INT. J. ELECTRONICS, 1995, vOL. 79, NO. 2, 151-162

Digital VLSI circuit design and simulation of an adaptive resonance
theory neural network

C. 8. HOt and J. J. LIOUY

A digital VLSI circuit design for an adaptive resonance theory (ART) neural
network architecture, called the augmented ART-1 neural network (AARTI-NN)
is presented. An ‘axon-synapse-tree’ structure is used to realize the activities of the
short-term memories and reset subsystem. The long-term memory traces are
implemented using NMOS transmission gates. PSpice circuit simulation was
carried out to verify the design of a prototype, seven-node AARTI-NN. A clock-
controlled delay element is included in the simulation to illustrete the functionality
of the AARTI-NN. It is shown that the AARTI-NN node selection activities
simulated from the circuit designed are identical to those described by the coupled
differential equations governing the AARTI-NN,

1. Introduction

Modern information processing has become increasingly complicated and thus
requires systems which are potentially robust to noise and incomplete information,
adaptive to a changing environment, and intrinsically and massively parallel. Neural
networks are capable of meeting such requirements. Most neural networks reported
in the literature have been implemented via computer simulation of their corres-
ponding mathematical models. For real-life applications, however. neural networks
need to be realized through analogue, digital or hybrid (analogue digital) VLSI
circuits.

This work concentrates on one kind of neural network, the binary-input adaptive
resonance theory neural network (ART1-NN), which was developed by Carpenter
and Grossberg (1987). Some past efforts have been devoted to the design of the
ARTI-NN. Several analogue realizations have been introduced (MNahet er al. 1989,
Tsay and Newcomb 1991, Tsay et al. 1990, Schneider and Card 1991 a and b), but no
attempt has been made to fully implement a complete ARTI-NN architecture. A
digital implementation of ARTI-NN was introduced by Rao er al. (1989) based on
the pipelined associative memory. However, such an approach does not fully
incorporate the parallel mechanism in the ARTI-NN.

The question that often arises is whether analogue or digital type circuits are
more suitable for neural network implementation. The answer is that both are very
desirable. Each is theoretically capable of solving any kind of mathematical
relationship. Each, however, has certain practical limitations and advantages over
the other. Since digital circuits operate with binary signals, problems involving large
amounts in discrete number form would probably be handled most readily by a
digital implementation. On the other hand, problems concerning the integration of
continuous data may be solved more readily with an analogue implementation.
Since the digital approach is much more precise than its analogue counterpart,
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problems with precisely defined input data, such as the input of the ARTI neural
network, would best be solved by the digital circuit. In addition, in comparison with
the analogue circuit, the digital circuit is less sensitive to device parameter changes, is
less susceptible to variations of the environment (e.g. temperature change), and it is
easier to identify the functionality of the digital circuit. The main disadvantage of
the digital approach is that the precise relationship between the input and output
signals cannot be found due to the stepwise process.

This paper presents a digital VLSI circuit design based on an augmented
AARTI-NN model. The AARTI-NN, which was developed by Heileman et al.
(1991), exhibits the same behaviour as the ART1-NN. The major difference between
the two types of neural network is that the dynamics of the AARTI-NN are
completely described by a set of coupled differential equations, whereas the
ARTI-NN involves additional algorithmic components in its description (Heilema
et al. 1991).

It should be mentioned that the number of nodes required in the neural network
varies greatly with applications. For the AARTI-NN, a real system of 64 nodes is
capable of classifying a 21-by-21 data array in pattern recognition applications. The
same number of nodes has also been implemented in standard CMOS technology for
a motion detection neural network (Mead 1989). For a more complicated appli-
cation, such as a SeeHear visual system, the actual chip will contain 32 x 36 nodes
(Mead 1989).

2. Basic structure of AARTI-NN

A schematic of the AARTI-NN is shown in Fig. 1. It consists of two
subsystems—the attentional subsystem and the orienting subsystem. The attentional
subsystem consists of two fields of nodes designated as the fields F, and F,.
The nodes in F, (e.g. nodes v;,1<i<M) and the nodes in F, (e.g. nodes vj,
M +1<j< N) are used to encode patterns of the short-term memory (STM) activity.
Each node in F, and in the first layer of F, is connected via a bottom-up weighted
connection, called the long-term memory (LTM) trace. The pathway from F, to F,
is called the bottom-up LTM trace (denoted z;;) and, likewise, the pathway from F,
to F, is called the top-down LTM trace (denoted as z;;). The F, field is often referred
to as the input field because the input patterns are presented to it. The first layer of
F, is often referred to as the category representation layer, because it is the layer that
indicates the category to which the input pattern belongs to. The objective of the
second layer of F, (e.g. nodes ¢, M+1<j<N) is to deactivate the erroneous
category representation in the first layer of F,, whenever such an erroneous
representation occurs, and to keep this erroneous category deactivated for as long as
the same input pattern is present at F,. The orienting subsystem in the AARTI-NN
architecture consists of a single node designated as v,. The primary purpose of the
orienting subsystem is to generate a reset wave to F, whenever the category
representation in the first layer of F, is not a good match with the input pattern.

3. Circuit design of AART1-NN

Throughout the paper, all activities in the AARTI-NN are realized by binary
values 1(5V) and 0(0 V). Also, a node is denoted as ‘1" if it is activated; otherwise, it
is denoted as ‘0.
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3.1. Short-term memory

In the AARTI-NN model, the STM activity of a node in F, and the first layer of
F, can be described by

gd% '=-»r+(1ﬂAr)(Z S)—(B+C\)(Z T) (1)

i=0 =4

where &, A, B, C and D are arbitrary constants, and the sigmoidal functions §; and T;
are the total excitatory and inhibitory inputs, respectively. For simplicity,
A=B=C=1. Then, the steady-state STM activity x., can be obtained from (1) as

M
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It is apparent in (2) that x,, increases with the sigmoidal function £S; and decreases
with the sigmoidal function X T}, respectively. Based on these properties, a digital
STM circuit was designed by utilizing the axon synapse-tree (AST) structure
introduced by Tsay and Newcomb (1991), as shown in Fig. 2. In the circuit, the
functionality is realized using the voltage-controlled conductances generated by
NMOS devices operated in the linear (or ohmic) region. Note that §; and T; are the
voltages of binary control signals to the synapse transistors of the AST structure (see
Fig. 2). The conductance G, of an NMOS transistor in its ohmic region is given by

I |4
6= 2= | Ves= =5’ | G)
where Vpg and Vg are the drain and gate voltages related to the source, Vi is the
threshold voltage, Vos— Vin=> Vis, and f,=u,C, . (W/L) (u, is the electron mobility,
C,, is the oxide capacitance, and W and L are the MOS channel width and channel
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Figure 2. Circuit diagram of the AART-NN short-term memory (STM).
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length, respectively). Assuming all synapse transistors have the same device par-
ameter f,, then they can be lumped into a single equivalent resistor with a
conductance G =(a+b)f,(Vy— Vin—X/2). Here, ¥}, is the control signal at ‘high’
voltage (V;=5V is used throughout the paper), @ is the number of synapse
transistors Mg, ~ Mg, that are turned on, and b is the number of synapse transistors
My~ My that are turned on. Thus, the STM activity X is equal to V.G,/
(G, +G,), where G, =f'(Vyy— Voin— X/2— V/2) is the total conductance of the axon
transistor. Here, f§ is the device parameter for the axon transistor and V is the
constant voltage source applied to the circuit.

For proper signal transmission in the NMOS devices, the following conditions
have to be met: §;—V;>X, T—V;>X, and Vp— Vo> X. Since Vop=Sipign
= Tinigny=3 V was chosen (V;,p, is the bias voltage, see Fig. 2 (a), V- and X should be
less than 4V when Viy=1V. It is found that X decreases with increasing a and b,
and X increases with the total excitatory input and decreases with the total
excitatory input. Therefore, the AST structure shown in Fig. 2 performs a trend that
is analogous to the STM activity of AARTI-NN.

To generate the binary STM activity (1 or 0), a CMOS inverter circuit with a
threshold voltage V,, is implemented following the AST structure (Fig. 2). The
output activity is ‘1" when X > ¥}, and is ‘0" otherwise. According to the character-
istics of a CMOS inverter, ¥, can be determined by

B\112
VTN+(ﬂP) (Von+ Vip)

Vin= : > (4)
1+ (’5’)”“
B

where f§, and Vi, are the device parameter and threshold voltage for the PMOS
transistor.

To illustrate the characteristics of the STM, PSpice simulation was carried out
for node v, (with activity x,) of the AARTI-NN. The circuit shown in Fig. 3. In the
simulation, Viy=1V, Vp=—1V and V=32V were chosen. The input pulses (five
gate voltages) of the circuit are: Iy,f,(x3)za,, f3(x4)z41.f2(x3) and f5(x,). Their
waveforms are shown in Fig. 4(a). The corresponding output voltage x, and its
binary value f,(x,) are illustrated in Fig. 4 (b). During the time period r=[0, 40] (in
microseconds), it is found that all that inhibitory inputs are 0 and the activity x,
increases with increasing excitatory inputs. After that, all the total excitatory inputs
are high, and the activity of x, decreases with increasing inhibitory inputs. The
simulation results agree with the STM activity described by the AARTI-NN
algorithm,

3.2. Long-term memory

In the AARTI-NN model, the TM traces are described by the following two
equations:

d . L : .
é dr Zij= |:(L— D fi(x)+ Z Ji (xk):lfz(-’fj):ij‘i‘ Lf, (x;:) f2(x;) (5)
k=1

d
[ ds zp=—fa(x)z 11 (x) f2(x;) (6)
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Figure 3. Digital circuit implementation for the short-term memories in the AARTI-NN.

Then, the steady-state values of the LTM traces can be obtained from (5) and (6),
using L=1 and f,(x;)=1, as

Sfi(x:)

Zijs) = ™ s Zjitss) =f1(x;) (7

E Si(x;)
k=1

It can be seen from (5) that the bottom-up LTM trace z;; can change its value only
when node v; is activated (f,(x;)=high). Also z;; approaches z;, when node v,
becomes activated and decays to zero when node v; is deactivated. Note that the
value of z;;,, in (7) is not a binary type value. To create binary inputs to the STM
circuits, in which all the excitatory and inhibitory inputs are binary values, let
Zijsw=1 (high) when node v; is activated and zy,=0 (low) when node v; is
deactivated. From these modified properties, a DRAM-type circuit is designed for
the bottom-up LTM trace, as shown in Fig. 5. Such a circuit also applies to the top-
down LTM trace.

3.3, Reset subsystem

The reset subsystem includes the reset node and nodes in the second layer of F,.
In the AARTI-NN model, the activity of the reset node x, is described by

dx M M
I=—A.x + U|:P Z 1;—0Q Z i (\:):I (8)

o
Cde i=1 i=1
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Figure 4. (a) Input waveforms of the STM circuit shown in Fig. 3; (b) corresponding output

voltage x, and its binary value [, (x, ) obtained from PSpice circuit simulation.
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Figure 5. DRAM-lype circuit for the bottom-up LTM trace.

where 4,, P and Q are constants, U denotes the unit step function, and I; and f; (x;)
are the binary input and output of the node v; in F . respectively. The reset node
becomes activated when U =1 and becomes deactivated when U =0. Therefore, the
binary activity of the reset node can be characterized as: f,(x,)=1 if ZI;>Zf, (x;),
and f,(x,)=0 otherwise. Following the STM implementation described above, the
sigmoidal items shown in (8) can be demonstrated by the AST structure and the
digital reset wave can be generated by a threshold control circuit. A general-purpose
circuit for the reset node is shown in Fig. 6(a).
The activity of node ¢; in the second layer of F, is described by

d

62 g, =~ =gMN%+9 (DS () f>(x;) 9)
where f,(x,) and f,(x;) are the binary output signals for the reset node and nodes in
the first layer of F,, respectively, and g(I) is defined as a unit function related to the
summation of the binary input pattern (Carpenter and Grossberg 1987). According
to (9), node X; can become active only when g(I)f,(x,)f>(x;)=1. Consequently,
F2(%)=5V when g(I)f,(x,)f>(x;)=5V and f,(x;)=0V when g(I)f.(x.)f2(x;)=0V.
An AND-gate circuit designed to represent this logic function is shown in Fig. 6 (a).
The behaviour of the reset subsystem is characterized as follows:

(a) for the case f,(x,)=0 or g()=0: ([5(Xpys1). [2(Kpe2)s. . fa(Xy))=
(0,0,...,0). Thus, there is no reset activity occurring at this time;

(b) for the case f.(x,)=1 and g(I)=1: when I'=(I,I,,.... I\ )=(1,0,..., 0) is
presented (f,(xy)./1(x2)s- ... Silxy))=(1,0,...,0), and then (f3(Xp+4).



Adaptive resonance theory neural networks: circuit simulation 159

The 2Znd Layer of FZ Field

L |
1 1
AST Structure i |
L ! 1 [
I uUDD I 1 1
| | Threshold 1 1 1
! ! Control | |
1 [ TRl # | [
; " ! ! ! L
! LI i} 1 . |
1 1 Mk sess 5= 1 1 I, (xy) : !
! L I . I
! ! ' : L
! | ) . FG I
1 I[__ f uN,II
! ] ! I
I | 1
i | £y (xy) >_. k) 1
I ] I

! | e
! WUty U g -~ J

I

CK

[: upp uDDb
Cg3

Cg1l Cg2

i - XL %

(h)
Figure 6. Circuit diagrams: (a) reset subsystem; (#) delay element.

Sa@pea)s oo f2(X4))=(0,0,...,0). Thus, there will be no reset activity
occurring at this time. When I*=(I,,1,,...,Iy)=(1,1,...,0) is presented,

(1) Si(x2), - file))=(1,1, ..., 0), and then (2 (Rpr44),
Sa(Xprea)y oo f2(Xy))=(1,0,...,0). Thus, node vy, , will be reset and node
Uy 42 Will be chosen to represent the input pattern.

Notice that input pattern I? is a zero pattern at which g(I)=0.

4. Circuit simulation

PSpice circuit simulation for a seven-node prototype AARTI-NN circuit, which
has two nodes (vy,v,) in Fy, two nodes (v3,v4) in the first layer of’ F,, two nodes
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Figure 7. Simulation results for the short-term memory activities x,, x5, x5 and x,.

(v5,v4) in the second layer of F,, and one reset node v,, has been carried out on a
Sun SPARC workstation. In the simulation, the input pattern was designated as
I*(1<k<3)and I'=(I,,1,), where I, and I, are the binary input components to
nodes ¢, and v, in F,, respectively. Three continuous input patterns, I'=(1,0),
17=(0,0), I*=(1,1), are provided during the time interval [0,60], [60,80] and
[80, 160] (in microseconds), respectively.

Delay elements were designed and added following every STM node and the
reset node in order to maintain a time duration for nodes in the second layer of F, to
generate deactivate signals to the first layer of F, and to improve the glitching
problem caused by the undesirable timing mismatch. The delay element circuit is
shown in Fig. 6(b). where the ratios of Cgl/Cg2 and Cg2/Cg3 are chosen to be
larger than 20 to avoid the charge sharing problem. Furthermore, because the zero
pattern is always presented between presentations of useful patterns in the AARTI-
NN model, an additional grounded NMOS device is designed to reset every STM
activity during the presentation of the zero input pattern.

The PSpice simulation results for the STM activities are given in Figs 7 and 8.
After the first pattern [*=(1,0) is presented to F,, node v, becomes active (x, is
larger than the threshold V,,=2V). After a clock cycle delay, f,(x,) goes to 5V at
t=20ps (Fig. 7). Then, node vy is selected to present the input pattern (f,(x;) goes
to SV at r=40us) because node v receives more excitatory inputs than node v,.
According to the function of the designed reset subsystem, there is no rest wave
generated at this point ((f5(X3)./3(X4))=(0,0)). Consequently, node v, is deemed by
the architecture as the right node in F, to represent the input pattern I'. For the
LTM traces, it is found that z;; remains at 5V and z;, increases to 5V once
f2(x3)=5V (these results are not shown). After the second pattern [*=(0,0) is
presented to F, all STM activities decrease below the threshold (V,;,=2 V) and their
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binary outputs decay to 0V at t=80ps (Figs 7 and 8). After the third pattern
I?=(1,1) is presented to F,, nodes v, and v, are activated (Fig. 7) and f, (x,) and
J1(x;) increase to 5V at t= 100 ps (Fig. 8). After one clock time delay, nodes vy and
v, are supposed to become active (x; =35V and x,=5V) at the same time. However,
the reset wave is generated to deactivate node vy at this moment (f;(X;)./5(%,)
=(0,1) are found in Fig. 8. Eventually, node v, is chosen to present the input
pattern I (see Fig. 8, 1=[120, 160]). Thus, the LTM traces corresponding to node v,
approach 5V (z,,=5V and z,, =5V) once x,=5V (not shown),

5. Conclusions

The AARTI-NN can cluster in a parallel manner an arbitrary collection of
binary input patterns. This capability makes the AARTI-NN very attractive for
high-speed signal processing applications. In this paper, a prototype seven-node
AARTI-NN circuit has been successfully designed with a digital VLSI circuit and
verified in PSpice circuit simulations. It has been shown that the simulated digital
circuit node selection activities are identical to those described by the coupled
differential equations governing the AART1-NN. The design procedure suggested in
this paper can easily be extended to larger AARTI-NN architectures as well as to
other types of neural networks.
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