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Self-organized maps (SOM) have been applied to analyze the similarities of chemical compounds and to
select from a given pool of descriptors the smallest and more relevant subset needed to build robust QSAR
models based on fuzzy ARTMAP. First, the category maps for each molecular descriptor and for the target
activity variable were created with SOM and then classified on the basis of topology and nonlinear distribution.
The best subset of descriptors was obtained by choosing from each cluster the index with the highest
correlation with the target variable and then in order of decreasing correlation. This process was terminated
when a dissimilarity measure increased, indicating that the inclusion of more molecular indices would not
add supplementary information. The optimal subset of descriptors was used as input to a fuzzy ARTMAP
architecture modified to effect predictive capabilities. The performance of the integrated SOM-fuzzy ARTMAP
approach was evaluated with the prediction of the acute toxicityy b€a homogeneous set of 69 benzene
derivatives in the fathead minnow and the oral rat toxicitys4 Df a heterogeneous set of 155 organic
compounds. The proposed methodology minimized the problem of misclassification of similar compounds
and significantly enhanced the predictive capabilities of a properly trained fuzzy ARTMAP network.

INTRODUCTION Models are built by establishing the relationships between
) .. known experimental properties and molecular features

The design of new drugs based on the forecast of activity quantified by molecular descriptors, which typically include
from molecular information only is a major challenge in ejectronic information (e.g., the dipole moment) and/or
pharmacology and chemistry. The traditional methods that measures of molecular shape (connectivity indicéshe
incorporate synthesis in the design process are very reliableyyiener index etc.). Recently, quantum information has been
but usually laborious and expensive. On the other hand, incorporated into QSPR/QSAR to better explain the property
computed assisted methods are time-consuming and veryor activity of homogeneous and heterogeneous chemical
sensitive to the molecular input information selected. The compounds. Since the number of descriptors could be very
main problem arises when trying to decide which molecular |arge, statistical prescreening techniques are commonly used
descriptors and algorithm should be used to build the to select the most appropriate oriés.
computational model, i.e., the Quantitative Structure Activity  The reduction of the number of descriptors usually
Relationships (QSAR). involves the following steps:

QSAR methods assume that the properties of chemical (i) Exclusion of all descriptors that contribute with up to
compounds, which are implicit in their molecular structure, 90% of information already accounted for by other molecular
can be established with a set of descriptors of reasonableindices:
dimension. This implies that the chemical properties of  (jj) Selection of only one descriptor in pairs with cross-
similar compounds are related. But, which is the meaning correlations greater than 0.95;
of the termsimilar? Some studies state that compounds are jj) selection of the first descriptors when ranked follow-
similar when they have the same action mechanism versusing an orthogonalization procedure, using for example vector
different physical, chemical, or biological conditions but not gnace descriptor analysis (VSD2.
necessarily a comparable chemical structure. Sometimes the
c_ontra;ry IS s_':ated. Er(_awo dus QSAR studies useh bczjth def|_n|- be an alternative to statistical prescreening techniques since
tions for similar at their advantage. However, the determi- o haye been successfully applied to cluster molecules into
nation of the action mechanism is usually very difficult, while - e dimensional predefined self-organized maps. The analy-
itis usually easier to establish chemical similarities. For this gig of the shape and surface properties of those maps has
reason, the majority of QSAR models are developed for sets yided valuable information about the biological activity
of homogeneous compounds (families), based on the premisg the molecules. These applications included a one-to-one
that they will have the same action mechanisms. mapping of a molecule into a single Kohonen netwirik4
' Thus, SOM can be an alternative for the selection of the
* Corresponding author phone:34-977-559638; fax:34-977-558205; best set of molecular descriptors needed to establish sound

Self-organizing Kohonen feature maps (SGMY could
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classical algorithms, such as partial least-squares or multi-used later by Gute and Bag@ko compare them. The
lineal regression analysis, or neural networks. benzene substituents are amino, bromo, chloro, hydroxyl,
The most widely applied neural network to build QSAR/ methyl, methoxyl, and nitro groups. The complete list of
QSPR models is back-propagation. Nevertheless, this neuracompounds and their corresponding experimental toxicity
system has some problems inherent to its architecture invalues are shown in Table 1. This table also includes an
relation to overtraining, overfitting, and network optimiza- overview of the best set of descriptors used to build the fuzzy
tion. An alternative to improve both predictive capabilities ARTMAP-based QSAR for L, which is expressed as the
and to establish a more transparent QSAR/QSPR methodolnegative logarithm of the lethal concentratiefipg(LCso),
ogy is the application of cognitive classifiers. Espinosa et at which 50% of the exposed individuals die. The experi-
al*>1¢developed fuzzy ARTMAP based QSPRs models to mental values range from 3.07 to 6.37 log units.
estimate boiling points and critical properties of heteroge- The second data set includes 155 diverse organic com-
neous sets of organic compounds. The models obtained wergyounds. The functional groups considered include alcohols,
superior to QSPRs obtained with optimized back-propagation ketones, esters, carboxylic acids, aldehydes, ethers, nitriles,
architectures and to traditional group contribution methods amines, and aromatic derivatives. The experimental values
reported in the literature. Fuzzy ARTMAP based models are were collected from many literature sources. The complete
an alternative to standard predictive algorithms and possesdist of compounds and their corresponding experimental acute
a number of distinctive features that overcome some of the toxicity values (LQo) are included in Table 2, together with
limitations of back-propagation (feed-forward) neural net- the best set of molecular descriptors used in the fuzzy
works. The most important of them are (i) continuous ARTMAP model. The toxicity is expressed as the logarithm
(online), fast and stable learning, and (ii) the ability to learn of the lethal dose, log(LE), in mg/kg body wt/day, at which
novel inputs and infrequent events without forgetting previ- 50% of the individuals die. The experimental values range
ously learned information by creating new input categories from 1.59 to 4.71 log units.
and output classes dynamically. Both topological and quantum descriptors were included
The purpose of the current work is to apply SOM to select jn the pool of molecular information. The topology of
key molecular information from any given pool of descriptors  chemicals was accounted for by the following indices: (i)
to build efficient QSAR models based on fuzzy ARTMAP.  the connectivity indices from zero to four ordéy (%y, 2,

The methodology for the_selection of descriptors uses SOM 3, %); (ii) the hydrogen bonding and electronic contributions,
to establish the relative differences between molecules whenrepresented by the Hansen hydrogen bond index and the
diverse molecular information is used to describe them. A polarity index, respectively, both estimated by fragment
simple dissimilarity measure provides sufficient quantitative constant additions (the fragment values were determined from
information to support the visual information on how Hansen's work); and (iii) the sum of atomic numbers and
different maps represent the intrinsic relations between thehe kappa index. The first two groups of descriptors were
molecular structures:** The performance of the integrated generated using Molecular Modeling Pro &.and were
methodology is illustrated with the development of two new  independent of the geometry optimization scheme. Semiem-
fuzzy ARTMAP based QSAR for toxicity assessment: the pirical, PM3 Hamiltonian, geometry optimizations, and
first one for the acute toxicity, measured as lethal-dos@LC  conformational searches for all the structures were carried
of 69 benzene derivativEsand the second one for the oral gyt with MOPAC 6.07° because of the relatively short
rat toxicity LDso of a heterogeneous set of 155 organic computational times required, compared to ab initio calcula-

compounds. _ _ ~tions, and the availability of parametrization for a variety of
The current approach is related to the variable selection gtoms.

methods recezntly published by Zhen and TropStend The following quantum chemical descriptors derived form
Ivanciuc et af? The former study is based on the k-nearest- gemjempirical calculations were considered to describe

neighbor principle and selects the optimal subset of descrip-qjecular interactions: (i) the average molecular polariz-
tors by using simulated annealing as a stochastic optimizationgpjjity which is related to inductive interactions in the
algorithm. The latter study measures chemical diversity with 1 5iecule and measures the capacity to accept electrons: (ii)

quasi-orthogonal basis sets. Kohonen neural networks argpe dipole moment as a measure of the global polarity of

appliod in the current study to seloct first the molecular o molecule: (iii) the number of doubly occupied (filled)
descriptors that best represent the diversity of all molecular ;g |evels: (iv) the electrorelectron repulsion energy: (v)

information in relation to the target toxicity variables, while o electror-nuclear attraction energy; (vi) the resonance
covariances are used afterward to include the more relevantenergy or differential between Iocalizéd and delocalized

information._ T_he descr_iption of data sets an(_j of_ molecular g|actrons in double bonds; and (vii) the exchange energy to
descriptors is included in the next section, which is followed 50yt for the interaction involving two electrons. The sum
by a description of the integrated SOM-fuzzy ARTMAP (¢ (414 one-center energies (electreglectron repulsion and

methodology. Finally, the results obtained for thes.Gf electron-nuclear attraction) and the two-center terms (reso-
benzene derivatives ond for the §d@f organic compounds  once and exchange energies) yield the total energy.
are presented and discussed.

Data Sets and Molecular Descriptors Two different sets
of toxicity data have been chosen to test the performance of
the proposed integrated methodology for descriptor selection Kohonen Self-Organizing Maps (SOM) Kohonen self-
and QSAR model building. The first data set contains the organizing maps constitute the neural system proposed in
acute toxicity (LGo) of 69 benzene derivatives in the fathead the present study to select the molecular features that best
minnow. Hall et al® first studied this data set, which was describe a given activity or property from a pool of molecular
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Table 1. Best Set of Molecular Descriptors and Experimental Acute Toxicityolf@r 69 Benzene Derivativés

information
exp

compd ID formula O b %y 3y Yy N NFL AP NNR ENA —log(LCso)
2,3,4,5,6-pentachlorophenol tr C6H101CI5 1.01E+t01 4.55E+00 3.80E+00 3.44E-00 1.72E-00 1.36E+02 3.30EF01 1.02E+02 8.59E+03 —1.72E+04  6.06E-00
1,2,3,4-tetrachlorobenzene tr C6H2Cl4 9.68E+00 3.93E-00 3.22E+00 2.69E-00 1.24E+00 1.06E-02 2.70E-01 8.57E+01 5.97E-03 —1.20E+04 5.43E-00
2,3,4,5-tetrachlorophenol tr C6H201Cl4 1.01E-01 4.07600 3.36E+00 2.82E-00 1.35E-00 1.28E-02 3.00E-01 9.09E+01 7.26E+03 —1.46E+04 5.72E-00
1,2,3-trichlorobenzene tr C6H3CI3 9.63E+00 3.44E+00 2.73E-00 2.13E-00 1.00E-00 9.00E+01 2.40E+01 7.45E+01 4.90E-03 —9.84E+03  4.89E-00
1,2,4-trichlorobenzene tr C6H3CI3 9.63E+00 3.44E-00 2.81E-00 1.85E-00 9.95E-01 9.00E+01 2.40E+01 7.60EF01 4.82E-03 —9.68E+03  5.00E-00
1,3,5-trichlorobenzene tr C6H3CI3 9.63E+00 3.43E-00 2.89E-00 1.48E-00 1.39E-00 9.00E-01 240E+01 7.65EF01 4.76E-03 —9.57E+03 4.74E-00
1,3,5-trinitrobenzene tr C6H3N306 9.82E+-00 3.22B-00 2.24E00 1.36E-00 7.87E-01 1.08E-02 3.90E-01 8.77E+01 1.16E-04 —2.35E+04 5.29E-00
2,4,6-tribromophenol tr C6H301Br3 1.25E+01 4.82E-00 4.34E-00 2.65E-00 2.79E-00 1.55K-02 2.70E+01 8.86E-01 5.88E-03 —1.18E+04 4.70E-00
1,2-dichlorobenzene tr C6H4ClI2 9.57E+00 2.96E-00 2.23E+00 1.58E-00 7.10E-01 7.40E-01 2.10E-01 6.45E+01 4.01E-03 —7.85E+03 4.40E-00
1,4-dichlorobenzene tr C6H4Cl2 9.57E+00 2.95E+00 2.31E-00 1.31EK-00 6.81E-01 7.40B-01 2.10E+01 6.60E-01 3.94E-03 —7.70E+03 4.62E-00
1,2-dinitrobenzene tr C6H4N204 9.70E+00 2.82E-00 1.87E-00 1.16E-00 6.35E-01 8.60E-01 3.10E+01 7.40E+01 8.26E-03 —1.67E+04 5.45E-00
1,3-dinitrobenzene tr C6H4N204 9.70E+00 2.82E-00 1.87E-00 1.14E-00 6.52E-01 8.60E-01 3.10E+01 7.39E+01 7.87E-03 —1.60E+04  4.38E-00
1,4-dinitrobenzene tr C6H4N204 9.70E+00 2.82E-00 1.87E-00 1.16E-00 6.35E-01 8.60E-01 3.10E+01 7.51E-01 7.78E-03 —1.58E+04 5.22E-00
2,4-dinitrophenol tr C6H4N205 1.01E-01 296E00 2.03E-00 1.25E-00 7.01E-01 9.40E-01 3.40E-01 8.02E-01 9.35E-03 —1.89E+04 4.04E-00
2,4-dichlorophenol tr C6H401CI2 9.94E+00 3.09E-00 2.44E+00 1.45E+00 8.89E-01 8.20E+01 2.40E-01 7.03E+01 4.93E-03 —9.94E+03  4.30E-00
bromobenzene tr C6H5Br1 1.03E+01 2.89E+00 2.21E-00 1.26E+00 7.19E-01 7.60E-01 1.80E+01 5.76E-01 2.97E+03 —5.98E+03  3.89E-00
chlorobenzene tr C6H5CI1 9.52E+00 2.48E+00 1.73E-00 9.85E-01 5.60E-01 5.80B-01 1.80E+01 5.51E+01 3.11EK-03 —6.06E+03  3.77E-00
4-nitrophenol tr C6H5N103 9.95E+00 2.54E+00 1.69E-00 1.00E-00 1.95E-00 7.20E-01 2.60E+01 6.64E+01 5.84E-03 —1.18E+04 3.36E-00
2-chlophenol tr C6H501CI1 9.89E+00 2.62E-00 1.86E-00 1.17E-00 5.87E-01 6.60E-01 2.10E+01 5.97E-01 4.02E-03 —8.10E+03  4.02E-00
benzene tr C6HG6 9.46E+00 2.00E-00 1.15E-00 6.67E-01 3.85E-01 4.206-01 1.50E+01 4.56E-01 2.37E-03 —4.58E+03  3.40E-00
4-hydroxy-3-nitroaniline tr C6H6N20O3 115601 27500 19300 1.14E00 6.47E01 8.00E01 2.90E-01 7.708-01 7.18E-03 —1.45E+04 3.65E-00
phenol tr C6H601 9.83E+00 2.13E-00 1.34E-00 7.56E-01 4.28E-01 5.00-01 1.80E+01 5.08E+01 3.13E-03 —6.30E+03 3.51E-00
1,3-hydroxybenzene tr C6H602 1.02E+01 2.27E+00 1.52E-00 8.30E-01 4.93E-01 5.80E+01 2.10E+01 5.57E-01 4.08E+03 —8.23E+03  3.04E-00
2,3,6-trinitrotoluene tr C7ZH5N306 1.27E+01 3.65E00 2.62E-00 1.76E-00 1.10E-00 9.20E-01 4.20E+01 9.82E-01 1.37E+04 —2.77E+04 6.37E-00
2,4,6-trinitrotoluene tr C7TH5N306 1.27E+01 3.65E-00 2.65E-00 1.76E-00 1.02E-00 9.20E+01 4.20E+01 9.74E-01 1.34E-04 —2.71E+04 4.88E-00
3,4-dichlorotoluene tr C7TH6CI2 1.25E+01 3.37E00 2.73E+00 1.81EF00 9.53E-01 8.20E-01 2.40E-01 7.37E+01 4.92E-03 —9.89E+03  4.74E-00
2,3-dinitrotoluene tr C7TH6N204 126E+01 3.24E-00 2.31E00 1.47E-00 3.41E00 9.40E-01 3.40E-01 8.29E-01 9.72E-03 —1.96E+04 5.01E-00
2,4-dinitrotoluene tr C7TH6N204 126E+01 3.23E00 2.33E00 1.48E00 8.29E-01 9.40E-01 3.40E-01 8.33E-01 9.30E-03 —1.88E+04 3.75E-00
2,5-dinitrotoluene tr C7TH6N204 126E+01 3.23E00 2.33600 1.46E00 8.77E-01 9.40E-01 3.40E-01 8.40E-01 9.24H-03 —1.87E+04 5.15H-00
2,6-dinitrotoluene tr CTH6N204 1.26E+01 3.24E-00 2.28E-00 1.53E-00 9.15E-01 9.40E-01 3.40E+01 8.29E-01 9.45E-03 —1.91E+04  3.99E-00
3,4-dinitrotoluene tr C7TH6N204 1.26E+01 3.23E-00 2.35E00 1.41E-00 8.45E-01 9.40E-01 3.40E-01 8.37E-01 9.49E+-03 —1.92E+04 5.08E-00
3,5-dinitrotoluene tr C7TH6N204 126E+01 3.23E00 2.38500 1.36E-00 8.70E-01 9.40E+01 3.40E+01 8.27E-01 9.19K-03 —1.86E+04 3.91E-00
2-methyl-4,6-dinitrophenol tr C7H6N205 1.30E+01 3.37E-00 2.49E-00 1.56E-00 9.01E-01 1.02E-02 3.70E-01 8.86E+01 1.08E+04 —2.19E+04 5.00E-00
3-chlorotoluene tr C7TH7ClI1 1.24E+01 2.89E-00 2.23E-00 1.21E-00 8.50E-01 6.60E-01 2.10E-01 6.38E-01 3.94E-03 —7.93E+03  3.84E-00
4-chlorotoluene tr C7TH7CI1 1.24E+01 2.89E00 2.23E-00 1.26E-00 6.59E-01 6.60E-01 2.108-01 6.42E-01 3.93E-03 —7.91E+03 4.33E-00
2-nitrotoluene tr C7TH7N102 1.26E+01 2.88E-00 2.01E-00 1.28H00 7.52E-01 7.20E+01 2.60E-01 6.87E-01 6.22E-03 —1.21E+04 3.57E-00
4-nitrotoluene tr C7TH7N10O2 1.25E+01 2.82E+00 2.01E-00 1.19E-00 6.36E-01 7.20E-01 2.60E+01 6.94E-01 5.82E+03 —1.18E+04  3.76E-00
2-methyl-3,5-dinitroaniline tr C7H7N304 141E+01 3.44E-00 254E00 1.69E00 9.15E-01 1.02E-02 3.70E-01 9.49E-01 1.086-04 —2.18E+04 4.12E00
2-methyl-3,6-dinitroaniline  tr C7H7N304 1.41E+01 3.44E00 250E-00 1.73E-00 9.71E-01 1.02E-02 3.70E+01 9.73E+01 1.09E-04 —2.20E+04 5.34E-00
5-methyl-2,4-dinitroaniline tr C7H7N304 141E+01 3.44E-00 2.56E-00 1.61E-00 9.79E-01 1.02E-02 3.70E-01 9.77E-01 1.09E-04 —2.20E+04 4.92E+00
4-methyl-2,6-dinitroaniline  tr C7H7N304 1.41E+01 3.44E-00 2.58E+00 1.56E-00 9.66E-01 1.02E-02 3.70E-01 9.81E-01 1.09E-04 —2.21E+04 4.21E-00
4-methyl-3,5-dinitroaniline  tr C7H7N304 1.41E+01 3.44E-00 2.54E+00 1.64E-00 9.85E-01 1.02E-02 3.70E-01 9.57E+01 1.09E-04 —2.20E+04 4.46E-00
4-chloro-3-methyl-phenol tr C7H701ClI1 1.286+01 3.03E-00 2.34E+00 1.56E+00 7.46E-01 7.40E-01 240E-01 6.88E-01 5.03E-03 —1.01E+04 4.27E-00
toluene tr C7HS8 1.24E+01 24100 1.65E00 9.40E-01 5.34E-01 5.00E-01 1.80E01 4.56E+01 3.23E-03 —6.27E+03 3.32E-00
2-methyl-3-nitroaniline tr C7TH8N202 140E+01 3.03E-00 2.17E-00 1.48E00 7.91E-01 8.00E+01 2.90E-01 7.94E+01 7.23E-03 —1.46E+04  3.48E-00
2-methyl-4-nitroaniline tr C7TH8N20O2 1.40E+01 3.02E00 2.22E-00 1.41E-00 7.35E-01 8.00E-01 2.90E-01 8.18E+01 7.06E-03 —1.43E+04 3.24E-00
2-methyl-6-nitroaniline tr C7TH8N20O2 1.40E+01 3.03E00 2.19E00 1.44E-00 7.79E-01 8.00E-01 2.90E-01 7.98E+01 7.06E-03 —1.43E+04 3.80E-00
3-methyl-6-nitroaniline tr C7TH8N20O2 1.40E-01 3.02E-00 2.24E-00 1.32E-00 8.04E-01 8.00E-01 2.90E-01 8.17E01 7.16E-03 —1.45E+04 3.80E-00
4-methyl-2-nitroaniline tr C7H8N20O2 140E-01 3.02E-00 2.24E-00 1.32E-00 7.66E-01 8.00E-01 2.90E-01 8.19E-01 7.19E-03 —1.45E+04 3.79E-00
4-methyl-3-nitroaniline tr C7TH8N20O2 1.40E-01 3.02E00 2.23E00 1.36E-00 7.75E-01 8.00E-01 2.90E01 8.05E+01 7.17E-03 —1.45E+04 3.77E-00
o-cresol (2-hydroxytoluene) tr C7H801 1.28E+01 2.55K-00 1.79E-00 1.12E-00 5.63E-01 5.80E-01 2.10E-01 5.90E-01 4.27E-03 —8.30E+03 3.77E-00
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Table 1. (Continued)
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a0-4 = valence connectivity indices; & sum of atomic numbers; NFE& number of filled levels; AP= average polarizability (PM3); NNR= nuclear-nuclear repulsion; ENA= electronr-nuclear

attraction.

ESPINOSA ET AL

descriptors. This network was proposed by Kohdrien
1982, as an algorithm able to classify dakdimensional
vectors, withN usually very large) via a projection of these
data into a subspace of lower dimensign(usually M =
2), called map, preserving its topology in the original space.
In this context, the word topology is used instead of geometry
to denote relative distance between points in a certain space.
The dynamical process that occurs to structure the topology
of data in the maps is known as self-organization and is
inspired by the organization of cognitive functions in
different lobes of the braitf

The algorithm is an optimization process in which the
weights associated to each node or neuron in a two-
dimensional lattice are adjusted to cluster the input informa-
tion while preserving the topology of the original data. Thus,
the weights are vectors with the same dimension as the input
data, which are initiated with random values. The map used
in the current study to cluster the two sets of data according
to toxicity and molecular features of each chemical was a
two-dimensional 7x 7 grid with hexagonal lattices. This
dimension was selected after analyzing the quality of the
clustering and the number of empty nodes for map sizes
ranging from 5x 5to 10x 10. The resulting weights define
the cluster or vector centers that sample the input space when
a sufficient number of input vectors selected randomly are
sequentially presented to the network. The weights are
associated with the input variables so that close nodes are
sensitive to inputs that have similar representations of their
characteristics.

The standard algorithm proposed by Kohonen operates in
the following sequence:

1. Presentation of an input vectgr of dimensionN to
the network;

2. Calculation of the Euclidian distance between this input
vector and all nodes in the network lattice

N—1
4= 3 %O = w0 (1)

In this equationx(t) is the ith component of theN-
dimensional input vector and;(t) the connection strength
(weight) between the input neurerand the mapping array
nodej at time (position)t in the sequence of total data
presentation to the network. Each of these presentations are
known as epoch,;

3. Selection of the node with mininum distan¢e, This
node is the winner neuron or best matching unit (BMU);

4. Update weights of nodé& and neighbors, restricted to
the neighborhoodN;«(t)

w;(t 4 1) = w; (1) + n(t)(6(1) — w; (1)) )

for j € Nx(t) and 1< i < N. Herep(t) is a function that
decreases monotonically over the environment of the winner
neuron. It defines the region of influence that the input vector
has on SOM. The function(t) is defined by the neighbor-
hood functions, and the learning rate(t) according to

(1) = no(lIre = rilya(t) 3)

wherer is the location of the units or neurons on the grid of
the map.



Table 2. Best Set of Molecular Descriptors and Experimental Oral Rat Toxicity,lf&r a Heterogeneous Set of 155 Organic Compotinds

information
exp

compd ID formula O Iy % EE HP NNR ENA RE NFL K log(LDso)
tetrachloromethane tr C1Cl4 5.0380 2.26E-00 0.00E+00 —1.84E+01 0.00E-00 2.22E-03 —4.37E+03 —4.08E+01 1.60E-01 1.00E-00 3.37E+00
tribromomethane tr CIH1Br3 7.46E+00 3.40E-00 0.00E-00 —1.83E+01 4.11E-00 1.43E+03 —2.81E+03 —3.48E+01 1.30E-01 1.33E-00 3.06E-00
trichloromethane tr C1H1CI3 4.97E+00 1.96E-00 0.00E-00 —1.94E+01 3.10E+00 1.47E-03 —2.87E+03 —4.07E+01 1.30B-01 1.33E-00 2.96E-00
triiodomethane tr C1H113 9.08E+00 4.335-00 0.00E-00 —1.77E+01 5.84E-00 1.36E+03 —2.68E+03 —3.15E+01 1.30E-01 1.33B-00 2.55E-00
dichloromethane tr C1H2CI2 4.97E+00 1.60E-00 0.00E-00 —2.05E+01 6.30E-00 8.81E-02 —1.71E+03 —4.09E+01 1.00E-01 2.00E-00 3.20E-00
formaldehyde tr Cl1H201 3.12E+00 2.89E-01 0.00E-00 —2.17E+01 1.88E-01 3.92E-02 —7.24E+02 —4.91E+01 6.00E-00 0.00E-00 2.90E-00
formic acid tr ClH202 3.43E+00 4.94E-01 0.00E-00 —2.74E+01 1.21B-01 9.05E-02 —1.70E+03 —7.09E+01 9.00E-00 2.00E-00 3.04E-00
bromomethane tr C1H3Br1 5.96E+00 1.96E-00 0.00E-00 —2.12E+01 4.02B-00 4.38E+02 —8.35E+02 —3.87E+01 7.00E-00 0.00E-00 2.33E-00
chloromethane tr C1H3CI1 5.13E+00 1.13E-00 0.00E-00 —2.17E+01 6.14E-00 4.59E-02 —8.76E+02 —4.12E+01 7.00BE-00 0.00E-00 3.26E-00
nitromethane tr CIH3N10O2 526E+00 7.57E-01 0.00E-00 —3.86E+01 1.82E-01 1.61E-03 —3.06E+03 —9.50E+01 1.20B-01 1.33E-00 2.97E-00
methanol tr Cl1H401 5.45E+00 4.47E-01 0.00B-00 —2.82E+01 1.23B-01 5.73E-02 —1.07E+03 —6.14E+01 7.00B-00 0.00E-00 3.75E-00
nitrotrichloromethane tr CIN10O2CI3 5.16E-00 2.25E-00 0.00EF00 —3.52E+01 1.25B-01 3.94E+03 —7.99E+03 —9.37E+01 2.10E-01 1.85E-00 2.40E-00
1,2,4,5-tetramethylbenzene tr C1l0H14 2478 3.65B-00 1.10E-00 —7.80E+01 1.01E-00 6.27E+03 —1.23E+04 —1.95E+02 2.10E-01 2.94E-00 3.84E-00
secbutyl-benzene tr C10H14 20401 3.89E-00 1.02E+00 —1.47E+02 5.13E-01 6.41E03 —1.25E+04 —2.97E+02 2.70E-01 4.00E-00 3.35E+00
1-decanol tr C10H2201 2.98H1 5.02B-00 1.25E-00 —1.78E+02 2.69E-00 8.33E+03 —1.63E+04 —3.56E+02 3.40E-01 1.00E-01 3.67E-00
1-methyl naphthalene tr C11H10 1.6681 3.82E-00 1.39E-00 —1.45E+02 1.03B-00 6.52E-03 —1.26E+03 —3.01E+02 2.70B-01 3.16E-00 3.26E-00
1-dodecanol tr C12H2601 3.5201 6.02800 1.60E-00 —2.11E+02 3.32E-00 1.03E-04 —2.08E+04 —4.21E+02 4.00E-01 1.20E+01 4.11E-00
1-tetradecanol tr C14H3001 4.06B1 7.02E+00 1.95E-00 —2.45E+02 2.90E-00 1.27E-04 —2.55E+04 —4.87E+02 4.60E-01 1.40E-01 4.52E-00
1-hexadecanol tr C1l6H3401 4.6t81 8.02E-00 2.31E+00 —2.78E+02 2.58E-00 1.52E-04 —3.04E+04 —5.52E+02 5.20E01 1.60E-01 3.70E-00
1-heptadecanol tr C1l7H3601 4.8881 8.52E-00 2.48E-00 —2.95E+02 2.44E-00 1.64E04 —3.29E+04 —5.85E+02 5.50E01 1.70E01 4.71E-00
tetrachloroethene tr C2Cl4 5.53B0 2.51E+00 0.00E-00 —7.96E+01 6.43E-00 2.77E+03 —5.45E+03 —6.68E+01 1.80E-01 2.22E+00 3.42E-00
1,1,2-trichlorotrifluoroethane tr C2F3CI3 5.53E+00 2.52E+00 0.00E+00 —3.36E+01 1.61E-00 5.94E-03 —1.09E+04 —9.29E+01 2.50E-01 1.75E+00 4.63E-00
trichloroethene tr C2H1CI3 5.47E+00 2.07E+00 0.00E+00 —3.03E+01 1.36E+00 1.96E+03 —3.85E+03 —6.55E+01 1.50E-01 2.25E+00 3.69E-00
pentachloroethane tr C2H1CI5 7.74E+00 3.29E+00 0.00E-00 —3.37E+01 4.85E-00 4.10E+03 —8.24E+03 —7.29E+01 2.20E-01 1.85E+00 2.96E-00
1,1,2,2-tetrabromoethane tr C2H2Br4 1.10E+01 4.86E-00 0.00E+00 —3.31E+01 5.14E-00 3.05E+03 —6.02E+03 —6.50E+01 1.90E-01 2.22E-00 3.08E-00
1,1,2,2-tetrachloroethane tr C2H2Cl4 7.68E+00 2.95E+00 0.00E-00 —3.32E+01 5.19E-00 5.47E+03 —1.08E+04 —8.54E+01 2.50E-01 2.22E-00 2.30E-00
chloroethene tr C2H3Cl1 5.42E+00 1.06E+00 0.00E-00 —3.20E+01 1.66E-00 7.90E+02 —1.51E+03 —6.34E+01 9.00E-00 2.00E-00 2.70E-00
1,1,1-trichloroethane tr C2H3CI3 7.90E+00 2.20E+00 0.00E-00 —3.59E+01 4.31E-00 2.27E+03 —4.45E+03 —7.31E+01 1.60E-01 1.00E-00 3.98E-00
1,1,2-trichloroethane tr C2H3CI3 7.68E+00 2.52E+00 0.00E-00 —3.61E+01 6.32E-00 2.34E-03 —4.58E+03 —7.38E+01 1.60E-01 2.25E-00 2.92E-00
acetonitrile tr C2H3N1 495E+00 7.24E-01 0.00E-00 —3.71E+01 1.80E+01 6.89E-02 —1.29E+03 —7.74E+01 8.00E-00 2.00E-00 3.44E-00
2,2,2-trifluoroethanol tr C2H30O1F3 5.79E+00 1.24E-00 0.00E-00 —4.25E+01 6.44E-01 3.54E-03 —6.90E+03 —1.15E+02 1.90E-01 1.63E-00 2.38E-00
1,2-dibromoethane tr C2H4Br2 9.34E+00 3.27E+00 0.00E-00 —3.60E+01 6.75E-00 1.43E-03 —2.89E+03 —6.90E+01 1.30E-01 3.00E-00 2.03E-00
1-bromo-2-chloroethane tr C2H4CI1Br1 8.51E+00 2.69E-00 0.00BE-00 —3.65E+01 7.23E-00 1.51E-03 —2.94E+03 —7.12E+01 1.30E+01 3.00E-00 1.81E-00
1,2-dichloroethane tr C2H4ClI2 7.68E+00 2.10E+00 0.00E-00 —3.70E+01 7.75B-00 1.54E+03 —2.99E+03 —7.34E+01 1.30E-01 3.00E-00 2.83E-00
acetaldehyde tr C2H401 5.99E+00 8.13E-01 0.00E-00 —3.84E+01 8.00E-00 8.93E+02 —1.69E+03 —8.20E+01 9.00E-00 2.00E-00 2.82E-00
ethylene oxide (oxirane) tr C2H401 5.82E+00 1.08E-00 2.20E-01 —3.80E+01 1.34E-01 8.89E-02 —1.81E+03 —8.12E+01 9.00E-00 2.22E-01 1.86E-00
acetic acid tr C2H402 6.36E+00 9.28E-01 0.00E-00 —4.39E+01 7.91B-00 1.57E-03 —3.01E+03 —1.04E+02 1.20E-01 1.33E-00 3.52E-00
methyl formate tr C2H402 6.39E+00 8.80E-01 0.00E-00 —4.40E+01 9.21E-00 1.57E-03 —3.00E+03 —1.02E+02 1.20E-01 3.00E-00 3.20E-00
bromoethane tr C2H5Br1 8.67E+00 2.09E+00 0.00E-00 —3.78E+01 3.12B-00 9.87E-02 —1.90E+03 —7.18E+01 1.00E-01 2.00E-00 3.13E-00
chloroethane tr C2H5CI1 7.84E+00 1.51E+00 0.00E-00 —3.83E+01 9.39B-00 1.01E-03 —1.94E+03 —7.40E+01 1.00E-01 2.00E-00 3.26E-00
nitroethane tr C2ZH5N102 7.97E+00 1.35B-00 O0.00B-00 —5.52E+01 1.52E-01 2.25B-03 —4.59E+03 —1.28E+02 1.50E+01 2.25E-00 3.04E-00
ethanol tr C2H601 8.15E+00 1.02E+00 0.00E-00 —4.49E+01 8.80B-00 1.13E-03 —2.16E+03 —9.39E+01 1.00B-01 2.00E-00 3.85E-00
dimethyl sulfoxide tr C2H601S1 9.28E+00 2.09B-00 O0.00EF00 —4.85E+01 1.64E-01 1.57E-03 —3.19E+03 —9.76E+01 1.30E-01 1.33E-00 4.16E+00
dimethyl sulfide tr C2H6S1 9.22E+00 2.44E-00 0.00E-F00 —4.31E+01 4.54E-00 9.90E+02 —1.89E+03 —8.25E+01 1.00E-01 2.00E-00 3.52E-00
ethanethiol tr C2H6S1 9.05E+00 1.65E+00 0.00E-F00 —3.81E+01 6.59E-00 8.51E-02 —1.73E+03 —7.47E+01 9.00E-00 2.00E-00 3.29E-00
1,3-dichloropropene tr C3H4Cl2 8.13E+00 2.20E+00 3.02E-01 —4.74E+01 7.58E-00 1.90E+03 —3.84E+03 —9.61E+01 1.50E-01 4.00E-00 2.67E-00
3-chloro-1-propene tr C3H5CI1 8.12E+00 1.62E-00 0.00E-F00 —4.84E+01 8.63E-00 1.40E+03 —2.70E+03 —9.53E+01 1.20E-01 3.00E-00 2.85E-00
1,2,3-trichloropropane tr C3H5CI3 1.04E+01 3.07E+00 3.70E-01 —5.25E+01 7.43E-00 3.17E-03 —6.21E+03 —1.06E+02 1.20E+01 3.20E+00 2.51E-00
propanenitrile tr C3H5N1 7.65E+00 1.28E00 0.00+00 —5.37E+01 1.43E01 1.20E-03 —2.42E+03 —1.10E+02 1.10E-01 3.00E-00 1.59E+00
1,2-dibromopropane tr C3H6Br2 1.22E+01 3.50E-00 0.00E+00 —5.27E+01 5.78E-00 2.25E-03 —4.54E+03 —1.02E+02 1.60E-01 2.25E+-00 2.87E+00
1,3-dibromopropane tr C3H6Br2 1.20E+01 3.77E-00 1.36E+00 —5.27E+01 3.36E-00 2.16E-03 —4.36E+03 —1.02E+02 1.60E-01 4.00E-00 2.87E+00
1,2-dichloropropane tr C3H6CI2 1.05E+01 2.44E+00 O0.00E+00 —5.37E+01 6.55E+00 2.39E+03 —4.66E+03 —1.06E+02 1.60E-01 2.25E+-00 3.29E+00
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Table 2. (Continued)

information
exp

compd ID formula Oy Iy v EE HP NNR ENA RE NFL K log(LDso)
acetone tr C3H601 8.91E+00 1.20E-00 0.00E-00 —5.51E+01 1.04E-01 1.47E-03 —2.98E+03 —1.15E+02 1.20E+01 1.33E-00 3.76E-00
propionaldehyde tr C3H601 8.69E+00 1.35E-00 0.00E-00 —5.50E+01 6.34E-00 1.52E-03 —2.91E+03 —1.15E+02 1.20E+01 3.00E-00 3.15E-00
ethyl formate tr C3H602 9.10E+00 1.47E-00 6.80E-02 —6.06E+01 7.23E-00 2.31E-03 —4.46E+03 —1.35E+02 1.50E+01 4.00E-00 3.27E-00
N,N-dimethylformamide tr C3H7N10O  1.04E-01 1.39E-00 0.00E-00 —6.60E+01 1.37E-01 2.356-03 —4.53E+03 —1.43E+02 1.50E-01 2.25E-00 3.45E-00
1-nitropropane tr C3H7N10O2 107E+01 1.85B+00 1.756-01 —7.19E+01 1.20E-01 3.23E-03 —6.22E+03 —1.60E+02 1.80E-01 3.20E-00 2.66E-00
1-propanol tr C3H8O01 1.09E+01 1.52E+00 0.00B-00 —6.15E+01 6.87E-00 1.80E-03 —3.46E+03 —1.27E+02 1.30E-01 3.00E-00 3.27E-00
1-butanol tr C4H1001 1.36E+01 2.02E+00 1.58E-01 —7.82E+01 5.65B-00 2.45E-03 —4.94E+03 —1.59E+02 1.60E-01 4.00E-00 2.90E-00
2-butanol tr C4H1001 1.37E+01 1.95E+00 0.00B-00 —7.81E+01 5.71B-00 2.65E-03 —5.14E+03 —1.59E+02 1.60E-01 2.25E-00 3.81E-00
2-methyl-1-propanol tr C4H1001 1.37E+01 1.88E+00 0.00B-00 —7.82E+01 5.74B-00 2.55E-03 —5.14E+03 —1.59E+02 1.60E-01 2.25E-00 3.39E-00
diethyl ether tr C4H1001 1.38E+01 1.99E+00 2.04E-01 —7.82E+01 2.94B-00 2.60E-03 —5.05E+03 —1.58E+02 1.60E-01 4.00E-00 3.08E-00
tert-butyl alcohol tr C4H1001 1.39E+01 1.72E+00 0.00B-00 —7.82E+01 5.60E-00 2.72E-03 —5.28E+03 —1.59E+02 1.60E-01 1.00E-00 3.54E-00
1-butanethiol tr C4H10S1 1.45E+01 2.65E00 4.73E-01 —7.14E+01 4.65E-00 2.27E03 —4.40E+03 —1.40E+02 1.50E-01 4.00E-00 3.18E-00
diethyl sulfide tr C4H10S1 1.46E+01 3.14E+00 6.11E-01 —7.64E+01 3.10B-00 2.35E-03 —4.56E+03 —1.48E+02 1.60E-01 4.00E-00 3.77E-00
diethylamine tr C4H11IN1 1.49E+01 2.12E-F00 2.50E-01 —8.35E+01 2.28E-00 2.56E-03 —4.96E+03 —1.67E+02 1.60E01 4.00E-00 2.73E-00
thiophene tr C4H4S1 7.53E+00 2.41EH00 6.79E-01 —5.78E+01 O0.00E-00 1.72E-03 —3.32E+03 —1.18E+02 1.30E-01 1.44E-00 3.15E-00
butyraldehyde tr C4H801 1.14E+01 1.85E-00 1.18E-01 —7.17E+01 5.28E-00 2.24E-03 —4.32E+03 —1.47E+02 15001 4.00E-00 3.40E-00
tetrahydrofuran tr C4H801 1.12E+01 2.08E-00 5.10E-01 —7.18E+01 5.69E-00 2.39E-03 —4.81E+03 —1.49E+02 1.50E01 1.44E00 3.22E+00
ethyl acetate tr C4H802 1.20E+01 1.90EF00 2.03E-01 —7.72E+01 5.35B-00 3.22EF03 —6.26E+03 —1.68E+02 1.80E-01 3.20E-00 3.75E-00
1-chlorobutane tr C4H9CI1 1.33E+01 2.51E-00 4.00E-01 —7.17E+01 5.54E-00 2.42E-03 —4.70E+03 —1.39E+02 1.60E-01 4.00E-00 3.43E-00
2-chlorobutane tr C4H9CI1 1.34E+01 2.35E+00 O0.00E-00 —7.17E+01 5.50E-00 2.51E-03 —4.88E+03 —1.39E+02 1.60E-01 2.25E00 4.24E-00
N,N-dimethyl acetamide tr C4AH9N1O1 1.34E+01 1.82E-00 0.00E+00 —8.27E+01 1.15E-01 3.15E+03 —6.35E+03 —1.76E+02 1.80E+01 2.22E+-00 3.69E-00
2-pentanone tr C5H1001 1.43E+01 2.26E+00 3.52E-01 —8.84E+01 7.73E-00 3.13E+03 —6.08E+03 —1.81E+02 1.80E+01 3.20E+00 3.20E+00
3-methyl-2-butanone tr C5H1001 1.45E+01 2.15E+00 0.00E-00 —8.85E+01 7.26E-00 3.24E+03 —6.30E+03 —1.80E+02 1.80E+01 2.22E+00 2.17E-00
pentanal tr C5H1001 1.41E+01 2.35E+00 2.87E-01 —8.83E+01 4.46E-00 2.92E+03 —5.90E+03 —1.80E+02 1.80E+01 5.00E+00 3.51E-00
tetrahydropyran tr C5H1001 1.39E+01 2.58E+00 6.87E-01 —8.85E+01 4.66E-00 3.32E+03 —6.68E+03 —1.82E+02 1.80E-01 2.22E+00 3.48E-00
isopropyl acetate tr C5H1002 1.49E+01 2.30E+00 3.32E-01 —9.38E+01 4.15E-00 4.13E+03 —8.32E+03 —2.00E+02 2.10E-01 3.06E-00 3.48E-00
1-pentanol tr C5H1201 1.63E+01 2.52E+00 3.62E-01 —9.49E+01 4.50E-00 3.38E+03 —6.57E+03 —1.92E+02 1.90E-01 5.00E-00 3.48E-00
3-methyl-1-butanol tr C5H1201 1.64E+01 2.38E+00 2.58E-01 —9.48E+01 4.55E-00 3.39E+03 —6.82E+03 —1.92E+02 1.90E-01 3.20E+00 3.11E-00
pyridine tr  C5H5N1 8.33E+00 1.85E+00 3.13E-01 —7.41E+01 8.84E-00 2.38E-03 —4.60E+03 —1.58E+02 1.50E-01 2.22E-00 2.95E-00
cyclopentene tr C5H8 1.13E+01 2.15E+00 5.89E-01 —7.68E+01 1.28E-00 2.14E+03 —4.13E+03 —1.52E+02 1.40E-01 1.44E-00 3.22E-00
N-methyl-2-pyrrolidinone tr C5H9N101 1.356+01 2.54E-00 7.83E-01 —9.29E+01 1.23E-01 3.87E-03 —7.80E+03 —1.99E+02 2.00E-01 1.85E-00 3.59E+00
hexachlorobenzene tr C6CI6 9.7980 4.90E-00 2.00E-00 —7.58E+01 8.60E-00 8.58E-03 —1.70E+04 —1.72E+02 3.30E-01 3.40E-00 4.00E-00
cyclohexanone tr C6H1001 1.44E+01 2.91E+00 9.46E-01 —9.88E+01 6.30E-00 4.00E-03 —7.80E+03 —2.04E+02 2.00E-01 2.34E-00 3.19E-00
cyclohexane tr C6HI12 1.62E+01 3.00E+00 1.06E-00 —1.00E+02 0.00E-00 3.38E-03 —6.58E+03 —1.97E+02 1.80E-01 2.22E-00 4.47E-00
1-hexen-3-ol tr C6H1201 1.67E+01 2.62E+00 4.14E-01 —1.05E+02 4.65E-00 3.97E-03 —8.00E+03 —2.13E+02 2.10E-01 4.17E-00 3.67E-00
2-hexanone tr C6H1201 1.70E+01 2.76E+00 4.26E-01 —1.05E+02 6.77E-00 4.02E-03 —7.83E+03 —2.13E+02 2.10E-01 4.17E-00 3.41E-00
3,3-dimethyl-2-butanone tr C6H 1201 1.74E+01 2.45E+00 0.00B-00 —1.05E+02 6.15E-00 4.34E-03 —8.48E+03 —2.13E+02 2.10E-01 1.85E-00 2.79E-00
4-methyl-2-pentanone tr C6H1201 1.72E+01 2.62E+00 5.75E-01 —1.05E+02 6.78E-00 4.17E-03 —8.12E+03 —2.13E+02 2.10E-01 3.06E-00 3.32E-00
hexanal tr C6H1201 1.68E+01 2.85E+00 4.78E-01 —1.05E+02 3.86E-00 3.91E-03 —7.61E+03 —2.13E+02 2.10E-01 6.00E-00 3.69E-00
ethyl butyrate tr C6H1202 1.74E+01 2.96E+00 4.37E-01 —1.10E+02 4.13B-00 5.13E-03 —1.00E+04 —2.33E+02 2.40E-01 5.14E-00 4.11E-00
hexanoic acid tr C6H1202 1.72E+01 2.99E+00 5.26E-01 —1.11E+02 0.00B-00 5.00E-03 —9.73E+03 —2.35E+02 2.40E-01 5.14E-00 3.48E-00
n-butyl acetate tr C6H1202 1.74E+01 2.90E+00 3.60E-01 —1.11E+02 3.64E-00 5.07E-03 —9.89E+03 —2.33E+02 2.40E-01 5.14E-00 4.03E-00
hexane tr C6H14 1.88E+01 2.91E+00 5.00E-01 —1.06E+02 0.00E-00 3.37EF03 —6.56E+03 —2.06E+02 1.90E-01 5.00E-00 4.46E-00
1-hexanol tr C6H1401 1.90E+01 3.02E+00 5.39E-01 —1.12E+02 3.91E-00 4.14E-03 —8.32E+03 —2.25E+02 2.20E-01 6.00E+00 2.86E+00
3-methyl-3-pentanol tr C6H1401 1.94E+01 2.84E-00 2.50E-01 —1.11E+02 5.86E-00 4.72E-03 —9.22E+03 —2.25E+02 2.20E01 2.34E00 2.85E-00
4-methyl-2-pentanol tr C6H1401 1.93E+01 2.81E-00 6.82E-01 —1.11E+02 6.16E-00 4.44E-03 —8.94E+03 —2.25E+02 2.20E01 3.06E00 3.41E-00
diisopropyl ether tr C6H1401 1.96E+01 2.78E-00 5.44E-01 —1.11E+02 2.29E-00 4.65EF03 —9.09E+03 —2.23E+02 2.20E-01 3.06E-00 3.93E-00
dipropylamine tr C6H15N1 2.03E+01 3.12E-00 4.79E-01 —1.17E+02 1.42E-00 4.28E-03 —8.35E+03 —2.32E+02 2.20E-01 6.00E-00 2.97E-00
triethylamine tr C6H15N1 2.06E+01 3.07E-00 6.71E-01 —-1.17E+02 5.59E-00 4.47E-03 —8.98E+03 —2.31E+02 2.20E-01 4.17E-00 2.66E-00
1,2-dichlorobenzene tr C6H4CI2 9.57E+00 2.96E+00 7.10E-01 —7.88E+01 6.35E-00 4.01E-03 —7.85E+03 —1.67E+02 2.10E-01 2.52E+00 2.70E+00
bromobenzene tr C6H5Br1 1.03E+01 2.89E+00 7.19E-01 —7.90E+01 5.51E-00 2.97E+03 —5.98E+03 —1.63E+02 1.80E-01 2.34E+00 3.43E-00
chlorobenzene tr C6H5CI1 9.52E+00 2.48E+00 5.60E-01 —7.97E+01 4.27E-00 3.11E-03 —6.06E+03 —1.66E+02 1.80E+01 2.34E+00 3.36E+-00
fluorobenzene tr C6H5F1 8.76E+00 2.10E+00 4.15E-01 —7.98E+01 9.02E-00 3.05E+03 —6.15E+03 —1.72E+02 1.80E+01 2.34E+00 3.64E-00
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Table 2 (Continued)

information
exp

compd ID formula Oy by *y EE HP NNR ENA RE NFL K log(LDso)
iodobenzene tr C6H511 1.09E+01 3.16E+00 8.23E-01 —7.88E+01 6.39E-00 3.04E-03 —5.92E+03 —1.62E+02 1.80E-01 2.34E-00 3.26E-00
nitrobenzene tr C6H5N102 9.65E+00 2.46E+-00 5.37E-01 —9.61E+01 9.09E-00 4.98E+03 —9.67E+03 —2.18E+02 2.30E-01 3.24E-00 2.81E+-00
benzene tr C6H6 9.46E+00 2.00E-00 3.85E-01 —8.06E+01 0.00E-00 2.37E-03 —4.58E+03 —1.65E+02 1.50E-01 2.22E-00 3.52E-00
5-methylfurfural (5-methylfuraldehyde) tr C6 H6 O 2 1.05E+01 2.34E+00 5.17E-01 —9.16E+01 1.23E-01 4.03E-03 —8.13E+03 —2.03E+02 2.10E-01 2.52E-00 3.34E-00
4-methylpyridine tr C6H7N1 1.13E+01 2.26E-00 4.26E-01 —9.09E+01 7.32E-00 3.24E-03 —6.29E+03 —1.91E+02 1.80E+01 2.34E-00 3.11E-00
aniline tr C6H7N1 1.10E+01 2.20E+00 4.53E-01 —9.16E+01 5.16E-00 3.24E-03 —6.29E+03 —1.94E+02 1.80E-01 2.34E-00 2.40E-00
2-heptanone tr C7TH1401 1.97E+01 3.26E+00 6.24E-01 —1.22E+02 5.97E+00 4.96E+03 —9.67E+03 —2.46E+02 2.40E-01 5.14H00 3.22E-00
4-heptanone tr C7TH1401 197E+01 3.33E-00 6.83E-01 —1.22E+02 5.97E+00 5.02E-03 —9.80E+03 —2.46E+02 2.40E-01 5.14E-00 3.57E-00
5-methyl-2-hexanone tr C7TH1401  1.99E+01 3.12E-00 4.92E-01 —1.22E+02 6.03E-00 5.12E+03 —9.99E+03 —2.46E+02 2.40E-01 3.94E-00 3.51E-00
heptanal tr C7TH1401 1.95E+01 3.35E-00 6.54E-01 —1.22E+02 3.41E-00 4.83E-03 —9.42E+03 —2.46E+02 2.40E-01 7.00E-00 4.15E-00
1-heptanol tr C7TH1601  2.17E+01 3.52E-00 7.15E-01 —1.28E+02 3.60E-00 5.22E-03 —1.02E+04 —2.58E+02 2.50E-01 7.00E-00 2.70E-00
benzoic acid tr CTH602 1.07E+01 2.59E-00 5.81E-01 —1.02E+02 7.05E+00 4.90E-03 —9.54E+03 —2.27E+02 2.30E+01 3.24E-00 3.23E-00
benzyl chloride tr C7TH7Cl1 1.22E+01 3.06E+00 7.45E-01 —9.60E+01 7.16E-00 3.93E-03 —7.90E+03 —1.98E+02 2.10E+01 3.11E-00 3.09E-00
3-nitrotoluene tr C7TH7N10O2 1.26E+01 2.87E-00 7.24E-01 —1.13E+02 7.89E-00 5.85E-03 —1.18E+04 —2.52E+02 2.60E-01 3.41E-00 3.03E+00
2-methoxynitrobenzene (2-nitroanisole) trC7H7N 103 1.30E+01 2.99E-00 7.63E-01 —1.18E+02 9.88E-00 7.28E-03 —1.47E+04 —2.72E+02 2.90E-01 4.13E-00 2.87E-00
1-6-heptadiyne tr C7H8 1.23E+01 2.28E+00 2.93E-01 —1.04E+02 1.37E-00 3.62E+-03 —7.05E+03 —2.08E+02 1.90E+01 6.00E-00 3.36E-00
toluene tr C7HS8 1.24E+01 2.41E-00 5.34E-01 —9.74E+01 7.49E-01 3.23E-03 —6.27E+03 —1.99E+02 1.80E-01 2.34E-00 3.70E-00
o-cresol (2-hydroxytoluene) tr C7TH801 1.28E+01 2.55E+00 5.63E-01 —1.03E+02 4.98E-00 4.27E-03 —8.30E+03 —2.20E+02 2.10E+01 2.52E-00 2.08E-00
p-cresol (4-hydroxytoluene) tr CTH801 1.28E+01 2.54E-00 5.45E-01 —1.03E+02 4.98E-00 4.05E-03 —8.16E+03 —2.20E+02 2.10E+01 2.52E-00 2.32E-00
2-aminotoluene tr C7THON1 1.39E+01 2.62E+00 5.87E-01 —1.08E+02 4.39E-00 4.12E-03 —8.27E+03 —2.27E+02 2.10E+01 2.52E-00 2.83E-00
ethyl benzene tr C8H10 1.51E+01 2.97E+00 7.14E-01 —1.14E+02 6.50E-01 4.17E-03 —8.13E+03 —2.31E+02 2.10E+01 3.11E00 3.54E-00
m-xylene tr C8H10 1.53E+01 2.82E+00 8.07E-01 —1.14E+02 9.11E-01 4.18E-03 —8.14E+03 —2.32E+02 2.10E+01 2.52E-00 3.70E-00
4-ethenylcyclohexene tr C8H 12 1.71E+01 3.21E+00 1.03E-00 —1.20E+02 1.17E-00 4.65E+03 —9.08E+03 —2.40E+02 2.20E+01 3.11E-00 3.41E-00
cyclohexyl acetate tr C8BH1402 2.04E+01 3.96E-00 1.42E-00 —1.38E+02 3.26E-00 7.27E+03 —1.46E+04 —2.89E+02 2.90E-01 4.00E-00 3.83E-00
di-butyl-ether tr C8H1801  2.47E+01 3.99E-00 5.95E-01 —1.45E+02 1.85E-00 6.30E+03 —1.23E+04 —2.89E+02 2.80E-01 8.00E-00 3.87E+-00
acetophenone tr CBH8O01 1.33E+01 2.86E-00 6.73E-01 —1.13E+02 8.57E-00 4.87E+03 —9.49E+03 —2.39E+02 2.30E-01 3.24E+00 2.91E-00
1,2,3-trimethylbenzene tr CO9H 12 1.82E+01 3.24E+00 8.98E-01 —1.31E+02 9.79E-01 5.33E-03 —1.04E+04 —2.65E+02 2.40E-01 2.72E-00 3.70E-00
2,6-dimethyl-4-heptanone trC9H1801 2.55E+01 4.04E+00 9.94E-01 —1.55E+02 4.90E-00 7.47E+03 —1.46E+04 —3.11E+02 3.00E+01 4.76E-00 3.76E+00
2-nonanone tr C9H1801 2.52E+01 4.26E-00 9.77E-01 —1.55E+02 4.82E-00 6.98E-03 —1.37E+04 —3.12E+02 3.00E-01 7.11E-00 3.51E-00
5-nonanone tr C9H1801  2.52E+01 4.33E-00 8.73E-01 —1.55E+02 4.82E-00 6.90E+03 —1.39E+04 —3.11E+02 3.00E-01 7.11E-00 3.00E-00
1-octadecanol te C18H3801 5.1581 9.02E-00 2.66E-00 —3.11E+02 2.32E+00 1.77EB-04 —3.55E+04 —6.18E+02 5.80E-01 1.80E+01 4.30E-00
hexachloroethane te C2Cl6 7.7980 3.65E-00 0.00E-00 —3.27E+01 4.58E-00 5.34E-03 —1.06E+04 —7.28E+01 2.50E+01 1.75E-00 3.65E-00
1,1,1,2-tetrachloroethane teC2H2Cl4 7.74E+00 2.85E+00 0.00E+00 —3.49E+01 5.76E-00 3.17E-03 —6.25E+03 —7.32E+01 1.90E+01 1.63E-00 2.90E-00
1,1-dichloroethane te C2H4Cl2 7.84E+00 1.88E-00 0.00EF00 —3.72E+01 4.44E-00 1.59E-03 —3.09E+03 —7.37E+01 1.30E-01 1.33E-00 2.86E-00
2-nitropropane te C3H7N102 1.08E+01 1.74E-00 0.00E+00 —7.19E+01 1.20E+01 3.34E-03 —6.44E+03 —1.60E+02 1.80E-01 2.22E+00 2.86E-00
2-propanol te C3H801 1.10E+01 1.41E-00 0.00E-00 —6.15E+01 6.12E-00 1.76E-03 —3.56E+03 —1.26E+02 1.30E+01 1.33E-00 3.70E-00
2-butanone te C4AH801 1.16E+01 1.76E+00 0.00E-00 —7.18E+01 9.01E-00 2.31E-03 —4.47E+03 —1.48E+02 1.50E+01 2.25E-00 3.44E-00
methyl propanoate te C4HB802 1.20E+01 1.88E-00 1.44E-01 -7.72E+01 6.04E-00 3.24E-03 —6.29E+03 —1.68E+02 2.20E+01 3.20E-00 3.70E-00
3-pentanone te C5H1001  143E+01 2.33E-00 2.50E-01 —8.85E+01 7.65E+00 3.17E-03 —6.15E+03 —1.81E+02 1.80E-01 3.20E+00 3.33E-00
n-propyl acetate te C5H1002 1.47E+01 2.40E-00 2.46E-01 —9.39E+01 4.14E00 4.13E-03 —8.03E+03 —2.00E+02 2.10E+01 4.17E+00 3.97E-00
3-hexanone te C6H1201 1.70E+01 2.83E-00 4.56E-01 —1.05E+02 6.70E-00 4.06E-03 —7.92E+03 —2.13E+02 2.10E-01 4.17E-00 3.53E00
cyclohexanol te C6H1201 1.66E+01 3.07E-00 1.08E-00 —1.05E+02 4.04E-00 4.40E-03 —8.59E+03 —2.16E+02 2.10E-01 2.34E+00 3.31E+00
isobutyl acetate te C6H1202 1.76E+01 2.76E-00 2.84E-01 —1.11E+02 3.67E-00 5.24E-03 —1.02E+04 —2.33E+02 2.40E-01 3.94E+00 4.13E-00
1,4-dichlorobenzene teC6H4CI2 9.57E+00 2.95E+00 6.81E-01 —7.88E+01 5.35E+00 3.94E-03 —7.70E+03 —1.67E+02 2.10E-01 2.52E+00 2.70E-00
3-methyl pyridine te C6H7N1 1.13E+01 2.26E-00 4.48E-01 —9.09E+01 7.32E-00 3.24E-03 —6.29E+03 —1.91E+02 1.80E+01 2.34E-00 2.60E-00
2,4-dimethyl-3-pentanone teC7H1401 2.01E+01 3.09E-00 6.67E-01 —1.22E+02 5.57E-00 5.21E-03 —1.05E+04 —2.46E+02 2.40E+01 3.11E-00 3.55E-00
2-nitrotoluene te C7TH7N10O2 1.26E+01 2.88E-00 7.52E-01 —1.13E+02 7.89E-00 6.22E+03 —1.21E+04 —2.52E+02 2.60E-01 3.41E-00 2.95E-00
m-cresol (3-hydroxytoluene) teC7H801 1.28E+01 2.54E-00 6.28E-01 —1.03E+02 4.98E-00 4.21E-03 —8.19E+03 —2.20E+02 2.10E+01 2.52E-00 2.38E-00
styrene te C8HS8 1.27E+01 2.61E00 5.89E-01 —1.07E+02 1.20E-00 3.81E-03 —7.42E+03 —2.20E+02 2.00E+01 3.11E+00 3.70E-00
1,2,4-trimethyl-benzene teC9H12 1.82E+01 3.24B-00 8.91E-01 —1.31E+02 9.79E-01 5.26E-03 —1.03E+04 —2.66E+02 2.40B-01 2.72E-00 3.70E-00

ay = valence connectivity index; EE exchange energy; HR Hansen polarity; NNR= nuclear-nuclear repulsion; ENA= electror-nuclear attraction; RE= resonance energy; NFE number of filled

levels;k = kappa index.
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tion, which is constant over the whole neighborhood of the - *
winner neuron (node) and zero elsewhere. A more convenient T I i
function is the Gaussian neighborhood function defined by §_F2 Categorles 7

—1Ir,—rlP
Ne=EXP————
° 204(1)

whereo(t) is the neighborhood radius &atwhich self-adapts
after each epoch. The type of neighborhood function and
the number of neurons used determine the sensitivity and
the granularity of the map, respectively. :
The learning ratex(t) in eq 3 is a decreasing function of art

Match [
Tracking !

The simplest neighboorhood function is the bubble func- Welghted Links , I
{ OUTPUT

: Categories

( 4) 5 Refe!

Reselé

§F1 Hypotesis ! ;F1 Hypotesis

INPUT i INPUT

! a art,
t over [0,1]. A power series function in commonly used S T ' P R '
Figure 1. Block diagram of the fuzzy ARTMAP architecture
O‘T T
a(t) = %(E) (5) path passing continuously between neighbor units is selected
0,
Ke—1

wherea, andar are respectively the initial and final learning )
rates andr is the size of the training set, i.e., the number of ~ d() =1x — m(X)Il + min Z) Iy (K) — my; (k+2)I1 (7)
epochs selected for training. Training is coarse over the first bk
T = 100 epochs. During this initial training(t) decreases
monotonically according to eq 5, with, = 0.5, and the
neighborhood radius changes linearly between an 3 and 1.
This coarse training is refined afterward for the followihg
= 10 000 epochs, keeping the radius at 1 while decreasing
o(t) according to 1/(training samples 1), with o, = 0.05.
SOM s suitable for multivariable data analysis because
of its prominent visualization capabilities. A preliminary idea
of the number of clusters in the SOM as well as of their
spatial relationships can be acquired by visual inspection of
the map. The most common method used to visualize the
cluster structure of SOM is the distance matrix or U-matrix. . LT .=
The U-matrix indicates the overall shape of the data set by different indices are very S|'m|lar. .
means of the distances between prototype vectors of neigh- Nevertheless, the clustering of the data set must be quite

boring map units. Since neighbor nodes typically have similar accura'f)e to prope_rly answer the question, WB.Em”ar
prototype vectors, the U-matrix is closely related to a single means? Since the final objective is to predict toxicity values,

linkage measur&. From the distance matrix, the different tr}emclusterr? da;(:] Iabel?i? ac;:?rr]dlnglg tot t?ii toixm(;tytoIrLt]isnc%n:)er
component maps for each descriptor and for the target0 ass a € quality of the clustering 1S dete ed by

activity variable can be obtained and clustered according to the qorr_elaﬂon within the ClL.JS.ter members (hor_no_genelty).
their topology. The main assumption of the current approach The _|nd|ces chosen by its m|_n|mal average dissimilarity (6)
is that descriptors from the same cluster contribute with the provide a gopd representation of the clusters for_med and
same type of information to the QSARSs. Thus, the repetitive shSouId/ ccgnsntute the best set of molecular descriptors for
inclusion of indices from the same cluster into a best set of QSPR/QSAR.
molecular descriptors can only be justified after all relevant
information fromFt)he other clu;’tersjhas been considered and FUZZY ARTMAP
if their correlation with the target variable is higher than the ~ Fuzzy ARTMAP?2%-28 the neural system chosen to estab-
average for the whole pool of descriptors. lish QSAR models once the best set of molecular descriptors
To determine when all relevant information from other has been determined, is a supervised classifier that learns to
clusters has been considered, it is necessary to analyze theategorize inputs as they are presented online using fuzzy
sensitivity of the maps to input variations. This sensitivity logic to pattern recognize features. The architecture consists
can be estimated by means of the dissimilarity between two of a pair of fuzzy ART classifiers (artand arg) that create
maps L and M, measured as the averaged difference in theirstable recognition categories in response to arbitrary se-

This distance, which was proposed by Kaski and L&§us,
combines an indication of the continuity of the mapping from
the data set to the two-dimensional neural grid with a
measure of the accuracy of the map in representing the data
set.

The smallest average dissimilarity value calculated with
eq 6 for any given set of descriptors indicates the similarity
in quality and quantity of the information represented by the
maps. Thus, the process of including indices to form the best
set of molecular descriptors can be stopped when the
dissimilarity measure stabilizes, i.e., the maps for these

representation of the sample vectors used for training guences of input patterns, as illustrated in Figure 1. The input

vectors include both the molecular descriptors or target

_ d, () — du(®) variable and the corresponding conjugates (complement
D(LM)=E|————— (6) . . ; . .

d.(X) + dy(¥) coding). During supervised learning, the molecular descrip-

tors (input patterns) of each chemical are presented o art
In this equatiorE is the average expectation, atk) the while the corresponding values for the target activity or
distance fromx to the second BMU, denoted byy(y, property are presented to @rtAn associative learning
beginning at the first BMU or winner neuron, denoted by network and an internal controller that ensure autonomous
M. Of all possible paths betweemn andm( the shortest  operation in real time link the information categorized by



AN INTEGRATED SOM-Fuzzy ARTMAP NEURAL SYSTEM J. Chem. Inf. Comput. Sci., Vol. 42, No. 2, 20851

these two modules. The controller is designed to create the Enter Generato

minimal number of ag categories, or hidden units, needed molecular molecular
to match the accuracy criteria. It incorporates a minimum structure descriptors
maximum learning rule that enables fuzzy ARTMAP to learn —_*

. . . L. L . Data Built database:
quickly while ensuring minimum predictive error with clustering |, property
maximum generalization. This scheme automatically links with SOM descriptors
predictive success to category size on a trial by trail basis — t¢ -

. . . . 1ssimilarity measure o:
using only local operations. It works by increasing the SOM 10 select the
vigilance parametes, of arts by the minimal amount needed descriptors
to correct thel predictive error at grt : &_ ,_

When an input vector” dormed by the best set of S?iﬁcf‘“’n Of;;‘Tm and test sets

. . with fuzzy :
des_cnptors is presented to theamodule, the bottom-up 0,=0.8-0.9 2 compounds
activation from k2 causes the Flayer to choose a category classification remaining,

based on the fuzzy membership of the input in that category.
Information of chosen category is then sent back to tfie F
layer, and it is compared with the input veciorTde fuzzy
intersection of this top-down activation with the input vector
produces a match value that indicates the confidence of the fuzzy ARTMAP|
classification in that given category. The vigilance parameter based QSAR

pa Sets the threshold confidence value above whicl art
accepts the category activated by an input as appropriate, 1 compound
rather than continue the search for a better class through arFigure 2. Flow diagram of the methodology followed to select
automatically controlled process of hypothesis testing. the training and test sets.

Module arg follows an equivalent and simultaneous clas-

sification procedure when presented with the corresponding each cluster were first selected, with the only restriction that
activity or property values during training. the covariance was higher that the average value calculated

The original fuzzy ARTMAP system was not designed to for the whole pool of indices. After all relevant and
include predictive capabilities. The modification in archi- nonrepetitive information from all clusters had been con-
tecture proposed by Giralt et #lwas implemented to allow sidered, with one descriptor per cluster included as the first
predictions. Once the training of the neural system was elements of the best set, additional indices were added in
completed, the input and hypothesis layers of, avere order of decreasing absolute covariance with the target
disconnected so that predictions of the target variable (output)variable irrespectively of cluster membership. A map was
could be obtained from the category layer ofsddr any obtained for each subset of descriptors formed. The dis-

Has the
class > 2

Has the
class > 6

[* remaining

set of descriptors aresented as input to art similarity between these maps was then calculated with eq
6 to obtain an unbiased measure of the information gained
METHODOLOGY by the addition of each descriptor to the previous subset.

The subset of descriptors whose map yielded the minimal

The general procedure proposed here to build QSPR/average dissimilarity was selected as the best molecular input
QSAR models is summarized in the flow diagram shown in information to establish sound QSARs for the target variable
Figure 2. Briefly, the experimental data for the two different considered. This is justified by the fact that any increase in
sets of compounds and toxicities were processed to obtaindissimilarity indicates that the inclusion of the additional
the corresponding molecular structure using commercial input information to the previous subset does not provide
software?* The geometry was optimized using MOPAC 6.0 supplementary information to characterize de data set.
and SOM was applied. A global map for all available  Once the best set of descriptors was chosen, the predictive
molecular descriptors and target activity was calculated to fuzzy ARTMAP neural system was used to build the QSARS,
select the best set of descriptors from the pool of available following the procedure proposed by Espinosa éf &irst,
indices listed previously. The maps corresponding to eachthe experimental toxicity data and the corresponding mo-
weight, i.e., the component planes (C-planes) for each inputlecular descriptors of both sets of chemicals were assigned
variable, were clustered based on visual inspection and byto either a train or a test subset using the fuzzy ART neural
using linear correlations and curvilinear component analysis classifier. Assignment by classification is usually better than
to unambiguously obtain an ordered representation of the by a random selection procedure because the target property
component planes. This ordering implies that nearby mapsor activity might be unevenly distributed over the entire data
have similar projections to the input data or molecular set and the use of most of the relevant and redundant
descriptors, i.e., highly correlated component planes depictinformation during training is crucial for developing any
similar spatial patterns over the two-dimensional neuronal neural network based QSPR/QSAR. The histograms for the
distribution. The consistency of this clustering process for 69 data of—log(LCso) and 155 of log(LRo), respectively,
the component maps was checked against the values of thelepicted in Figures 3 and 4 show that the distributions of
covariances between all variables calculated with the Pearsorhoth sets of toxicity values are indeed uneven over the range
algorithm. studied. Tables 1 and 2 show that about 85% of compounds

To ensure the best description of the input and output from each set, 59 for L& and 135 for L3o, were selected
spaces, information from all clusters was first accounted for. for training (tr) after presenting the input vectors formed by
To this end the descriptors with the highest covariance within the molecular descriptors and the target toxicity value to
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set of organic compounds. -
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fuzzy ART. The two fuzzy ARTMAP based QSARs for ' s - .
RE

toxicity of benzene derivatives and for the heterogeneous

11
HH
set of organic compounds were finally built from the training ) 0.94 10.40
sets. It was checked that the above selection procedure u 0.56 ‘ 0.32
yielded always the lowest errors in the prediction of the test 18 i 0.23
data (te) for the two toxicity sets compared to the selection EE n
of a training set with random partitioning. h 0% ‘ o
52 ' 34
LCso FOR BENZENE DERIVATIVES " o
Best Set of Indices The LG toxicity data of 69 benzene Cluster III Cluster IV

Qerlvatlves were clustered with ,SOM' ac_:cordlng to the Figure 6. Clusters of the component maps for 4g@vith current
integrated methodology summarized in Figure 2 and de- descriptors. The gray levels indicate distances.

scribed above. Figure 5 depicts the distribution of six families

(different kind of substituents on the aromatic ring) of Figure 6 shows the clusters of the component planes
benzene derivatives over the component plane for the targetobtained by applying SOM to the target variable and the
LCso. The clusters of the different families are identified in  pool of 16 topological and quantum descriptors considered
this figure by capital letters: (A) halogen substituents; (B) in the current study. Note that the component plane foyl.C
hydroxyl; (C) nitro; (D) combined halogens and hydroxyl which has been considered in the clusterization process and
groups; (E) alkyl; and (F) additional combination of the is given in Figure 5, is not included in Figure 6 because is
previous ones. The derivatives are distributed according tothe target variable, i.e., the output information. The corre-
family and molecular similarity, i.e., similar families are sponding covariance matrix is included in Table 3. The
located nearby at positions where compounds are similar.analysis of these results for this homogeneous family of
For example, the family A, which is formed by halogenated compounds shows unambiguously that

derivatives, interfaces at several positions with family D, (i) The molecular connectivity indices of order one,
which is integrated by derivatives containing a combination two, three, and four and the sum of atomic numbers con-
of halogen and hydroxyl groups. stitute the first cluster of indices. They show in Table 3
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Table 3. Clustering and Covariance Matrix Using SOM for the s@f Benzene Derivativés

ID 1y 3 N 2 % AP NFL NNR « HP ENA RE EE % HH u LCs
Ly 1.000 00927 0911 0968 0615 0798 0.544 0489 0.351 0:3BE87 —0.143-0.067 0.044-0.062 0.013 0.688
3 0.927 1.000 0.801 0.924 0529 0.649 0.350 0.293 0.134 0-2B@90 0.071 0.134-0.057 —0.040 —0.113 0.672

I N 0.911 0.801 1.000 0.832 0.605 0.852 0.688 0.634 0541 0-68634—0.280—0.144—0.113 0.076 0.204 0.669
2, 0.968 0.924 0.832 1.000 00608 0.659 0.350 0.288 0.131 021287 0.055 0.110-0.001—0.083—0.113 0.645
dy 0.615 0529 0.605 0.608 1.000 0.426 0.288 0.255 0.179 0-25255-0.027 0.033-0.053 0.021 0.124 0.400
AP 0798 0.649 0.852 0.659 0.426 1.000 0.906 0.875 0.782 0-ABB74—0.642-0.541 0.199 0.087 0.395 0.586
NFL 0544 0350 0.688 0.350 0.288 0.906 1.000 0.994 0.964 0:82994 —0.855—0.744 0.211 0.109 0535 0.478

I NNR 0.489 0.293 0.634 0288 0255 0.875 0.994 1.000 0.972 0-80D00-0.880-0.773 0.227 0.100 0.533 0.454
K 0.351 0.134 0541 0.131 0179 0.782 0.964 00972 1.000 0-81873-0.900-0.793 0.196 0.052 0.577 0.361
HP  0.386 0.230 0.654 0.217 0.254 0739 0.825 0.801 0.813 1-DB04 —0.626 —0.461—0.140 0.322 0.563 0.344

ENA —0.487 —0.290 —0.634 —0.287 —0.255 —0.874 —0.994 —1.000 —0.973 —0.804 1.000 0.880 0.773-0.225—0.103 —0.535 —0.453
Il RE —0.143 0.071-0.280 0.055—0.027 —0.642 —0.855 —0.880 —0.900 —0.626 0.880 1.000 0.9750.543 —0.162 —0.625 —0.080
EE —-0.067 0.134-0.144 0.110 0.033-0.541-0.744—-0.773-0.793—-0.461 0.773 0.975 1.006-0.705-0.128 —0.585 0.038
O 0.044 —0.057 —0.113 —0.001 —0.053 0.199 0.211 0.227 0.1960.140 —0.225—-0.543 -0.705 1.000 0.105 0.2280.308
IV HH —-0.062—-0.040 0.076—-0.083 0.021 0.087 0.109 0.100 0.052 0.320.103-0.162-0.128 0.105 1.000 0.1870.268
u 0.013-0.113 0.204—0.113 0.124 0.395 0.535 0.533 0.577 0.568.535-0.625-0.585 0.228 0.187 1.006-0.092
LCso 0.688 0.672 0.669 0.645 0.400 0.586 0.478 0.454 0.361 0-32453-0.080 0.038—0.308 —0.268 —0.092 1.000

a0-4y = valence connectivity index; N- sum of atomic numbers; AR average polarizability (PM3); NFE= number of filled levels; NNR=
nuclear-nuclear repulsiory = kappa index; HR= Hansen polarity; ENA= electror-nuclear attraction; RE= resonance energy; EE exchange
energy; HH= Hansen hydrogen; = dipole moment.

consistent high covariances among themselves. QSAR are depicted in Figure 7. This QSAR model predicts
(i) Both types of polarizability indices, the one calculated the —log(LCso) of the complete data set of 69 compounds
by the additive contribution of Hansen groups and the with an average absolute error of 0.02 log units (0.46%) and
average one determined by a semiempirical calculation, area standard deviation of 0.06 log units (1.35%). The average
highly correlated with the number of filled levels, the absolute error and standard deviation for the test set are 0.14
nuclear-nuclear repulsion, and the kappa index. They all log units (3.18%) and 0.11 log units (2.04%), respectively.

form the second cluster.

Figure 7 also includes the predictions obtained with a fuzzy

(iii) The electron nuclear attraction, the resonance energy, ARTAMP model based on the set of 10 descriptors formed
and the exchange energy are correlated among them andby strict order of covariance, i.e., by substitutifgin the

clustered together in the third group of indices.
(iv) The connectivity index of order zero, the dipole

best set by. This change modifies the classification of the
3-methyl-2,4-dinitroaniline and 2,6-dimethylphenol in the test

moment, and the Hansen hydrogen index are combined inset, which are respectively identified in Figure 7 by the

the last cluster.

numbers 1 and 2. While the impact of these changes in

Table 4 includes the dissimilarities measures between 13classification on the overall performance is very small, the
sets of molecular descriptors formed according to the consequences are important from the point of view of

methodology described before. The first set is formed by

individual errors or predictive reliability, as illustrated in

the representatives of the four clusters and the other 12 byFigure 7. Recognition categories obtained with the best set
adding the remaining 12 indices. The representatives of theOf descriptors do not show any misclassification. For
four clusters given in Figure 5 and Table 3 are the €xample, the largest relative predictive error of 8.1%

connectivities of order zero and on&,(%y), the average
polarizability (AP), and the electron nuclear attraction (ENA).

The average dissimilarity reaches the minimum value of

corresponds te-cresol that was classified into the cluster
of its homologousm-cresol.

The performance of the current fuzzy ARTMAP/QSAR

0.1387 when in addition to these four cluster representativeis significantly superior than that for previously reported

indices the following six ones are included in order of
decreasing absolute covariance with the targeto,LGhe
connectivity of order three’f), the sum of atomic numbers
(N), the connectivity of order twd?f), the number of filled
levels (NFL), the nuclearnuclear repulsion (NNR), and the
connectivity of order four4y). If the best set of indices had

multilinear regression models (MLRYC as illustrated also

in Figure 7. The absolute errors and standard deviations for
predicted LGp with the Hall et al*® and Gute and Basék
structure-toxicity models are similar and about 0.22 (5.2%)
and 0.2 (4.3%) log units, compared to and 0.02 (0.05%) and
0.06 (1.4%) log units for the current model. A direct

been formed with the solely criteria of decreasing absolute comparison of the largest relatives errors also corroborates
covariance the only change would have been the inclusionthe superior performance of the present fuzzy ARTMAP-

of the kappa indexx{) instead of the connectivity of order

based QSAR. While the largest relative error of the fuzzy

zero @). This apparently small modification causes small ARTMAP model is 7.2% for 1,2,4,5-tetrachlorobenzene, the
but very relevant changes in the classification of several highest one for the MLR model reported by Gute and B&#sak

chemicals as is discussed in the following subsection.
QSAR. The fuzzy ARTMAP model with the best set of

is 21.1% for the 5-methyl-2,4-dinitroaniline.
It is informative to examine the performance of current

descriptors was trained with 59 compounds selected with and previous models by inspecting the positional influence

the fuzzy ART classifier (identified byr in Table 1) with
the vigilance parameter set pg= 0.9 and tested for the 10
chemicals identified witite in the same table. Thelog-
(LCs0) predictions obtained with the fuzzy ARTMAP-based

of functional group-specific errors given in Table 5 and
Figure 8. The influence of ring position on toxicity proposed
by Hall et al'® is presented in Table 5 for chlorobenzenes,
halogenated derivatives with hydroxil substituents, alkyl
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Table 4. Dissimilarity Measures between the Maps for thesg.Set of Benzene Derivatives

ESPINOSA ET AL

0, 0,
% %
%l o AP, AP, %
oL, %L, AP, AP, AP, ENA,%, ENA,%, AP, ENA,
%% % AP, AP, ENA %, ENA%, ENAZ%, N, %, N, %, 3% N,%,
%Y, %Y, AP, AP, ENA%, ENA, N,% N2, N2,  NFL,  NFL NFL,
molecular  %,%, AP, AP, ENA, ENA, N,%. 3, N, NFL, NFL, NFL, NNR,%, NNR, NNR%,
descriptors AP, ENA, ENA, 3 N, % N. NFL, 2. NFL, NNR, NNR4, NNR4%, & HP, “,« HP, «, HP, HH,
used ENA % %N "% 2/NFL NNR NNR,% %« «HP x HP,HH HH,u HH,u RE u RE,EE av
%, 4, AP, ENA 0.0484 0.0643 0.0964 0.1258 0.1620 0.1841 0.2192 0.2491  0.3386  0.3850 0.3998 0.4148
Ox,;x,AP, ENA, 0.0484 0.0193 0.0522 0.0860 0.1229 0.1459 0.1825 0.2126  0.3022 0.3500 0.3652 0.3806
X
Ox,;x,AP, ENA, 0.0643 0.0193 0.0342 0.0693 0.1089 0.1313 0.1688 0.1983  0.2866 0.3351 0.3504 0.3660
2 N
ox,;)(, APZ, ENA, 0.0964 0.0522 0.0342 0.0471 0.0870 0.1070 0.1474 0.1737  0.2590 0.3081 0.3237 0.3396
% N, %
O, Y, AP, ENA, 3, 0.1258 0.0860 0.0693 0.0471 0.0460 0.0660 0.1093 0.1349 0.2246 0.2750 0.2908 0.3071
, %, NFL
O, 1)(,ZAP, ENA,3%;, 0.1620 0.1229 0.1089 0.0870 0.0460 0.0263 0.0695 0.0956  0.1913 0.2429 0.2592 0.2761
N, 2y, NFL,
NNR
O, 1X’2AP' ENA,3%, 0.1841 0.1459 0.1313 0.1070 0.0660 0.0263 0.0498 0.0736  0.1685 0.2208 0.2372 0.2541
N, %, NFL,
NNR, 4
%, 1x,2§\P, ENA,3%, 0.2192 0.1825 0.1688 0.1474 0.1093 0.0695 0.0498 0.0344 0.1319 0.1847 0.2013 0.2187
N, %, NFL,
NNR, %,
%, 1%,2§\P, ENA, 3%, 0.2491 0.2126 0.1983 0.1737 0.1349 0.0956 0.0736 0.0344 0.1031 0.1549 0.1717 0.1894
N, %, NFL,
NNR, %,
«, HP
Ox,lx,zAP, ENA,3%;, 0.3386 0.3022 0.2866 0.2590 0.2246 0.1913 0.1685 0.1319 0.1031 0.0562 0.0733 0.0935
N, %, NFL,
NNR, %, «,
HP, HH
%, 1%,2§P, ENA,3, 0.3850 0.3500 0.3351 0.3081 0.2750 0.2429 0.2208 0.1847 0.1549  0.0562 0.0224 0.0437
N, %, NFL,
NNR, %, «,
HP, HH,u
O, v, AP, ENA,3y, 0.3998 0.3652 0.3504 0.3237 0.2908 0.2592 0.2372 0.2013 0.1717 0.0733 0.0224 0.0242
NNR, %, «,
HP, HH, 1, RE
%, Y, AP, ENA,3, 0.4148 0.3806 0.3660 0.3396 0.3071 0.2761 0.2541 0.2187 0.1894  0.0935 0.0437 0.0242

N, 2, NFL,
NNR, %, .
HP, HH. 4,
RE, EE

a0-4y = valence connectivity index = kappa index; N= sum of atomic numbers; H® Hansen polarity; HH= Hansen hydrogen; NFi=
number of filled levelsy = dipole moment; AR= average polarizability (PM3); RE resonance energy; EE exchange energy; ENA electron-

nuclear attraction; NNR= nuclear-nuclear repulsion.

benzenes, and mixed phenol derivatives. For the chloroben-
zene family the absolute mean errors for the Gute and
Basak® and Hall et al® models are 0.11 (2.2%) and 0.04
(1%) log units, respectively, compared to 0.08 log units
(1.6%) for the fuzzy ARTMAP model. The corresponding
standard deviations are 0.11 (2.3%), 0.08 (1.7%), and 0.17
(3.2%) log units. The good performance of MLR models
for the homogeneous chlorobenzene set contrasts with the
relatively high errors of fuzzy ARTMAP, which has immense
generalization capabilities when properly trained. Only 59
chemicals were used to train the fuzzy ARTMAP model for
LCso, seven of which belonging to the chlorobenzene family.
In addition, the quantum chemical descriptors included in
the present pool of 16 molecular indices may not be the bestg
choice for providing the required information to distinguish ®
chlorobenzenes. Inspection of Table 5 shows that indeed theg
1,3-dichlorobenzenetd) cannot be distinguished from the 4
1,4-dichlorobenzener(, and the 1,2,3,4-tetrachlorobenzene
(tr) from the 1,2,4,5-tetrachlorobenzene)( In fact, fuzzy
ARTMAP clearly outperforms MLR models and yields ¢C
accurate predictions for the other three families of compounds
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Figure 8. Comparison of the positional influence on théog-
(LCsp) toxicity measured and predicted for the three families of
benzene derivatives with (a) halogen, (b) hydroxyl, and (c) nitro
substituents.

insignificant for the test compound 2,4,6-trichlorophenol.
Figures 8a-c depict the experimental and predictedsh.C

for benzene derivatives with halogen, hydroxyl, and nitro

substituents. The first family is an extension of the chlo-
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Figure 9. Clusters of the component maps for §vith current
descriptors. The gray levels indicate distances.

The enormous differences between previous MLR mod-
els'®2%and the current fuzzy ARTMAP-based QSAR cannot
be attributed to differences in the quality and quantity of
the molecular information used in the three cases but to the
nonlinear nature and the superior performance of cognitive
classifiers, as has been already demonstrated in the literature.
Gute and BasaR used multiple linear regression analysis
with seven parameters to model 4 the Zagreb group
parameter, the path of length nine, structural information for
the zeroth order neighborhood of vertices in a hydrogen-
filled graph, the 3-D Wiener number for hydrogen-filled
structures, the second lowest unoccupied molecular orbital
(LUMO), the heat of formation, and the dipole moment. On
the other hand, Hall et &%.used multiple linear regression
analysis to obtain the coefficients in a Free-Wilson equation
for each substituent group.

To distinguish the effect of molecular descriptors from

robenzes included in Table 5. The absolute mean errors forthat of algorithm in the performance of the current QSAR
predictions in Figure 8a are 0.16 (3.5%), 0.14 (3%), and 0.07 for LCsg, a fuzzy ARTMAP model using the indices of Gute

(1.4%) log units for the Gute and Bagalkand Hall et al®
fuzzy ARTMAP models, respectively. The results for the

and Basak¥ was also derived. This model yielded predictions
for the complete data set of 69 benzene derivatives with an

hydroxyl substituents plotted in Figure 8b show that the fuzzy absolute mean error of 0.02 (0.58%), which is comparable
ARTMAP-based QSAR performs well with an absolute mean to that of 0.02 (0.46%) for the current fuzzy ARTMAP
error 0.09 (2.4%) log units compared to 0.16 (4.8%) log units model. Nevertheless, the generalization capability of the

for the Gute and Basadkand 0.19 (5.2%) log units for the
Hall et al’® models. Finally, Figure 8c illustrates the influence
of nitro substituents on the toxicity lsgvalues in a rather
heterogeneous data set. In this family fuzzy ARTMAP
outperforms literature MLR modéfs?® in terms of errors
by a factor larger than ten.

current model with the best set of descriptors is slightly
superior, as shown by the predictions and errors listed in
Table 6 for the 10 compounds that constitute the test set.
The absolute mean error and standard deviation for the fuzzy
ARTMAP-based QSAR with the indices of Gute and B&8ak
are 0.17 (3.84%) and 0.13 (2.67%), respectively, compared
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Table 5. Positional Influence of Functional Groups on Acute ToxicityshC

exp Gute Hall FAM
name formula —log (LCso) etal?° etal® —log (LCso)
Chlorobenzenes
chlorobenzene C6H5CI1 3.77 3.75 3.84 3.77
1,2-dichlorobenzene C6H4Cl2 4.40 4.29 4.40 4.40
1,3-dichlorobenzerie C6H4Cl2 4.30 4.37 4.40 4.62
1,4-dichlorobenzene C6H4Cl2 4.62 4,51 4.40 4.62
1,2,3-trichlorobenzene C6H3CI3 4.89 4.89 4.89 4.89
1,2,4-trichlorobenzene C6H3CI3 5.00 5.04 5.00 5.00
1,3,5-trichlorobenzene C6H3CI3 4.74 5.11 4.74 4.74
1,2,3,4-tetrachlorobenzene C6H2Cl4 5.43 5.62 5.43 5.43
1,2,4,5-tetrachlorobenzehe C6H2Cl4 5.85 5.80 5.85 5.43
Halogen and Hydroxyl Substituents
2,3,4,5,6-pentachlorophenol C6H101CIl5 6.06 6.03 5.96 6.06
2,3,4,5-tetrachlorophenol C6H201Cl4 5.72 5.36 5.40 5.72
2,4,6-tribromophenol C6H301Br3 4.70 4.89 4.64 4.70
2,4,6-trichlorophenél C6H301CI3 4.33 4.79 4.85 4.30
2,4-dichlorophenol C6H401Cl2 4.30 4.33 4.30 4.30
Alkyl Substituents
toluene C7HS8 3.32 3.66 3.51 3.32
1,2-dimethylbenzene C8H 10 3.48 3.93 3.74 3.48
1,4-dimethylbenzene C8H10 4.21 3.87 3.74 4.21
1,2,4-trimethylbenzene C9H12 4.21 4.09 3.96 4.21
benzene C6HG6 3.40 3.42 3.29 3.40
Halogenated, Nitro, and Hydroxyl Substituents
4-chloro-3-methylphenol C7H701Cl1 4.27 3.87 3.97 4.27
2,4-dinitrophenol C6H4N205 4.04 3.76 3.87 4.04
2-methyl-4,6-dinitrophenol C7TH6N20O5 5.00 4.21 4.09 5.00
4-nitrophenol C6H5N103 3.36 3.61 3.53 3.36
2-chlophenol C6H501Cl1 4.02 3.79 3.74 4.02

a Compounds used for testing.

Table 6. Comparison of the Performance of Fuzzy ARTMAP-Based QSARs fap bEBenzene Derivatives Using Gute and Ba&8ak
Descriptors and the Current Best Set during Generalization (Test Compounds)

exp Gute and relative current relative
name formula —log(LCso) Basak® error % model error

1,2,4,5-tetrachlorobenzene C6H2Cl4 5.85 5.43 7.18 5.43 7.18
2,4,6-trichlorophenol C6H301CI3 4.33 4.30 0.69 4.30 0.69
1,3-dichlorobenzene C6H4Cl2 4.30 4.62 7.44 4.40 2.32
2,4-dichlorotoluene C7H6CI2 4.54 4.74 4.40 4.74 4.40
3-nitrotoluene C7TH7N10O2 3.63 3.75 3.35 3.57 1.65
5-methyl-2,6-dinitroaniline C7TH7N304 4.18 4.21 0.72 4.21 0.72
2-methyl-5-nitroaniline C7H8N202 3.35 3.24 3.24 3.24 3.28
p-cresol (4-hydroxytoluene) C7H801 3.58 3.84 7.26 3.77 5.31
3-methyl-2,4-dinitroaniline C7TH7N304 4.26 4.21 1.17 4.21 1.17
2,6-dimethylphenol C8H1001 3.75 3.86 2.93 3.86 2.93

to 0.14 (3.18%) and 0.11 (2.04%) for the current model. the number of filled levels, and the kappa index.

These differences are due to ChangeS in the classification of (") The exchange energy, the resonance energy, and the

1,3-dichlorobenzene, 3-nitrotoluene, apdresol. For ex-  electron nuclear attraction indices are correlated among
ample, the current model classifies correctly pheresol with themselves.

its homologou®-cresol and predicts its toxicity with a 5.31%
error, while the fuzzy ARTMAP model with the descriptors ; s
of Gute and Bas&Rmisclassifies it with the 3-chlorotoluene are correlated with the average polarizability and the sum

and the predictive error increases slightly to 7.26%, as shownOf §t0m|c numbers. o
in Table 6. (iv) The Hansen polarizability, the Hansen hydrogen

planes, and the dipole moment are correlated.

LDso FOR ORGANIC COMPOUNDS It is instructive to compare the clusters of the component
Best Set of Indices.The clusters of component maps, maps for the heterogeneous et in Figure 9 (Table 7)
which were obtained from the U-matrix calculated for the with those for the homogeneous kfSet in Figure 6 (Table
set of indices and the corresponding d@alues given in 3). In the homogeneous set of benzene derivatives all
Table 2, are depicted in Figure 9. The component maps intopological information contained in the connectivity indices
the four clusters are in good agreement with the Pearsonand in the sum of atomic numbers (mostly in cluster | of
covariances presented in Table 7. The analysis of these result&igure 6) was very relevant in terms of both covariances
for this heterogeneous family of compounds shows unam- with LCso and cluster representatives (cluster 1V). Also, the
biguously that need to distinguish isomers gave an important roll to the
(i) The molecular connectivity indices of order zero and average polarizability. The introduction of heterogeneity
four are correlated with the nuclear nuclear repulsion index, reduces the impact of any trend related to homogeneity and

(iif) The connectivity indices of order one, two, and three
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Table 7. Clustering and Covariance Matrix Using SOM for the 4,f a Heterogeneous Set of Organic Compo@nds

ID % NNR NFL « % EE RE ENA Y 3 AP % N HP  HH  u«  LDso
0 1.000 0.881 0.874 0.900 0.7990.947 —0.933-0.876 0.846 0.614 0568 0.441 0.5%0.308-0.063-0.049 0.432
NNR 0.881 1.000 0.988 0.845 0.8520.900-0.910-0.984 0.886 0.751 0.724 0.537 0.684.205—0.063 —0.005 0.392

| NFL 0.874 0.988 1.000 0.842 0.83%10.900—-0.907 —0.974 0.891 0.754 0.756 0.559 0.76%.221—0.072-0.027 0.389
K 0.900 0.845 0.842 1.000 0.7340.859—0.844—0.848 0.815 0.573 0.518 0.374 0.53D.231—0.026 —0.001 0.365
4y 0.799 0.852 0.831 0.734 1.0000.847 —0.850—0.826 0.825 0.714 0.702 0.420 0.568.282 —0.156 —0.114 0.356
EE —0.947 —0.900 —0.900 —0.859 —0.847 1.000 0.993 0.883-0.788 —0.599 —0.653 —0.339 —0.448 0.276 0.079-0.004 —0.402

I RE —0.933-0.910 —0.907 —0.844 —0.850 0.993 1.000 0.89%0.770 —0.593 —0.659 —0.323 —0.439 0.245 0.055-0.057 —0.391
ENA —0.876 —0.984 —0.974 —0.848 —0.826 0.883 0.891 1.008-0.875—0.734 —0.688 —0.530 —0.677 0.190 0.046-0.014 —0.388
L 0.846 0.886 0.891 0.815 0.8250.788—0.770-0.875 1.000 0.842 0.735 0.752 0.860.349 —0.181—0.229 0.326
3 0.614 0751 0.754 0.573 0.7140.599 —0.593 —0.734 0.842 1.000 0.702 0.626 0.789.267 —0.155—0.259 0.220

Il AP 0568 0.724 0.756 0.518 0.7020.653—0.659—0.688 0.735 0.702 1.000 0.571 0.6840.313-0.232-0.176 0.188
2c 0441 0537 0559 0.374 0.4200.339-0.323-0.530 0.752 0.626 0571 1.000 0.9%D.258 —0.165-0.284 0.174
N 0.514 0.684 0.705 0.531 0.5650.448-0.439-0.677 0.861 0.789 0.684 0912 1.00M.224 —0.136 -0.245 0.167
HP —0.308 —0.205—0.221—-0.231-0.282 0.276 0.245 0.196-0.349 —0.267 —0.313 —0.258 —0.224 1.000 0.658 0.472-0.289

IV HH —0.063 —0.063 —0.072 —0.026 —0.156 0.079 0.055 0.046:0.181 —0.155 —0.232 —0.165 —0.136 0.658 1.000 0.196-0.205
4 —0.049 —0.005 —0.027 —0.001 —0.114 —0.004 —0.057 —0.014 —0.229 —0.259 —0.176 —0.284 —0.245 0.472 0.196 1.006-0.083
LDsy 0.432 0392 0.389 0.365 0.3560.402-0.391-0.388 0.326 0.220 0.188 0.174 0.1670.289 —0.205—0.083 1.000

ay = valence connectivity index; NNR nuclear-nuclear repulsion; NFi= number of filled levelsi = kappa index; EE= exchange energy;
RE = resonance energy; EN#A electror-nuclear attraction; AR= average polarizability (PM3); N= sum of atomic numbers; HR Hansen
polarity; HH = Hansen hydrogen; = dipole moment.

Table 8. Dissimilarity Measures between the Maps for thesh.Df the Heterogeneous Set of Compouhds

0 1X 0 O 1 0 1 0,
% Y% %Y, EEHP EEHP EEHP EEHP EEHP
O, %.1, EE HP, EE,HP, NNR,RE,NNR, RE,NNR, RE,NNR, RE, NNR,
% % EE HP EE, HP, NNR, RE,NNR, RE, NFL, NFL, NFL, NFL, RE, NFL,
molecular o, %, EE AP, EE AP, NNR, RE,NNR, RE, NFL, NFL, ENAx, ENAx, ENA,x, ENA  ENA «,
descriptors %, 1y, EE, HP, NNR, NNR, RE, NFL, NFL, ENA,  ENAx, “.%  “.%, A A AL ]
used EE,HP NNR RE NFL ENA ENAx % 4,3y HH  HH,AP  HH. % HH 2N 2N, u
%, 1, EE, HP 0.0491 0.0845 0.1075 0.1265 0.18960.2471 0.2815 0.3221  0.3410 0.3615 0.3908  0.4499
%, 1y, EE, HP, NNR 0.0491 0.0390 0.0612 0.0806  0.14460.2035 0.2387 0.2802 0.2996 0.3208 0.3513  0.4136
%, Yy, EE, HP, 0.0845 0.0390 0.0260 0.0468 0.10950.1686 0.2049 0.2466 0.2664 0.2881  0.3194  0.3835
NNR, RE
%, Y, EE, HP, 0.1075 0.0612 0.0260 0.0219 0.08560.1456 0.1823 0.2241  0.2443 0.2663 0.2981  0.3631
NNR, RE, NFL
%, Yy, EE, HP, 0.1265 0.0806 0.0468 0.0219 0.0664 0.1269 0.1641  0.2058  0.2262 0.2484 0.2806  0.3461
NNR, RE,
NFL, ENA
%, 1y, EE, HP, 0.1896 0.1446 0.1095 0.0856  0.0664 0.0630 0.1013 0.1431 0.1646 0.1881 0.2221  0.2881
NNR, RE,
NFL, ENA, «
%, Yy, EE, HP, 0.2471 0.2035 0.1686 0.1456 0.1269  0.0630 0.0421 0.0821 01049 0.1300 0.1638  0.2304
NNR, RE, NFL,
ENA, «, %
o, 1 EE, HP, NNR, 0.2815 0.2387 0.2049 0.1823 0.1641  0.10130.0421 0.0460 0.0671 0.0935 0.1290  0.1953
RE, NFL, ENA,
i, Y, 3
%, Y, EE, HP, 0.3221 0.2802 0.2466 0.2241 0.2058  0.14310.0821  0.0460 0.0296 0.0601 0.0913  0.1527
NNR, RE,
NFL, ENA, «,
4X13X’ HH
%, 1y, EE, HP, 0.3410 0.2996 0.2664 0.2443 0.2262  0.16460.1049 0.0671  0.0296 0.0348 0.0707  0.1340
NNR, RE,
NFL, ENA, «,
“x, %, HH, AP
%, 1y, EE, HP, 0.3615 0.3208 0.2881 0.2663 0.2484  0.18810.1300 0.0935 0.0601  0.0348 0.0468  0.1122
NNR, RE,
NFL, ENA, «,
“ % HH, %
%, 1y, EE, HP, 0.3908 0.3513 0.3194 0.2981 0.2806  0.22210.1638 0.1290 0.0913  0.0707  0.0468 0.0770
NNR, RE,
NFL, ENA, «,
AX’3X’ HH’
ZX’N
o, 1y, EE, HP, 0.4499 0.4136 0.3835 0.3631 0.3461  0.28810.2304 0.1953 0.1527 0.1340 0.1122  0.0770
NNR, RE,
NFL, ENA, «,
4, 3, HH, %,
N, u
average 0.2459 0.2068 0.1819 0.1688 0.1617  0.14720.1423 0.1455 0.1570 0.1653 0.1792 0.2034  0.2621

a0-4y = valence connectivity index; = kappa index; N= sum of atomic numbers; H® Hansen polarity; HH= Hansen hydrogen; NFE=
number of filled levelsy = dipole moment; AP= average polarizability (PM3); RE= resonance Energy; EE exchange energy; ENA
electron-nuclear attraction; NNR= nuclear-nuclear repulsion.
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and with average absolute errors of 0.02 (0.46%) and 0.14

(3.18%) log units for the whole and test sets, respectively.

This neural system outperforms the two previously reported

QSAR model¥2?° both in terms of overall errors and

. . ‘ classification. The fuzzy ARTMAP based QSAR for the

1 2 8 4 5 toxicity LDso, of 155 heterogeneous compounds yield
Experimental oral rat log(LDs50), mg/kg predictions with mean errors of 0.02 (0.53%) log units for

Figure 10. Comparison of experimental with predicted log@gp ~ the complete data set and 0.13 (3.68%) log units for the test

toxicity values of an heterogeneous set of organic compounds. set. The largest single error of 12.50% observed corresponds

to then-propyl acetate and is not caused by misclassification.
the need for redundancy in topological information and As a consequence, the proposed integrated SOM-fuzzy
enhances the roll of quantum chemical descriptors. ARTMAP approach is a useful tool to establish systemati-
Again, maps for the different subsets of descriptors are cally sound QSAR/QSPR models.
compared by the dissimilarity measures given in Table 8.
The best set of indices for Lpis integrated by the following ACKNOWLEDGMENT
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