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Constructive Feedforward ART Clustering
Networks—Part II

Andrea Baraldi and Ethem Alpaydın

Abstract—Part I of this paper defines the class of constructive
unsupervised on-line learning simplified adaptive resonance
theory (SART) clustering networks. Proposed instances of class
SART are the symmetric Fuzzy ART (S-Fuzzy ART) and the
Gaussian ART (GART) network. In Part II of our work, a third
network belonging to class SART, termed fully self-organizing
SART (FOSART), is presented and discussed. FOSART is a
constructive, soft-to-hard competitive, topology-preserving,
minimum-distance-to-means clustering algorithm capable of:
1) generating processing units and lateral connections on an
example-driven basis and 2) removing processing units and
lateral connections on a minibatch basis. FOSART is compared
with Fuzzy ART, S-Fuzzy ART, GART and other well-known
clustering techniques (e.g., neural gas and self-organizing map) in
several unsupervised learning tasks, such as vector quantization,
perceptual grouping and 3-D surface reconstruction. These
experiments prove that when compared with other unsupervised
learning networks, FOSART provides an interesting balance
between easy user interaction, performance accuracy, efficiency,
robustness, and flexibility.

Index Terms—Absolute and relative membership function,
adaptive resonance theory, clustering, Delaunay triangulation,
soft-to-hard competitive learning, topology preserving mapping,
Voroni partition.

I. INTRODUCTION

I N PART I of this paper, the symmetric Fuzzy ART (S-Fuzzy
ART) and Gaussian ART (GART) networks are proposed

as two instances of the simplified adaptive resonance theory
(SART) group of ART clustering algorithms (see Part I, Sec-
tion VII). In Part II of this paper, we present and discuss a novel
constructive unsupervised on-line learning SART algorithm,
termed fully self-organizing SART (FOSART), designed to
address all recommendations proposed in Part I, Section IV-C,
to overcome potential weaknesses of Fuzzy ART.

With respect to existing clustering algorithms, FOSART aims
at combining useful properties derived from well-known clus-
tering networks such as neural gas (NG) [1], self-organizing
map (SOM) [2], [3], and growing neural gas (GNG) [4], [5] (for
a review, refer to [6] and [7]).

NG is successful because it minimizes a known cost function
which converges on the hard-means quantization error via a
soft-to-hard competitive model transition. NG employs no lat-
eral connection and a fixed number of processing units. Limita-
tions of NG are that:
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• topology-preserving mapping as defined in [8] is not pur-
sued;

• prototype parameter estimates may be affected by noise
points and outliers because learning rates are computed
independently of the actual distance separating the input
pattern from the cluster template.

Unlike NG, SOM employs internode distances in a fixed
output lattice rather than interpattern distances in input space to
compute learning rates. Noticeably, SOM deals with topolog-
ical relationships (e.g., adjacency) among output nodes without
employing any explicit model of internode (lateral) connec-
tivity. Despite its many successes in practical applications,
SOM has some limitations, most of which are acknowledged
in [2].

• Termination is not based on optimizing any model of the
process or its data [9]. Indeed, it has been shown that an
objective function cannot exist for the SOM algorithm,
i.e., there exists no cost function yielding Kohonen’s adap-
tation rule as its gradient [10], [11]. SOM instead features
a set of potential functions, one for each node, to be in-
dependently minimized following a stochastic (on-line)
gradient descent [10]. In [12], a cost function that leads
to an update strategy that is similar to, but not precisely
the same as, that of SOM is discussed. This cost function,
originally introduced in a nonneural context to design an
optimal vector quantizer codebook for encoding data for
transmission along a noisy channel [13], has recently been
generalized in [14].

• The size of the output lattice, the learning rate and the size
of the resonance neighborhood must be varied empirically
from one data set to another to achieve useful results [9].

• Topology preserving mapping as defined in [8] is not guar-
anteed.

• Prototype parameter estimates may be severely affected
by noise points and outliers.

GNG, which is capable of generating and removing neurons and
lateral connections dynamically, features an expressive power
potentially superior to that of NG and SOM. In GNG, lateral
connections are generated according to the competitive Hebbian
learning rule (CHR) [8]. To remove links, generate neurons and
remove neurons, GNG adopts heuristics based on mini-batch
statistics, i.e., statistics collected over subsets of the input se-
quence to average information over the noise on the data. Lim-
itations of GNG are that:

• it minimizes no known cost function;
• its heuristics employ up to seven user-defined parameters.

Unlike Fuzzy ART, which belongs to the ART 1-based group
of networks (see Part I, Section III) and to the class of hy-
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Fig. 1. Nonconvex data set consisting of 140 data points belonging to a circular ring plus three Gaussian clusters.

perbox clustering algorithms (see Part I, Section IV), and un-
like GART, which belongs to the SART group of networks (see
Part I, Section VII) and to the class of maximum likelihood
(ML) probability density function estimators for Gaussian mix-
tures (see Part I, Appendix IV), FOSART is designed as a min-
imum-distance-to-means clustering network [15], that tries to
minimize a sum-of-squares (also termed quantization or dis-
torsion) error. This means that FOSART generates a partition
of data space where clusters’ receptive fields (regions of sup-
port) are parameterized in terms of their center of mass, i.e.,
FOSART belongs to the class of clustering-by-replacement al-
gorithms. It has been proved that clustering-by-replacement al-
gorithms, in which cluster prototypes are extrapolated, rather
than selected, from the data set, can be more efficient than clus-
tering-by-selection techniques, where cluster selection finds a
proper subset of the input data set [16]. Our idea is that the
combination of clustering-by-replacement with lateral-connec-
tion adaptation mechanisms may allow FOSART to deal with
nonconvex data structures (particularly relevant in perceptual
grouping problems [17], [18], e.g., curved string-like or concen-
tric structures such as those shown in Fig. 1) that may be difficult
to detect with the hyperbox clustering approach of Fuzzy ART.

Part II of this paper is organized as follows: in Section II,
FOSART is presented. An experimental comparison between
FOSART, GART and other well-known clustering algorithms is
proposed in Section III; conclusions are reported in Section IV.

II. FOSART

In synthesis, FOSART:

• is a clustering-by-replacement and minimum-distance-to-
means clustering network (i.e., it tries to minimize a quan-
tization error);

• belongs to the SART clustering framework (see Part I,
Section VII-B) and can be implemented according to ver-
sion 2 of the efficient ART (EART) implementation frame-
work (see Part I, Section II-B2);

• employs a soft-to-hard competitive model transition,
which is adapted from NG, to minimize a quantization
error [1], [4];

• generates processing elements (PEs) dynamically, on an
example-driven basis, according to the vigilance test of
class SART [in Part I, see (3) and Section VII-B], i.e., an
individual input example suffices to initiate the creation of
a new unit;

• removes PEs dynamically, based on a mini-batch learning
framework, i.e., based on statistics collected over subsets
of the input sequence [4];

• generates lateral connections between processing unit
pairs dynamically, based on an example-driven mecha-
nism derived from the CHR [4], [5], [8], [19], [20];

• removes lateral connections between unit pairs dynami-
cally, based on a mini-batch learning framework.

Note that while example-driven parameter adaptation is very
sensitive to the presence of noise, mini-batch learning gains in
robustness by collecting statistics which are averaged over the
noise on the data.

A. Distorsion Error Minimization in NG and FOSART

Given a presentation sequence ofunlabeled analog pat-
terns , , where is the dimension-
ality of input space, unsupervised learning systems detect a set
of parameters capable of modeling hidden data structures (e.g.,
linear substructures), statistical data regularities or probability
density functions [4]. Among unsupervised learning tasks, the
problem of clustering is that of separating the unlabeled data
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set into groups (i.e., hidden data structures), called clusters, for
which samples within a cluster are more similar than samples
from different clusters. Usually, vector prototypes, also called
reference or template vectors , , with

, are generated to characterize the members of a cluster as
a group. Since the goal of clustering is to group the data at hand
rather than provide an accurate characterization of unobserved
(future) samples generated from the same probability distribu-
tion, the task of clustering may fall outside the framework of
predictive (inductive) learning. In spite of this, clustering anal-
ysis often employs unsupervised learning techniques originally
developed for vector quantization, which is a predictive learning
problem [21].

In this framework, a frequent goal of clustering systems is
the minimization of thedistorsion (quantization, reconstruc-
tion) error, identified as the mean square error (MSE), defined
as

(27)

where is the size of a finite data set and is the index of
best-matching template detected as

(28)

where symbol identifies
the square Euclidean distance. Equation (27) describes a region
of support of an output unit as a Voronoi polyhedron centered on
its reference vector, the whole set of reference vectors providing
a partition of the input space known as Voronoi tesselation [4],
[8]. Voronoi tessellation is the dual of Delaunay triangulation,
which is a peculiar form of triangulation in various geometrical
and functional respects [4], [22], [23]. Equation (27) can be con-
sidered the hard competitive version of the more general, soft
competitivedistance-weighted sum-of-squares clustering cost
function[1], [9], [24]

(29)

where symbol
identifies the set of interpattern distances between data point
and each vector prototype in codebook ,
where prototype , , is the center of mass of
the region of support (receptive field) of theth processing
unit, while term is a distance-weighting
function [25], also termedkernel function[21], subjected to a
set of constraints specified in [21, p. 222], such that function

is monotonically nonincreasing with distance
and monotonically nondecreasing with distances
, . For example [9]

(30)

Equation (30) guarantees that

(31)

which is not always the case, e.g., see (39). This implies that
weighting function is a mathematical tool pro-
viding a model for “network-wide internode communication by
subsuming that processing elements are coupled through feed-
sideways (lateral) connections” [26].

The necessary condition that guarantees approximate mini-
mization of (29) is [52]

(32)

where

(33)

If we assume that

(34)

then the iterative batch solution of (33) becomes

(35)

where variable identifies the number of processing epochs,
i.e., the number of times the finite data set is repeat-
edly presented to the network. It is easy to prove that if

when based on (28), and
zero otherwise, then (34) is satisfied, (29) converges at (27)
and (35) becomes the classical hard-means (HCM) update
expression. Notice that (35) computes any template vector
as a convex combination of input patterns: since the convex
combination of a nonconvex data set may lie well outside the
data manifold, it is obvious that (27) and (29) cannot perform
well for nonconvex types of data [27].

If the assumption about vanishing term holds, i.e., if (34)
holds, the recursive batch gradient descent solution of (29) is
defined as

(36)

where learning rate has to satisfy the three conditions ap-
plied to the coefficients of the Robbins–Monro algorithm for
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finding the roots of a function iteratively (in our case, the func-
tion whose roots are investigated is ). These con-
ditions are [24, pp. 47 and 96], [28]

For example, when (harmonic series) [4], [9], [24,
p. 96], then decreases monotonically withunder Rob-
bins–Monro conditions. Condition 3) states that learning rate

must decrease fairly quickly, while condition 2) limits the
rate of decrease of the learning rate: indeed, if this rate of de-
crease is too quick, then it could stop the progression of the algo-
rithm toward the minimum [29]. According to condition 2), the
infinite sum of the learning rates diverges. This is tantamount
to saying that even after a large number of input signals and
correspondingly low values of the learning rate , arbitrarily
large modifications of reference vectors may occur in principle,
although they are most unlikely to occur [4]. When the data dis-
tribution is stationary, conditions 1) to 3) are necessary but not
sufficient to guarantee that true (batch) and stochastic (on-line)
gradient descent algorithms converge to a point in the parameter
space [29].

In the NG algorithm [1], a sequential (stochastic, on-line) up-
date process, whose goal is to avoid the storage of all data points
by assuming that they are arriving one at a time, is derived from
(36) by dropping the sum over input patterns [24]. A different
approach is to separate out from (36) the contribution of the

th data point [24], [30], which gives [52]

(37)
where

(38)

In the NG algorithm, the distance-weighting function is defined
as [1]

(39)

where is a scale parameter, monotonically decreasing with
time, which controls the degree of overlap (degree of fuzzi-
ness) between receptive fields and is

the neighborhood-ranking of vector such that if

is the best-matching template, i.e., , oth-

erwise if is the second best-matching template,
etc. A possible expression for is

(40)

where is the maximum number of input presentations,
while . Widely employed settings for these param-
eters are , and [1], [26], [31].

It can be proved that (39) satisfies condition (34), i.e., (37)
and (38) hold [1]. In this case, when in line

with (40), then (29) becomes equivalent to (27). This learning
strategy is the soft-to-hard competitive model transition imple-
mented by NG to minimize (27) while aiming at preventing the
set of reference vectors from being trapped in suboptimal states.

Note that implementation of (39) is time-consuming: for
each input pattern, computational complexity of neighbor-
hood-ranking is . However, it has been shown, both
theoretically and empirically, that NG performs in almost the
same way when only few PEs are considered coupled at a time,
i.e., NGs performance is not affected when soft competitive
learning involves only a few (five to ten) “top” positions in the
list of sorted distances [26].

Our aim is to adapt (37)–(40) to FOSART. First, FOSART
generates and removes output units dynamically at different pre-
sentation timess. Thus, (40) is replaced by

(41)

where , and are user-defined parameters (see Sec-
tion II-C1), while is a PE-based (local) variable counting the
“age” of the th processing unit as the number of times the finite
input data set has been iteratively presented to the system while
that processing unit exists (see further Section II-C1). Second,
in FOSART, (potentially) coupled PEs are those topologically
connected through lateral connections, i.e., (potentially) cou-
pled PEs belong to the same output map. Thus, in FOSART,
at a given presentation time

1) best-matching unit is detected;
2) soft-to-hard competitive update equations, (37)–(39) and

(41), are applied to neural units belonging to the same
map of best-matching unit , where if pro-

cessing unit is directly linked to ,

if processing unit is indirectly linked to , but
directly linked to any processing unit featuring neighbor-
hood-ranking equal to one, etc.

The advantage of this strategy is that FOSART detects neigh-
bors of unit efficiently (by means of lateral connections),
i.e., no time-consuming neighborhood-ranking is required. The
disadvantage is that the FOSART minimization of cost function
(27) has a less rigorous mathematical foundation than that of
NG.

B. Generation of Lateral Connections

Delaunay triangulation is the only form of triangulation in
which the circumcircle of each triangle contains no other point
from the original point set than the vertices of this triangle [4].
The dual of Delaunay triangulation is a Voronoi diagram, de-
fined as the graph that connects, in the data space, each vector
pair that has adjacent Voronoi polyhedra (receptive fields). It
has been proved that Delaunay triangulation and its dual, the
Voronoi diagram, solve or, at least, yield a starting point for ef-
ficiently solving proximity problems in a metric space (such as
the -nearest neighbor search, the Euclidean minimum spanning
tree, the traveling salesman problem, etc.) [8], [22]. Moreover,
Delaunay triangulation has proved to be optimal for piecewise
linear function regression over a triangulation of the input sam-
ples [22], [23].
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By projecting input patterns onto a network of processing
units such that similar patterns are projected onto units adja-
cent in the network and, vice versa, such that adjacent units in
the network code similar patterns, topology preserving mapping
(TPM) in the sense proposed in [8] plays an important role in a
variety of natural as well as artificial distributed processing sys-
tems. Examples of TPMs in the nervous system are the retino-
topic map in the visual cortex and the mapping from the body
surface onto the somatosensory cortex [32].

The CHR is an example-driven connection rule such that if,
at presentation time, input pattern , extracted from input
manifold , features output units and as
the best and second-best matching, respectively, then a lateral
connection between this unit pair is established [8]. Under the
hypothesis that the distribution of reference vectors (codebook)

, is dense on , i.e., for each input
, triangle lies completely on

, it is proved that CHR forms an output graph (lattice) which
is the induced Delaunay triangulationof codebook and
forms a perfectly TPM of in the sense proposed in [8].

GNG, which employs CHR [4], ignores the above
requirement about codebook being dense (e.g.,
see simulations at: http://www.neuroinformatik.ruhr-uni-
bochum.de/ini/VIDM/research/gsn/DemoGNG/GNG.html).
To account for this constraint we propose a constrained CHR
(CCHR) version, based on the following heuristic criterion:
given input pattern and the best and second-best matching
units and , a lateral connection between this unit
pair is established iff

(42)

where is a user-defined edge ratio threshold, such that
tetrahedra in the induced Delaunay triangulation have circumra-
dius-to-shortest edge ratio below threshold. In a Delaunay tri-
angulation, the circumradius-to-shortest edge ratio is a measure
inversely proportional to the quality of a simplex, i.e., one would
like this ratio to be as close to one as possible [23]. Threshold

, which may be scale-dependent in perceptual grouping, has
a default value equal to 1.62, based on empirical evidence. Note
that this default value is the so-called aurea measure and is also
considered a quality bound in [23].

C. The FOSART Algorithm

To overcome potential weaknesses of Fuzzy ART, FOSART
is consistent with the SART clustering framework proposed in
Part I, Section VII-B, and tries to address all recommendations
proposed in Section IV-C of Part I.

For simplicity’s sake, we assume to deal with an analog data
set which is finite, i.e., the input data set consists of
analog data vectors in . This finite data set of size is re-
peatedly presented to the clustering network until a termination
criterion is satisfied. Each presentation sequence is termed a
training epoch. Adaptive parameters , ,
also belong to input space .

1) Input Parameters:FOSART requires the user to define:

• An ART-based vigilance threshold as a relative number
, such that coarser grouping of input patterns is

obtained when the vigilance parameter is lowered. In other
words, is a model of top-down external requirements
(expectations, or prior knowledge) provided by the ex-
ternal environment (supervisor) (see Part I, Section II-A).

• An edge ratio threshold (see Section II-B). By
default, (aurea section).

• To reach termination, FOSART requires a lower limit for
the number of training epochs during which each node has
to survive, , this parameter affecting the overall
number of training epochs required by the algorithm to
reach termination (consider that, in FOSART, units are
generated and removed dynamically as the number of
input pattern presentations,, increases).

• Scale variables [see , , in (41)] are
bounded by parameters which control the
soft-to-hard competitive learning transition. By default,
we employ and . Note that

is set by the application developer, i.e., it does
not need to be user-defined.1

2) Implementation Scheme:FOSART is implemented
according to version 2 of the EART processing framework
proposed in Part I, Section II-B2.

Step 0. Initialization: Pattern counter is set to zero. One
input pattern is chosen (either sequentially or randomly)
from the input data set. Next, processing element (PE) counter

is set to one and processing unit is gener-

ated such that . Mini-batch PE-based (local)

epoch counter is initialized to zero. FOSART employs
PE-based epoch counters to compute PE-based learning rates. In
FOSART, the “age” (local time) of a processing unit is an integer
value equal to the number of times the finite input data set has
been iteratively presented to the system while that processing
unit exists. Mini-batch PE-based (local) best-matching counter,

, is initialized to one. Scale parameterin Gaussian
activation functions is set equal to

(43)

1Let us examine the meaning of default values� = 0:5 and� = 0:01.
In (39), this default option implies that, while for the best-matching template
W , whose rank is zero, learning ratek (d(X ; Ŵ )) = 1

regardless ofe , for the second best-matching template,W ,

whose rank is one, if local epoch countere = 0 (or, respectively,

� e ), such that� = � (or, respectively,� � ), then learning
rate k (d(X ; Ŵ )) = exp(�1=0:5) = 0:135 [or, respectively,
� exp(�1=0:01) = 3:27 � 10 � 0]. In words, the learning rate of a
second best-matching unitE decreases from 0.135 to zero as the (local)

epoch countere increases from zero toe . To summarize, in FOSART,
scale parameter� controls the initial degree of overlap (i.e., the degree of
fuzziness) between receptive fields of processing units (when this scale param-
eter reduces to zero, receptive fields do not overlap and become equivalent to
Voronoi polyhedra). This is evident if we employ three values of� = 5, 0.5
and 0.01, respectively. In (39), for the second best-matching template whose
rank is one, if local countere = 0, such that� = � according to
(41), then learning ratek (d(X ; Ŵ )) = exp(�1=� ) = 0:818,
0.135 and3:27 � 10 � 0 when� = 5, 0.5 and 0.01, respectively,
see (39). Note that when� = � = 0:01, FOSART is purely
hard-competitive because only the learning rate of the winner category,
k (d(X ; Ŵ )), is larger than zero (and equal to one), while
k (d(X ; Ŵ )) � 0, 8 e � 0, j = 1; . . . ; c(t), j 6= w1(t).
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Intuitively, (43) means that if vigilance thresholddecreases
then it causes coarser grouping by making Gaussian receptive
fields larger. When hard competitive learning is enforced
among Gaussian units featuring the same spread parameter,
then Voronoi tessellation of the input space is accomplished [4].

Step 1. Input Pattern Presentation:The pattern counter is in-
creased by one as , and a new pattern is chosen
(either sequentially or randomly) from the input set and pre-
sented to the network.

Step 2. Detection of Processing Units Eligible for Reso-
nance—Activation Value Computation and Best-Matching Unit
Selection [See (1) in Part I]:Determine the best and second
best-matching units, if any, such that

(44)

(45)

where the FOSART activation and match functions are the same
function defined as

(46)

where (46) is a normal absolute membership (NAM) function
that satisfies constraints applied by the SART clustering
framework to activation and match functions, see Part I,
Section VII-B. Since FOSART activation and match functions
are identical, it is obviously true that the former function
monotonically increases with the latter, and vice versa. Thus,
it is proved that FOSART can be implemented efficiently
according to version 2 of the EART processing scheme (see, in
Part I, Section II-B2 and Table I).

Step 3. Resonance Domain Detection—Vigilance Testing [See
(3) in Part I]: If vigilance test

(47)

is satisfied, then “resonance” occurs [goto Step 4(a)]. Other-
wise, goto Step 4(b).

Step 4(a). Resonance Condition—Reinforcement
Learning: The following sequence of operations is per-
formed:

1) The best-matching counter of unit is increased by

one, i.e., .

2) Apply CCHR via (42). If (42) holds true, then:

a) If between output units and a

lateral connection already exists,
then increase its local best-matching counter

.
b) Otherwise (i.e., there is no lateral connection), link

is generated and its best-matching

local counter is set to one, i.e., .

3) Apply soft-to-hard competitive update equations,
(37)–(39) and (41), to output units belonging to the same
map of best-matching unit , i.e., to output units that
are topologically connected to the best-matching unit.
Best ranking is assigned to the best-matching

unit . Next, if processing unit is

directly linked to , if processing unit

is indirectly linked to , but directly linked to any
processing unit featuring neighborhood-ranking equal to
one, etc. (see Section II-A).

Step 4(b). Nonresonance Condition—New Processing Ele-
ment Allocation: If resonance condition (47) is not satisfied,
one new processing unit is dynamically allocated to match ex-
ternal expectations. Thus, the PE counter is increased as

and a new node is allocated and initial-

ized such that . As a consequence, FOSART re-
quires no randomization of initial templates since initial values
are data-driven. Finally, the PE-based epoch and best-matching
counters, and , are initialized to zero and one,
respectively.

Step 5. Controls at Epoch Termination:When the entire
input data set is presented to the system, i.e., if ,
where operator computes the remainder ofdivided by ,
then the following operations occur:

• superfluous cells are removed, such that if output unit

features local counter , , i.e.,

has not been the best-matching unit in any pattern
assignment during the last processing epoch, then it is re-
moved and PE counter is decreased as

.
• Superfluous lateral connections are removed, such that

, , , if connec-
tion exists and features , i.e., connec-

tion has not been selected by any pattern assignment
during the last processing epoch, then it is removed.

• PE-based epoch counters are incremented by one as
, .

• PE-based best-matching counters , ,
are reset to zero.

• All connection-based best-matching counters ,
, , , are reset to zero.

Step 6. Check for Convergence:If PE-based epoch counter
, , then stop. Otherwise, goto Step 1.
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D. Potential Weaknesses of FOSART

Potential limitations of FOSART are listed below [6].
• Since FOSART employs some heuristic criteria in neigh-

borhood-ranking [see Step 4(a) in Section II-C2], then
FOSART does not minimize any known objective func-
tion, i.e., its termination is not based on optimizing any
model of the process or its data [9].

• FOSART cannot shift codewords through noncontiguous
Voronoi regions. This increases the chances of FOSART
being trapped in local minima of the distorsion error.

• FOSART is order-dependent due to on-line learning and
example-driven generation of reference vectors and lateral
connections.

• It combines mini-batch learning techniques, for neuron
and synapse removal, with example-driven generation of
neurons and synapses, the latter strategy being more sen-
sitive to the presence of noise than mini-batch learning.

• Besides vigilance threshold and minimum epoch
number , FOSART employs two parameters, and

, which are user-defined rather than data-driven (note
that is always set equal to a very small positive
value, e.g., 0.01, see Section II-C1). These parameters
can be considered as significant prior structures, i.e., an
important property of the model that must be “hard-wired
or built-in, perhaps to be tuned later by experience, but
not learned in any statistically meaningful way” [33].

E. Potential Advantages of FOSART

Potential advantages of FOSART are listed below [6].
• Owing to its soft-to-hard competitive implementation,

FOSART is expected to be less prone to being trapped in
local minima and less likely to generate dead units than
hard competitive alternatives [1], [4].

• Owing to its neuron removal strategy, it is robust against
noise, i.e., it avoids overfitting.

• Feedback interaction between attentional and orienting
subsystems allows FOSART to self-adjust its network size
depending on the complexity of the clustering task.

• Owing to its ability to distribute initial reference vectors
in the input manifold uniformly, FOSART reduces the risk
of dead unit formation and may reduce computation time
with respect to traditional random or splitting by two ini-
tialization techniques [4], [34].

• FOSART is computationally efficient because its compu-
tation time increases linearly as no. of links .

• The expressive power of networks that incorporate
competition among lateral connections in a constructive
framework, like FOSART and GNG, is superior to that of
traditional constructive (e.g., see [31], [35] and [36]) or
nonconstructive clustering systems (e.g., NG and SOM)
which employ no lateral connection explicitly [4]. As a
consequence, FOSART, like GNG, features an application
domain extended to: 1) vector quantization; 2) entropy
maximization (where each reference vector has the same
chance of being the winner); and 3) structure detection in
input data to be mapped in a topologically correct way
onto submaps of an output lattice pursuing dimensionality
reduction [4].

TABLE I
HARD-COMPETITIVE FOSART. EPOCHS= 10. THIRTY PRESENTATIONS

OF THE IRIS DATA SET

III. EXPERIMENTAL RESULTS

In this section, FOSART is applied to the Iris and Simpson
data sets for comparison with Fuzzy ART and S-Fuzzy ART
(see Part I, Section VI). Unlike Fuzzy ART and S-Fuzzy
ART, which are hyperbox clustering algorithms not applicable
to vector quantization tasks, FOSART is a minimum-dis-
tance-to-means clustering network that can be employed in
vector quantization, entropy maximization and perceptual
grouping (see Section II-E).

FOSART is also compared with another SART algorithm,
GART (see Appendix IV in Part I). Unlike FOSART, which
pursues soft-to-hard competitive learning to minimize a distor-
sion error, GART is purely hard competitive to maximize the
joint probability of a Gaussian mixture. Moreover, to detect
the best-matching unit, GART employs prior probability terms
which are ignored in FOSART (in other words, FOSART as-
sumes that cluster types are equiprobable on ana priori basis,
i.e., before processing the data).

Finally, in vector quantization and perceptual grouping tasks,
FOSART is compared with other well-known clustering algo-
rithms found in the literature (e.g., NG, SOM, etc.).

A. FOSART

Iris Data Set: In line with Part I, Section VI, FOSART is
input with 30 different sequences of the Iris data set while a
majority vote mechanism provides a multiple-to-one class pre-
diction function (multiple-category classification [16]).

Vigilance threshold is adjusted with a trial-and-error pro-
cedure until the number of detected clusters in every input se-
quence equals the desired number of clusters and

respectively.
Default values of scale parameters and are 0.5 and

0.01, respectively, see Section II-C1. To test how affects
FOSART, we employ three values of and re-
spectively, corresponding to decreasing intensities of soft com-
petition among processing units, see Section II-C1.

Average output results collected when the number of detected
categories equaled the desired number of clusters are presented
in Tables I–VI, where, in addition to symbols already employed
in Tables II and III of Part I, acronym stands for mean
quantization square error.

Tables I and II describe the situation in which FOSART is
hard-competitive by setting in (41). In this
experiment, hard-competitive FOSART performs better than
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TABLE II
HARD-COMPETITIVE FOSART. EPOCHS= 10. THIRTY PRESENTATIONS

OF THE IRIS DATA SET

TABLE III
FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. � = 0:5,

� = 0:01. EPOCHS= 10

TABLE IV
FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. � = 0:5,

� = 0:01. EPOCHS= 10

S-Fuzzy ART in terms of efficiency (smaller deviations in per-
formance), while in terms of accuracy it performs significantly
better in cases and and worse in cases and

. When , the FOSART misclassification error is
in line with those of other clustering algorithms found in the
literature (see Part I, Section VI).

Tables III and IV describe the situation in which FOSART
employs (default value) in (41). This parameter set-
ting allows FOSART to improve its performance when ,
while no improvement is recorded when . Overall, the
system seems to gain in stability.

Tables V and VI describe the situation in which FOSART em-
ploys in (41). Accuracy improves in cases and

, but greatly worsens when . In all clustering situa-
tions, lower accuracy, and stability (larger deviations in perfor-
mance) are recorded.

Table VII shows the numerical values of the centers of the
three Iris classes, while Table VIII provides the mean values of

TABLE V
FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. � = 5,

� = 0:01. EPOCHS= 10

TABLE VI
FOSART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. � = 5,

� = 0:01. EPOCHS= 10

reference vectors detected by hard-competitive FOSART when
the number of output clusters is three.

To summarize, our experiments show that in terms of clas-
sification rate, an optimal value of (degree of fuzziness)
exists for each data set. If is too large, i.e., if the degree
of fuzziness is too large, then all cluster templates tend to con-
verge (collapse) on the center of gravity (grand mean) of the
data set. The comparison of Table III in Part I with Table IV
shows that FOSART may be preferable to S-Fuzzy ART in sev-
eral clustering situations both in terms of stability and accuracy.
The advantage of FOSART with respect to S-Fuzzy ART may
become relevant by considering the larger domain of applica-
tions of FOSART, which includes vector quantization (e.g., for
surface reconstruction), entropy maximization and perceptual
grouping (see further on this section).

Simpson Data Set:In line with Part I, Section VI, FOSART
is input with six different presentations of the Simpson data set.
When user parameters are , (default value)
and (default value), FOSART detects three clus-
ters. The corresponding confusion matrix is shown in Table IX,
where , . In this case FOSART
is insensitive to the order of the input sequence, i.e., its robust-
ness to changes in the order of presentation of the input sequence
is superior to that featured by Fuzzy ART and S-Fuzzy ART (see
Tables IV and V in Part I).

When the number of detected clusters is five ( ,
, ), the average confusion matrix reporting point

allocations and, in parentheses, standard deviation per cell is
equivalent to Table VI in Part I, where the number of misclassi-
fication points is equal to two. In this case, FOSART accuracy
is inferior to that featured by S-Fuzzy ART (see Table VII in
Part I).
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TABLE VII
CENTERS OF THETHREE IRIS CLASSES

TABLE VIII
HARD-COMPETITIVE FOSART. EPOCHS= 10. THIRTY PRESENTATIONS OF

THE IRIS DATA SET. NO. OF CLUSTERS= 3. MEAN VALUES OF

THE REFERENCEVECTORS

TABLE IX
FOSART.� = 0:021, � = 0:5 (DEFAULT VALUE) AND � = 0:01
(DEFAULT VALUE). EPOCHS= 10. SIX PRESENTATIONS OF THESIMPSON

DATA SET. NO. OF CLUSTERS= 3.MSE = 12:70, �(MSE) = 1:07.
AVERAGE CONFUSIONMATRIX REPORTINGPOINT ALLOCATIONS AND, IN

PARENTHESES, STANDARD DEVIATION PER CELL

Perceptual Grouping:Let us apply FOSART to a perceptual
grouping problem in vision. In other words, FOSART is em-
ployed to extract the global impression of an image, i.e., to de-
tect the “right” partition of an image into subsets [17]. Fig. 2
shows projections onto input space of lateral connections de-
tected by FOSART when the nonconvex and concentric data
set shown in Fig. 1 is processed, where receptive field centers
are depicted as circles. Note that the inner concentric structure
is clustered by a single and isolated reference vector. This be-
havior is made possible by CCHR, while it would be impossible
with traditional CHR. Due to the subjective nature of clustering
problems, it is obviously true that results shown in Fig. 2 de-
pend on parameter tweaking, i.e., these results have no abso-
lute relevance or validity. Nonetheless, we consider these results

useful to illustrate the potential (subjective), but peculiar ability
of FOSART in clustering nonconvex data sets.

Another interesting perceptual grouping application regards
the two-spirals data set shown in Fig. 3 [19]. This noiseless
data set consists of 194 patterns belonging to two concentric
spirals such that in the outer parts of the spirals data points from
one spiral are farther apart from each other than from points
of the inner spiral [19]. The hypothetical task is to construct
a two-stage classifier, employing FOSART as its first stage,
which is able to distinguish between the two spirals. This task
appears to be rather difficult for typical multilayer perceptrons
trained with backpropagation (BP) (see Table X, adapted from
[19]). Fig. 4 (to be compared with [19, Fig. 21]) shows the
projection onto input space of the output graph generated by
FOSART when the two spirals data set is processed with input
parameters: and ; output parameters are:
number of nodes 148, , number of maps 16.
In Fig. 4, receptive field centers are depicted as white squares,
lines represent projections of lateral connections and black
circles indicate input patterns. The overall result is consistent
with human perception of structures shown in Fig. 3, which
makes this result interesting and peculiar in the panorama of
existing clustering techniques, despite its (obvious) dependence
on parameter tweaking. In this example, FOSART guarantees
an important saving in computation time with respect to the
growing cell structure (GCS) algorithm [19], see Table X. It is
interesting to note that GCS and its evolution, GNG [4], both
employ a mini-batch output unit generation criterion which:
1) averages over the noise on the data and 2) locates initial
templates within the convex hull of the input data. On the one
hand, GCS and GNG may require more training epochs than
FOSART to reach termination when a nonconvex input data
set is processed, since initial templates of GCS and GNG may
lie outside a nonconvex input manifold (see simulations at
http://www.neuroinformatik.ruhr-uni-bochum.de/ini/VIDM/re-
search/gsn/DemoGNG/GNG.html). On the other hand,
FOSART locates initial templates on an example-driven basis,
i.e., FOSART is more sensitive than GCS and GNG to the
presence of noise (see Section II-D) [4], [37].

Surface Reconstruction:The fifth data set employed to test
FOSART properties is 3-D and consists of 9371 vectors repre-
senting a digitized human face [38]. This data set is requantized
by FOSART in comparison with the NG algorithm employing
Hyperboxes for efficient initialization of reference vectors [39].
Fig. 5 shows the 3-D digitized human face employed as input
sequence, while Fig. 6 depicts the digitized face resampled by
FOSART which does not require any preprocessing. Input pa-
rameters are: , . Output information is: no.
of nodes 1745, no. of maps 19, , number
of epochs 15. Tables XI and XII provide output statistics
of FOSART and NG in this application setting. These tables
show that for any fixed number of epochs FOSART performs
better than NG with Hyperbox in terms of MSE minimization,
i.e., FOSART trains faster than NG with Hyperbox in this clus-
tering case. Owing to its ability to localize initial reference vec-
tors which lie on the input manifold, FOSART requires no input
data preprocessing and fewer training epochs than NG with Hy-
perbox to converge. Moreover, FOSART is not affected by the
presence of dead units. Finally, projections onto input space of
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Fig. 2. FOSART processing of the nonconvex data set. Output information is: 11 templates, three maps, training epochs= 2.

Fig. 3. Two-spiral data set consisting of 194 data points.

lateral connections detected by FOSART can be directly em-
ployed for surface reconstruction, as shown in Fig. 7.

Vector Quantization:In vector quantization, FOSART may
be employed as the pre-processing module of the enhanced
Linde–Buzo–Gray (ELBG) clustering algorithm [40], [41].
This network combination may be interesting owing to the

complementary functional features of FOSART and ELBG.
On the one hand, FOSART is on-line learning, constructive
and cannot shift codewords through noncontiguous Voronoi
regions. On the other hand, ELBG is nonconstructive, batch
learning and capable of moving codewords through contiguous
as well as noncontiguous Voronoi regions to reduce quanti-
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Fig. 4. FOSART processing of the two-spiral data set. Output information is: 148 templates, 16 maps, training epochs= 2 (to be compared with [19, Fig. 21]).

TABLE X
TRAINING EPOCHSREQUIRED TO SOLVE THE TWO-SPIRAL PROBLEM

(ADAPTED FROM [19])

zation error (27) [40], [41]. To the best of our knowledge,
this latter feature makes ELBG, together with the LBG-utility
(LBG-U) algorithm proposed in [42], quite unique in the
panorama of clustering algorithms found in the literature.

In ELBG, templates eligible for shifting and splitting are
those whose “local” contribution to the MSE value is, re-
spectively, below and above the mean distorsion. Templates
eligible for shifting are selected sequentially and those eligible
for splitting are selected stochastically (in a way similar to
the roulette wheel selection in genetic algorithms). Each
selected pair of templates is adjusted locally based on the
traditional LBG (i.e., -means) batch clustering algorithm
[43]. A backtracking mechanism allows ELBG to recover
from inconvenient shift attempts. Thus, one main difference

between ELBG and LBG-U is that the former algorithm allows
several shifts per iteration, while LBG-U allows only one. The
capability of moving codewords through contiguous as well
as noncontiguous Voronoi regions allows ELBG to perform
better than LBG and the modified LBG (M-LBG) version
proposed in [44]. Owing to its efficient implementation of local
LBG adjustments [41], the ELBG increase in computational
complexity with respect to LBG remains negligible (below
8%) [40]. In [40], ELBG is initialized either randomly or with
the splitting-by-two technique proposed in [43]. It has also
been shown that the ELBG distorsion value does not depend on
initial conditions, but ELBG convergence time does [40].

In line with [40], an image compression task is considered,
where the 8-bit Lena image, consisting of 512512 pixels, is
divided into blocks of 4 4 pixels to generate 16 384 vectors
in a 16-dimensional data space. The M-LBG algorithm [44],
ELBG with initialization by splitting-by-two and ELBG with
initialization by FOSART are compared. Output results are
shown in Table XIII, where the peak signal to noise ratio
(PSNR) is computed as

where is the dimensionality of input space (in this Lena ex-
ample, ).

In this experiment, Table XIII shows that: 1) ELBG is robust
with respect to changes in initial conditions (compare PSNR
values); 2) ELBG is always more accurate than M-LBG; 3)
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Fig. 5. 3-D digitized human face consisting of 9371 data points.

Fig. 6. Reference vectors detected by FOSART when the digitized human face data set is processed. Output information is: 1745 templates, 19 maps, mean
square error (MSE)= 2:98, training epochs= 5.

Fig. 7. Projection onto input space of lateral connections detected by FOSART in the output map of the digitized human face data set.

ELBG benefits from being initialized with FOSART, both in
terms of accuracy and computation time; and 4) ELBG initial-
ized with FOSART is faster to train than M-LBG.

Convergence in Training:Several works in the literature
show that with its ability to distribute initial reference vectors
in the input manifold uniformly, FOSART may be faster to
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TABLE XI
OUTPUT STATISTICS OFFOSART WHEN APPLIED TO THE3-D DIGITIZED

HUMAN FACE DATA SET

TABLE XII
OUTPUT STATISTICS OFNG IMPROVED WITH HYPERBOX PREPROCESSING

WHEN APPLIED TO THE3-D DIGITIZED HUMAN FACE DATA SET

train than other vector quantizers which employ random ini-
tialization of templates, such as NG (see above in this section),
SOM and the fuzzy learning vector quantization (FLVQ) algo-
rithm [45]. For example, MSE values of the training phase of
FOSART, FLVQ and SOM in an ERS-1 SAR image clustering
task are shown in Fig. 8 [46]. More examples of this kind can
be found in [47], [48].

B. GART

To the best of our knowledge, Gaussian ART (GART),
which is sketchily described in [49] and further discussed in
Appendix IV of Part I, has never been employed and investi-
gated as a standalone module in the existing literature. Rather,
it is employed in the ARTMAP classification framework
where the Gaussian ARTMAP (GAM) supervised network
is proposed in both hard- and soft-competitive versions (the
latter being more successful) [49], [50]. In GART [49], the
number of categories created during training is a function of a
two-dimensional parameter space consisting of parameters
and , see Appendix IV in Part I, whereas FOSART employs
parameter exclusively. In other words, for a desired number
of output clusters and a given data set, the global minimum of
the GART error function is found with an optimal pair of
and values to be detected by the user with a trial-and-error
procedure. This implies that GART is more difficult to use
than FOSART in practical applications. For example, there are
values of (e.g., 0.01) for which no value is found to allow
GART to detect five output categories in the Simpson data set.
GART is applied to the Iris and Simpson data sets to obtain a
comparison with Fuzzy ART, S-Fuzzy ART and FOSART.

Iris Data Set: GART is evaluated under two different
regimes of parameters and . In particular, is set to 0.01

and 0.1 while is increased until the desired number of output
clusters (3 or 5) is detected. Best, worst, and average classifica-
tion performances of GART are shown in Tables XIV and XV,
where statistics relating to the negative log-likelihood (NLL)
cost value are included. When compared with Tables I–IV, Ta-
bles XIV and XV reveal that GART is less stable and effective
than FOSART in minimizing MSE, in line with theoretical
expectations, and that the misclassification errorof the
classifier consisting of GART combined with a majority vote
mechanism is worse than that obtained with FOSART. Besides
its worse accuracy, the main deficiency of GART is to feature
two internal parameters that affect the number of categories
created during training, i.e., GART is twice as difficult to use
as FOSART.

Simpson Data Set:When compared with Table VI in Part I
and Table IX in Part II, which both hold in the case of FOSART,
Tables XVI and XVII reveal that GART is less stable and ef-
fective than FOSART in clustering the Simpson data set con-
sistently with perceptual grouping mechanisms. In line with the
assessment of GART in the Iris data clustering case, these results
confirm that minimization of the negative log-likelihood (NLL)
seems less useful than minimization of MSE in supervised and
unsupervised learning problems, such as data classification, per-
ceptual grouping and vector quantization, other than probability
density function estimation. Moreover, GART is more difficult
to use than FOSART.

IV. CONCLUSION

In Part I of this paper, two algorithms, S-Fuzzy ART and
GART, the latter taken from the literature, are presented as two
instances of the SART group of ART clustering framework.

In Part II of this paper, another instance of class SART,
termed FOSART, is proposed to take advantage of the com-
bination of the SART optimization framework with useful
properties driven by successful clustering algorithms such
as NG, SOM, and GNG. FOSART is a constructive, on-line
learning, topology-preserving, soft-to-hard competitive, min-
imum-distance-to-means SART clustering network whose aim
is to minimize a quantization error. FOSART features several
peculiar properties when compared to existing clustering
algorithms:

1) unlike GNG and SOM, FOSART tries to minimize a
quantization (sum-of-squares) error via a soft-to-hard
competitive model transition.

2) Unlike Fuzzy ART, the system requires no complement
coding of the input data.

3) Unlike SOM and NG, FOSART requires no randomiza-
tion of the initial template vectors.

4) Unlike SOM and NG, the system requires noa priori
knowledge of the size of the network.

5) Unlike SOM, the system requires noa priori knowledge
of the topology of the network.

6) Unlike SOM, NG, and Fuzzy ART, FOSART explicitly
deals with lateral connections.

7) Unlike GNG, FOSART attempts to address all con-
straints required to make the CHR guarantee perfect
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TABLE XIII
COMPARISON OFM-LBG AND ELBG IN THE CLUSTERING OF THE16-DIMENSIONAL LENA DATA SET, CONSISTING OF16 384 VECTORS. �: RESULTS

TAKEN FROM THE LITERATURE

Fig. 8. MSE as a function of the number of training epochs for FOSART, FLVQ, and SOM in the clustering of an ERS-1 SAR image, 512� 512 pixel size, 394
clusters (taken from the literature).

TABLE XIV
GART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. EPOCHS= 10

topology-preserving mapping in the sense proposed in
[8].

8) Unlike parameters of SOM and NG, FOSART param-
eters are not affected by outliers which are instead
mapped onto noise categories.

9) Unlike Fuzzy ART, the system is capable of removing
noise categories to avoid overfitting.

10) Unlike Fuzzy ART, FOSART is competitive with other
clustering models found in the literature when the Iris
data set is clustered with three reference vectors [51].
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TABLE XV
GART. THIRTY PRESENTATIONS OF THEIRIS DATA SET. EPOCHS= 10

TABLE XVI
GART. SIX PRESENTATIONS OF THESIMPSONDATA SET. (�; 
) = (0:01; 3:5)

AND (�; 
) = (0:1; 12). EPOCHS= 10. NO. OF CLUSTERS= 3.
MSE = 17:45, �(MSE) = 5:09, NLL = 58:96, �(NLL) = 1:89.
AVERAGE CONFUSIONMATRIX REPORTINGPOINT ALLOCATIONS AND, IN

PARENTHESES, STANDARD DEVIATION PER CELL

TABLE XVII
GART. SIX PRESENTATIONS OF THESIMPSONDATA SET. (�; 
) = (0:1; 0:27)

AND (�; 
) = (0:3; 15). EPOCHS= 10. NO. OF CLUSTERS= 5.
MSE = 7:72, �(MSE) = 1:21,NLL = 54:66, �(NLL) = 2:51.
AVERAGE CONFUSIONMATRIX REPORTINGPOINT ALLOCATIONS AND, IN

PARENTHESES, STANDARD DEVIATION PER CELL

FOSART performances are assessed in a wide range of su-
pervised and unsupervised learning tasks, such as data classifi-
cation, vector quantization, and perceptual grouping.

To compare FOSART with Fuzzy ART, S-Fuzzy ART, and
GART, the Iris and Simpson data sets are chosen from the liter-
ature. In these comparisons, FOSART tends to be more accurate
and stable to changes in the order of presentation of the input
sequence than the other algorithms. Moreover, FOSART fea-
tures an applicability domain broader than that of Fuzzy ART,
S-Fuzzy ART, and GART, i.e., FOSART expressive power is su-
perior to that of these algorithms.

Results with the Iris data set also reveal that FOSART is com-
petitive with other clustering algorithms found in the literature
when the number of detected clusters is three.

In comparison with some well-known clustering networks
like NG, SOM, and FLVQ, FOSART trains faster while it re-
mains competitive in terms of quantization error minimization.

In the field of neural networks for vector quantization, an
interesting development of FOSART is the combination of
FOSART with the ELBG batch clustering algorithm, which is
capable of moving codewords through noncontiguous Voronoi
regions [40], [41].

As a future development in the field of neural networks for
classification we plan to combine FOSART with the “match
tracking” mechanism employed in the Gaussian ARTMAP
(GAM) classifier [50]. Match tracking involves raising vigi-
lance threshold , whose initial (baseline) value is low (e.g.,
10 ), when an incorrect prediction is made. Since match
tracking adapts vigilance threshold automatically, where

is the only FOSART internal parameter which affects the
number of categories created during training, this constructive
classification scheme would require no user-defined parameter
in adapting the network size to problem complexity until no
incorrect prediction is made during training (thus, this classifier
would belong to the class of consistent classifiers [16], [37]).
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