . . . . . -

Band 2
~
|

Fig. 3. Two-spiral data set consisting of 194 data points.

lateral connections detected by FOSART can be directly emsmplementary functional features of FOSART and ELBG.
ployed for surface reconstruction, as shown in Fig. 7. On the one hand, FOSART is on-line learning, constructive
Vector Quantization:In vector quantization, FOSART mayand cannot shift codewords through noncontiguous Voronoi
be employed as the pre-processing module of the enhancegions. On the other hand, ELBG is nonconstructive, batch
Linde—Buzo—-Gray (ELBG) clustering algorithm [40], [41].learning and capable of moving codewords through contiguous
This network combination may be interesting owing to thas well as noncontiguous Voronoi regions to reduce quanti-
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Neural Interaction

Band 2

Fig. 4. FOSART processing of the two-spiral data set. Output information is: 148 templates, 16 maps, training=ep@tchise compared with [19, Fig. 21]).

TABLE X between ELBG and LBG-U is that the former algorithm allows
TRAINING EPOCHSREQUIRED TO SOLVE THE TWO-SPIRAL PROBLEM several shifts per iteration, while LBG-U allows only one. The
(ADAPTED FrROM [19]) . . .
capability of moving codewords through contiguous as well
as noncontiguous Voronoi regions allows ELBG to perform
Network model Epochs better than LBG and the modified LBG (M-LBG) version
proposed in [44]. Owing to its efficient implementation of local

il 20009 LBG adjustments [41], the ELBG increase in computational

Cross entropy BP 10000 complexity with respect to LBG remains negligible (below
8%) [40]. In [40], ELBG is initialized either randomly or with

Cascade-correlation 1700 the splitting-by-two technique proposed in [43]. It has also

been shown that the ELBG distorsion value does not depend on

initial conditions, but ELBG convergence time does [40].

FOSART 2 In line with [40], an image compression task is considered,

where the 8-bit Lena image, consisting of 52 512 pixels, is

divided into blocks of 4x 4 pixels to generate 16 384 vectors

zation error (27) [40], [41]. To the best of our knowledgein a 16-dimensional data space. The M-LBG algorithm [44],

this latter feature makes ELBG, together with the LBG-utilitye| BG with initialization by splitting-by-two and ELBG with

(LBG-U) algorithm proposed in [42], quite unique in thenitialization by FOSART are compared. Output results are

panorama of clustering algorithms found in the literature.  shown in Table XlIl, where the peak signal to noise ratio
In ELBG, templates eligible for shifting and splitting argqPSNR) is computed as

those whose “local” contribution to the MSE value is, re-

spectively, below and above the mean distorsion. Templates d - (255)?

eligible for shifting are selected sequentially and those eligible PSNIE =10logy, TMSE

for splitting are selected stochastically (in a way similar to

the roulette wheel selection in genetic algorithms). Eaathered is the dimensionality of input space (in this Lena ex-

selected pair of templates is adjusted locally based on theple,d = 16).

traditional LBG (i.e., c-means) batch clustering algorithm In this experiment, Table Xl shows that: 1) ELBG is robust

[43]. A backtracking mechanism allows ELBG to recovewith respect to changes in initial conditions (compare PSNR

from inconvenient shift attempts. Thus, one main differencalues); 2) ELBG is always more accurate than M-LBG; 3)

Growing Cell Structure (GCS) 180
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Fig. 5. 3-D digitized human face consisting of 9371 data points.
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Fig. 6. Reference vectors detected by FOSART when the digitized human face data set is processed. Output information is: 1745 templates, 19 maps, mean

square error (MSE¥x 2.98, training epochs= 5.
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Fig. 7. Projection onto input space of lateral connections detected by FOSART in the output map of the digitized human face data set.

ELBG benefits from being initialized with FOSART, both in Convergence in Training:Several works in the literature

terms of accuracy and computation time; and 4) ELBG initiakhow that with its ability to distribute initial reference vectors

ized with FOSART is faster to train than M-LBG.

in the input manifold uniformly, FOSART may be faster to
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TABLE XI and 0.1 whiley is increased until the desired number of output
OUTPUT STATISTICS OF Z%ﬁﬁﬁg"c“;g /fTZPSLé'iD TOTHE3-D DIGIMZED  (jysters (3 or 5) is detected. Best, worst, and average classifica-
tion performances of GART are shown in Tables XIV and XV,
where statistics relating to the negative log-likelihood (NLL)
cost value are included. When compared with Tables I-IV, Ta-
bles XIV and XV reveal that GART is less stable and effective
than FOSART in minimizing MSE, in line with theoretical
5 1744 3558 19 | 3.08 expectations, and that the misclassification erforof the
classifier consisting of GART combined with a majority vote
mechanism is worse than that obtained with FOSART. Besides
15 1745 3519 19 | 2.908 its worse accuracy, the main deficiency of GART is to feature
two internal parameters that affect the number of categories
created during training, i.e., GART is twice as difficult to use
TABLE XiII as FOSART.
OUT;\L,’::;‘”XEPTL'ICESD?FO'\_'F(H;E'Q"_TDR%\I’GEIE;I\QVE'E”H'::AF;\ZR’?%?;?EOSCEETSS'NG Simpson Data SetWhen compared with Table V1 in Part |
and Table IX in Part Il, which both hold in the case of FOSART,
Tables XVI and XVII reveal that GART is less stable and ef-
fective than FOSART in clustering the Simpson data set con-

Epoch | PEs | Connections | Maps | MSE

1 1743 3102 20 3.40

10 1745 3521 19 2.98

Epoch | PEs | Dead units | MSE

1 1743 35 6.54 sistently with perceptual grouping mechanisms. In line with the
assessment of GART in the Iris data clustering case, these results
5 1743 1 3.45 confirm that minimization of the negative log-likelihood (NLL)

seems less useful than minimization of MSE in supervised and
unsupervised learning problems, such as data classification, per-
15 1743 3 2.99 ceptual grouping and vector quantization, other than probability
density function estimation. Moreover, GART is more difficult
to use than FOSART.

train than other vector quantizers which employ random ini-

tialization of templates, such as NG (see above in this section),

SOM and the fuzzy learning vector quantization (FLVQ) algo- IV. CONCLUSION

rithm [45]. For example, MSE values of the training phase of

FOSART, FLVQ and SOM in an ERS-1 SAR image clustering In Part | of this paper, two algorithms, S-Fuzzy ART and
task are shown in Fig. 8 [46]. More examples of this kind ca@ART, the latter taken from the literature, are presented as two

10 1743 7 3.11

be found in [47], [48]. instances of the SART group of ART clustering framework.
In Part Il of this paper, another instance of class SART,
B. GART termed FOSART, is proposed to take advantage of the com-

To the best of our knowledge, Gaussian ART (GARTﬁination of the SART optimization framework with useful
which is sketchily described in [49] and further discussed Rfoperties driven by successful clustering algorithms such
Appendix IV of Part I, has never been employed and inves@$ NG, SOM, and GNG. FOSART is a constructive, on-line
gated as a standalone module in the existing literature. Ratf@®ming, topology-preserving, soft-to-hard competitive, min-
it is employed in the ARTMAP classification frameworkimum-distance-to-means SART clustering network whose aim
where the Gaussian ARTMAP (GAM) supervised networl® to minimize a quantization error. FOSART features several
is proposed in both hard- and soft-competitive versions (tR&culiar properties when compared to existing clustering
latter being more successful) [49], [50]. In GART [49], thélgorithms:
number of categories created during training is a function of a 1) unlike GNG and SOM, FOSART tries to minimize a
two-dimensional parameter space consisting of parameters quantization (sum-of-squares) error via a soft-to-hard
and~, see Appendix IV in Part I, whereas FOSART employs competitive model transition.
parametep exclusively. In other words, for a desired number 2) Unlike Fuzzy ART, the system requires no complement
of output clusters and a given data set, the global minimum of coding of the input data.
the GART error function is found with an optimal pair of 3) Unlike SOM and NG, FOSART requires no randomiza-
and p values to be detected by the user with a trial-and-error tion of the initial template vectors.
procedure. This implies that GART is more difficult to use 4) Unlike SOM and NG, the system requires agriori
than FOSART in practical applications. For example, there are knowledge of the size of the network.
values ofp (e.g., 0.01) for which ney value is found to allow 5) Unlike SOM, the system requires agriori knowledge
GART to detect five output categories in the Simpson data set. of the topology of the network.

GART is applied to the Iris and Simpson data sets to obtain a 6) Unlike SOM, NG, and Fuzzy ART, FOSART explicitly
comparison with Fuzzy ART, S-Fuzzy ART and FOSART. deals with lateral connections.

Iris Data Set: GART is evaluated under two different  7) Unlike GNG, FOSART attempts to address all con-
regimes of parameterg and p. In particular,p is set to 0.01 straints required to make the CHR guarantee perfect
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TABLE XIII
COMPARISON OFM-LBG AND ELBG IN THE CLUSTERING OF THE16-DIMENSIONAL LENA DATA SET, CONSISTING OF16 384 \ECTORS *: RESULTS
TAKEN FROM THE LITERATURE

c M-LBG ELBG with splitting-by-two ELBG with FOSART
PSNR™ MSE Iter.” | PSNR MSE Iter. PSNR MSE Iter.
(db) (db) (split.+ELBG) (db) (FOSART+ELBG)
256 | 31.92 | 668.6 20 31.97 | 660.9 46 + 8 31.98 | 659.4 3+ 10
512 | 33.09 | 510.7 17 33.17 | 499.2 54 + 8 33.22 | 494.0 3+9
1024 | 34.42 | 376.0 19 34.72 | 349.3 64 + 9 34.78 | 344.3 3+9

Quantization error. ERS-1 SAR image. 354 nodes.
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Fig. 8. MSE as a function of the number of training epochs for FOSART, FLVQ, and SOM in the clustering of an ERS-1 SAR imag612#xel size, 394
clusters (taken from the literature).

TABLE XIV
GART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. EPOCHS= 10

¢ | o (o) NIL | o(NLL) | NLL,, | NLLy;

3 3.23 | 0.60 (0.01, 6), (0.1, 13) 232.96 56.02 186.70 | 311.38

5 4.74 | 0.60 (0.01, 3), (0.1, 9) 159.90 14.28 149.35 | 187.07

8 8.47 | 1.27 | (0.01, 0.85), (0.1, 3.5) | 141.34 3.25 136.67 | 146.75

12 1 12.283 | 0.83 (0.01, 0.4), (0.1, 2) 139.83 1.75 138.24 | 145.88

topology-preserving mapping in the sense proposed in 9) Unlike Fuzzy ART, the system is capable of removing
[8]. noise categories to avoid overfitting.

8) Unlike parameters of SOM and NG, FOSART param- 10) Unlike Fuzzy ART, FOSART is competitive with other
eters are not affected by outliers which are instead clustering models found in the literature when the Iris
mapped onto noise categories. data set is clustered with three reference vectors [51].
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TABLE XV
GART. THIRTY PRESENTATIONS OF THERIS DATA SET. EPOCHS= 10
¢ E o(E) | Ep, | Eng | MSE | 0(MSE) | MSE,, | MSEy
3 117.95215.978 | 10 | 40 | 0.959 | 0.2156 0.740 1.350
5 | 21.503 | 4.032 | 16 | 28 | 0.447 | 0.0693 0.390 0.600
8 | 13.571 | 5.543 | 8 22 10.277 | 0.0240 0.250 0.330
12 | 6.611 | 2.200 | 4 12 1 0.196 | 0.0141 0.180 0.220
TABLE XVI

GART. SX PRESENTATIONS OF THESIMPSON DATA SET. (p, v) = (0.01, 3.5)
AND (p, 7v) = (0.1, 12). EPOCcHS= 10. No. OF CLUSTERS = 3.
MSE = 1745,0(MSE) = 5.09, NLL = 58.96,0(NLL) = 1.89.
AVERAGE CONFUSION MATRIX REPORTINGPOINT ALLOCATIONS AND, IN
PARENTHESES STANDARD DEVIATION PER CELL

Cluster 1 | Cluster 2 | Cluster 3
Sup. Label 1 7 (0) 0 (0) 0 (0)
Sup. Label 2 || 4.8 (3.9) | 3.1 (3.9) 0 (0)
Sup. Label 3 0 (0) 1 (0 0 (0)
Sup. Label 4 0 (0) 0 (0) 2 (0)
Sup. Label 5 0 (0) 0 (0) 6 (0)
TABLE XVII

GART. SX PRESENTATIONS OF THESIMPSON DATA SET. (p, v) = (0.1, 0.27)
AND (p, v) = (0.3, 15). EPOcHS= 10. No. OF CLUSTERS = 5.
MSE = 7.72,0(MSE) = 1.21, NLL = 54.66,0(NLL) = 2.51.
AVERAGE CONFUSION MATRIX REPORTINGPOINT ALLOCATIONS AND, IN
PARENTHESES STANDARD DEVIATION PER CELL

Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Cluster §
Sup. Label 1 6 (0) 0o (0) o (0 0 (0) 1 (0)
Sup. Label 2 0 (0) 6.6 (0.5) 0 (0) 0 (0) 1.3 (0.5)
Sup. Label 3 0 () o (0 1 (0) o (0) 0 (0
Sup. Label 4 0 (0 0 (0 0.6 (1.0) [ 1.3 (1.0) 0 (0)
Sup. Label 5 0 (0 0 (0 0 (0 6 (0) 0 (0

FOSART performances are assessed in a wide range of su-

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 3, MAY 2002

In comparison with some well-known clustering networks
like NG, SOM, and FLVQ, FOSART trains faster while it re-
mains competitive in terms of quantization error minimization.

In the field of neural networks for vector quantization, an
interesting development of FOSART is the combination of
FOSART with the ELBG batch clustering algorithm, which is
capable of moving codewords through noncontiguous Voronoi
regions [40], [41].

As a future development in the field of neural networks for
classification we plan to combine FOSART with the “match
tracking” mechanism employed in the Gaussian ARTMAP
(GAM) classifier [50]. Match tracking involves raising vigi-
lance thresholg, whose initial (baseline) value is low (e.g.,
10~7), when an incorrect prediction is made. Since match
tracking adapts vigilance threshold automatically, where
p is the only FOSART internal parameter which affects the
number of categories created during training, this constructive
classification scheme would require no user-defined parameter
in adapting the network size to problem complexity until no
incorrect prediction is made during training (thus, this classifier
would belong to the class of consistent classifiers [16], [37]).
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