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Critical Motion Detection of Nearby Moving
Vehicles in a Vision-Based Driver-Assistance System
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Abstract—Driving always involves risk. Various means have
been proposed to reduce the risk. Critical motion detection of
nearby moving vehicles is one of the important means of prevent-
ing accidents. In this paper, a computational model, which is re-
ferred to as the dynamic visual model (DVM), is proposed to detect
critical motions of nearby vehicles while driving on a highway.
The DVM is motivated by the human visual system and consists of
three analyzers: 1) sensory analyzers, 2) perceptual analyzers, and
3) conceptual analyzers. In addition, a memory, which is called
the episodic memory, is incorporated, through which a number of
features of the system, including hierarchical processing, config-
urability, adaptive response, and selective attention, are realized. A
series of experimental results with both single and multiple critical
motions are demonstrated and show the feasibility of the proposed
system.

Index Terms—Assembly of adaptive-resonance-theory (ART)
neural networks, driver-assistance system (DAS), dynamic visual
model (DVM), fuzzy integral, spatiotemporal attention (STA)
neural network.

I. INTRODUCTION

D RIVING a car always involves risk. Although modern
technology cannot eliminate risk, it can, at least, reduce

risk. Various means toward the goal of driving risk reduction
have been reported. They can be categorized into two classes:
1) passive and 2) active. Passive approaches (e.g., seat belts
and airbags) are intended to reduce the degree of injury in
case of an accident, whereas active methods attempt to prevent
accidents in advance. Driver-assistance systems (DASs) [1],
[6], [30], [31], [33], [39] are one kind of active system that
brings potentially hazardous conditions to the driver’s attention
as soon as possible.

Various functions constitute a DAS, of which automatic
obstacle avoidance [2], [4], [7], [9], [10], [18], [19], [32],
[40] is one of the most important functions. Obstacles can
broadly be divided into two categories: 1) static and 2) dynamic.
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Static obstacles are fixed with respect to the ground, such as
refuge islands, guard rails, traffic signals, and stopped vehicles.
Dynamic obstacles are movable, such as animals, pedestrians,
and moving vehicles. However, all objects are moving while
the observer moves. We refer to the motions that result from
the observer’s movement as induced motions. Static obstacles
have only induced motions, whereas dynamic obstacles have
both induced and self motions [40], [42]. Induced motions
are predictable, whereas self motions are not. Dealing with
dynamic obstacles is typically more difficult than dealing with
static ones. In this paper, moving vehicles, which are a kind of
dynamic object, are considered.

A. Critical Motions

Regardless of the diverse behaviors of a moving vehicle, its
motion can always be decomposed into a sequence of simple
motions. Every simple motion is characterized by a change in
either speed or direction. Speed changes include acceleration
and deceleration. Direction changes include left and right drifts.
Various motion behaviors can be generated by concatenating
simple motions. A generated motion behavior may be safe
or perilous. However, an individual safe motion may become
hazardous when extraneous traffic conditions are considered.
We refer to the motions taking external traffic conditions into
account as conditioned motions. Conditioned risky motions
form what we call critical motions in this paper.

Considering one nearby moving vehicle, it may cause several
potential critical situations.

1) The right (left) front vehicle slows down.
2) The right (left) front vehicle changes lanes to the lane of

the observer vehicle with lower speed than the observer
vehicle.

3) The vehicle in front slows down.
4) The vehicle in front changes lanes to the right (left) with

lower speed than the observer vehicle.
5) The right (left) rear vehicle passes the observer vehicle.

The aforementioned situations all result in decreasing the dis-
tance between the nearby and the observer vehicles. In general,
several vehicles may surround the observer vehicle, and multi-
ple critical situations can occur simultaneously.

B. Sensor Overview

Many sensors are available for detecting vehicles [3], [8],
[21]–[24], [35], [38], [44], such as laser radar, passive far
infrared, reflected light detector, microwave radar, millimeter-
wave radar, acoustic array, and ultrasonic detector. Each sensor
has its own advantages and disadvantages [20]. In this paper,
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a video camera is utilized. A video camera that possesses a
large field of view can collect much information for a variety
of applications, such as wide-area monitoring [13], unusual
traffic event detection [12], [29], road sign recognition [11],
traffic sign/signal identification [14], and road/driving condition
analysis [43]. However, sophisticated algorithms are generally
necessary to accomplish these tasks.

C. Proposed System

One computational model, referred to as the dynamic visual
model (DVM), is proposed in this paper to detect the critical
motion of nearby moving vehicles. Unlike static visual models
that worked on still images, the DVM performs visual analy-
sis based on video sequences. Video sequences are different
from still images in several respects. Still images are taken at
independent time instants. Individual images are unrelated to
one another and can separately be processed. Video images are
acquired at (usually rapid) sequential instants in time, causing
successive images to temporally be correlated. Each video
sequence records a certain period of time in an environment. To
interpret environmental variations during the period, the video
sequence has to be dealt with collectively. Furthermore, still
images contain only spatial information, and they are suitable
for structural analysis of static scenes, such as forms of objects
and their spatial relationships. Video sequences, which include
both spatial and temporal information, are feasibly employed to
study structures and motions of dynamic scenes.

Video sequences are, in a sense, analogous to the streams of
signals produced by the photoreceptors in the retina. The man-
ner of signal processing in the human visual system may pro-
vide useful clues for video processing. In the next section, we
review the psychophysical evidences that characterize the pro-
posed DVM. Its architecture and workflow are then addressed
in Section III. The system for detecting critical motions of
nearby vehicles based on the DVM is presented in Section IV.
Section V demonstrates experimental results, followed by the
concluding remarks and future work given in Section VI.

II. PSYCHOPHYSICAL EVIENCES

The proposed DVM grasps several aspects of the human
visual system, including hierarchical processing, neural config-
urability, adaptive response, and selective attention.

A. Hierarchical Processing

According to psychophysicists [25], [28], there are hierarchi-
cal organs that exist along the path from the retina to the areas
of the brain concerned with association. Each organ performs
a distinct level of information analysis, such as sensory, per-
ceptual, syntactic, and semantic analysis. Although the organs
play different roles in a visual activity, they possess similar
anatomical structures [15], [36]. Every organ is composed of
a large number of interconnected neurons, which are organized
into one or more layers. The proposed DVM consists of three
analyzers, which are referred to as the sensory, perceptual, and
conceptual analyzers. They are arranged in a hierarchy. Two
neural modules—a spatiotemporal attention (STA) neural net-

work and an assembly of adaptive resonance theory II (ART2)
neural networks—are introduced to realize the perceptual and
conceptual analyzers, respectively.

B. Neural Configurability

Although the brain possesses an enormous capacity to
process information, it consists of a finite number of neu-
rons. Three characteristics regarding the nervous system have
often been mentioned to illustrate the capacity of the brain:
1) connectionism, 2) parallelism, and 3) configurability. The
first two characteristics are well known, but we are interested
in the third characteristic. Two attributes—adaptive organizing
and multitasking—feature the configurability of the nervous
system. Considering a mental task, it is first decomposed by
the brain into a set of independent processes that can separately
be carried out. The processes are then allocated to cognitive
units. The units, which may originally be unrelated to one
another, are organized and cooperate for the mental task. We
call this attribute the adaptive organization of the nervous
system. Furthermore, a cognitive unit need not be available
when it is asked to participate in a task. A cognitive unit can join
in several distinct tasks at a time. We call this the multitasking
of the nervous system.

To incorporate the feature of configurability in the proposed
DVM, a memory, which is called the episodic memory, is
introduced. This memory provides not only storage but also
representations for preserving and retrieving long-term, short-
term, and transient information. In addition to configurability,
several functions of the DVM, such as adaptive response and se-
lective attention, are also realized through the episodic memory.

C. Adaptive Response

We all have the experience of getting out of the way of
a quickly moving object before identifying what it is. This
illustrates that we can perceive motion earlier than form and
meaning. However, motions are ubiquitous throughout the
retina. How can we attend to the motions that originate from
the objects of our interest?

According to vision physiologists [15], [36], the eye contains
two types of ganglion cells—parvocellular and magnocellular
cells—and their associated pathways. Parvocellular pathways
are responsible for structural analysis, whereas magnocellular
pathways are devoted to motion analysis. Structure and motion
analyses are performed in parallel in the respective pathways.
However, the two analyses are not independent, because the two
pathways interact with each other at a number of neural layers.
It is the exchange of information that the motions associated
with the objects of interest are attended. This characteristic has
been referred to as the adaptive response of the visual system
and is of importance to our application. It suggests that we
could perceive vehicle motions before vehicle identification.

D. Attention Models

Many attention models [16], [28] have been reported to
realize the mechanism of adaptive response. They can be
categorized into two classes: 1) voluntary and 2) involuntary.
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Fig. 1. Proposed DVM.

The voluntary class forces attention to anticipated targets,
whereas the involuntary class results from sudden or unex-
pected events. In this paper, the motions associated with ve-
hicles are of concern; thus, the voluntary model is considered.
Two principles of selectivity, i.e., filtering and amplification,
characterize the voluntary model. Filtering selectivity gradually
attenuates unwanted events until they are filtered out from
the center of attention. Amplification selectivity progressively
intensifies selected events until they seize the focus of atten-
tion. Both mechanisms of selectivity are implemented in the
proposed DVM.

Where does attentive selection occur in the visual system? In
[28], Broadbent argued that attentive selection appears only in
the sensory layer, where selected information is passed on for
further processing. Norman argued that attentive selection oc-
curs in both the sensory and semantic layers. The sensory layer
contributes bottom-up stimuli, and the semantic layer provides
top-down expectation. As a consequence, some neurons that
are (are not) activated by the bottom-up stimuli may not (may)
be stimulated due to the top-down stimuli. Treisman further
extended Norman’s model by allowing attentive selection to
take place in all neural layers. In this paper, Norman’s idea is
adopted, with which attentive selection occurs only in the first
two layers of the DVM.

III. DVM

Fig. 1 shows the proposed DVM, which is composed of
three analyzers that are referred to as the sensory, perceptual,
and conceptual analyzers. Each analyzer constitutes a number
of stages. The sensory analyzer consists of two major stages:

1) data transduction and 2) information acquisition. The per-
ceptual analyzer consists of an STA pattern detection stage
and an STA feature-extraction stage. The conceptual analyzer
is composed of the stages of pattern recognition and decision.
The data flows among the stages of the analyzers are primarily
through a memory called the episodic memory.

A. Workflow of the DVM

Considering an input video sequence, the sensory analyzer of
the DVM first reduces (e.g., subsampling and downsampling),
converts (e.g., wavelet and Fourier transforms) and represents
(e.g., hierarchical and distributed representations) the video
sequence to increase the efficiency and effectiveness of sub-
sequent processing. We call this stage the data transduction
stage. The transduced video sequence is then forwarded to
the information acquisition stage, in which the spatiotemporal
information of target objects is extracted from the video se-
quence. The a priori knowledge of target objects is provided
by the episodic memory, which is prestored. Instead of details,
syntactic (e.g., color and texture) or semantic (e.g., function and
behavior) hints of the objects are preserved in the memory.

The spatiotemporal information that was extracted in the
sensory analyzer serves as a stimulus to the STA neural network
(see Section III-B) in the perceptual analyzer. The STA neural
network mimics the adaptive response of the human visual
system. Two mechanisms, i.e., filtering selectivity and ampli-
fication selectivity, are implemented in the neural network. The
filtering selectivity attenuates the neural activations innervated
by unwanted stimuli (e.g., noise and extraneous information)
based on their natures of randomness. Amplification selectivity
intensifies the activations excited by the stimuli associated with
target objects. If such stimuli continue, a focus of attention will
eventually be established in the STA neural network.

A focus of attention, hereafter referred to as an attention
pattern, preserves both the spatial and temporal information of
an event. The DVM recognizes an event based on its attention
pattern. Once an attention pattern emerges in the STA neural
network, the feature-extraction stage is initiated, in which a
mixed top-down and bottom-up process is evoked to extract
local features from the attention pattern. The extracted features
are arranged into a 1-D vector, called a spatiotemporal feature
vector, which is to be fed to a pattern recognizer embedded in
the conceptual analyzer.

The pattern recognizer consists of an assembly of ART2
neural networks [5]. Each ART2 determines the class of the
attention pattern based on a feature vector extracted from a
particular portion of the pattern. The decisions of individual
ART2s are combined through a fuzzy integral process (see
Section III-C) to arrive at the final decision. If this decision is
validated, an adequate action is taken, and the system process
repeats.

B. STA Neural Network

The STA neural network shown in Fig. 2 is configured as
a two-layer network: one layer for input and another layer for
output. The output layer is also referred to as the attention layer.
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Fig. 2. STA neural network.

Focuses of attention, if any, are formed in this layer. The neu-
rons in the attention layer are arranged into an interconnected
2-D array. There is no synaptic link among input neurons,
although they are also organized into a 2-D array. Both the input
and output layers have the same size as the input images and are
fully connected to each other.

Let wij denote the weight of the link between input neuron
n′

j and attention neuron ni and be characterized by a Gaussian,
i.e., wij = G(rij), where rij is the position vector of attention
neuron nj , which corresponds to the input neuron n′

j with re-
spect to the attention neuron ni. The weight vector for attention
neuron ni is denoted wi = (wi1, wi2, . . . , wim), where m is the
number of input neurons. The input to attention neuron ni due
to input stimulus x is Iv

i = wi · x =
∑m

j=1 wijxj .
The lateral interaction among attention neurons is charac-

terized by a Laplacian of Gaussian ∇2G(r), where r is a
position vector that originates in the center of the function. The
input to neuron ni due to lateral interaction is defined as I l

i =∑
k∈Ni,k $=i[uik ·∇2G(rk − ri) · ak], where Ni represents the

neighbors of neuron ni and ak is the activation of neuron nk.
Let the dynamic behavior of ak be governed by

ȧi = A (−pai + qB(neti)) (1)

where p and q are positive constants, p specifies the decay rate
of ai, and q weights the net input neti = Iv

i + I l
i − Γ, in which

Γ is a threshold to restrict the effects of noise. Functions A(·)
and B(·) are

A(x) =
{

x, if x > 0
dx, if x ≤ 0 , B(x) =

{
x, if x > 0
0, if x ≤ 0 (2)

where 0 < d < 1.
Fig. 3 shows the activation of an attention neuron in response

to an input stimulus. If the net input to the neuron is greater than
threshold Γ within a time interval ∆t, the neuron needs about
time 1/p to reach maximum activation and about 1/pd to decay.
d < 1; thus, the decay time is longer than the rise time.

Fig. 3. Activation of an attention neuron in response to a stimulus.

C. Decision by Fuzzy Integral

Fuzzy integrals [41], [45] have been generalized from the
Lebesque or Riemann integral. In this study, the Sugeno fuzzy
integral [37], which was extended from the Lebesque integral,
is considered. Let f : S → [0, 1] be a function defined on a
finite set S and g : P (S) → [0, 1] be a set function defined
over the power set of S. Function g(·), referred to as a fuzzy
measure function, satisfies the axioms of boundary conditions,
monotonicity, and continuity. Sugeno further imposed on g(·)
an additional property: ∀A, B ⊂ S, A ∩ B = φ. We have

g(A ∪ B) = g(A) + g(B) + λg(A)g(B), λ ≤ 1. (3)

The fuzzy integral of f(·) with respect to g(·) is defined as

e =
∫

S

f(s) · g = sup
α∈[0,1]

{α ∧ g(Aα)} (4)

where ∧ represents the fuzzy intersection, and Aα = {s ∈
S|f(s) ≥ α}.

Fuzzy integral provides an elegant nonlinear numeric ap-
proach that is suitable for integrating multiple sources of infor-
mation to arrive at a value that indicates the degree of support
for a particular hypothesis. Suppose that we have hypotheses,
H = {hi, i = 1, . . . , n}, from which a decision d will be made.
Let ehi be the integral value evaluated for hi. We determined
the final decision by d = arg maxhi∈H ehi .

Considering any hypothesis h ∈ H , let S be the set collecting
all the information sources at hand. Function f(·) that receives
an information source s returns a value f(s) that reveals the
level of support of s to the hypothesis h. The degrees of worth of
information sources may be different; thus, function g(·) takes
as input a subset of information sources and gives a value that
reflects the degree of worth of the set of sources relative to the
other sources. Let d(s) = g({s}). Function d(·) is referred to
as the density function of g(·).

In general, densities d(s), s ∈ S are readily estimated.
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Fig. 4. Video camera is mounted in the front of the vehicle.

For any subset A = {si, i = 1, . . . ,m} of S, the fuzzy mea-
sure of A can be computed recursively from (3), i.e.,

g(A) =
m∑

i=1

d(si) + λ
m−1∑

i=1

m∑

j=i=1

d(si)d(sj)

+ · · · + λm−1d(s1), . . .

d(sm) =

(
∏

si∈A

(1 + λd(si)) − 1

)
/λ. (5)

g(S) = 1; thus, the value of λ can be determined by solving
λ + 1 =

∏
si∈S(1 + λd(si)).

In (4), there are 2|S| subsets of S needed to perform fuzzy
integral. Let S ′ = {s′1, s′2, . . . , s′|S|} be the sorted version of S

such that f(s′1) ≥ f(s′2) ≥ · · · ≥ f(s′|S|). We can rewrite (4) as

e=
∫

S

f(s) · g = sup
α∈[0,1]

{α ∧ g(Aα)} = ∨
1≤i≤|S|

[f (s′i) ∧ g (S ′
i)]

(6)

where ∨ specifies the fuzzy union, and S ′
i = {s′1, s′2, . . . , s′i}.

This equation reduces the number of subsets required to per-
form the fuzzy integral from 2|S| [by (4)] to |S|.

IV. CRITICAL MOTION DETECTION

In this section, the system based on the proposed DVM
for detecting critical motions of nearby moving vehicles while
driving on a highway is addressed. The system consists of four
major components: 1) sensory, 2) perceptual, 3) conceptual, and
4) episodic memory.

A. Spatiotemporal Information Extraction

The input data to the system are video sequences acquired
by a video camera mounted in the front of the observer vehicle
[see Fig. 4(a)]. One example image taken by the video camera
is shown in Fig. 4(b). In the data transduction stage of the
sensory component, we subsample images from the input video
sequence. For each sampled image, we further reduce its size by
downsampling. Downsampling also eliminates the interlacing
effect of the video camera.

The transduced video sequence is forwarded to the infor-
mation acquisition stage of the sensory analyzer, where the
spatiotemporal information of scenes is extracted. Let S denote
the sequence of transduced images and It be the tth image in S.

Let Rt, Gt, and Bt represent the three color components
of It, i.e., It = (Rt, Gt, Bt). We define the MAX image
It
max =(Rt

max, G
t
max, B

t
max) and MIN image It

min =(Rt
min,

Gt
min, Bt

min) at time t as follows:

Rt
max(i, j) = max

{
Rt(i, j), Rt−1

max(i, j)
}

Rt
min(i, j) = min

{
Rt(i, j), Rt−1

min(i, j)
}

Gt
max(i, j) = max

{
Gt(i, j), Gt−1

max(i, j)
}

Gt
min(i, j) = min

{
Gt(i, j), Gt−1

min(i, j)
}

Bt
max(i, j) = max

{
Bt(i, j), Bt−1

max(i, j)
}

Bt
min(i, j) = min

{
Bt(i, j), Bt−1

min(i, j)
}

where (i, j) denotes any pixel location. Initially, we let I0
max =

I0
min = I0. Image It

max (It
min) preserves the maximum (mini-

mum) color values of the input video sequence up to time t and
gets much brighter (darker) with time.

Let M t and N t represent the intensity counterparts
of It

max and It
min, respectively, where M t(i, j) =

((Rt
max(i, j) + Gt

max(i, j) + Bt
max(i, j))/3 and N t(i, j) =

((Rt
min(i, j) + Gt

min(i, j) + Bt
min(i, j))/3. We compute the

spatial difference image (DIF image for short) Dt at time t
by Dt(i, j) = M t(i, j) − N t(i, j), which accumulates
the positions of moving objects up to time t. Next, we
compute the spatiotemporal derivative (DER) images Dt′

by Dt′(i, j) = |Dt(i, j) − Dt−1(i, j)|, which records object
motions at time t. Note here that we detect object motions
from the DIF images instead of the video images, because DIF
images get stronger responses than the video image. Moreover,
the influence of image instability that originates in vehicle
vibration is also reduced.

B. Attention Patterns

The DER images serve as the input stimuli to the STA
neural network in the perceptual component. Attention will
be grabbed by the STA neural network only when the neural
activations over the attention layer, i.e., the attention pattern, of
the neural network become sufficiently prominent (both large
in size and strong in strength). The neural network then keeps
its attention on the pattern until it reaches maximum, called
the principal attention pattern. Different motion behaviors of
vehicles generate different principal attention patterns. Fig. 5
shows nine principal attention patterns originating from nine
distinct critical motions.

In a real situation, several vehicles may surround the observer
vehicle, and multiple critical motions may simultaneously oc-
cur. Unlike single critical motions, multiple ones have no
particular principal attention patterns. This is because atten-
tion patterns of individual critical motions rarely reach their
maximums at the same time. Furthermore, multiple critical
motions may have their attention patterns overlapping or be
connected to each other. We deal with multiple critical motions
by identifying individual motions one by one. After completing
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Fig. 5. Principal attention patterns that originate in distinct critical motions of a nearby vehicle. (a) Vehicle ahead slows down. (b) Right front vehicle changes
lanes to the left. (c) Left front vehicle changes lanes to the right. (d) Vehicle ahead changes lanes to the right. (e) Vehicle ahead changes lanes to the left. (f) Left
front vehicle slows down. (g) Right front vehicle slows down. (h) Left rear vehicle passes observer. (i) Right rear vehicle passes observer.

Fig. 6. (a) Five overlapping windows, denoted by w1, w2, w3, w4, and w5. (b) Attention pattern divided by the five windows. (c) Portions of the attention
pattern that correspond to the five windows.

the processing of the last motion, the system initializes the
attention layer of STA neural network and the MAX, MIN, DIF,
and DER sequences. In addition, note that our system performs
initialization every fixed time interval T if no critical motion
is detected within this period. We define T as T = c · maxi ti,
where c is a positive integer larger than 1, and ti is the time
needed to complete the critical motion of type i.

C. Spatiotemporal Feature Vector

The principal attention patterns that results from different
critical motions may be different in shape, location, distribution
of neural activations, or combinations of these. In this section,
we discuss how we can extract these attributes from an attention
pattern.

As shown in Fig. 5, every critical motion generates a princi-
pal attention pattern located at a particular position. Determin-
ing the location of a principal attention pattern is affected by
camera vibration, uneven road surface, and road slope, resulting
in only an approximated location of the pattern. To overcome
this problem, we divide the attention layer of the STA neural
network into five overlapping windows [see Fig. 6(a)], denoted
by w1, w2, w3, w4, and w5. Fig. 6(b) shows a principal attention
pattern superimposed by the five overlapping windows, and
Fig. 6(c)–(g) show the windowed attention patterns. We deter-
mine the location of a principal attention pattern as the window,
called the position window, which covers the largest portion of
the pattern, called the dominant portion of the pattern. In the

Fig. 7. Example to illustrate local feature extraction from a window.

example in Fig. 6, since window w5 covers almost the entire
pattern, this window is determined to be the position of the
attention pattern.

Consider multiple critical motions, whose attention patterns
may overlap one another. The issue of pattern overlapping is,
in a sense, similar to the issue of shape occlusion encountered
in applications of object recognition. Local features have com-
monly been employed to deal with shape occlusion. In the
following, we define local features of attention patterns and
discuss how we can extract them from an attention pattern.

Note that the overlapping windows separate an attention
pattern into parts and that every window can, at any time,
contain at most one dominant pattern. As shown in Fig. 5,
although principal attention patterns of different critical motion
may have the same position window, in practice, such motion
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Fig. 8. Vehicle directly in front changes lanes to the left.

will not occur at the same time; otherwise, accidents will occur.
As a consequence, we can always extract local features of
individual attention patterns from some windows.

Considering a window, first, we divide the window into
n(= 10 in experiments) equal horizontal zones [see Fig. 7(a)].
For each zone, we average the neural activations of each
column. Let a1, a2, . . . , am be the average activations of
the columns, where m is the number of columns. Next,
we compute the mean column by c =

∑n
i=1 i · ai/

∑n
i=1 ai,

with which we calculate the second M2 and third M3

moments of the distribution of average neural activations,
M2 =

∑n
i=1(i · ai − c)2/

∑n
i=1 ai and M3 =

∑n
i=1(i · ai −

c)3/
∑n

i=1 ai. The skewness s of the distribution of the average
neural activations is defined as s = M3/(M2

√
M2) [17], [27],

which expresses the degree of nonsymmetry of the distribution.
The skewness of a distribution can be positive or negative,
indicating a right or left long tail of the distribution.

For each window, 2n skewness values (i.e., n from horizontal
zones and another n from vertical zones) are calculated. The
2n skewness values form the feature vector of the window.
Five feature vectors are extracted from the five overlapping
windows. Each feature vector is then fed into an ART2 neural
network in the conceptual component of the system.

D. Pattern Recognition

There are five ART2 neural networks that constitute the
pattern recognizer. Each neural network receives the feature
vectors that were extracted from a particular overlapping win-
dow. Consider a neural network, in which each input feature
vector matches against a set of patterns that have been prestored
in the neural network through an offline training process. Each
stored pattern corresponds to a specific type of critical motion.
If the input feature vector matches a stored pattern well, the
associated type of critical motion is regarded as that generating
the feature vector. If no pattern is matched, a “do not care”
signal is returned by the neural network.

E. Fuzzy Decision

Each ART2 neural network in the pattern recognizer receives
a sequence of feature vectors extracted from the corresponding
overlapping window and returns a series of classification deci-
sions of the attention pattern under consideration. The series of
decisions is integrated using a fuzzy integral process to arrive
at the final decision.

Fig. 9. Fuzzy integral values calculated by the five ART2 neural networks for
the 43 video images used in the second experiment.

Let s1, s2, . . . , st be the sequence of decisions up to time t
made by a neural network. The set S = {s1, s2, . . . , st} then
forms what we call the collection of information sources. Let
P = {p0,p1, . . . ,pT } be the set of principal attention patterns
of distinct critical motions, in which p0 represents a null pat-
tern. Set P here serves as a hypothesis set. For each hypothesis
pi ∈ P , we define a support function fi : S → [0, 1] for the
hypothesis as

fi(sj) = e−α‖p′
j−pi‖ (7)

in which α is a positive constant, and p′
j ∈ P is the attention

pattern decided by decision sj . The aforementioned equation
states that the more similar the decided pattern p′

j to hypothesis
pattern pi, the higher the degree of support of decision sj to
hypothesis pi.

Next, we define the fuzzy density function di : S → [0, 1] as

di(sj) = min

{
n′

j

ni
,
ni

n′
j

}
(8)

where ni and n′
j are the numbers of nonzero pixels of patterns

pi and p′
j , respectively. Function min{·, ·} forces value di(sj)

to fall between [0, 1]. The aforementioned equation states that
the closer the numbers (ni and n′

j) of nonzero pixels of patterns
pi and p′

j , the higher the degree of worth of decision sj . Having
defined the densities of individual decisions, we are ready to
calculate the degree of worth gi(Sk) of any subset Sk ⊆ S of
decisions by (5).

Let S ′ = {s′1, s′2, . . . , s′|S|} be the sorted version of S such
that fi(s′1) ≥ fi(s′2) ≥ · · · ≥ fi(s′|S|). Substituting fi(s′j) and
gi(Sj), (1 ≤ j ≤ |S|) into (6), we can calculate the fuzzy inte-
gral ei of hypothesis pi. The aforementioned process repeats for
all the hypotheses in P . Let emax = maxpi∈P ei. We collect the
hypotheses with emax − ei < τ (τ is a threshold) in a set called
the decision set. Let D1, D2, D3, D4, and D5 be the decision
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Fig. 10. Vehicles at different distances ahead change lanes to the right.

sets of the five ART2 neural networks. We determine the fi-
nal decision set D as D = {pi ∈ P |∃Dj ,pi ∈ Dj ∧ ei > τ ′},
where τ ′ is a threshold. The critical motions that correspond to
the attention patterns in D are reported by the system. If D is
an empty set, no critical motion is detected. If D contains more
than one pattern, multiple critical motions are detected.

V. EXPERIMENTAL RESULTS

The input data for our system were acquired using a pro-
gressive video camera (SONY TRV-900) mounted in the front
windshield of a vehicle while driving on an expressway at a
speed of around 90 km/hr. The input video sequences at a
rate of 30 frames/s were downsampled to a rate of 6 frames/s,
which is the processing speed of our current system. The critical
motions that were considered in this paper take more than 3 s to
complete; thus, we further reduce the size (640 × 480 pixels) of
each image to 160 × 120 pixels to increase the processing rate.

Fig. 8 shows the first experimental example, in which a
vehicle ahead changes lanes to the left. A video sequence of
8 s (240 video images in total) was used in this experiment.
Of these, 43 images were processed, and only six of them
are displayed in the first row of the figure. The corresponding
sequence of attention patterns generated by the vehicle in the
STA neural network is shown in the second row. An attention
pattern is examined by the pattern recognizer only if the pat-
tern has grown sufficiently prominent. Such a pattern is first
decomposed into five subpatterns according to the predefined
overlapping windows. Next, each subpattern is recognized by
an ART2 neural network in the pattern recognizer. The results
of individual neural networks are then integrated to arrive at a
consistent decision. Instead of depending only on an attention
pattern, our system determines the motion behavior of a nearby

vehicle by aggregating a series of decisions made from a
sequence of attention patterns.

Fig. 9 shows the (maximum) fuzzy integral values calculated
by the five ART2 neural networks for the 43 input images in the
aforementioned example. We divide the figure into three verti-
cal parts at images 12 and 24. In the first part (from images 1
to 12), the variance of the fuzzy integral values that the ART2
neural networks returned is larger than both the second (from
images 13 to 24) and third (from the degree of confidence in
a decision, a large variance of images 24 to 43) parts. Since
a fuzzy integral value reflects the degree of confidence in a
decision, a large variance of fuzzy integral values indicates a
high level of disagreement among the decisions of the ART2
neural networks. Although both the second and third parts of the
figure have relatively small variances of fuzzy integral values,
our system has decided in favor of the decision made by the
second part, because its average (0.78) fuzzy integral value is
much larger than that (0.42) of the third part. Our system locates
the video segment to make a decision based on the variances
and averages of fuzzy integral values of the video segments.

Fig. 10 shows three examples of a vehicle in front changing
lanes to the right. In each example, the input video sequence
is shown in the first row, and the corresponding sequence of
attention patterns is displayed in the second row. Comparing
the sequences of attention patterns of these three examples, it is
clear that the attention patterns in the sequence of the first exam-
ple are all more prominent than those of the second. This is be-
cause the preceding vehicle in the first example is closer to the
observer vehicle than that in the second example. Our system
successfully recognized the behaviors of the preceding vehicles
in these two examples. However, our system did not give any
response to the input sequence of the third example, because
the preceding vehicle is too far to generate sufficiently promi-
nent attention patterns. More experimental results of distinct
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Fig. 11. Experimental results of different critical motions. (a) Right front vehicle slows down. (b) Left front vehicle slows down. (c) Vehicle directly ahead slows
down. (d) Left front vehicle changes lanes to the right. (e) Vehicle passing on the right.

critical motion is shown in Fig. 11: 1) a right front vehicle
slowing down, 2) a left front vehicle slowing down, 3) a vehicle
directly in front slowing down, (d) a left front vehicle changing
lanes to the right, and (e) a vehicle passing on the right.

Fig. 12 demonstrates the performances of our system under
different illumination conditions, including an input video se-
quence taken in a tunnel [see Fig. 12(a)] and one acquired at
night [see Fig. 12(b)]. Here, we neglected the video sequences
that involve rapid changes of illumination (e.g., entering or
exiting a shadow cast by a passing cloud or a large building,
entering or exiting a tunnel, or direct expose of the camera
to sunlight as the vehicle turns), because the time interval of
a change in illumination is typically short. A noted attention
pattern is hardly generated in the STA neural network within
a short period. However, if the attention pattern of a critical
motion is nearly matured, an illumination change will ruin the
pattern and lead to a missing detection of the critical motion.

So far, we have considered only the cases of single critical
motions. In the following, three experimental results of multiple

critical motions are demonstrated. The first example is shown
in Fig. 13, where a vehicle in front of the observer vehicle
changes lanes to the left, whereas a vehicle in the left lane slows
down. The system detected only the motion behavior of the
latter vehicle. The front vehicle is distant; thus, the associated
attention pattern is small and weak, and the system did not
respond to this pattern. Fig. 14 shows the second example,
in which two preceding vehicles successively change lanes;
the first one changes lanes to the left and the second to the
right. The attention patterns generated by the two vehicles are
different in both time and location; thus, the system easily
distinguished between the two patterns and successfully recog-
nized the motion behaviors of the two vehicles.

The final example of multiple critical motions is shown in
Fig. 15. Two vehicles pass the observer vehicle on its right; the
second vehicle then changes lanes to the left. The input video
sequence is a clip of a long video sequence; thus, our system
detected only the second passing vehicle at the beginning of
the input video sequence. The system later sensed the second
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Fig. 12. Experimental results with the input video sequences taken (a) in a tunnel and (b) at night.

Fig. 13. Vehicle in front of the observer vehicle changes lanes to the left, whereas a vehicle in the left lane slows down. The system detected only the motion
behavior of the latter vehicle.

passing vehicle changing lanes to the left. Immediately af-
terward, the system indicated a vehicle passing on the right.
However, this vehicle is actually the vehicle that had passed ear-

lier. It emerged again after the second passing vehicle changed
lanes to the left. The emerged vehicle generated an attention
pattern. Although the pattern was weak, it overlapped that of the
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Fig. 14. Two preceding vehicles change lanes successively. The first vehicle changes lanes to the left, and the second vehicle changes lanes to the right.

Fig. 15. Two vehicles successively pass the observer vehicle from its right. The second vehicle changes lanes to the left. Our system signaled two correct
warnings and one false alarm in this input video sequence.

second passing vehicle. The resulting attention pattern tricked
the system out of a right passing vehicle. In this example, the
motion behaviors of the second passing vehicle were correctly
recognized, whereas the first passing vehicle resulted in a false
alarm.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a system of detecting critical
motions of nearby moving vehicles while driving on a highway.
The computational framework of the system was characterized
by a computational model called the DVM, which performs
visual analysis based on video sequences. Video sequences

have been known to suffer from the inherent drawbacks of
instability, blurring, and color distortion. The DVM possesses
a number of intriguing features that enable the system to get
around the drawbacks of video sequences.

The abilities of coping with diverse weather (e.g., sunny,
foggy, cloudy, rainy, and snowing) and illumination (e.g., dawn,
sunrise, sunshine, dusk, and nighttime) conditions are also
essentially due to the DVM. Different weather and illumination
conditions lead to different intensity values of the input video
images. The DVM detects vehicle motions based on the DIF
image that is the difference between the MIN and MAX images.
The effect of global illumination is eliminated during image
differencing.
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The proposed system recognizes critical motions of nearby
vehicles by matching the attention patterns generated in the
STA neural network against the principal attention patterns
prestored in the ART2s through an offline supervised learning
process. Although the ART2s can perform online unsupervised
learning, their plasticity to significant patterns and stability to
irrelevant patterns heavily rely on the quality of the attention
patterns provided by the STA neural network. Increasing either
the learning ability of the ART2 neural network, the detecting
power of the STA neural network, or both would improve the
performance of our system.

Our current system has performed well on single critical
motions but was sometimes confused with multiple critical
motions. Better strategies for resolving the pattern overlapping
issue would improve the performance of multiple critical mo-
tion detection. Although the current system cannot distinguish
between false and actual alarm situations, it is feasible to rate
alarm cases according to potential dangers [12]. Currently,
only template patterns of small vehicles were considered. To
deal with large vehicles (e.g., buses, trucks, and towers), the
associated template patterns should be included. However, this
will inevitably worsen the pattern-overlapping issue.
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