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Abstract This paper investigates the abilities of adaptive

resonance theory (ART) neural networks as miners of hier-

archical thematic structure in text collections. We present

experimental results with binary ART1 on the benchmark

Reuter-21578 corpus. Using both quantitative evaluation

with the standard F1 measure and qualitative visualization of

the hierarchy obtained with ART, we discuss how useful

ART built hierarchies would be to a user intending to use it as

a means to find and access textual information. Our F1 results

show that ART1 produces hierarchical clustering that exhibit

a quality exceeding k-means and a hierarchical clustering

algorithm. However, we identify several critical problem

areas that would make it rather impractical to actually use

such a hierarchy in a real-life environment. These predica-

ments point to the importance of semantic feature selection.

Our main contribution is to test in details the applicability of

ART to the important domain of hierarchical document

clustering, an application of Adaptive Resonance that had

received little attention until now.

Keywords Topics hierarchy � Hierarchical clustering �
Adaptive resonance theory � ART � Text mining

1 Introduction

There has been a keen interest in recent years to automate

the construction of thematic hierarchical structures for

document collections. Supervised techniques [1, 2] as well

as unsupervised clustering [3–5] have been investigated.

Organizing document collections in a hierarchical manner

has always been deemed an important endeavor as evi-

denced by the Dewey classification system used by

libraries and by the hierarchical topic structure used by the

National Health Institute for MEDLINE. A topics hierar-

chy allows easier access to information by partitioning the

search space a user needs to consider. Indeed, the user can

focus her search on the most promising branch of the topics

tree, drilling down her way from more general to more

specific. The automation of thematic hierarchies construc-

tion is thus becoming increasingly important given the

growth of vast electronic text collections, including the

Internet. Automation for instance would allow much better

coverage and more efficient construction of the web

directories currently found as additional offerings on web

search engines sites. Automated topics hierarchy genera-

tion can also help with the organization of very large text

corpus [6] used by industry, government and science

knowledge workers. Another application of hierarchical

clustering is to facilitate information retrieval by, for

instance, organizing results returned by a search engine in a

tree structure [7].

A full review of existing neural network based methods

for document clustering and organization is given in [8]. A

promising yet little studied approach to unsupervised

hierarchical text clustering is the adaptive resonance theory

(ART) [9]. ART vigilance parameter is particularly well

suited to discover hierarchical structures in text, yet as far

as we know only two preliminary attempts have been made

to apply ART to this important problem [10, 11]. It would

therefore be important to fully characterize the possibilities

of ART in this area. This paper tackles this task, investi-

gating both quantitatively and qualitatively the potential of
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ART as a hierarchical topic miner. This work is a contin-

uation of an extensive program to evaluate the potential of

ART in text clustering [12, 13]. Previous work was con-

cerned with hard, flat (partitioning) clustering, while here

we are dealing with hard, hierarchical clustering.

Therefore, our contribution is to test in details the

applicability of ART to the important domain of hierar-

chical document clustering, an application of Adaptive

Resonance that had received little attention until now. This

work will be useful to the research community by pro-

viding a good picture of the application of this type of

neural network to the task of documents hierarchical

clustering. We do not aim at presenting a new neural

architecture but rather at measuring the usefulness of ART

networks applied to hierarchical text clustering.

The paper is organized as follows: in Sect. 2, we

describe ART neural networks in general while in Sect. 3

previous work in hierarchical clustering with ART net-

works is covered. Section 4 presents the experimental

setting and Sect. 5 the experimental results and their

analysis and discussion. Finally, in Sect. 6 we conclude

and present some possible future work.

2 Adaptive resonance theory

ART describes a type of competitive neural network. The

theory was developed by Grossberg in the 1970s with the

objective of modeling learning systems that are both plastic

and stable. Several different types of networks and

implementations have since been proposed in the literature.

In this paper, we focus on a binary version following the

implementation of Beale and Jackson [14]. The architec-

ture of an ART1 network is summarized on Fig. 1. The

network is made of two interconnected layers of neurons

and of an external control system that determines the

operational mode of the layers. Weights wij exist on bot-

tom-up connections going from input neuron i to output

neuron j. There is one input neuron i for each component of

an input vector xk of dimension N. Weights tji are attributed

to top-down connections, from output neuron j to input

neuron i. Each output neuron j (j = 1 to M) hence has an

associated vector tj constituted of the weights tji from the

connections out of j. A vector tj corresponds to the cluster

prototype, that is the internal representation of the category

learned by neuron j. Similarly, there is an input activation

vector wj corresponding to the weights of connections

going from the input layer to output neuron j.

The input layer (also known as F1 or comparison layer)

receives inputs and propagates them on the bottom-up

connections, which causes activation of neurons on the

output layer (also known as the F2 or recognition layer).

The dot product between input xk and bottom-up connec-

tions weight vectors determines the activation uj of each

output neuron j:

uj ¼ xk � wij ð1Þ

Competitive selection takes place between output

neurons. The winner selected is the neuron j* with

maximum activation j* = arg max(uj). The cluster

represented by this output neuron is deemed to be the

one with the greatest correlation with the input. This

constitutes a first measurement of similarity. At this point,

the input signal is propagated back towards the F1 layer on

the winning neuron top-down connections. Scalar product

between input and weights tji takes place in transit, and

when the modified signal reaches the F1 layer, the layer

switches into comparison mode and a second measure of

similarity is taken. This similarity is known as the vigilance

test and is based on the vigilance parameter q = ]0,1]. The

test is the inequality:

xk ^ tj�
�
�

�
�
�

xkk k� q ð2Þ

Following the nomenclature of Beale and Jackson [14]

and of others who have presented simplified computer

implemented versions of binary ART, xk ^ tj is the logical

AND between a document input vector xk and a prototype

tj. ||x|| is the magnitude of vector x given by:

xk k ¼
XN

i¼1

xi ð3Þ

If the vigilance test is passed, the input is attributed to

the winning neuron j* and weights are updated as such:

t0j� ¼ tj� ^ xkðprototype updateÞ ð4Þ

w0j� ¼ L xk ^ tj�
� ��

L� 1þ xk ^ tj�
�
�

�
�

� �

ð5Þ

Equation 5 might differ depending on the various

implementations of ART1. L is another important

parameter that affects ‘‘self-scaling’’ and noise sensitivity

of the network with regards to superset vectors [15]). Large

L values can be used to counter the effect of normalization

in the update of wj weights and thus favor large magnitude

inputs. We set L to 2 in our experiments to avoid this

situation.

On the other hand, if the vigilance test fails, the network

enters search mode, considering each output neuron by

decreasing activation order until one passes the vigilanceFig. 1 ART1 architecture
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test. If no neuron passes the test, a new neuron is created

and the input assigned to it. Effectively, in this last case,

novelty is detected and integrated, which illustrates the

plasticity of ART. In any case, the network must iterate up

to N - 1 times through the data to achieve stabilization

[16]. The prototype weight update with a logical AND

guarantees a unidirectional movement of prototypes

(monotonically decreasing magnitude) and thus also con-

tributes to stability [17].

The vigilance test computes the ratio of the number of

binary components common between input xk and proto-

types tj* of the winning neuron versus the number of binary

components common in the input. Hence, if all active

components (i.e. set to 1) in the input correspond to active

components in the prototype, the ratio will be maximized

and this input will surely pass the test since the maximum

value allowed for q is 1. If on the contrary no common

active component exist, the ratio will be 0 and the test will

fail since q[ 0 by definition.

This behavior highlights one of the advantages of ART,

which is its ability to adapt to any situation by varying the

vigilance parameter. Indeed, by adjusting vigilance, the

network can discover clusters of various granularities

without forcing a specific number of clusters. This gives

the network the unconstrained latitude to discover true

structure in the data. With a high vigilance (q ? 1), the

number of categories detected in the data is maximized

while if q ? 0, a minimal number of clusters is discov-

ered. In extreme cases, for q = 1, all different input objects

belong to different clusters while as q ? 0 a single cluster

regrouping all data objects might be created. However, in

this latter case, even for a very small vigilance, the number

M of clusters discovered is often greater than 1, an indi-

cation that ART vigilance permits the mining of inherent

structure in data rather than arbitrarily forcing the forma-

tion of a single super-cluster. This phenomenon is known

as the minimal vigilance [18].

3 Previous work in hierarchical clustering

with ART networks

We have discussed in the previous section how variations of

the vigilance parameter result in various structural views of

the data. Since these views correspond to different levels of

abstraction of the data, vigilance variations can be exploited

to detect hierarchical structure in data. Researchers in areas

other than text clustering have previously explored this

approach. For example, Ishihara et al. [19] proposed

‘‘arboART’’, a series of ART networks processing data at

different vigilance and in which each network receives as

input the output of the preceding level. Some of the work by

Bartfai and White [20] follow the same approach, as we will

see briefly. Lavoie et al. [21] follow a different avenue using

Fuzzy ART with a new selection function for the winning

neuron. Since our current work is based on ART1, this

approach to form hierarchies will not work, and we will

therefore limit ourselves to variations of vigilance and

linked networks. This being established, there are essen-

tially two possibilities to form hierarchies with ART1

networks. The first consists in choosing the output neurons

of multiple networks working at different vigilance on the

same dataset [22]. We recall that the output neurons cor-

respond to the clusters; therefore output neurons obtained at

a given vigilance can be used as the nodes of a topics tree. A

network working at minimal vigilance will produce the

roots of the hierarchy (indeed, it is a forest and not a single

tree that is formed) while categories obtained at succes-

sively higher vigilances will form the subsequent levels.

Figure 2 illustrates a simple case with two ART networks.

Two nodes Ck,i and Ck + 1,j on two adjacent levels k and

k + 1 are linked if Ck,i \ Ck + 1,j = {}. The intersection

here means to verify if there are any common documents in

the categories Ck,i and Ck + 1,j represented by the corre-

sponding nodes. In other words, a hierarchy going from

general (top) to specific (bottom) can be constructed by

linking clusters that have documents in common on two

subsequent levels.

The second approach to built hierarchies with ART is

the serial interconnection of networks [19, 23]. The first

network of the chain processes data at high vigilance,

which allows the creation of many specific clusters, thus

forming the lowest level of the hierarchy. The prototypes

of this network are then used as inputs of the next network.

Hence, the networks in the chain successively construct

more general levels of the hierarchy by fusing the previous

Fig. 2 The output neurons of two independent ART1 networks are

used to create levels of a hierarchy. Since q0 \q1, the ART network

functioning at q0 distinguishes more general structure and thus its

output is used on a higher level of the hierarchy
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level clusters. As such, this approach is an instance of

traditional agglomerative hierarchical clustering algo-

rithms. A simple example of this architecture with two

ART networks is shown on Fig. 3. We put the emphasis on

the fact that with this approach, networks subsequent to the

first one do not process the actual document data but the

prototypes representing group of similar documents dis-

covered by preceding networks. Vigilance value must be

determined for each network of the series and is not nec-

essarily in decreasing order. Clusters formed by the jth

network of the chain are used to form the (h–j)th level of

the hierarchy (h is the height of the hierarchy, with level 0

being the root).

There is actually a third possible approach to hierarchical

clustering with ART networks. Again, a series of ART

network is used but this time a divisive algorithm is

implemented [23]. In this case, general clusters are first

formed and are then successively divided into smaller

specific groups. The difference between an input and the

prototype to which this input was assigned is propagated to

the next level. An additional parameter called resolution

ensures that the next module is activated only if the dif-

ference is large enough. Four sets of connections exist

between each module of the chain. Since this architecture is

more complex than the other two described previously and

since Bartfai and White have shown that it gives similar

clustering quality, we will not test this architecture here.

The application of these ideas to hierarchical text clus-

tering has been limited to Vlajic and Card [10] and our own

preliminary exploration work a few years ago [11]. In the

latter case, the hierarchy is assembled manually based on

clustering results obtained at various vigilance levels on a

very small text collection. The quality evaluation is sub-

jective. Vlajic and Card used a non-binary version of ART

(known as ART2) modified to handle web pages. Here

again a very small set of 20 web pages is used and no

quantitative quality evaluation performed. This is the type

of situation we want to avoid in this work by clustering a

relatively large, benchmark text collection and evaluating

quality quantitatively with a proven quality measure.

4 Experimental settings

To evaluate the abilities of ART networks to discover

hierarchical structure in text, we employ the following

experimental strategy: first, we form a hierarchy with

each of the two approaches described in the previous

section using the exact same text data to ensure com-

parability; second, we measure the clustering quality

objectively at each level and observe structural qualities

(such as number of sub-clusters at each level and num-

ber of undivided clusters between levels). We then

compare the quality of each level of the ART-produced

hierarchy with the quality obtained using k-means and a

conventional hierarchical agglomerative clustering (HAC)

algorithm implementing the minimum variances criterion

(Wards method). Again, the exact same text data was

utilized to ensure comparability of results. Although k-

means is a partitioning algorithm giving flat clusters, the

clusters for various values of k can be used to form a

hierarchy similarly to what we have done with inde-

pendent ART networks. Lastly, we evaluate clustering

visually to determine how useful hierarchies built with

ART would be to an actual human user.

The text data used is the Reuter 21578 benchmark

corpus, which is transformed into the standard bag-of-

words vector space representation. Well-established pre-

processing is applied, such as stop words removal and

dimensionality reduction by removing words that do not

exceed a minimal occurrence frequency. We removed as

many words as possible before zeros-only document vec-

tors started appearing, which corresponds to removing

words appearing in 77 documents or less. This had resulted

in the best quality in our previous experiments and also the

fastest processing with N = 357 features. Objective quality

evaluation is conducted by computing the F1
1 external

validity of the clustering solution at each level. This means

we compare the clustering solution C = {Ci | i = 1, 2, …,

M} to a given or desired solution S = {Sj | j = 1, 2, …,

Ms}, hence measuring the ability of the clustering algo-

rithm to retrieve the given desired solution prepared by

human classifiers, which is assumed to be the ground truth.

The clustering solution C is a set of clusters Ci while the

desired solution S is a set of topics Sj. Both Ci and Sj are

sub-sets of D = {d0, d1, …, dR}, the set of documents to
Fig. 3 Two ART1 networks in series. Prototypes from the lower

network serve as input for the next network. Vigilance q0 of the first

level network must be large enough to cause the creation of multiple

specific categories which can be amalgamated by the network at the

next level

1 F1 in this case is a well-known clustering quality measure, to be

distinguished from the F1 of section 2 which is the name of the input

layer of ART networks.
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cluster. This manner of computing quality has been used

successfully in text clustering before (see for instance [24,

25]). Based on [24] and [25], F1 is given by:

F1 ¼
PMs

j¼1 jSjjF�1j
PMs

j¼1 jSjj
ð6Þ

Better quality is achieved with higher F1 values, in the

range [0,1]. F*1j is the F1 value of the cluster that best

matches topic j in terms of maximizing its F1 value. The F1

value of a cluster i with respect to a fixed topic j is:

F1i ¼
2ai

2ai þ bi þ vi

ð7Þ

where ai, bi, vi are given by Eq. 8:

ai ¼ jCj \ Sij i.e. the number of true positives ð8aÞ

bi ¼ jCjj � ai i.e. the number of false positives ð8bÞ

vi ¼ jSij � ai i.e. the number of false negatives ð8cÞ

We note that Eq. 7 is obtained by simple algebraic

manipulations from the well known F1 effectiveness

measure of information retrieval and text classification

[26, 27]:

Fb ¼ b2 þ 1
� �

pc
�

b2pþ c
� �

ð9Þ

where:

p ¼ a= aþ bð Þ is the precision; ð10Þ

and

c ¼ a= aþ vð Þ is the recall: ð11Þ

Parameter b determines the balance between precision

and recall and its value is usually set to 1, which is what we

have done to derive Eq. 7. In text classification, the number

of true positives, false positives and false negatives are not

computed exactly as in clustering (Eq. 8) since one has

a priori knowledge of which class corresponds to which

topic in the ground truth solution. Details of the differences

between the text classification and text clustering F1

computation are presented in [25].

Some authors elect to compute a global quality for the

whole hierarchy [5, 28]. Such an approach to quality

computation allows one to take into account the degree of

error. For example, misclassifying a document about

camping under sports rather than outdoor activities is less

dramatic than classifying it under Computer Science. We

consider in our case that this does not serve our purpose of

evaluation since it may unfairly inflate quality: we prefer a

stricter definition of quality to establish an un-inflated

baseline quality. Noting and averaging quality on each of

the few levels gives a good idea of the hierarchy quality,

which is sufficient to achieve our goal and this is therefore

what we will do.

Some may object to the choice of F1 as a quality metric.

F1 is one measure of clustering quality among many others,

it has its strengths and limitations but one must keep in

mind that there is no single perfect way to measure clus-

tering quality. We are not the first to use F1 to establish

clustering quality, as mentioned previously. As such we

merely use one existing measure of quality among the large

set available. Our goal is not to re-invent the wheel and

propose yet another clustering evaluation methodology, but

rather we prefer to use an existing one for compatibility

and comparability with our previous work. Our choice of

external validation versus internal is justified by the need to

establish usability of the resulting hierarchy by humans.

We therefore made a choice of measure that involves the

presence of a ‘‘ground truth’’ solution. We concur that this

is not the only solution as users may have different views

of how documents shall be grouped. However, this com-

parative evaluation with a given solution is a simple, low

cost way to evaluate quality and it serves our purpose.

Furthermore, the literature in both text clustering and

supervised text categorization is rich in examples of

evaluation using ground-truth comparative approaches.

Indeed, by doing so, one actually measures how well the

algorithm re-discovers one specific human crafted solution.

This is the reason why we also built a user interface so that

clusters can be viewed and evaluated subjectively by

humans (and this is actually how we identified most

problems with the clusters).

For the independent ART1 networks approach, we used

clustering outputs of previous experiments with the Reuter

collection. The vigilance values used are 0.04, 0.06 and 0.1

for the intermediary and inferior levels of the hierarchy.

For roots, clustering at minimal vigilance (0.005) was used.

For ART networks in series, we used the exact same

dataset (same documents, same pre-processing) as for

independent networks to ensure results are comparable. In

this case however, vigilance values are not known in

advance: we must experimentally find the ones that work

best.

5 Experimental results and discussion

5.1 Results with independent ART1 networks

We have formed a four-level hierarchy by linking the

clusters formed by four ART networks functioning inde-

pendently with different vigilance values. Vigilance values

for each level were selected among the best qualities

obtained during previous experiments with flat clustering,

thus there is no surprise in terms of quality as we choose the

highest quality solutions as building blocks for the hierar-

chy. However, within a real application, a fundamental
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problem would emerge: quality being unknown at first, the

a priori choice of vigilance becomes problematic, as we

have pointed out in other work [13]. For k-means and the

HAC algorithm implementing the minimum variances

criterion, we make two observations. First, we measure the

quality obtained for the levels with the same number of

clusters as the ones used for ART. Secondly, we also

consider the average quality over the whole range (from 45

to 200 clusters) as it may be unfair to k-means and HAC

which must compete with the best pre-determined levels

used for ART.

Tables 1 and 2 summarize the main characteristics of

the hierarchy obtained with independent ART1 networks.

The hierarchy has 45 roots, corresponding to the minimal

number of clusters achievable at minimal vigilance.

Table 2 shows the average number of sub-clusters, that is

the number of children clusters attached ‘‘under’’ a cluster

at a given level. Figure 4 shows the quality obtained with

k-means and the HAC algorithm implementing the mini-

mum variances criterion. With ART, the average quality

over all levels of the hierarchy is F1 = 0.37, while it is

0.22 and 0.24 for k-means and for HAC respectively. Of

note is that with the same dataset as used with ART1, both

k-means and the HAC algorithm give (in the range of

45–200 clusters) a quality F1 B 0.27, which ART1 exceeds

globally and for each level of the hierarchy. Since the

quality is decreasing with the number of clusters, increas-

ing the number of clusters further for k-means and HAC

would only make their case worse. It is therefore not

possible to get a better quality hierarchy with k-means or

with HAC than what was achieved with ART (keeping in

mind the limitations of our quality metric, and for that

matter of any quality metric, and that results may be dif-

ferent with other datasets).

One advantage of this architecture is the parallel pro-

cessing of data for each level since different ART networks

can each produce their output independently. Then a post-

processing module can assemble them into a hierarchy.

Two problems were noted, however.

The first problem is that a large number of clusters did

not split when going from one level to the next. Between

levels 0 and 1 and then levels 1 and 2, 42% of the clusters

had only a single sub-cluster. Between the final two levels,

29% of the clusters did not split (see Table 2). In these

cases, the unique sub-cluster is identical to the parent

cluster, which is contrary to the objective of the hierarchy,

namely to divide the informational space to facilitate the

search of information. This gives another point of view on

the hierarchy quality. We believe that in order to make the

hierarchy truly useful, this problem should be solved to

limit single child clusters to exceptions.

On the other hand, only a few clusters are separated into

a high number (&40) of sub-clusters, but 40-odd sub-

clusters appear to be reasonable. This evaluation of the

number of sub-clusters is arbitrary. Determining the num-

ber of sub-clusters that are acceptable to a user is a matter

of research on human–machine interfaces, a topic not

addressed in this paper. The same goes for hierarchy depth.

Scientific literature we have reviewed on both supervised

and unsupervised learning of document hierarchies is

generally silent on this topic. We could, however, raise the

following references for Reuter, but they do not in any way

address the ergonomic aspect: with a previous version of

Reuter (Reuter-22173), Koller and Sahami [4] built a two-

level hierarchy with three and six clusters per level, and

Weigend et al. [29] with five clusters on the top level. With

the same Reuter collection as we used, D’Alessio et al. [30]

instead used the five meta-categories that came with the

collection as top-level topics in the hierarchy. In these

Table 1 Quality and number of clusters at each level for independent

ART networks

Level Vigilance F1 Nbr of clusters

0 0.005 0.40 45

1 0.04 0.38 64

2 0.06 0.31 94

3 0.1 0.38 231

Table 2 Sub-clustering for independent ART networks

Level Average no of sub-clusters SDa No of undivided sub-clusters

0–1 3.5 4.0 19 of 45 (42%)

1–2 5.2 7.0 27 of 64 (42%)

2–3 7.6 9.8 27 of 94 (29%)

a SD is the Standard deviation on the average number of sub-clusters

Fig. 4 F1 quality for k-means and for HAC wards method
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cases, there are far fewer categories per level than what we

found with ART.

In addition, we observed what is done with the topics

hierarchies built by human classifiers for the Internet, such as

Yahoo (http://dir.yahoo.com/) and Google (http://directory.

google.com/). In such cases, there is a certain structural

similarity between the ART hierarchies, such as, for

example, the depth (approximately five levels) and the

number of subclasses: between 10 and 50 at the higher

levels. In some exceptional cases, there are more sub-

classes but usually fewer and fewer as the topics become

more specialized. This leads us to say that although ART

generates far too many undivided clusters, the hierarchy

extracted from the data seems to have reasonable structural

properties of depth and number of subclasses, similar to the

ones one can find in commercial-grade, human-built

hierarchies.

The second problem with the independent ART network

architecture is the lack of consistency, i.e. that a k + 1

level sub-cluster can be the child of more than one k-level

cluster. Consequently, the sub-clusters do not form docu-

ments subsets of their parent cluster. In the hierarchy built

by ART, a sub-cluster has on average three different par-

ents (SD of 2.8). In some cases, there are even up to eight

and 11 different parents. The cause of this phenomenon is

precisely the independent operation of the networks: the

clusters formed at various vigilance values are created with

different criteria, thus providing a totally different view-

point of the data structure. Then, the clusters at two levels

are linked merely on the presence of at least one common

document. Clusters obtained through low vigilance would

thus not necessarily correspond to partitions of clusters

formed at higher vigilance. Accordingly, they would not be

subsets of clusters formed at high vigilance. A possible

solution to this problem would consist of adding some

dependence between levels by not rolling back the weight

of connections to zero between each level of vigilance (if

using a common network) or by communicating the

weights obtained by the processing of one network to

another network.

Before moving further into this area, which considers

the absence of so-called consistency as being problematic

and to come up with solutions, one must first question the

gravity of the problem. The idea of a document having

more than one parent is apparently undesirable, as users

could easily get lost in such a hierarchy. For example, if the

user wants to move up in the hierarchy following an

unsuccessful search, the user would have more than one

option, whereas when she was at first moving down the

hierarchy there was a single option. In reality, this is not

necessarily a problem with, on average, only three parents

as we have here. The user could move up the hierarchy

using the same path by remembering the descending path

using a stack (such as the ‘‘history’’ button in Web

browsers).

Furthermore, having the ability to access a document

from more than one parent may actually be very beneficial,

as it would provide different ways of accessing the same

information. From a semantics standpoint, this situation is

reflected as a subtopic that ‘‘belong’’ to several different

topics. For example, there could be a topic ‘‘gold’’, which

might be a subtopic of ‘‘precious metals’’ and of ‘‘elec-

tronics’’. This could result from the fact that gold is a

precious metal and is used in electronics components.

Therefore, the hierarchy does in fact correctly represent,

from a structural standpoint, the relationship between the

subtopic and the parent subjects. However, each link has a

different meaning. In one case, the subtopic is linked to the

topic through a ‘‘type of’’ relationship (gold is a type of

precious metal) while, in the other, it is through a ‘‘use’’

relationship (gold is used in electronics). We also note that

it is exactly what the Yahoo and Google hierarchies do and

it is one of the objectives of soft clustering. In short,

consistency appears to not be a problem after all if the

number of parents is not too high.

5.2 Results with ART1 networks in series

We know from the previous experiments with independent

networks that q = 0.1 gives M = 231 cluster, which seems

a reasonable number of leaves for a hierarchy (we want to

avoid an overload of information for users by providing too

many clusters to explore). Since ART networks in series

are a bottom-up approach to hierarchical clustering, we

will start with this maximum number of clusters at the

bottom of the hierarchy. For the upper levels, again, we

were faced with the problem of finding the appropriate

vigilance and thus preceded by trial and error to find

acceptable values of vigilance. We have found that

qmin B q B 0.5 was giving good results (with minimal

vigilance qmin = 0.005). In our experiments, we used both

extremes of this vigilance interval, but any other values

within the extremes should be satisfactory. In practice, the

vigilance values selected will be determined by the appli-

cation, depending on the required number of clusters at

each level.

Table 3 Characteristics of the hierarchy obtained with ART

networks in series

q Level No of clusters F1 Average no of sub-clusters SD

0.005 0 46 0.25 22.5 13.4

0.5 1 101 0.39 2.2 3.4

0.1 2 231 0.38 n/a n/a
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It was not possible to form more than three levels in the

hierarchy. Indeed, whatever the vigilance value at the top

level, the clustering obtained was always identical to the

one on the second level, which indicates that no further

clustering was possible. Table 3 summarizes the charac-

teristics of each level of the hierarchy. When using the

ART serial network approach, there was no inconsistency

such as observed with the independent networks as the

clusters themselves were successively amalgamated at each

level. The average quality for the entire hierarchy is

F1 = 0.34, slightly lower than with independent networks.

Only at vigilance 0.005 is the quality lower than the

maximum values obtained with k-means and HAC, but on

average this type of ART-produced hierarchy also offers

higher F1 quality than k-means and HAC.

The column SD in Table 3 refers to the SD in the

number of sub-clusters. For q = 0.005, this value indicates

a wide variation in the number of sub-clusters, a variation

larger than what we observed for independent networks.

Indeed, at that vigilance value, the four clusters with the

most sub-clusters have respectively 121, 44, 11 and 3 sub-

clusters. Then, three clusters have only two sub-clusters

and the 39 other clusters (39/46 = 85%) have only one (i.e.

undivided sub-clusters).

Hence, like the independent networks, the serial net-

works result in many clusters that are not divided from one

level to another. In fact, there are many more: 85 and 74%

between the upper tiers. That is where there is a major

problem since the hierarchy does not excel in its role in

partitioning document space. This situation is the result of

too few active components (those with a value of 1) in the

prototypes, which are the intersection of all document

vectors assigned to the cluster a prototype represents. Since

few components are active in the prototypes, when they

become the inputs of the next network, there is only a very

low probability of intersection between the inputs. It thus

becomes very difficult to find clusters among the data with

few or no common attributes. Accordingly, the clusters

have little chance of splitting further into sub-clusters.

The small number of active components also limits the

height (the maximum number of levels) of the hierarchy. In

the course of our experiments, it was impossible to form

more than three levels. The maximum number of levels h

that could be formed with the serial architecture was

studied by Bartfai [23] and is determined by the magnitude

of inputs K = ||x|| and the vigilance q:

h ¼ � log K

log q

� �

þ 1 ð12Þ

Bartfai presumes in the calculation that K and vigilance

q are constants, which they are not in our case and which is

not realistic. Let us look at and delve deeper into Bartfai’s

reasoning. The fundamental principle that should guide the

approach to determining the maximum height of the

hierarchy is the progressive erosion of prototypes at each

successive level. In fact, the magnitude of the prototypes

||t|| monotonically decreases with time in a ART1 network

following updates by intersection:

t0 ¼ t ^ x ð13Þ

Thus, the new prototype t0 is the intersection of the

current prototype t and the input x with which it has passed

the vigilance test. This means that:

t0k k� tk k ð14Þ

For example, if t = [1 0 1 1] and x = [1 1 0 0], then

||t|| = 3, ||x|| = 2 and ||t0|| = ||t ^ x|| = 1, which will nec-

essarily be smaller or equal to ||t||.

In the context of a serial ART network, a prototype t0n of

level n would be the input xn + 1 of the next level. The

magnitude of this input will again be reduced by the pro-

cessing of the ART network at level n + 1. Therefore,

t0
nþ1

�
�
�

�
�
�� t0

n�
�
�
� ð15Þ

It thus becomes essential to have prototypes that are of a

sufficient magnitude as entries at level n + 1, otherwise, it

would be impossible to further split them into a smaller

number of clusters. This is the cause of the maximum

number of levels possible. The absolute lower bound of a

prototype’s magnitude can be established as ||t0n + 1||min

below which no new level can be formed. In fact, when the

largest prototype will be of magnitude 1, it becomes

impossible to split the prototypes even further. Note that, in

practice, the bound will be reached beforehand, i.e. for a

magnitude of ||t0n + 1||0min C 1. The reason for this is that

formation of new clusters is dependent upon all inputs and

their potential for intersecting each other, as a prototype tj

is the global intersection of all inputs xi that are assigned to

cluster Cj tj ¼
T

xi2Cj

xi

 !

: However, the absolute lower

bound below which no new cluster can form in theory

remains:

t0nþ1
�
�

�
�

min
¼ 1 ð16Þ

Now, we must calculate the magnitude of the inputs at

each level. We re-write the vigilance test by moving the

denominator from the left to the right side of the inequality

for an input xn and a prototype tn at level n:

tn ^ xnk k� q xnk k ð17Þ

From Eqs. 13 and 17, we obtain the updated magnitude

of the prototype vector tn0 following processing by the

ART network at level n, which will be:
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tn0k k� q xnk k ð18Þ

and since tn0 will be the input xn + 1 of the next level, we

can also write:

xnþ1
�
�

�
�� q xnk k ð19Þ

We recursively apply Eq. 18 for each level:

th
�
�
�
�� x1

�
�
�
�
Yh

n¼1

qn ð20Þ

||x1|| must then be the magnitude ||x1||max of the largest input

to ART 1 network since it offers the most possibilities of

partition into sub-clusters. We thus obtain a lower bound

for ||th|| with the best possible initial conditions.

Lastly, we apply Eq. 16 as termination condition to find

h with Eq. 20:

h ¼ min n : x1
�
�
�
�

max

Y

n¼1

qn ¼ 1

 !

ð21Þ

We are thus looking for the minimal n that ensures that

|| t0n ||min = 1 (Eq. 16).

In our experimental situation, among the 3,299 docu-

ments Reuter submitted to ART 1 network, the greatest of

||x1||max is 95. We thus obtain the following expansion of

Eq. 21:

n = 1: 95 q1 = (95)(0.1) = 9.5 [ 1, continue;

n = 2: 95 q1 q2 = (95)(0.1)(0.5) = 4.75 [ 1, continue;

n = 3: 95 q1 q2 q3 = (95)(0.1)(0.5)(0.005) = 0.024 \ 1,

stop.

; h = 3

We note that if q3[ 1/4.75, we would obtain h = 4. This

is caused by the inaccuracy of the bound set by Eq. 16 used

as termination condition in Eq. 20. In fact, remember that,

in practice, the bound will be reached for a magnitude

||t0n||0min C 1 since formation of new clusters is dependent

on all inputs and their potential for intersection among

themselves. Thus, we need to determine ||xn||max at each

level, not only at the first level. However, even in this case,

it is not possible to predict all interactions between the

inputs. For example, in our case, we have the following

||xn||max:

n = 1: ||x1||max = 95

n = 2: ||x2||max = 13

n = 3: ||x3|| max = 13

n = 4: ||x4||max = 3

At the output of the level 3 network, thus at the input to

level 4, ||x4||max = 3. In theory, a vigilance level [1/3

should enable the formation of the fourth level. Our

experiments have revealed that such is not the case. The

explanation is that no prototypes formed at level 3 have

common components, which prevents any additional

partitioning regardless of the level of vigilance. The

maximum number of levels in a hierarchy is ultimately

determined by the progressive erosion of prototypes

between the levels, thereby necessarily leading to low

potential for intersection and thus a very low probability

that an additional level composed of different clusters will

be formed.

5.3 Hierarchy visualization

We wanted to verify whether the hierarchies created by

ART were actually useful in navigating document clusters.

This was achieved by rendering the hierarchy graphically

and exploring the documents collection with the hierarchy.

Although the F1 quality is not extraordinarily high; we

have shown in previous work that on average it exceeds the

clustering quality obtained with k-means. This being said,

it would be interesting to see if the clusters are in fact

useable for finding information. To do this, we added a

post-processing module to the ART networks, which builds

a hypertext (HTML) representation of the hierarchy. K-

means and HAC were not evaluated visually because we

were only interested in observing if ART1, given its

superior F1 quality would actually result in a hierarchy of

documents that is usable. Furthermore, this exercise was

completed solely for independent networks that, from the

outset, result in fewer undivided clusters than serial net-

works and a slightly higher F1 quality. It has also allowed

us to experiment with the consistency ‘‘problem’’ (multiple

parents). Figure 5 shows the graphical user interface used

to display and explore the hierarchy. The evaluation con-

ducted here was anecdotal and incomplete since we have

considered only a very small part of the hierarchy. Nev-

ertheless, this exercise allowed us to identify important

usability and quality issues. A more comprehensive

Fig. 5 Hierarchy visualization in a Web browser
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evaluation with multiple users is a possibility for future

work but was not realizable within the scope of this work.

The first observation following the use of this graphical

interface is that certain clusters are characterized by a

single, very vague term that conjures up no topic infor-

mation that could be used by a user. For example, the first

five clusters respectively have ‘‘year,’’ ‘‘reuter,’’ ‘‘said,’’

‘‘vs,’’ and ‘‘says’’ as unique attributes of their prototype.

Most of these are words used very frequently in the col-

lection. Table 4 shows the most frequently used words in

all of the data. Four of the so called ‘‘problem words’’ in

the example are present (shaded). The word ‘‘says’’ does

not appear in the table as it has a much lower frequency,

appearing 193 times in the collection and present in 186

documents.

Some of the clusters formed with these words are highly

populated and intersect with a large number of desired

topics, thereby greatly affecting the overall quality. Such is

the case with the first two clusters (those with ‘‘year’’ and

‘‘reuter’’ as unique attribute), each respectively containing

781 and 1,502 documents distributed among 74 of the 93

topics of the human crafted solution. From this standpoint,

these two clusters are truly distinct and constitute catchalls

compared to other clusters. Figure 6 provides a good

illustration of this situation by showing part of the cross-

correlation matrix between clusters (rows) and topics

assigned by human classifiers (columns). The number in

each cell indicates the number of common documents, i.e.,

those correctly classified. Only these two clusters have

non-zero values (and also quite high values) in almost

every cell.

Moreover, in the cross-correlation matrix in Fig. 6,

cluster 0, which unique attribute is the word ‘‘year’’, is

dominated by 91 documents from topic 16 (‘‘acquisitions’’)

and 109 documents from topic 25 (‘‘earnings’’). Never-

theless, it still only amounts to 91 out of 719 documents

and 109 of 1,087 documents actually assigned to each of

these topics in the desired solution. Cluster 1, however,

which unique attribute is the word ‘‘reuter’’, is more

strongly dominated by 480 documents from topic 16

(‘‘acquisitions’’) out of a total of 719 documents (this is

67%, making cluster 1 a fairly large container of true

positives for the topic).

The strong presence of topic 16 in cluster 1 may not

seem surprising at first, since it is the second most popu-

lated Reuter topic. A document therefore has a relatively

high probability from the outset of finding itself in this

topic, and a cluster should have a relatively high proba-

bility of containing a fair number of documents of this

topic. A given document selected randomly from the 3,299

documents of the data set has a probability P(ACQ) =

719/3,299 = 0.22 of being labeled with topic ‘‘acquisi-

tions’’ in the desired solution. Then, cluster 1, which is

characterized by the unique attribute ‘‘reuter’’, contains

67% (480/719) of documents from topic ‘‘acquisitions’’.

This seems a high proportion of documents. One may

wonder if cluster 1 is just a statistical accident, given the

unlikely and unrepresentative ‘‘reuter’’ feature. What is the

probability that a document chosen at random is in class

‘‘acquisition’’ and is placed in cluster 1? Since there are 45

clusters at level 1 of the hierarchy, there is a P(C1) = 1/

45 = 0.02 chance of putting a document into cluster 1. For

the first run, the conjunctive probability of the two events

will be P(ACQ) 9 P(C1) = 0.22 9 0.02 = 0.0045. The

second question that arises is: what is the probability that as

many documents (480) from class ‘‘acquisitions’’ can be

randomly assigned to the same cluster 1? This has a

probability of \10-30. It is thus very unlikely that the

clustering obtained for cluster 1 is a statistical artifact.

Table 4 The most common words in reuter with cut-off frequency of

77 for dimensional reduction

Word Total number

of times word

appears in

the collection

Number of

documents

containing

this word

said 7,279 2,026

mln 5,928 1,610

vs 5,052 966

dlrs 3,900 1,451

reuter 3,019 3,005

pct 2,759 974

Lt 2,545 1,864

cts 2,523 960

net 2,451 988

billion 1,935 597

year 1,771 854

Fig. 6 The cross-correlation

matrix between clusters (the
rows) and topics assigned by

human classifiers (columns).

The first row contains the topic

numbers and the first column

contains the cluster numbers

(in bold)
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ART1 is doing something sensibly non-random. Still, what

is very peculiar is that the word ‘‘reuter’’ is used as a

critical characteristic for this cluster. This word appears to

simply be a source identifier and therefore should not be

semantically determinant for topic ‘‘acquisitions’’. A pos-

sible explanation is that while other words may have had an

influence on the attribution of documents to this cluster

during processing, the word ‘‘reuter’’ being very prevalent

in the collection, it was the only word common to all

documents in the cluster and hence the only word left

following the multiple updates to the prototypes.

The second observation we made following the use of

the graphical interface is that 90% of the documents of

topic ‘‘acquisitions’’ are distributed among seven clusters,

namely clusters 1, 7, 31, 33, 34, 39 and 42. It thus appears

that these clusters may fragment this topic, forming

‘‘acquisitions’’ subtopics, which could be quite interesting.

By viewing each, we instead find that several of these

supposedly subtopics of ‘‘acquisitions’’ contain very few

documents and these documents simply contain a word that

is synonymous to or semantically related to ‘‘acquisitions’’.

Table 5 shows the number of documents and the prototype

keywords of these clusters. Because they do not match

lexically with one another, these keywords have forced the

formation of separate clusters for topic ‘‘acquisitions’’.

Words such as ‘‘year’’, ‘‘reuter’’, ‘‘said’’, ‘‘vs’’, and

‘‘says’’ (among others) that appear to be the root of the first

problem are not eliminated during pre-processing with

filtering by minimal frequency, but they may be eliminated

when filtering with TFIDF. Furthermore, terminological

standardization could help solve the topic fragmentation

problem at least for words of the same family (e.g.

‘‘acquisition’’ and ‘‘acquire’’). In previous work, we saw

that these two techniques do not necessarily help increase

F1 quality but they have the potential to improve the users

experience by solving some of the problems we just

observed. We have thus created a hierarchy with a text

dataset on which terminological standardization was

applied (essentially a suffix stripper) and feature selection

completed with TFIDF rather than the simple minimum

frequency of occurrence threshold used previously.

Unfortunately, our experiments with TFIDF and termi-

nological standardization have solved none of the

problems. The hierarchy formed with TFIDF and termi-

nological standardization still experience the fragmentation

problem with class ‘‘acquisitions.’’ We have the stems

‘‘acquir’’ and ‘‘acquisi’’, which in this case do not allow

‘‘acquisitions’’ to be standardized with ‘‘acquire’’, but

semantically related words, such as ‘‘merger’’ and ‘‘take-

over’’ still form separate clusters. Keyword ‘‘Reuter’’ was

removed from the vocabulary by the TFIDF selection, but

several other problem words, such as ‘‘year’’ and ‘‘said’’,

were not and continue to cause problems.

Based on the observations from the previous paragraph,

we explored another potential solution to eliminate the

words that cause a problem: we have treated problem

words as domain stop words. We inserted these words in

the list of general stop words (with prepositions, articles,

etc.) to force their exclusion as attributes during pre-pro-

cessing. This approach constitutes a significant human

intervention, which partially defeats the initial purpose of

clustering, which is exactly to proceed without human

intervention. However, in a real-life application, it is pos-

sible that it would be worthwhile to include this additional

step if the usability and overall quality of the hierarchy

becomes greatly improved. The words removed were:

said year pct vs dlr

say today lt mln usda

do cts sees see dlrs

does billion reuter

The criterion for word exclusion was based on the

authors impression of the lack of utility of these words as

representative features for cluster prototypes. The result of

this operation is again unsuccessful. First, F1 sustains a

decrease of about 10%, which leads one to think that some

of the words we removed indeed have a role in the overall

quality of clustering. For example, we removed words such

as ‘‘dollars’’ (in its many forms), which could in fact be

globally useful even if our first impression was to believe

that the clusters formed with these words were invalid.

Second, it appears that other words have taken the place of

the problem words that were removed, resulting in new

problems (the word ‘‘ar’’ for example, is used as unrepre-

sentative prototype feature). It may require several

attempts at manipulating the vocabulary to arrive at

something that is acceptable, but we have not judged

Table 5 Sub-topics from class ‘‘acquisition’’ formed by ART

Cluster # Prototype keywords Number of

documents

for topic

‘‘acquisitions’’

7 acquire 7

31 merger 2

33 purchase assets 14

34 recent takeover 9

39 acquisition 1

42 bid 45
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worthwhile to explore this avenue since it seemed unreal-

istic to perform such heavy-duty vocabulary manipulation

when one of the objectives of unsupervised techniques like

clustering is to avoid human intervention.

With respect to the problem of the superfluous formation

of sub-clusters because of words that are semantically

related, it is one that can be expected given the nature of

natural language text that may not always convey the same

ideas with the same words across documents assigned to an

identical topic. Rather, synonymous words or other

semantically related words to express the same ideas are

employed. Consequently, clustering will not necessarily

form the clusters one would expect and clusters will not

necessarily be at the same level of abstraction as a solution

predetermined by humans. Thus, ART can (like any other

clustering algorithm) discover clusters that generalize or

specialize desired topics. A generalization is a cluster that

includes two or more topics while a specialization is when

two or more clusters split the documents of a single topic

(as we have seen in the case of topic 16 (‘‘acquisitions’’).

Rarely would one obtain a perfect generalization or spe-

cialization, i.e. without the presence of documents

originating from other topics. As illustrated in the cross-

correlation matrix in Fig. 6, we could thus expect a mixture

of topics that has a negative impact on a users experience

and on quality.

6 Conclusions and future work

The main contribution of this work is to have investigated

in details the unsupervised learning of topics hierarchies

with ART1 neural networks, a poorly studied hierarchical

text clustering algorithm. Our experimental methodology

based on the proven F1 quality measure, benchmark Reuter

21578 corpus, standard bag-of-words vector space repre-

sentation and well-established pre-processing allows for

easy reproduction of our work and comparison with other

text clustering results [25].

We have put two different approaches to the test:

independent ART networks and serial ART networks. We

identified the strengths and weaknesses of each approach.

In both cases, we encountered the problem of finding the

appropriate vigilance value for each level of the hierarchy.

Another problem common to the two approaches, albeit

more important for serial networks, is the significant

number of clusters that did not split when moving down

from one level to the next. Many clusters with one unique

child are problematic for hierarchies as they are contrary to

their objective, which is to divide the information space to

facilitate the search of information. This aspect provides

another insight into the quality of the hierarchy. We believe

that this is an important and very useful discovery that,

unfortunately, highlights a shortcoming of the techniques

investigated in this paper.

As well, we have established that the average F1 quality

of hierarchies built with both independent ART networks

and serial ART networks exceeds the F1 quality of k-means

and of a conventional hierarchical agglomerative clustering

algorithm implementing the minimum variances criterion.

We are currently performing a comparative study of ART

with a UPGMA cluster similarity HAC which Steinbach

et al. [3] showed performed best among HAC algorithms.

Our objective is to determine whether this algorithm

exhibits the same problems as the hierarchies build with

ART and whether it offers a higher F1 quality.

Furthermore, we have confirmed Bartfais results to the

effect that the number of levels is limited with serial net-

works, while they can be defined arbitrarily for

independent networks. We have reviewed and improved on

Bartfais explanation for the calculation of the number of

possible levels in the specific context of text data.

In addition to objective, quantitative evaluation with F1,

we performed a series of qualitative evaluations of the

ART-produced hierarchies through visualization. For

independent networks, we established that the problem of

multiple parents (inconsistency) is not really a problem as

long as the number of parents is restricted. In fact, it is an

advantage that allows access to the information in different

ways. We found that the topic hierarchies built by human

classifiers for the Internet, such as Yahoo and Google, offer

a certain structural similarity to the hierarchies built with

ART. This concerns multiple parents in particular, obtained

with independent networks, but also with respect to the

restricted number of levels and the number of children.

Moreover, the visual evaluation allowed us to see that the

F1 quality does not always tell us everything about the

quality of a users information search experience. For

instance it identified two additional problems with ART-

built hierarchies: first, certain words are inadequately

chosen as attributes of the prototypes; and second, certain

topics are split by ART because of semantically related

words. We found that automatic pre-processing with

TFIDF and terminological standardization does not solve

these types of problem. We also tested forced elimination

of what we deemed domain stop words as a final solution to

this predicament without success. The use of dictionaries or

linguistic analysis techniques could help solve this diffi-

culty by allowing for the identification of the relationships

between the words [11]. We plan to investigate such

semantic feature selection and clustering approaches in

future work. It is essential to note that the problems we

identified with ART in this paper, particularly those

uncovered during visualization, are most likely common to

most text clustering techniques. This further stresses the

importance of investigating semantic clustering.
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