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Odor discrimination using adaptive resonance theory
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Abstract

Ž .The paper presents two neural networks based on the adaptive resonance theory ART for the recognition of several odors subjected
Ž .to drift. The neural networks developed by Grossberg supervised and unsupervised have been used for two different drift behaviors. One

in which the clusters end up to overlap each other and the other when they do not. The latter case is solved by unsupervision, which is
useful to track the moving clusters and possibly discover new odors autonomously. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

System identification in the field of intelligent gas
sensors is mainly concerned with the determination of the
input–output mapping in highly dynamic conditions. Sev-
eral methods have been applied to learn the mapping by
predicting the relative output, but few of them try to solve
the parameter drift problem. In an electronic nose there are
several interfering inputs: operating temperature of the
sensor and the relative humidity of the odor. Long-term
drift is more often associated with the contamination of the
sensor material. Parameter drift sometimes makes the clus-
ters overlap each other and have an irregular shape. Artifi-
cial neural networks have been extensively implemented to
solve this problem, since they present the following char-
acteristic: on-line learning, fault tolerant, parallel computa-
tion, the ability to deal with noise and non-linearity of the

Žsensor response, blind identification unsupervised learn-
.ing in which the knowledge of the input of the system is

not available or not sufficient.
Supervised methods such as the back-propagation algo-

rithm have been applied but it would not perform well if
the clusters overlap. They use gradient search based strat-
egy, which has the drawback of getting trapped in local
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minima that do not guarantee the correct global classifica-
tion. Also, convergence requires a huge number of itera-
tions and is highly sensitive to parameter initialization
Ž .they do not self-organize .

w xIn Ref. 6 , two counteraction methods are proposed:
w xself-organizing maps 7 and system identification by mod-

eling the artificial nose as a dynamic system with an
accuracy of 78% and 85%, respectively. In this paper, we
present an approach for the recognition of several odors
subjected to drift by using neural networks based on the

Ž .adaptive resonance theory ART . Two basic architectures
w xhave been developed: unsupervised, ART2 4 , and super-

w x w xvised, ART1 5 . ART2 is used in Ref. 9 to identify
individual gas odor using an array of four tin oxide sensors
giving good identification results for separate clusters. In
general, unsupervised learning perform well when the
desired classes are obvious, but makes mistakes otherwise.
The mistakes can be corrected with supervision. So far,
two different aspects of the parameter drift have been
considered: clusters that do not overlap each other and
clusters that do.

In the first case, the problem is focused by using the
unsupervised architecture, ART2, which will be shown
how it is able to track the moving centroids. ART2 incre-
mentally learns and stabilizes analog input patterns pre-
sented in an arbitrary order. Furthermore, it will be shown
how ART2 classifies odors as supplied by an array of four
thin film SnO sensors. It is able to recognize au-2

Ž .tonomously in a blind fashion if an input is novel or
familiar without leading to the plasticity–stability
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dilemma. The discrimination of the familiar versus novel
input pattern presented is the task of the Õigilance parame-
ter, which defines the granularity of the network.

The latter case cannot be handled with an unsupervised
network because the supervised component to incorporate
the initial knowledge of the moving centroids is needed. A
supervised version of the ART theory that self-organizes

w xits recognition codes called Fuzzy ARTMAP 2 will be
presented. It includes learning, pattern recognition and
hypothesis testing capabilities plus the adaptive naming,
since the architecture is constituted of two components: the

Ž .unsupervised component ART2 and the supervised one
Ž .ART1 . The first attempts to self-organize the recognition
codes and to track the readings under drifting and the
second learns how to predict its output given the presented
input pattern. The transformation of vectors from the input
space into the output vectors defines a map that is learned

Ž .by examples from the correlated input, output pairs of
sequentially presented vectors.

Section 2 introduces the human olfactory system by
finding the area of the brain responsible for the recogni-
tion. Section 3 describes two neural classifiers in analogy
to the human model, then experimental results and discus-
sions follow.

2. The human olfactory system

Humans can discriminate thousands of odoriferous
chemicals and can detect odorants at very low concentra-

Ž .tions. The sense of smell olfaction is carried out by
Žreceptors that lie within the nasal cavity called the olfac-

. w xtory epithelium 3 . The olfactory epithelium contains
cells, supporting cells and, basal cells. Receptors are bipo-
lar neurons that have a short peripheral process and a long
central process. The short peripheral process ends up in
several cilia that interact with odorants. The longer central
process is an axon that joins others in order to form a
bundle which ends up at under the surface of the olfactory

Ž .bulb Fig. 1 . The olfactory neurons must extend their
axons into the central nervous system and continually form
synapses with target cells in the olfactory bulb. Cells in the
olfactory bulb do not divide and therefore accept new
synapses continually. Every 60 days the receptor cells are
generated from precursor basal cells. Odorants are pre-
sented to the receptor by olfactory binding proteins. The
protein also protects olfactory neurons from exposure to
excessively high concentration of odorants.

In the visual system, three cone pigments are sufficient
to discriminate the myriad of hues. The discovery of a
large family of potential olfactory receptors suggests that
hundreds of receptors, each recognizing a single or a few
odorants, enable us to detect a wide range of odorants. It is
not yet known if a single olfactory neuron has multiple
receptors, nor how narrowly tuned a given receptor is to
individual odorants.

Fig. 1. Olfactory receptors in the nasal cavity project to the olfactory
bulbs. Olfactory bulbs are connected to each other by the anterior

Ž w x.commissure adapted from Ref. 3 .

Response to specific odorants occurs throughout the
epithelium and it has been shown that specific areas are
more sensitive to an odorant than others. For example,
butanol best activates neurons in the anterior regions of the
mucosa. When the stimulus intensity is increased, it is
possible to activate previously silent olfactory receptors in

Žand around the area of high sensitivity it will change the
.overall-firing pattern . The axons of the olfactory neurons

terminate into the olfactory bulb. Here they synapse with
the dendrites of the mitral cells and tufted cells, in special-
ized area called the glomeruli. The axon of mitral and
tufted cells project in the olfactory tract and synapse on
neuron in five separate regions of the olfactory cortex: the
anterior olfactory nucleus which connects the two olfac-
tory bulb; the olfactory tubercle; the pyriform cortex, the
main olfactory discrimination region; the cortical nucleus
of the amygdala and the ethorinal area which in turns
projects to the hippocampus. Unlike the visual system,
where afferent stimuli are organized in a topographic
manner, there is no strict relationship between the arrange-
ment of the projection of the olfactory neurons in the
olfactory bulb and the regions of the mucosa from which
they originate. Therefore, the olfactory bulb must be able
to interpret different signals from the same subregion as
different odors. This is because each receptor responds to a
number of different odors, making several spatial patterns
of response in the sheet of receptor under the mucosa.
Therefore, the olfactory glomeruli with the synaptic con-
nections onto mitral, tufted and periglomerular dendrites
represent the Alevel of input processingB. The control of
the outputs from the olfactory bulb to the olfactory cortex
represents the Alevel of output controlB. A part of the
olfactory cortex, called the pyriform cortex would func-

w xtion as an associative memory network 10 , having the
ability to identify conjunctions of odor components that

w xmake up complex odors. Ref. 1 proposed the idea that the
interactions between the olfactory bulb and the olfactory
cortex result in a form of hierarchical clustering for storage
and recognition of complex odors.
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3. ART2 and Fuzzy ARTMAP

w xThe general ART2 model 4 has an input layer and an
Ž .output layer. The former is called comparison field F1

and matches each input pattern with its memory patterns
Ž .prototypes . The output layer is called category represen-

Ž . Žtation field F and chooses with a winner-take-all strat-2
.egy the prototype nearest to the input pattern. The F and1

F fields interact with each other through weighted bot-2
Žtom-up and top-down connections W the long-term mem-

.ory LTM called adaptiÕe filters. Short-term memory
Ž .STM is contained in the N and M neurons of F and1

F , respectively. Neurons are activated when the input2

pattern is presented to the input field, giving rise to an
Ž .internal activity pattern of nodes xs x , . . . , x con-1 N

tained in F which represent STM. The network attempts1

to classify the pattern into one of the available categories
based on its similarity with the associated prototypes. This
is accomplished by activating the F ’s nodes that compete2

through a winner-take-all strategy. Each node calculates
its bottom-up activation

< <w lxi
T x s is1, . . . , M ,Ž .i < <aq wi

< <where P is the squared norm operator, w is the weighti

vector of category i, a is a network parameter. The node
J with the highest internal activity supplies the recognition

� < 4code T smax T is1, . . . , M . Subsequently, F propa-J i 2

gates the winner’s internal activity through top-down
weights to F , where it is matched with the input pattern.1

Their similarity must satisfy the equation:

< <w l IJ
Gr ,

< <I

where r is called Õigilance parameter and fixes the
threshold for resonance. If the condition is satisfied, the
network updates its weights as follow:

wnew sh wold lx q 1yh wold .Ž .Ž .J J J

Otherwise, a reset signal is sent to F and the active2

neuron J is inhibited from competing on the following

Fig. 2. Fuzzy ARTMAP architecture. When a prediction by ART is nota

met by ART , then an inhibition of a map field is carried out and theb

vigilance r is adjusted accordingly.a

iterations of the same input. The process continues until
the input pattern is classified or no matches are found. In
the latter case, a new neuron with a suitable recognition
code is inserted in the network.

The second neural classifier used in this paper is the
Fuzzy ARTMAP architecture, constituted by a Fuzzy ART

1 Ž . w x Žcomponent ART and an ART1 component 5 fora
.binary input ART as shown in Fig. 2. The two compo-b

nents are linked together via an inter-ART module F ab

called a map field. The map field performs predictive
association between categories and to realize the match-
tracking rule, increasing r in response to a mismatch ata

ART . The map field is activated when one of the ART orb a

ART categories is active, that is:b

yb lwab if the J th F a node is activeand F b is active° J 2 2

ab a bw if the J th F node is activeand F is inactiveJ 2 2ab ~x s
b a by if F is inactiveand F is active2 2¢ a b0 if F is inactiveand F is inactive.2 2

< ab < < b <The match tracking rule must obey x -r y toab

recognize the current activated map with the presented
abŽ .input I. The initial map field weights are w 0 s1, andjk

during resonance with the ART category J active, wab
a J

approaches the map field vector x ab. Once J learns to
predict the ART category K , that association is perma-b

Ž ab .nent i.e. w s1 for all time .JK

4. Results

In the first experiment, the unsupervised architecture
ART2 is used. The active layers of the array consist of
pure and doped SnO thin films prepared by means of2

sol–gel technology. Pd, Pt, Os, and Ni were chosen as
doping elements starting from different precursors of the
preparation of the modified films. The films, whose thick-
ness was about 100 nm, were deposited on alumnia sub-
strates supplied with interdigitated electrodes and platinum
heater, by the spin coating technique at 3000 rpm, dried at
808C and heat treated in air at 6008C. After deposition, the
sensors were mounted onto a TO8 socket and inserted in
the test chamber.

The data set is composed by four dimensional vector
readings of several odors: wine, tomato, olive oil, sun-
flower oil and coffee. Fig. 3a shows the classification

w xresults with the Sammon’s mapping onto a 2D graph 8 .
Since the clusters are spread out, unsupervised architec-

1 The fuzzy ART algorithm is mainly based on the ART2 algorithm
described above, by substituting the AlB operator with the AminB fuzzy

w xoperator. The complete dynamics of the network can be found in Ref. 2 .
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Ž .Fig. 3. a Classification with ART2 architecture. Ellipses correspond to
Ž .the ART2 classifications, and the patterns to the true values; b accuracy

results of different vigilance parameters r with the same data set.

tures are particularly useful for discovering new odors. It is
interesting to observe the self-organization property of the
networks, ordering the neurons in a counterclockwise fash-
ion. As shown in Fig. 3, ART2 fails to identify the
sunflower oil in place of the coffee’s odor, which is
occupied by the neuron 4.

The second experiment was carried out by considering a
different data set and using Fuzzy ARTMAP, in which the
parameter drift makes the identification process harder.
The data set2 is derived from an array of 15 sensors used
to detect five different gases for a period of 45 days. This
data set is subjected to parameter drift making the readings
difficult to be identified and thus the clusters difficult to be
separated. The measurements are made by determining the

Žresponse of each sensor to the five gases 1-propanol,
.2-propanol, 2-butanol, 1-butanol, and water in rotation.

Fig. 4a presents the 4400 total readings by considering 880
Žreadings for each gas the representation has been limited

to the two features of the three extracted by the method of
.principal component analysis . To train the network, the

first 2400 readings have been considered. Next, the net-
work has been tested with the remaining 2000 readings
which are strongly subjected to noise. The results show an
error of 27% over that data set, whereas can be seen in
Fig. 4b, the clusters overlap each other. Some readings,
like those of the 2-propanol, fall into the cluster of 1-pro-
panol and the water, making the classification impossible

2 Note that the data set for this case has been taken from the literature.

Ž . Ž .Fig. 4. a True values of the 4400 readings; b test of the Fuzzy
ARTMAP network by using the last 2000 readings.

at least with this predictive methods. Results of this last
experiment are reported in Table 1.

Table 1
Results using the Fuzzy ARTMAP architecture of the experiment shown
in Fig. 4 for the vigilance parameter of the map field r s0.1. Smallerab

values of vigilance r of the supervised component allows the unsuper-b

vised component ART to create more categoriesa

r r Number % Correct No. ARTa b a

of epochs matches nodes

0.87 0.1 14 73 483
0.93 0.2 11 70 592
0.94 0.9 7 68 396
0.0 0.6 10 72 448
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5. Conclusions

In this paper, we have presented two different ways of
handling the parameter drift problem: clusters that never
overlap each other and clusters that do. An unsupervised

Ž .method ART2 has been applied in order to track the
moving clusters and preserving the stability and the plas-
ticity of the system. In the case where the clusters overlap,

Ž .the supervision Fuzzy ARTMAP component is necessary
to reduce uncertainty.

The identification of odors subject to drifted data need
to be explored by a method that autonomously adapts its
internal state with sensor response changes. This means
that a neural-based approach able to retrain its knowledge
base without using a teacher but purely based on its
experience is necessary to follow the dynamics of the
chemical sensors. In addition, future work will address the
first case by including in the neural architecture a state
estimator to calculate the position of the centroids while
moving, based on the analysis of the initial behavior of
each sensor. The latter case could be approached by in-
cluding the time component in the identification process
Žfor example, a STM realized by recurrent neural network

.or an instance-based technique in order to discriminate
between different odors that occupy the same region of the
feature space.
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