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Abstract 

This paper presents research into the application of the fuzzy ARTMAP neural network model 

to medical pattern classification tasks. A number of domains, both diagnostic and prognostic, are 
considered. Each such domain highlights a particularly useful aspect of the model. The first, 
coronary care patient prognosis, demonstrates the ARTMAP voting strategy involving ‘pooled’ 
decision-making using a number of networks, each of which has learned a slightly different 
mapping of input features to pattern classes. The second domain, breast cancer diagnosis, 
demonstrates the model’s symbolic rule extraction capabilities which support the validation and 

explanation of a network’s predictions. The final domain, diagnosis of acute myocardial infarc- 
tion, demonstrates a novel category pruning technique allowing the performance of a trained 

network to be altered so as to favour predictions of one class over another (e.g. trading sensitivity 
for specificity or vice versa). It also introduces a ‘cascaded’ variant of the voting strategy intended 
to allow identification of a subset of cases which the network has a very high certainty of 

classifying correctly. 
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1. Introduction 

Neural networks potentially have great value in medical decision-support applica- 

tions. Unlike expert systems, they bypass the difficult and time-consuming knowledge 

acquisition process [21] by learning complex associations directly from domain exam- 
ples. This provides the opportunity for a neural network decision-support tool to adapt to 

perform the same task under varying conditions. This occurs, for example, because of 

differing demographic conditions or clinical procedures from region to region, or 
because procedures may vary over time owing to advances in medical knowledge or 

technology. 
A large and ever-growing body of work now exists on applying neural networks to 

various medical classification tasks, e.g. the diagnosis of epilepsy 131, diagnosis of low 
back disorders [6], early diagnosis of myocardial infarction [22], classification of thyroid 
disorders [18], identification of Alzheimer’s diseased tissue [31], etc. 

The main thrust of this work has been in the use of feedforward networks to learn the 

association between evidence and outcome. Primarily, the Multi-Layer Perceptron 
(MLP) [32] and Radial Basis Function (RBF) [28] network classes have been employed. 

Both the MLP and the RBF have been shown to be rich enough in structure so as to be 

able to approximate any (sufficiently smooth) function with arbitrary accuracy 113,291. 

Thus, given sufficient data, computational resources (the MLP, in particular, does not 
scale well with problem size) and time (non-linear optimization which is non-linear in 
the parameters may be time-consuming to perform, numerically), it is possible to 

estimate the Bayes-optimal classifier to any desired degree of accuracy, directly and 
with no prior assumptions on the probabilistic structure of the data. However, despite 
this attractive property, there are 2 serious drawbacks with these classes of feedforward 

networks in addition to the caveats given above. 
First, these networks require artificial termination of training, since they are suscepti- 

ble to new but irrelevant data over-writing useful existing associations and thus 

degrading general classification performance. However, this requirement seriously com- 

promises the adaptivity of a neural network. New data is not always irrelevant, 
sometimes it reflects significant changes in the classification domain which requires new 

associations to be learned. This is termed the stability-plasticity dilemma: “How can a 
learning system be designed to remain plastic, or adaptive, in response to significant 

events, and yet remain stable in response to irrelevant events?” ([8], page 77). 
The MLP and RBF networks do not cope well with this dilemma. The termination of 

learning once a pre-determined level of performance has been achieved sacrifices 
plasticity for the sake of stability. In non-stationary classification domains (i.e. when the 
underlying statistics of the population are changing with time), these networks cannot 
incrementally acquire new associations as the environment changes. Instead, they must 
be completely retrained on new domain data, losing all previously learned associations 
even though some may still be useful (and will be reacquired alongside the new 
associations with retraining). Furthermore, when retraining with additional data there is 

no guarantee that the previous network’s topology, learning parameters etc. will still 
provide a good solution. It is possible that significant changes to the network will be 
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needed when it is re-derived (for a detailed discussion on this issue with regard to 

feedforward networks see [33]). 
Many medical domains are non-stationary to a greater or lesser extent, for example, 

owing to changes in clinical procedures. Furthermore, the artificial termination of 
learning means that a neural network trained on data from one site is likely to perform 
the same task sub-optimally using data from another site because of variations in local 

conditions [24]. Thus it would be desirable if such a network could be ‘fine-tuned’ to its 
changed operating conditions by incremental learning of cases from the new site. 

The second problem stems from a common general criticism of the neural network 
paradigm that the rules governing the predicted outcome are obscure. This can lead to a 

strong resistance to acceptance of a network’s predictions by potential users. This is 
particularly true for medical domains. For example, a diagnosing clinician using a neural 

network decision-support tool has to be convinced that the underlying model captures 
the salient features of the domain and the system is further able to offer an explanation 

of its diagnoses in user-comprehensible (i.e. symbolic) terms. However, attempts to 
extract domain rules from feedforward networks have met with limited success, with, so 

far, no completely general method published [26]. 
In the research described here we provide an evaluation of a neural network model, 

fuzzy ARTMAP, which is not susceptible to these 2 criticisms, and has other desirable 
properties for medical classification tasks. The next section provides an overview of this 

powerful, but relatively little-known, model. We then describe the application of this 
model to 3 different medical pattern classification tasks, in each instance utilizing data 

gathered from hospitals in the UK. Section 3 describes a prognosis task, predicting the 

death or survival of patients admitted to a coronary care ward, Section 4 concerns the 
diagnosis of breast cancer and Section 5 concerns the diagnosis of acute myocardial 
infarction. With each task we highlight a different useful aspect of the fuzzy ARTMAP 
model; in Section 3 the ARTMAP voting strategy; in Section 4 the model’s symbolic 

rule extraction capabilities; and in Section 5 the novel variants of the voting strategy and 
the category pruning. Section 6 presents the findings and identifies areas for further 
research. 

2. Fuzzy ARTMAP 

Adaptive resonance theory, or ART [9] represents a family of neural network models 

originally developed from the competitive learning paradigm with the intention of 
overcoming the stability-plasticity dilemma [20]. This was achieved by utilizing feed- 
back between layers of input and category nodes in addition to the standard feedforward 
connections of competitive learning. Thus, in ART models, an input pattern is not 

automatically assigned to the category that is initially maximally activated by that input. 
Instead, if the feedback process rejects the initial categorisation, a search process is 
initiated which terminates when a category node with an acceptable match to the input is 

found. If no such node exists, a new category node is formed to classify the input. 
It should also be noted that ART models usually employ a localist representation for 

category nodes owing to the so-called ‘winner-take-all’ competitive learning dynamics. 
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Although biologically implausible, this feature does have the advantage of facilitating 
symbolic rule extraction from a trained network (see Section 4). Furthermore, localiza- 

tion results from a simplification used to obtain the computational models and is not 
inherent in adaptive resonance theory per se. 

Since ART was an outgrowth of competitive learning, initial models developed from 

it employed unsupervised learning. Examples of such models include ART 1 [7] which 
is restricted to the classification of binary input patterns, and fuzzy ART [ 111 which 

generalizes ART 1 so as to classify both analogue and binary patterns. More recently 

ART models employing supervised learning have been developed which are based upon 
these earlier models and so retain their self-organizing properties. 

Fuzzy ARTMAP [lo] is one such model, based upon fuzzy ART. It is thus a 

self-organizing, supervised learning, neural network model for the classification of both 

analogue and binary patterns. Fuzzy ARTMAP consists of 3 modules, 2 fuzzy ART 
systems called ART, and ART,,, and a related structure called the map field. During 

training, input patterns are presented to ART, together with their associated teaching 
stimuli at ART,. Associations between patterns at ART, and ART, are then formed at 

the map field. During testing, supervisory inputs at ART,, are omitted, and, instead, the 
inputs at ART, are used to recall a previously learned association with an ART, pattern 

via the map field. 

However, fuzzy ARTMAP does not directly associate inputs at ART, and ART,. 
Rather, such patterns are first self-organized into prototypical category clusters before 

being associated at the map field. Hence generalized associations are formed. If the 
ART, category cluster selected through self-organization does not match with the 
teaching category at ART,, the map field generates a re-set at ARTa, forcing the input to 

be re-classified to an appropriate ARTa category prototype. If no such prototype exists, a 
new cluster is automatically created for classification of the input. Thus it can be seen 

that supervision of learning is only employed when self-organization leads to a 
classification error. 

Training in fuzzy ARTMAP almost always results in multiple category clusters 

forming at ART, for each teaching category present at ART,,, with each such cluster 
encoding multiple input exemplars (i.e. each ARTa cluster represents a significant 

sub-region of the overall state space covered by a particular teaching category). Hence 
fuzzy ARTMAP instantiates a many-to-one mapping between ART, input patterns and 
their actual classification. For full details on fuzzy ARTMAP see [lo]. 

Simplified fuzzy ARTMAP (henceforth abbreviated to SFAM) is a ‘streamlined’ 

version of fuzzy ARTMAP intended to be more computationally efficient than a full 
implementation but with a minimal loss of computational power [23]. Fig. 1 gives a 
diagrammatic representation of the model; circled lines denote adaptive weight connec- 

tions, arrowed lines show processing flow. The teaching stimulus has a dashed arrow to 

indicate its variable status - if it is present learning occurs, if it is absent prediction takes 
place instead. 

The model does not self-organize teaching inputs at ART,,, but instead encodes these 

patterns directly (thus, unlike fuzzy ARTMAP, the ART, module in SFAM is not a 
complete fuzzy ART system). This is based on the observation that in most pattern 
classification tasks the teaching stimuli themselves do not need to be further categorised 
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Fig. 1. Simplified fuzzy ARTMAP. 

since they directly represent distinct, known classes, e.g., the one-from-many classifica- 
tion. 

In addition, SFAM converts all but one of the 3 user-changeable parameters in fuzzy 
ARTMAP to constants whose values are the usual default settings of the original 
parameters (for the benefit of those familiar with the ARTMAP models, the category 
choice parameter, CX, is fixed to be near-equal to zero and the learning rate, l3, is set to 
its maximum value of 1, so-called fast learning). The only remaining user-changeable 
parameter is the baseline vigilance for the ART, module, E,. This determines how close 
a match is required between an ART, input pattern and a category cluster prototype 
before accepting the input as a member of the cluster. This parameter (indirectly) 
controls the size of the category clusters that will form, since the higher it is set, the 
closer acceptable matches must be, and the smaller the coverage of the state space each 
cluster will have. Generally, higher vigilance provides better classification performance, 
although this must be balanced against the potential proliferation of category clusters, 
providing poor data compression and leading the network to become little more than a 
‘look-up table’ [27]. Additionally, with small training sets and/or high-dimensional 
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input vectors with many features, high vigilance can lead to incomplete coverage of the 
feature space by the network. 

As well as its capabilities for continuous learning and symbolic rule extraction, 
SFAM has a number of other useful properties for medical pattern classification tasks. 

First, as noted earlier, the model has but 1 user-changeable parameter, the baseline 
vigilance of the ART, module. SFAM can thus be easily tuned to a particular task. 

Second, successful learning can occur with only 1 pass through the data set (termed 
single-epoch training). This is demonstrated within this paper, since all 3 classification 
tasks we describe utilize such single-epoch training. 

Third, the model does not perform optimization of an objective function and is not 
therefore prone to the problem of local minima that occurs with feedforward networks 
using backpropagation. Also, the problem of selecting the appropriate number of hidden 
units does not occur. This is because, as described previously, SFAM self-organizes its 
own structuring of the data, automatically creating new category clusters for itself as and 
when they become needed. 

Fourth, the model is able to discriminate rare events from a ‘sea’ of similar cases 
with different outcomes owing to the feedback mechanism based on top-down matching 
of learned categories to input patterns. This is again in contrast to feedforward networks 
using backpropagation where weights are relined by a process which effectively 
averages together similar cases and thus fails to acknowledge rare events. Therefore, 
SFAM should be suitable for domains where the distribution of data items is highly 
skewed between different categories. Such an application domain is described in the 
next section. 

3. Prognosis of coronary care patients 

3.1. Application domain 

The application task described in this section is the prediction of the death or survival 
of patients admitted to a coronary care unit. We highlight the ARTMAP voting strategy 
(Section 3.2) using this domain. A more extensive description of our findings is 
provided in [17]. 

Since the Fifties there has been a progressive trend to reduce the length of hospital 
stay for coronary care patients, which has provided economic benefits without signiti- 
cantly increasing mortality rates [30]. However, continuation of this trend requires the 
accurate identification of low-risk patients soon after their admission to hospital. Neural 
networks have the potential to allow this. 

The data used in this study consisted of 4200 complete records for patients admitted 
to the coronary care unit of Leicester Royal Infirmary (Leicester, UK) over a 5-year 
period (1987- 1992). Each record consisted of 43 items of clinical or electrocardio- 
graphic data considered to be useful for patient prognosis, together with the outcome for 
the patient’s stay in hospital - death or survival. 

Of the 3 tasks described in this paper, this problem is the most difficult. First, the 
data is ‘noisy’ in the sense that there are no features which provide clear-cut delineation 
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of category boundaries (in other words, all features are very weak indicators of the 

actual pattern classification). Second, the distribution of outcomes is highly skewed; 

only 7.1% of all patients admitted die while in the ward. 

3.2. ARTMAP rwting strategy 

The formation of category clusters in the ARTMAP models is affected by the order 

of presentation of input data items [lo]. Thus, the same data presented in a different 
order to distinct SFAM networks can lead to the formation of quite different clusters 

within the nets. This subsequently leads to different categorisations of test data, and. 
thus, different performance scores. This effect is particularly marked with small training 

sets and/or high-dimensional input vectors, where the data set may not be fully 
representative of the domain, and with single-epoch training. 

This effect can be compensated for by the use of the ARTMAP voting strategy [lo]. 
This works as follows: a number of networks are trained on different orderings of the 

training data; during testing, each individual network makes its prediction for a test item 

in the normal way; the number of predictions made for each category is then totalled and 

the one with the highest score (or the most ‘votes’) is the final predicted category 
outcome. The voting strategy can provide improved performance in comparison to the 
individual networks. In addition, it also provides an indication of the confidence of a 

particular prediction, since the larger the voting majority, the more certain is the 
prediction. In particular, this and subsequent applications utilize unanimous verdicts to 
indicate predictions which have a high certainty of being correct. 

The voting strategy potentially compromises the utility of SFAM for incremental 
learning in non-stationary environments, since randomization of the input disrupts their 

original temporal order. However, this should not be a problem if the training data is 

‘batched’ appropriately. Thus, in non-stationary domains, instead of randomizing across 
the entire set of training data, a number of subsets, each containing consecutively 

ordered data items, would be taken. Each such batch would then be separately 

randomized and the voting networks trained incrementally on the batches, presented to 
the networks in the correct temporal order. 

3.3. Method 

The data were partitioned into a training set, comprising the first 3000 patient 

records, and a test set comprising the remaining 1200 records. 20 different orderings of 
the training set were derived and served as input data to separate instances of SFAM. 

The vigilance parameter was set low (0.31 to avoid excessive cluster formation with the 
large training set (this is a notable problem for ARTMAP models; see [27]). 

The voting strategy was also employed on the test data. A range of 3 to 13 inclusive 

odd numbered voters was used (odd numbers ensuring no tied decisions occurred), 
choosing those SFAM instances from the pool of 20 that had achieved the highest 
individual accuracy scores. 
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Table 1 
Voting strategy performance for unanimous survival decisions 

Number of voters Accuracy (8) 

3 95.2 

5 95.6 

I 97.8 

9 98.2 

11 98.1 

13 99.3 

Coverage of cases (So) 

15.9 

64.5 

53.0 

45.3 

40.3 

34.0 

3.4. Results 

Initial performance on the test set proved disappointing. Accuracy for the individual 

SFAM networks ranged between 73.2 and 87.5% with a mean of 81.1%. This compares 

with a default accuracy of 92.9% for the simple assumption that all patients will survive. 
The reason for this is that SFAM over-represents the rare cases of patient deaths in 
excess of their actual frequency within the data set (this is probably because such cases 

were not tightly clustered together but widely spread throughout the feature space). Thus 
SFAM appears to suffer from the opposite problem to the feedforward networks; too 
much credence, rather than too little, is given to rare cases. 

The general effect of the voting strategy was to increase accuracy to around 89-9 I%, 

still slightly below baseline performance. However, the voting strategy did provide 
useful results for the important special case of high-confidence predictions of patient 

survival (a high confidence prediction being one upon which all voters agreed). Such 

patients are the most suitable for early hospital discharge. 
With 3 voters, a unanimous survival decision accounted for 911 of the data items and 

was proved wrong 44 times. This translates to 95.2% accuracy covering 75.9% of the 
1200 test items. With extra voters, accuracy steadily improved at the cost of decreased 

coverage (see Table l), until at the 13 voter stage an accuracy of 99.3% covering 34.0% 
of the data was achieved. The figures for this latter case are nearly identical to those 
achieved by Parsons et al. [30] using the statistical technique of logistic regression upon 

a different data set collected for the same purpose (Parsons et al. achieved 99.2% 
accuracy in a third of all cases using a data set of 5746 training items and 1000 test 

items, respectively). However, the advantage of the unanimous voting strategy with 
SFAM is its ability to gain wider coverage of the data set with only a small decrease in 

accuracy by reducing the number of voters. 

4. Diagnosis of breast cancer 

4.1. Application domain 

The application task described in this section is the diagnosis of cancer from fine 

needle aspirates of the breast. The section provides a synopsis of research detailed in 
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[ 14,151. Within this domain we highlight the symbolic rule extraction capabilities of 

SFAM (Section 4.2). 

Breast cancer is a common disease affecting around 22 000 women yearly in England 
and Wales and is the commonest cause of death in the 35-55 year age group of the 
same population [35]. The primary method of diagnosis is through microscopic examina- 

tion by a pathologist of cytology slides derived from fine needle aspiration of breast 
lesions. The acquisition of the necessary diagnostic expertise for this task is a relatively 

slow process (a trainee pathologist in the UK requires at least 5 years study and 
experience before being allowed to sit the final professional pathology examinations for 
membership of the Royal College of Pathologists). Thus, there is scope for an artificial 

intelligence decision-making tool for this domain to assist in training junior pathologists 

and to improve the performance of experienced pathologists. 
The most important performance metric in this domain is not overall diagnostic 

accuracy but specificity. This is because the pathologist’s prime concern is to avoid false 

positive predictions (diagnosing benign lesions as malignant) since these may result in 
unnecessary surgery such as mastectomy or wide local excision of the lesion. False 

negatives are tolerated because, if the clinical suspicion of malignancy remains, the 

surgeon will then take further samples for additional testing by the pathologist (indeed, 
false negatives are inevitable within this domain since some aspirations fail to locate a 

malignant lesion and extract nearby healthy tissue). 
The data used in this study consisted of 413 patient records, each comprising 10 

binary-valued features recorded from observation of breast tissue samples by an expert 

pathologist (of Consultant status with 10 years experience in the field). The samples 
were taken from patients referred to the Royal Hallamshire Hospital, Sheffield, UK with 

symptomatic breast lesions between 1989-1993. The distribution of categories within 
the data was fairly even; 53% of cases were malignant, 47% benign. An additional data 

set was also employed comprising 82 malignant and 82 benign cases, This data was 

derived from tissue observations performed by a ‘neophyte’ pathologist (Senior House 
Officer with 18 months experience of the field). 

The 10 data features used in the study are all claimed to have diagnostic value for the 
task [36]. Table 2 provides the definitions of each feature, together with the abbrevia- 
tions by which they will be referred to throughout the remainder of this section. 

4.2. Symbolic rule extraction 

A common general criticism of neural networks is the opaqueness of their learned 

associations. In medical domains, this ‘black box’ nature may make clinicians reluctant 
to utilize a neural network decision support tool, no matter how great the claims that are 

made for its performance. Thus, there is a need to supplement neural networks with 
symbolic rule extraction capabilities in order to provide explanatory facilities for the 
network’s ‘reasoning’. In particular, if a clinician who routinely uses a decision-support 

tool becomes involved in litigation, the rules may serve as important legal evidence [5]. 
The ARTMAP models have been endowed with symbolic rule extraction capabilities 

112,341. The act of rule extraction in SFAM is a straightforward procedure compared to 
that required for feedforward networks since there are no hidden units with implicit 
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Table 2 

Abbreviation and definition of data features used in breast cancer diagnosis 

Abbreviated 

feature name 

Definition of feature 

DYS 

ICL 

3D 

NAKED 

FOAMY 

NUCLEOLI 

PLEOMORPH 

SIZE 

NECROTIC 

APOCRINE 

True if majority of epithelial cells are dyshesive, false if majority of epithelial 

cells are in cohesive groups. 

True if intracytoplasmic lumina are present, false if absent. 

True if some clusters of epithelial cells are not flat (more than 2 nuclei thick) 

and this is not due to artefactual folding, false if all clusters of epithelial cells 

are flat. 

True if bipolar ‘naked’ nuclei present in background, false if absent. 

True if ‘foamy’ macrophages present in background, false if absent. 

True if more than 3 easily visible nucleoli in some epithelial cells, false if 3 or 

fewer easily visible nucleoli in epithelial cells. 

True if some epithelial cell nuclei with diameters twice that of other epithelial 

cell nuclei, false if no epithelial cell nuclei twice the diameter of other 

epithelial cell nuclei. 

True if some epithelial cells with nuclear diameters at least twice that of 

lymphocyte nuclei, false if all epithelial cell nuclei with nuclear diameters 

less than twice that of lymphocyte nuclei. 

True if necrotic epithelial cells present, false if absent. 

True if apocrine change present in majority of epithelial cells, false if not present 

in majority of epithelial cells. 

meaning. In essence, each category cluster in ART, represents a symbolic rule whose 

antecedent is the category prototype weights and whose consequent is the associated 
ART, category (denoted via the map field). 

These rule extraction facilities provide 2 advantages which, taken collectively, should 

help to overcome reluctance to utilize a neural network decision-support tool. First, a 
domain expert can examine the complete rule set in order to validate that the network 

has acquired an appropriate mapping of input features to category classes. Second, the 
symbolic rules provide explanatory facilities for the network’s predictions during on-line 

operation. In the case of SFAM this corresponds to displaying the equivalent rule for the 
ART, cluster node that was activated to provide a category decision (in the case of the 

voting strategy, a number of such rules, one per voting network, would be displayed). 
The diagnosing clinician is then able to decide whether or not to concur with the 

network’s prediction, based upon how valid he or she believes the rule(s) to be. 
The specific rules discovered for this domain will be presented in Section 4.4. 

However, some discussion of their general nature is needed here since they differ 

somewhat from the production rules used in conventional expert systems. Expert system 
rules are ‘hard’; an input must match with each and every feature in a rule’s antecedent 

before the consequent will be asserted. In ARTMAP models, the rules are ‘soft’: recall 
that they are derived from prototypical category clusters which are in competition with 
each other to match to the input data. Exact matching between inputs and categories is 
not necessary, merely a reasonably close fit suffices (the degree of inexactitude that is 
tolerated being determined by the value of the ART, vigilance parameter). This provides 
greater coverage of the state space for the domain, using fewer rules. 
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Additionally, the rules are self-discovered through exposure to domain exemplars, 
rather than having been externally provided by a human expert. ARTMAP models are 
thus able to bypass the difficult and time-consuming knowledge-acquisition process 

found with rule-based expert systems [21]. However, collection of the data may itself be 
a non-trivial task in many medical domains. 

A drawback of this approach is that the rules are ‘correlational’ rather than causal, 
since SFAM possesses no underlying theory of the domain but simply associates 
conjunctions of input features with category classes (of course, this problem is not 

specific to the ARTMAP models but occurs with neural networks generally). However, 

this difficulty is probably not of great importance from an applications viewpoint since 
useful diagnostic performance can often be achieved from correlational features without 

recourse to any ‘deep’ knowledge of the domain. 
A final general point concerns the learning rule in SFAM which governs the 

formation of category clusters, and hence the rules that will be derived from these 

clusters. Under the ‘fast-learning’ conditions with binary data used in this application, 
whenever an input is successfully matched to an existing category cluster node, the new 

weights for that node are formed by taking the logical AND of the input pattern and the 
existing weights for that cluster. This has the effect of deleting all features from the 

category cluster weights that are not also present in the input pattern. Hence, the weights 
tend to denote progressively more general clusters as they encode more input patterns 

and more features are deleted. Additionally, all features that are still present in the 
weights for a cluster once training ceases are known to have been present in all input 

vectors encoded by that cluster. 

4.2. I. Category pruning 

A SFAM network can often become ‘over-specified’ on the training set, generating 

many low-utility ART, category clusters which represent rare but unimportant cases, and 

subsequently provide poor-quality rules. The problem is particularly acute when a high 
ART, baseline vigilance level is used during training as occurs in this domain (see 
Section 4.3). To overcome this difficulty, rule extraction involves an initial stage of 
category pruning prior to that act of rule extraction per se. With continuously valued 
category weights, rule extraction is preceded by a second quantization stage [ 121. 

However, the binary data under fast-learn conditions used in this domain yields purely 
binary category weights and subsequently provides rules of greater clarity. Quantization 

is therefore omitted from this description). 

Pruning is guided by the calculation of a confidence factor (CF) between 0 and 1 for 
each category cluster, based upon a node’s usage and accuracy. The usage score for an 

ART, node is simply the number of training set exemplars it encodes, normalized 
through division by the maximum number of exemplars encoded by any node with the 
same category outcome (hence, there will be at least 1 node for each different category 
class which has a maximal usage score of 1). The accuracy score for a node is calculated 
as the proportion of predictions that are correct which the node makes on a prediction 

data set separate to the training data. This score is then normalized, in a similar way to 
the usage calculation, through division by the maximum proportion of correct predic- 
tions made by any node with the same outcome (thus there will be at least 1 node for 
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every category class which has a maximal accuracy score of 1). The confidence factor 

for a node is then calculated as the mean of its usage and accuracy scores. All nodes 
with a confidence factor below a user-set threshold will be pruned. Full details of the 
process are given in Refs. [12,34]. 

The pruning process can provide significant reductions in the size of a network and 
thus the number of rules that are extracted from it. In addition, it also has the very useful 

side-effect that a pruned network’s performance is usually superior to the original, 

unpruned net operating on both the prediction data set used to guide pruning and on 

entirely novel test data. 

4.3. Method 

One hundred cases were randomly selected from the data set of the Consultant’s 
observations to serve as a combined prediction and test set for the neural network model. 

The remaining 3 13 items served as training data. The neophyte’s observations provided 

an additional test set. 
Ten SFAM networks were trained on different orderings of the teaching data. 

Vigilance was set very high (0.9) during training in order to maximize classification 

performance. Performance on both test sets was recorded for each network. Performance 
using the voting strategy was also recorded on both test sets, using the 5 networks with 

the highest accuracy on each test set as the ‘voters’. Vigilance was relaxed to 0.6 during 

testing to ensure all cases matched to an existing category cluster node (i.e. forced 
choice prediction). 

All 10 trained networks were then severely pruned using a confidence factor 
threshold of 0.7, based upon performance with the Consultant’s data. The testing 
procedure was then repeated using the resultant pruned networks. Vigilance during 
testing for the pruned networks was relaxed further to 0.5 owing to their decreased 

coverage of the feature space. In addition, symbolic rules were extracted from each 
pruned network. 

There is a flaw in the method for this domain, in that the pruned networks are tested 
upon the prediction set, which has been previously utilized to guide the actual pruning 

process (via calculation of the accuracy scores), rather than upon entirely novel test data. 
This problem occurs because the relatively small size of the data set did not allow 

separate training, prediction and test sets of reasonable size to be derived. Therefore, the 
possibility exists that diagnostic accuracy for the pruned networks will be optimized on 
the prediction set without necessarily providing improvements that generalize to novel 

data. However, this is not in actuality a problem, for reasons that will be provided in 
Section 4.4. 

4.4. Results 

Table 3 shows the voting strategy and mean individual performance for both pruned 
and unpruned network types on the test set of the expert’s observations, and comparative 
performance figures for that expert. 
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Table 3 

Relative performance of senior pathologist and network types 

Accuracy (%J Sensitivity (%‘c) Specificity (%c) 

Consultant Pathologist 91 83 100 

Unpruned SFAM, Individual Mean 94 96 92 

Unpruned SFAM, Voting Strategy 9.5 96 94 

Pruned SFAM. Individual Mean 94 90 99 

Pruned SFAM, Voting Strategy 95 92 98 

It can be seen that in terms of diagnostic accuracy SFAM always performs slightly 

better than the human expert. However, the weak spot in the unpruned SFAM networks’ 

performance is their much lower specificity in comparison to the human pathologist. As 
pointed out in Section 4.1, it is vital that false positive cases (which reduce specificity) 

are avoided in this domain. The pruning procedure achieves this goal, by increasing 
specificity at the expense of sensitivity without changing overall diagnostic accuracy. 
The reason for this is that the category clusters formed at ART, predominantly indicate 

positive (malignant) cases (on average, 70% of ART, category nodes in the unpruned 
networks denoted malignant outcomes). Pruning therefore mostly deletes nodes with 

malignant outcomes, and so coverage of these cases in the state space is reduced 
disproportionately more than for benign cases (this effect of biasing the trade-off 

between sensitivity and specificity was achieved naturally as a side-effect of the pruning 

process. In Section 5.2.1, however, we introduce a simple generalisation of the pruning 
algorithm which allows this effect to be achieved deliberately). 

The accuracy of both types of voting networks for this data appears to be very close 
to the optimum possible, since the existence of ambiguous feature-states means that 

approximately 4% of data will always be misclassified. This explains our previously 
noted lack of concern about the absence of a novel test set of Consultant’s observations 

for the pruned networks. Recall that the difficulty is that pruning may optimalize 
accuracy on the prediction set without the improvements generalising to new data. 
However, in this case near-optimal accuracy has been achieved prior to pruning (i.e. 

from training alone), as shown by the unpruned voting networks’ performance (the 

prediction/test set being entirely novel data for the unpruned networks). Subsequently, 
therefore, pruning does not improve accuracy (indeed how could it?), it merely alters the 

balance between sensitivity and specificity. 

Table 4 

Relative performance of junior pathologist and network types 

Accuracy (o/o) Sensitivity (%) Specificity (%) 

Junior Pathologist 78.7 57.3 100.0 

Unpruned SFAM, Individual Mean 73.7 66.7 80.7 

Unpruned SFAM, Voting Strategy 75.0 74.4 75.6 

Pruned SFAM, Individual Mean 76.0 57.6 94.5 

Pruned SFAM, Voting Strategy 75.6 57.3 93.9 
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Table 4 shows the voting strategy and mean individual performance for both pruned 

and unpruned network types on the test set of the neophyte’s observations, and 
comparative performance figures for that pathologist. 

Previously, with the Consultant’s test data, it was observed that pruning had the effect 

of biasing network performance towards increased specificity and it was also observed 

that the voting strategy always gave improved performance (albeit slight) over the 
individual networks. With the data used here, it can be seen that the former effect still 

occurs, but the latter does not. More importantly, performance of all types of network is 

not significantly better than that of the junior pathologist. The unpruned networks show 
better sensitivity but possess unacceptable specificity. In comparison to the unpruned 

networks, the pruned networks achieve higher specificity but at the expense of reducing 
sensitivity to a level very similar to that of the junior pathologist. 

Kappa statistics for the observations of each of the features, reflecting the level of 
agreement in feature assignment between the senior and junior pathologists, showed that 
for most of the features there was only a moderate level of agreement (indeed, 3 

features, NAKED, FOAMY and NECROTIC, had levels of agreement that were little 
better than chance. These features are the most difficult to identify since a high level of 

interpretation is required by the pathologist to identify cell type and biological viability). 

It is highly likely that this lack of agreement in feature assignment was the cause of the 

reduction in network performance when using the junior pathologist’s data. 
Thus, the performance results indicate that although the existing application could 

prove useful as a decision-support tool for use by senior pathologists, it is inadequate 
(without further modifications) for use with poor-quality input data provided by a junior 

pathologist. 
Turning now to the symbolic rule extraction capabilities, 14 distinct rules were 

derived from the 10 pruned networks, 12 for malignant outcomes and 2 for benign. 
These are shown in Table 5, ranked by how many of the 10 networks each rule occurred 

in. No single rule in the set can be taken as canonical, since it should be recalled that 
each rule is derived from a node which covers only a portion (albeit an important one> 

of the overall feature space for each diagnostic category. However, taking the rules as a 

whole, a picture of a typical benign or malignant case can be constructed. 
Benign cases are likely to display either no features, or the FOAMY feature in 

isolation. Malignant cases are almost certain to display a combination of NUCLEOLI, 
PLEOMORPH and SIZE. The 3D feature is also strongly implicated in malignancy. 

FOAMY, ICL, NECROTIC, and DYS may further be present, although with a lower 
likelihood. The senior pathologist in this study confirmed the validity of these rules and 
the relative importance of the features, with the exception that he places no value on the 
presence or absence of the FOAMY feature. This matter will be discussed later in this 
section. 

Wells et al. [36] provide a canonical list of diagnostic criteria for FNAB which 
includes all features used in this study, although no assessment of their relative 

importance or likelihood is given. In summary, they cite FOAMY, APOCRINE and 
NAKED as indicators of benignancy, and all other features used here as indicators of 
malignancy. The self-discovered rules of SFAM show good overall agreement with 
these criteria apart from 2 notable exceptions. First, APOCRINE and NAKED are 
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Table 5 

Symbolic rules extracted from pruned networks 

Rule 1 (10 Occurrences) 

IF 

NO-SYMPTOMS 

THEN 

BENIGN 

Rule 4 (7 Occurrences) 

IF 

FOAMY = TRUE 

THEN 

BENIGN 

Rule 7 (3 Occurrences) 

IF 

FOAMY = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule IO (2 Occurrences) 

IF 

3D = TRUE 

FOAMY = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

NECROTIC = TRUE 

THEN 

MALIGNANT 

Rule 13 (1 Occurrence) 

IF 

ICL = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 2 (8 Occurrences) 

IF 

3D = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 5 (4 Occurrences) 

IF 

ICL = TRUE 

3D = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 8 (3 Occurrences) 

IF 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 11 (2 Occurrences) 

IF 

DYS = TRUE 

ICL = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 14 (1 Occurrence) 

IF 

ICL = TRUE 

3D = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 3 (8 Occurrences) 

IF 

3D = TRUE 

FOAMY = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 6 (4 Occurrences) 

IF 

DYS = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

THEN 

MALIGNANT 

Rule 9 (2 Occurrences) 

IF 

3D = TRUE 

FOAMY = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

NECROTIC = TRUE 

THEN 

MALIGNANT 

Rule 12 (1 Occurrence) 

IF 

FOAMY = TRUE 

NUCLEOLI = TRUE 

PLEOMORPH = TRUE 

SIZE = TRUE 

NECROTIC = TRUE 

THEN 

MALIGNANT 
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conspicuous by their absence from any of the SFAM rules. Second, FOAMY has an 

ambiguous status, being present in rules for both benign and malignant outcomes. 

The first discrepancy can be explained by reference to the way in which CFs are 
calculated for nodes in SFAM, based equally upon both usage and accuracy. The high 

CF threshold for pruning in this application requires a node to be both highly accurate 
and to encode a large proportion of exemplars of a particular category in order to remain 

unpruned. It is thus possible for a node with very good predictive accuracy but low 

usage to be pruned. This indeed happens in the case of nodes containing the APOCRINE 
and NAKED features, which both occur rarely in the data. Examination of the unpruned 

networks revealed the frequent occurrence of nodes where these features, in isolation or 
in conjunction with the FOAMY feature, indicate a benign diagnosis. Although such 

nodes usually have a perfect accuracy score, they also have a very low usage score and 
hence their overall CF value falls below the threshold for pruning. 

Therefore, it seems likely that the CF threshold for pruning was set too high and the 

networks were ‘over-pruned’, resulting in the loss of some nodes with useful predictive 
powers (further evidence for this is provided by the fact that some of the pruned 

networks were unable to make a definitive prediction on all test cases despite the 

employment of a reduced vigilance level, indicating that pruning had left some networks 
with incomplete coverage of the state space). 

In further work this anomaly could be corrected by using a lower CF threshold for 
pruning. However, some degree of care must be taken with selection of the value of this 
threshold since if it is set too low the opposite problem will occur; relatively unimpor- 
tant nodes will be left unpruned, increasing the size of the rule set and so making their 

validation a more time-consuming task for a domain expert. 
The status of the FOAMY feature is a more problematic issue. In 1361 it is classified 

as an indicator of benignancy. However, the senior pathologist in this study regards its 

occurrence as little more than ‘background noise’ which is as likely to be found in 
malignant cases as benign. Its status in the SFAM rules is certainly ambiguous. In 
isolation, the FOAMY feature frequently indicates a benign outcome. However, it is also 

present, in conjunction with other features, in a number of rules with malignant 
outcomes. The frequent occurrence of this feature in the rules as a whole indicates that it 

is present in a large proportion of the data, regardless of outcome (this follows from the 

nature of the SFAM learning rule and the employment of a usage factor in the CF 
calculation as described previously in Section 4.2 and Section 4.2.1, respectively). 

If the relative frequency of occurrence is considered, the FOAMY feature can be seen 
to be present in 1 of the 2 distinct rules for benignancy, and 5 of the 12 for malignancy. 
Alternatively, if occurrence without regard for distinctiveness is considered, it occurs in 

7 out of 17 benign rules and 16 out of 39 malignant rules. By either calculation, its 
distribution between outcomes is very similar. Therefore, we conclude that, at least for 

this particular data set, the FOAMY feature tends more towards being ‘background 
noise’ than a useful indicator of benignancy. 

This issue further illustrates an important tension in the SFAM application between 
knowledge engineering and machine learning. From the standpoint of knowledge 
engineers, we would like all the rules discovered by SFAM for a domain to be 
acceptable to experts in that domain, since this obviously enhances confidence in the use 
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of the model as a decision-support tool. However, from the machine learning standpoint, 

we would like SFAM to teach us something new about the domain, such as providing 
supporting evidence to resolve disagreements between experts, establishing the relative 
importance of different diagnostic features, or even establishing novel diagnostic 

features. Of course, however, such findings may be at odds with the ‘received wisdom’ 

of domain experts. 

5. Diagnosis of acute myocardial infarction 

5.1. Application domain 

The application task described in this section is the diagnosis of acute myocardial 
infarction (AMI) from information available at an early stage of hospital admission. This 

section is based upon research described in [16]. Within this domain we introduce a 

generalization of the category pruning process (Section 5.2.11, as well as a ‘cascaded’ 
version of the voting strategy which is intended to allow the identification of a subset of 

test cases for which SFAM has a very high certainty of providing a correct classification 
(Section 5.2.2). 

The early identification of patients with acute ischaemic heart disease remains one of 

the greatest challenges in emergency medicine. Chest pain is the commonest reason for 
emergency medical referral in the Western world and is a major symptom of the onset of 
AMI. Each year in the UK alone over 240000 cases are confirmed. However, the ECG 

only shows diagnostic changes in about half of AM1 patients at presentation [2]. None of 
the available biochemical tests becomes positive until at least 3 h after symptoms begin, 
making such measurements of limited use for the early triage of patients with suspected 

AM1 [l]. The initial diagnosis of AMI, therefore, relies on an analysis of clinical features 
along with ECG data. 

The data used in this study were derived from consecutive patients attending the 

Accident and Emergency Department of the Edinburgh Royal Infirmary (Edinburgh, 
UK), with non-traumatic chest pain as the major symptom. 970 patients were recruited 

during the study period (September to December 1993). The final diagnoses for the 
patients was AMI in 191 cases (which includes both Q wave and non-Q wave AMI) and 
not-AM1 in all other cases (which includes stable and unstable angina plus other 

diagnoses). The distribution of data items in this domain is thus moderately skewed with 
only 19.7% of cases being positive (AMI). The input data items for the SFAM model 
were all derived from clinical or ECG data available at the time of the patient’s 
presentation. In all, 35 items were used, coded as 37 binary inputs. 

5.2. Mod$cations to simplified fuzzy ARTMAP 

In this section two modifications to the standard SFAM model are introduced. First, 
the category pruning process described previously in Section 4.2.1 is generalized to 

allow different CF pruning thresholds for nodes with different category outcomes. The 
resultant differently pruned networks are then utilized in a ‘cascaded’ version of the 
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voting strategy which allows identification of those cases for which SFAM is almost 
certain to make the correct category prediction. 

5.2.1. Generalized category pruning 

In the original formulation of the pruning process, a uniform CF threshold is used to 
select candidate nodes for deletion, irrespective of their category class. In this applica- 
tion, the pruning process is generalized to allow separate CF thresholds for nodes 
belonging to different category classes. This allows the proportion of the state-space 
covered by different categories to be varied. For example, by increasing the CF 
threshold for nodes with positive outcomes the relative proportion of such nodes is 
decreased and thus the sensitivity of the network is reduced (of course the same effect 
can also be achieved by decreasing the CF threshold for nodes with negative outcomes). 

This modification is useful for medical domains since it allows a SFAM network to 
be pruned so as to trade sensitivity for specificity and vice versa. In particular, variable 
CF thresholds are used to produce networks whose performance shows near-perfect 
sensitivity, near-perfect specificity, and approximately equal sensitivity and specificity 
(implying the same value for accuracy). 

5.2.2. Cascaded voting strategy 

The generalization of the category pruning process described above allows a novel 
‘cascaded’ variant of the voting strategy to be employed as shown in Fig. 2. This 
consists of 3 layers, a set of voting networks pruned so as to maximize sensitivity, 
another set pruned so as to maximize specificity, and a third set of voters pruned so as to 
have approximately equal sensitivity and specificity (ESAS). The first 2 layers are 
intended to identify those cases which have a very high certainty of being classified 
correctly, with the sensitive networks being used to ‘trap’ the negative cases and the 
specific networks capturing the positive cases. The intuition behind this is that a set of 
networks which displays very high sensitivity will rarely make false negative predictions 
and so any negative predictions made by the networks are very likely to be correct. 
Conversely, highly specific networks will make very few false positive predictions, and 
so their positive predictions have a high certainty of being correct. 

The cascaded voting strategy therefore operates as follows: an input data item is first 
presented to the sensitive voting networks; if these yield a unanimous negative (not-AMI) 
verdict, this is taken as the final category prediction; if not, the data item is next 
presented to the specific voting nets; if these yield a unanimous positive (AMI) verdict, 
this is taken as the ultimate category prediction. I Otherwise the final prediction of the 
category class of the input is obtained by majority verdict from the ESAS nets, with a 
lower certainty of the prediction being correct than with the previous 2 layers. 

’ Obviously, the order of presentation between the sensitive and the specific voting layers is not crucial, 

although for efficiency reasons it is preferable to have the voters which capture the largest number of cases as 

the first layer. 
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Fig. 2. Voting strategy cascade for AMI diagnosis. 

5.3. Method 

The 970 patient records were divided into 3 data sets; 150 randomly selected records 

formed the prediction set, a further 150 randomly chosen records formed the test set and 
the remaining 670 comprised the training data. The prediction set consisted of 28 cases 
of AM1 and 122 not-AM1 cases; the test set consisted of 30 AM1 and 120 not-AM1 cases 
(reflecting the prior distributions of outcomes). 
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The training data was randomly ordered in 10 different ways, and each ordering 
applied to a different SFAM network. The ART, base-line vigilance was set to a 

medium level (0.6) for training. The performance of the 10 trained SFAM networks was 
then measured on the prediction set in order to calculate accuracy scores for the category 
nodes in each network, as a prerequisite to category pruning. During this testing phase 

the ARTa baseline vigilance was relaxed slightly (to 0.5) to ensure that all test items 

were matched to an existing category cluster (i.e., forced choice prediction). 
The networks were then pruned in 4 different ways. First, the ‘standard’ form of 

category pruning [ 121 was performed on the original networks, such that all nodes with a 

CF below 0.5 were deleted from the networks to improve predictive accuracy. The 
original networks were then pruned using different CF thresholds for the AM1 and 

not-AM1 nodes to produce pruned networks which maximized sensitivity. CF thresholds 

of 0.2 for AM1 nodes and 0.95 for not-AM1 nodes were employed, the criterion for 
setting the CF thresholds being to produce a mean sensitivity greater than 95% on the 

prediction set for all 10 pruned networks. A similar procedure was then conducted to 
produce 10 networks which maximized specificity. CF thresholds of 0.7 AM1 and 0.5 

not-AM1 were sufficient to yield a mean specificity greater than 95% on the prediction 
set. The final pruning procedure was to produce 10 networks with approximately equal 
sensitivity and specificity (ESAS), the criterion for setting the CF thresholds being a 

performance on the prediction set where sensitivity and specificity were within 5% of 
each other. 

Performance results were then measured on both the prediction and the test sets using 
the voting strategy with 5 networks. Voters for the unpruned, uniformly pruned and 

ESAS network classes were selected on the basis of the networks with the highest 
accuracy on the prediction set. Selection criteria for the set of sensitive networks was 

maximum specificity, while maintaining a minimum sensitivity of 95% on the prediction 

set. The converse criteria were used for the specific networks. Vigilance was further 
relaxed to 0.4 for testing all pruned networks, again to ensure forced choice prediction. 

Lastly, performance results on the prediction and test sets were recorded for the 
‘cascaded’ voting strategy. This employed 3 sensitive nets, 2 specific nets and 5 ESAS 
nets, the number of voters for the high-certainty prediction layers being selected on the 

basis of maximizing the number of cases ‘trapped’ while maintaining perfect sensitivity 
or specificity on the prediction set. 

5.4. Results 

Table 6 shows the standard voting strategy performance for the different network 
types on both the prediction and the test sets. The figures for the test set are of the most 
importance since, unlike the prediction set, this comprises entirely novel data not 

previously presented to the networks (recall that initial performance on the prediction set 
is reflected during category pruning owing to the use of the derived accuracy scores for 
each node). As a baseline for comparisons, the Casualty Doctors showed an accuracy, 
sensitivity and specificity of 83.0, 81.3 and 83.5%, respectively, over the entire data set. 

It can be seen that accuracy on the test set for the unpruned networks is very close to 
this baseline. However, this is largely an artefact of the unequal prior probabilities of the 
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Table 6 

Standard voting strategy performance of differently pruned networks 

Network type Prediction set Test set 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

(a) (%a) (%a) (a) (8) (8) 

Unpruned 86.0 64.3 91.0 83.3 56.7 90.0 

Uniform Pruning 92.0 78.6 95.1 88.0 56.7 95.8 

Pruning for Sensitivity 55.3 96.4 45.9 51.3 96.7 40.0 

Pruning for Specificity 88.7 46.4 98.4 84.7 33.3 97.5 

Pruning for ESAS 82.0 82.1 82.0 81.3 83.3 80.8 

category distributions; specificity accounts for the majority of accuracy, and although 
the networks’ sensitivity is much poorer than the humans’, this is compensated for by 
the slightly superior specificity. 

As expected, the uniformly pruned networks show an across-the-board increase in 
accuracy over the unpruned nets, with a 4.7% increase on the test set, and a 6.0% 

increase on the prediction set (the greater increase in performance on the prediction set 
is explained by the fact that pruning utilized the accuracy scores for this data, and the 
networks are consequently optimized for the prediction set). However, the increase in 

accuracy is largely because of an overall improvement in specificity rather than 
sensitivity, which remains unchanged on the test set. Thus, although accuracy is now 
higher than for the human clinicians, this result remains an artefact. 

Figures for the sensitive nets show that almost all AM1 cases can be diagnosed by the 

network, while 40% of the not-AM1 cases in the test set are detected by the network. 
Conversely, with the specific nets, almost all not-AM1 cases are covered, while 

approximately one-third of the AM1 cases are also detected. 
The performance of the ESAS class networks is most directly comparable with that of 

the Casualty Doctors, since they are not unduly biased towards specificity or sensitivity. 
It can be seen that the accuracy and specificity of such networks is slightly worse than 

for the human diagnoses but sensitivity is slightly better. 
The best overall network performance was achieved by the cascaded voting strategy, 

as shown in Table 7. 

The cascade’s overall performance can be seen to be almost identical to that of the 
Casualty Doctors. Moreover, the cascade provided a successful partitioning of input 

Table 7 

Performance of the cascaded voting strategy 

Prediction set Test set 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

(SC) (8) (“/c) (%I (70) (c/o) 

High Certainty Voters 100.0 100.0 100.0 96.3 88.9 97.8 

Lower Certainty Voters 71.0 73.7 70.3 72.9 81.0 70.7 

Overall Performance 82.0 82.1 82.0 82.7 86.7 81.7 
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items into those with a high and a lower certainty of a correct diagnosis. Unanimous 
not-AM1 decisions by the highly sensitive networks (i.e. the first stage of the cascade) 

resulted in only 1 false negative prediction. Similarly, unanimous AM1 decisions by the 
highly specific networks (the second stage of the cascade) made only 1 false positive 
prediction. Thus, the ESAS class voters provided lower certainty predictions for the data 

items reaching the bottom of the cascade. High-certainty predictions accounted for 38% 
of items in the prediction set and 36% of items in the test set. 

Examination of the input features for the 2 false predictions made by the high-cer- 

tainty voters is revealing. The false positive case had the following features: age = 45-65, 
smoker, family history of ischaemic heart disease, central chest pain radiating to the jaw, 

short of breath, nausea, new ST segment elevation, new pathological Q waves and ST 
segment or T wave changes suggestive of ischaemia. This exhibits almost all of the 

‘classic’ features of AMI, the latter 3 features being regarded as particularly strong AM1 
indicators. The false negative case had the following features: age < 45, smoker, pain in 

left side of chest radiating to the left arm, pain described as sharp or stabbing, old ECG 
features of MI and ECG signs of ischaemia known to be old. This displays none of the 

‘classic’ features of AMI, although the existence of the latter 2 features should mean a 
human clinician probably would not entirely discount the possibility of AMI. We 

conclude, therefore, that these cases are idiosyncratic, particularly the false positive, and 
would cause most human experts to make the wrong diagnosis (unfortunately a direct 

comparison with the Casualty Doctor’s performance cannot be made because the 
database did not include their diagnoses for individual cases). Thus, the general ability 
of the cascaded voting strategy to identify cases with high-certainty of a correct 

diagnosis is not greatly undermined by these cases. 

6. Discussion 

We believe that the SFAM model has definite promise as part of a decision-support 

tool for many medical pattern classification tasks. Useful performance figures with the 
voting strategy were obtained across all 3 domains demonstrated here, all of which are 
important medical tasks which potentially could benefit from computer-aided decision 

support (see also [ 191 for an application of fuzzy ARTMAP to a further medical domain: 
prediction of length of hospital stay for patients with pneumonia). Additionally, these 

results were obtained using single-epoch (and potentially incremental) learning, without 
the need for extensive parameter tuning. Furthermore, the model’s rule extraction 

facilities provide a highly valuable supplement to its predictive capabilities. 
Nonetheless, we do not wish to claim that SFAM offers a panacea for medical 

decision-support. A number of limitations (and thus possible directions for future work) 
can be identified from our findings. 

First, the claim that ARTMAP models are suitable for domains with skewed 
distributions of outcomes needs to be regarded with a moderate degree of caution. While 
useful performance was obtained with the skewed data of the AM1 domain, performance 
with the heavily skewed data of the coronary patient prognosis domain was not entirely 
satisfactory. However, a modified version of fuzzy ARTMAP exists [25] which gives 
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superior performance for a single network with this data but does not perform well when 

used with the voting strategy [ 171. 
A more important limitation of SFAM for medical decision-support applications is 

that the model makes no provision for missing data items when generating predictions. 
However, a variant of fuzzy ARTMAP, known as fusion ARTMAP [4], has been 
developed, which, it is claimed, can cope with this problem. Fusion ARTMAP utilizes a 

modular approach, clustering data from disparate sources locally and then passing the 
results to a global classifier. This enables the system to assign credit for successive 

predictions to those sources of information which have the highest predictive value. This 
would enable the system to make a reasonable guess even if some data were missing, or, 

alternatively, to request additional information if insufficient data is available. Thus, for 

example, in the diagnosis of myocardial infarction, the system would be able to make 

use of the most highly predictive data (e.g. the ECG codings) first, and then request 
information on physical signs, associated symptoms, risk factors, clinical history etc. as 

required, until a confident prediction could be made. Further tests such as a chest X-ray 
might then be requested to reinforce the diagnosis. In this way, fusion ARTMAP begins 
to reflect human behaviour - building up a picture gradually using the least amount of 

data concomitant with confident diagnosis. In future research, therefore, we intend to 
investigate the ability of fusion ARTMAP to perform robustly in medical domains when 
data items are missing. 

Another area for future work is to automate the CF threshold selection process for the 
differential category pruning described in Section 5.2.1. In the present implementation, 

the CF thresholds were ‘hand-set’ by the system’s designer to achieve the desired 

changes in network performance. However, this was a rather laborious trial-and-error 
process (particularly for the ESAS networks, where each individual network required a 
different CF threshold) which contrasts poorly with the general ease of tuning of the 

basic SFAM model. 
Additionally, we would like to achieve useful performance figures with the ‘noisy’ 

data provided by the junior pathologist for the breast cancer domain (see Section 4.4). 
We conjecture that one way this might be achieved is to modify SFAM with a more 
sophisticated technique for matching between input cases and category clusters. In 

SFAM, each true input feature contributes equally to the match with a category 
prototype. We envisage introducing a variable weighting for features, which attaches 

more importance to individual features that are considered to be (a) very strongly 
predictive for the domain, and (b) most easily identified by an inexperienced pathologist. 

The possibility also exists that revised and/or expanded versions of the data sets for 

each domain may yield improved performance figures. We believe that this is least 
likely to be true for the breast cancer domain and most likely to be true for the AM1 

domain. As noted earlier in Section 4.4, network performance for the diagnosis of breast 
cancer is already very close to the optimum possible (however, further data would allow 
the flaw in the method, noted in Section 4.3, to be corrected). In contrast, with the AM1 
data we believe that the prediction and the test sets were probably too small, particularly 
given the unequal distribution of category classes with relatively few AM1 cases. The 

small number of AM1 cases in the prediction set is the cause of most concern, since 
optimum benefit from category pruning is achieved only if the prediction set is truly 



426 J. Downs et al. /Artificial Intelligence in Medicine 8 (19961403-428 

representative of the overall domain. Otherwise, pruning will optimize a net’s perfor- 
mance on the prediction set, but not will not generalize well to novel test data. The 

generally lower performance of all network types on the test set in comparison to the 
prediction set for this domain (see Section 5.4 leads us to believe that this is the case 

here). 

However, performance results alone are not enough to ensure the acceptance of a 

decision-support tool based upon SFAM. Usability is (at least) an equally important 
factor. Thus, the tool must provide the capability to interface in a straightforward 

manner between different medical databases and SFAM, by providing standard database 
and SFAM manipulation procedures. For example, there should be facilities for: 

partitioning a database into training, prediction and test sets; selecting particular input 
features to train a SFAM network on; setting the SFAM vigilance parameter; saving and 

loading a trained network’s weights; extracting symbolic rules etc. Such facilities should 
be as easy to use as possible, thus offering the possibility that a SFAM decision-support 
tool for a medical domain could be constructed with little or no intervention by an AI 

expert or knowledge engineer. Therefore, a graphical user interface (GUI) seems to be 
called for. 

Finally, a cross-comparative study of SFAM with other techniques needs to be 
performed across a range of medical domains. Rival approaches for the comparison 

could be statistical (e.g. logistic regression), neural network (e.g. MLP or RBF), or 

symbolic machine learning (e.g. decision trees). Preliminary findings by us seem to 
suggest that SFAM is likely to show somewhat superior performance to logistic 

regression and the MLP with the breast cancer data, but slightly inferior performance 
with the AM1 data, although these results should by no means be taken as definitive. 
Additionally, Goodman et al. [19] demonstrate that fuzzy ARTMAP has superior 
performance to linear discriminant analysis in a pneumonia prognosis task. 
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