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Self-organized maps (SOM) have been applied to analyze the similarities of chemical compounds and to
select from a given pool of descriptors the smallest and more relevant subset needed to build robust QSAR
models based on fuzzy ARTMAP. First, the category maps for each molecular descriptor and for the target
activity variable were created with SOM and then classified on the basis of topology and nonlinear distribution.
The best subset of descriptors was obtained by choosing from each cluster the index with the highest
correlation with the target variable and then in order of decreasing correlation. This process was terminated
when a dissimilarity measure increased, indicating that the inclusion of more molecular indices would not
add supplementary information. The optimal subset of descriptors was used as input to a fuzzy ARTMAP
architecture modified to effect predictive capabilities. The performance of the integrated SOM-fuzzy ARTMAP
approach was evaluated with the prediction of the acute toxicity LC50 of a homogeneous set of 69 benzene
derivatives in the fathead minnow and the oral rat toxicity LD50 of a heterogeneous set of 155 organic
compounds. The proposed methodology minimized the problem of misclassification of similar compounds
and significantly enhanced the predictive capabilities of a properly trained fuzzy ARTMAP network.

INTRODUCTION

The design of new drugs based on the forecast of activity
from molecular information only is a major challenge in
pharmacology and chemistry. The traditional methods that
incorporate synthesis in the design process are very reliable
but usually laborious and expensive. On the other hand,
computed assisted methods are time-consuming and very
sensitive to the molecular input information selected. The
main problem arises when trying to decide which molecular
descriptors and algorithm should be used to build the
computational model, i.e., the Quantitative Structure Activity
Relationships (QSAR).

QSAR methods assume that the properties of chemical
compounds, which are implicit in their molecular structure,
can be established with a set of descriptors of reasonable
dimension. This implies that the chemical properties of
similar compounds are related. But, which is the meaning
of the termsimilar? Some studies state that compounds are
similar when they have the same action mechanism versus
different physical, chemical, or biological conditions but not
necessarily a comparable chemical structure. Sometimes the
contrary is stated. Previous QSAR studies use both defini-
tions for similar at their advantage. However, the determi-
nation of the action mechanism is usually very difficult, while
it is usually easier to establish chemical similarities. For this
reason, the majority of QSAR models are developed for sets
of homogeneous compounds (families), based on the premise
that they will have the same action mechanisms.

Models are built by establishing the relationships between
known experimental properties and molecular features
quantified by molecular descriptors, which typically include
electronic information (e.g., the dipole moment) and/or
measures of molecular shape (connectivity indices,1-3 the
Wiener index,4 etc.). Recently, quantum information has been
incorporated into QSPR/QSAR to better explain the property
or activity of homogeneous and heterogeneous chemical
compounds. Since the number of descriptors could be very
large, statistical prescreening techniques are commonly used
to select the most appropriate ones.5,6

The reduction of the number of descriptors usually
involves the following steps:

(i) Exclusion of all descriptors that contribute with up to
90% of information already accounted for by other molecular
indices;

(ii) Selection of only one descriptor in pairs with cross-
correlations greater than 0.95;

(iii) Selection of the first descriptors when ranked follow-
ing an orthogonalization procedure, using for example vector
space descriptor analysis (VSDA).5,6

Self-organizing Kohonen feature maps (SOM)7-10 could
be an alternative to statistical prescreening techniques since
they have been successfully applied to cluster molecules into
three-dimensional predefined self-organized maps. The analy-
sis of the shape and surface properties of those maps has
provided valuable information about the biological activity
of the molecules. These applications included a one-to-one
mapping of a molecule into a single Kohonen network.11-14

Thus, SOM can be an alternative for the selection of the
best set of molecular descriptors needed to establish sound
QSPR/QSAR models in difficult problems, such as in toxicity
prediction. These models can be determined using either
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classical algorithms, such as partial least-squares or multi-
lineal regression analysis, or neural networks.

The most widely applied neural network to build QSAR/
QSPR models is back-propagation. Nevertheless, this neural
system has some problems inherent to its architecture in
relation to overtraining, overfitting, and network optimiza-
tion. An alternative to improve both predictive capabilities
and to establish a more transparent QSAR/QSPR methodol-
ogy is the application of cognitive classifiers. Espinosa et
al.15,16 developed fuzzy ARTMAP based QSPRs models to
estimate boiling points and critical properties of heteroge-
neous sets of organic compounds. The models obtained were
superior to QSPRs obtained with optimized back-propagation
architectures and to traditional group contribution methods
reported in the literature. Fuzzy ARTMAP based models are
an alternative to standard predictive algorithms and possess
a number of distinctive features that overcome some of the
limitations of back-propagation (feed-forward) neural net-
works. The most important of them are (i) continuous
(online), fast and stable learning, and (ii) the ability to learn
novel inputs and infrequent events without forgetting previ-
ously learned information by creating new input categories
and output classes dynamically.

The purpose of the current work is to apply SOM to select
key molecular information from any given pool of descriptors
to build efficient QSAR models based on fuzzy ARTMAP.
The methodology for the selection of descriptors uses SOM
to establish the relative differences between molecules when
diverse molecular information is used to describe them. A
simple dissimilarity measure provides sufficient quantitative
information to support the visual information on how
different maps represent the intrinsic relations between the
molecular structures.17,18 The performance of the integrated
methodology is illustrated with the development of two new
fuzzy ARTMAP based QSAR for toxicity assessment: the
first one for the acute toxicity, measured as lethal-dose LC50,
of 69 benzene derivatives19,20and the second one for the oral
rat toxicity LD50 of a heterogeneous set of 155 organic
compounds.

The current approach is related to the variable selection
methods recently published by Zhen and Tropsha21 and
Ivanciuc et al.22 The former study is based on the k-nearest-
neighbor principle and selects the optimal subset of descrip-
tors by using simulated annealing as a stochastic optimization
algorithm. The latter study measures chemical diversity with
quasi-orthogonal basis sets. Kohonen neural networks are
applied in the current study to select first the molecular
descriptors that best represent the diversity of all molecular
information in relation to the target toxicity variables, while
covariances are used afterward to include the more relevant
information. The description of data sets and of molecular
descriptors is included in the next section, which is followed
by a description of the integrated SOM-fuzzy ARTMAP
methodology. Finally, the results obtained for the LC50 of
benzene derivatives and for the LD50 of organic compounds
are presented and discussed.

Data Sets and Molecular Descriptors. Two different sets
of toxicity data have been chosen to test the performance of
the proposed integrated methodology for descriptor selection
and QSAR model building. The first data set contains the
acute toxicity (LC50) of 69 benzene derivatives in the fathead
minnow. Hall et al.19 first studied this data set, which was

used later by Gute and Basak20 to compare them. The
benzene substituents are amino, bromo, chloro, hydroxyl,
methyl, methoxyl, and nitro groups. The complete list of
compounds and their corresponding experimental toxicity
values are shown in Table 1. This table also includes an
overview of the best set of descriptors used to build the fuzzy
ARTMAP-based QSAR for LC50, which is expressed as the
negative logarithm of the lethal concentration,-log(LC50),
at which 50% of the exposed individuals die. The experi-
mental values range from 3.07 to 6.37 log units.

The second data set includes 155 diverse organic com-
pounds. The functional groups considered include alcohols,
ketones, esters, carboxylic acids, aldehydes, ethers, nitriles,
amines, and aromatic derivatives. The experimental values
were collected from many literature sources. The complete
list of compounds and their corresponding experimental acute
toxicity values (LD50) are included in Table 2, together with
the best set of molecular descriptors used in the fuzzy
ARTMAP model. The toxicity is expressed as the logarithm
of the lethal dose, log(LD50), in mg/kg body wt/day, at which
50% of the individuals die. The experimental values range
from 1.59 to 4.71 log units.

Both topological and quantum descriptors were included
in the pool of molecular information. The topology of
chemicals was accounted for by the following indices: (i)
the connectivity indices from zero to four order (0ø, 1ø, 2ø,
3ø, 4ø); (ii) the hydrogen bonding and electronic contributions,
represented by the Hansen hydrogen bond index and the
polarity index, respectively, both estimated by fragment
constant additions (the fragment values were determined from
Hansen’s work23); and (iii) the sum of atomic numbers and
the kappa index. The first two groups of descriptors were
generated using Molecular Modeling Pro 3.124 and were
independent of the geometry optimization scheme. Semiem-
pirical, PM3 Hamiltonian, geometry optimizations, and
conformational searches for all the structures were carried
out with MOPAC 6.0,25 because of the relatively short
computational times required, compared to ab initio calcula-
tions, and the availability of parametrization for a variety of
atoms.

The following quantum chemical descriptors derived form
semiempirical calculations were considered to describe
molecular interactions: (i) the average molecular polariz-
ability, which is related to inductive interactions in the
molecule and measures the capacity to accept electrons; (ii)
the dipole moment as a measure of the global polarity of
the molecule; (iii) the number of doubly occupied (filled)
MO levels; (iv) the electron-electron repulsion energy; (v)
the electron-nuclear attraction energy; (vi) the resonance
energy or differential between localized and delocalizedπ
electrons in double bonds; and (vii) the exchange energy to
account for the interaction involving two electrons. The sum
of total one-center energies (electron-electron repulsion and
electron-nuclear attraction) and the two-center terms (reso-
nance and exchange energies) yield the total energy.

INTEGRATED SOM-FUZZY ARTMAP METHODOLOGY

Kohonen Self-Organizing Maps (SOM). Kohonen self-
organizing maps constitute the neural system proposed in
the present study to select the molecular features that best
describe a given activity or property from a pool of molecular
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Table 1. Best Set of Molecular Descriptors and Experimental Acute Toxicity LC50 for 69 Benzene Derivativesa

information

compd ID formula 0ø 1ø 2ø 3ø 4ø N NFL AP NNR ENA
exp

-log(LC50)

2,3,4,5,6-pentachlorophenol tr C 6 H 1 O 1 Cl 5 1.01E+01 4.55E+00 3.80E+00 3.44E+00 1.72E+00 1.36E+02 3.30E+01 1.02E+02 8.59E+03 -1.72E+04 6.06E+00
1,2,3,4-tetrachlorobenzene tr C 6 H 2 Cl 4 9.68E+00 3.93E+00 3.22E+00 2.69E+00 1.24E+00 1.06E+02 2.70E+01 8.57E+01 5.97E+03 -1.20E+04 5.43E+00
2,3,4,5-tetrachlorophenol tr C 6 H 2 O 1 Cl 4 1.01E+01 4.07E+00 3.36E+00 2.82E+00 1.35E+00 1.28E+02 3.00E+01 9.09E+01 7.26E+03 -1.46E+04 5.72E+00
1,2,3-trichlorobenzene tr C 6 H 3 Cl 3 9.63E+00 3.44E+00 2.73E+00 2.13E+00 1.00E+00 9.00E+01 2.40E+01 7.45E+01 4.90E+03 -9.84E+03 4.89E+00
1,2,4-trichlorobenzene tr C 6 H 3 Cl 3 9.63E+00 3.44E+00 2.81E+00 1.85E+00 9.95E-01 9.00E+01 2.40E+01 7.60E+01 4.82E+03 -9.68E+03 5.00E+00
1,3,5-trichlorobenzene tr C 6 H 3 Cl 3 9.63E+00 3.43E+00 2.89E+00 1.48E+00 1.39E+00 9.00E+01 2.40E+01 7.65E+01 4.76E+03 -9.57E+03 4.74E+00
1,3,5-trinitrobenzene tr C 6 H 3 N 3 O 6 9.82E+00 3.22E+00 2.24E+00 1.36E+00 7.87E-01 1.08E+02 3.90E+01 8.77E+01 1.16E+04 -2.35E+04 5.29E+00
2,4,6-tribromophenol tr C 6 H 3 O 1 Br 3 1.25E+01 4.82E+00 4.34E+00 2.65E+00 2.79E+00 1.55E+02 2.70E+01 8.86E+01 5.88E+03 -1.18E+04 4.70E+00
1,2-dichlorobenzene tr C 6 H 4 Cl 2 9.57E+00 2.96E+00 2.23E+00 1.58E+00 7.10E-01 7.40E+01 2.10E+01 6.45E+01 4.01E+03 -7.85E+03 4.40E+00
1,4-dichlorobenzene tr C 6 H 4 Cl 2 9.57E+00 2.95E+00 2.31E+00 1.31E+00 6.81E-01 7.40E+01 2.10E+01 6.60E+01 3.94E+03 -7.70E+03 4.62E+00
1,2-dinitrobenzene tr C 6 H 4 N 2 O 4 9.70E+00 2.82E+00 1.87E+00 1.16E+00 6.35E-01 8.60E+01 3.10E+01 7.40E+01 8.26E+03 -1.67E+04 5.45E+00
1,3-dinitrobenzene tr C 6 H 4 N 2 O 4 9.70E+00 2.82E+00 1.87E+00 1.14E+00 6.52E-01 8.60E+01 3.10E+01 7.39E+01 7.87E+03 -1.60E+04 4.38E+00
1,4-dinitrobenzene tr C 6 H 4 N 2 O 4 9.70E+00 2.82E+00 1.87E+00 1.16E+00 6.35E-01 8.60E+01 3.10E+01 7.51E+01 7.78E+03 -1.58E+04 5.22E+00
2,4-dinitrophenol tr C 6 H 4 N 2 O 5 1.01E+01 2.96E+00 2.03E+00 1.25E+00 7.01E-01 9.40E+01 3.40E+01 8.02E+01 9.35E+03 -1.89E+04 4.04E+00
2,4-dichlorophenol tr C 6 H 4 O 1 Cl 2 9.94E+00 3.09E+00 2.44E+00 1.45E+00 8.89E-01 8.20E+01 2.40E+01 7.03E+01 4.93E+03 -9.94E+03 4.30E+00
bromobenzene tr C 6 H 5 Br 1 1.03E+01 2.89E+00 2.21E+00 1.26E+00 7.19E-01 7.60E+01 1.80E+01 5.76E+01 2.97E+03 -5.98E+03 3.89E+00
chlorobenzene tr C 6 H 5 Cl 1 9.52E+00 2.48E+00 1.73E+00 9.85E-01 5.60E-01 5.80E+01 1.80E+01 5.51E+01 3.11E+03 -6.06E+03 3.77E+00
4-nitrophenol tr C 6 H 5 N 1 O 3 9.95E+00 2.54E+00 1.69E+00 1.00E+00 1.95E+00 7.20E+01 2.60E+01 6.64E+01 5.84E+03 -1.18E+04 3.36E+00
2-chlophenol tr C 6 H 5 O 1 Cl 1 9.89E+00 2.62E+00 1.86E+00 1.17E+00 5.87E-01 6.60E+01 2.10E+01 5.97E+01 4.02E+03 -8.10E+03 4.02E+00
benzene tr C 6 H 6 9.46E+00 2.00E+00 1.15E+00 6.67E-01 3.85E-01 4.20E+01 1.50E+01 4.56E+01 2.37E+03 -4.58E+03 3.40E+00
4-hydroxy-3-nitroaniline tr C 6 H 6 N 2 O 3 1.15E+01 2.75E+00 1.93E+00 1.14E+00 6.47E-01 8.00E+01 2.90E+01 7.70E+01 7.18E+03 -1.45E+04 3.65E+00
phenol tr C 6 H 6 O 1 9.83E+00 2.13E+00 1.34E+00 7.56E-01 4.28E-01 5.00E+01 1.80E+01 5.08E+01 3.13E+03 -6.30E+03 3.51E+00
1,3-hydroxybenzene tr C 6 H 6 O 2 1.02E+01 2.27E+00 1.52E+00 8.30E-01 4.93E-01 5.80E+01 2.10E+01 5.57E+01 4.08E+03 -8.23E+03 3.04E+00
2,3,6-trinitrotoluene tr C 7 H 5 N 3 O 6 1.27E+01 3.65E+00 2.62E+00 1.76E+00 1.10E+00 9.20E+01 4.20E+01 9.82E+01 1.37E+04 -2.77E+04 6.37E+00
2,4,6-trinitrotoluene tr C 7 H 5 N 3 O 6 1.27E+01 3.65E+00 2.65E+00 1.76E+00 1.02E+00 9.20E+01 4.20E+01 9.74E+01 1.34E+04 -2.71E+04 4.88E+00
3,4-dichlorotoluene tr C 7 H 6 Cl 2 1.25E+01 3.37E+00 2.73E+00 1.81E+00 9.53E-01 8.20E+01 2.40E+01 7.37E+01 4.92E+03 -9.89E+03 4.74E+00
2,3-dinitrotoluene tr C 7 H 6 N 2 O 4 1.26E+01 3.24E+00 2.31E+00 1.47E+00 3.41E+00 9.40E+01 3.40E+01 8.29E+01 9.72E+03 -1.96E+04 5.01E+00
2,4-dinitrotoluene tr C 7 H 6 N 2 O 4 1.26E+01 3.23E+00 2.33E+00 1.48E+00 8.29E-01 9.40E+01 3.40E+01 8.33E+01 9.30E+03 -1.88E+04 3.75E+00
2,5-dinitrotoluene tr C 7 H 6 N 2 O 4 1.26E+01 3.23E+00 2.33E+00 1.46E+00 8.77E-01 9.40E+01 3.40E+01 8.40E+01 9.24E+03 -1.87E+04 5.15E+00
2,6-dinitrotoluene tr C 7 H 6 N 2 O 4 1.26E+01 3.24E+00 2.28E+00 1.53E+00 9.15E-01 9.40E+01 3.40E+01 8.29E+01 9.45E+03 -1.91E+04 3.99E+00
3,4-dinitrotoluene tr C 7 H 6 N 2 O 4 1.26E+01 3.23E+00 2.35E+00 1.41E+00 8.45E-01 9.40E+01 3.40E+01 8.37E+01 9.49E+03 -1.92E+04 5.08E+00
3,5-dinitrotoluene tr C 7 H 6 N 2 O 4 1.26E+01 3.23E+00 2.38E+00 1.36E+00 8.70E-01 9.40E+01 3.40E+01 8.27E+01 9.19E+03 -1.86E+04 3.91E+00
2-methyl-4,6-dinitrophenol tr C 7 H 6 N 2 O 5 1.30E+01 3.37E+00 2.49E+00 1.56E+00 9.01E-01 1.02E+02 3.70E+01 8.86E+01 1.08E+04 -2.19E+04 5.00E+00
3-chlorotoluene tr C 7 H 7 Cl 1 1.24E+01 2.89E+00 2.23E+00 1.21E+00 8.50E-01 6.60E+01 2.10E+01 6.38E+01 3.94E+03 -7.93E+03 3.84E+00
4-chlorotoluene tr C 7 H 7 Cl 1 1.24E+01 2.89E+00 2.23E+00 1.26E+00 6.59E-01 6.60E+01 2.10E+01 6.42E+01 3.93E+03 -7.91E+03 4.33E+00
2-nitrotoluene tr C 7 H 7 N 1 O 2 1.26E+01 2.88E+00 2.01E+00 1.28E+00 7.52E-01 7.20E+01 2.60E+01 6.87E+01 6.22E+03 -1.21E+04 3.57E+00
4-nitrotoluene tr C 7 H 7 N 1 O 2 1.25E+01 2.82E+00 2.01E+00 1.19E+00 6.36E-01 7.20E+01 2.60E+01 6.94E+01 5.82E+03 -1.18E+04 3.76E+00
2-methyl-3,5-dinitroaniline tr C 7 H 7 N 3 O 4 1.41E+01 3.44E+00 2.54E+00 1.69E+00 9.15E-01 1.02E+02 3.70E+01 9.49E+01 1.08E+04 -2.18E+04 4.12E+00
2-methyl-3,6-dinitroaniline tr C 7 H 7 N 3 O 4 1.41E+01 3.44E+00 2.50E+00 1.73E+00 9.71E-01 1.02E+02 3.70E+01 9.73E+01 1.09E+04 -2.20E+04 5.34E+00
5-methyl-2,4-dinitroaniline tr C 7 H 7 N 3 O 4 1.41E+01 3.44E+00 2.56E+00 1.61E+00 9.79E-01 1.02E+02 3.70E+01 9.77E+01 1.09E+04 -2.20E+04 4.92E+00
4-methyl-2,6-dinitroaniline tr C 7 H 7 N 3 O 4 1.41E+01 3.44E+00 2.58E+00 1.56E+00 9.66E-01 1.02E+02 3.70E+01 9.81E+01 1.09E+04 -2.21E+04 4.21E+00
4-methyl-3,5-dinitroaniline tr C 7 H 7 N 3 O 4 1.41E+01 3.44E+00 2.54E+00 1.64E+00 9.85E-01 1.02E+02 3.70E+01 9.57E+01 1.09E+04 -2.20E+04 4.46E+00
4-chloro-3-methyl-phenol tr C 7 H 7 O 1 Cl 1 1.28E+01 3.03E+00 2.34E+00 1.56E+00 7.46E-01 7.40E+01 2.40E+01 6.88E+01 5.03E+03 -1.01E+04 4.27E+00
toluene tr C 7 H 8 1.24E+01 2.41E+00 1.65E+00 9.40E-01 5.34E-01 5.00E+01 1.80E+01 4.56E+01 3.23E+03 -6.27E+03 3.32E+00
2-methyl-3-nitroaniline tr C 7 H 8 N 2 O 2 1.40E+01 3.03E+00 2.17E+00 1.48E+00 7.91E-01 8.00E+01 2.90E+01 7.94E+01 7.23E+03 -1.46E+04 3.48E+00
2-methyl-4-nitroaniline tr C 7 H 8 N 2 O 2 1.40E+01 3.02E+00 2.22E+00 1.41E+00 7.35E-01 8.00E+01 2.90E+01 8.18E+01 7.06E+03 -1.43E+04 3.24E+00
2-methyl-6-nitroaniline tr C 7 H 8 N 2 O 2 1.40E+01 3.03E+00 2.19E+00 1.44E+00 7.79E-01 8.00E+01 2.90E+01 7.98E+01 7.06E+03 -1.43E+04 3.80E+00
3-methyl-6-nitroaniline tr C 7 H 8 N 2 O 2 1.40E+01 3.02E+00 2.24E+00 1.32E+00 8.04E-01 8.00E+01 2.90E+01 8.17E+01 7.16E+03 -1.45E+04 3.80E+00
4-methyl-2-nitroaniline tr C 7 H 8 N 2 O 2 1.40E+01 3.02E+00 2.24E+00 1.32E+00 7.66E-01 8.00E+01 2.90E+01 8.19E+01 7.19E+03 -1.45E+04 3.79E+00
4-methyl-3-nitroaniline tr C 7 H 8 N 2 O 2 1.40E+01 3.02E+00 2.23E+00 1.36E+00 7.75E-01 8.00E+01 2.90E+01 8.05E+01 7.17E+03 -1.45E+04 3.77E+00
o-cresol (2-hydroxytoluene) tr C 7 H 8 O 1 1.28E+01 2.55E+00 1.79E+00 1.12E+00 5.63E-01 5.80E+01 2.10E+01 5.90E+01 4.27E+03 -8.30E+03 3.77E+00
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descriptors. This network was proposed by Kohonen7,8 in
1982, as an algorithm able to classify data (N-dimensional
vectors, withN usually very large) via a projection of these
data into a subspace of lower dimensionM (usually M )
2), called map, preserving its topology in the original space.
In this context, the word topology is used instead of geometry
to denote relative distance between points in a certain space.
The dynamical process that occurs to structure the topology
of data in the maps is known as self-organization and is
inspired by the organization of cognitive functions in
different lobes of the brain.10

The algorithm is an optimization process in which the
weights associated to each node or neuron in a two-
dimensional lattice are adjusted to cluster the input informa-
tion while preserving the topology of the original data. Thus,
the weights are vectors with the same dimension as the input
data, which are initiated with random values. The map used
in the current study to cluster the two sets of data according
to toxicity and molecular features of each chemical was a
two-dimensional 7× 7 grid with hexagonal lattices. This
dimension was selected after analyzing the quality of the
clustering and the number of empty nodes for map sizes
ranging from 5× 5 to 10× 10. The resulting weights define
the cluster or vector centers that sample the input space when
a sufficient number of input vectors selected randomly are
sequentially presented to the network. The weights are
associated with the input variables so that close nodes are
sensitive to inputs that have similar representations of their
characteristics.

The standard algorithm proposed by Kohonen operates in
the following sequence:

1. Presentation of an input vectorxi of dimensionN to
the network;

2. Calculation of the Euclidian distance between this input
vector and all nodes in the network lattice

In this equationxi(t) is the ith component of theN-
dimensional input vector andwij(t) the connection strength
(weight) between the input neuroni and the mapping array
node j at time (position)t in the sequence of total data
presentation to the network. Each of these presentations are
known as epoch;

3. Selection of the node with mininum distance,j* . This
node is the winner neuron or best matching unit (BMU);

4. Update weights of nodej* and neighbors, restricted to
the neighborhoodNj*(t)

for j ∈ Nj*(t) and 1e i e N. Hereη(t) is a function that
decreases monotonically over the environment of the winner
neuron. It defines the region of influence that the input vector
has on SOM. The functionη(t) is defined by the neighbor-
hood functionηo and the learning rateR(t) according to

wherer is the location of the units or neurons on the grid of
the map.T
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Table 2. Best Set of Molecular Descriptors and Experimental Oral Rat Toxicity LD50 for a Heterogeneous Set of 155 Organic Compoundsa

information

compd ID formula 0ø 1ø 4ø EE HP NNR ENA RE NFL κ

exp
log(LD50)

tetrachloromethane tr C 1 Cl 4 5.03E+00 2.26E+00 0.00E+00 -1.84E+01 0.00E+00 2.22E+03 -4.37E+03 -4.08E+01 1.60E+01 1.00E+00 3.37E+00
tribromomethane tr C 1 H 1 Br 3 7.46E+00 3.40E+00 0.00E+00 -1.83E+01 4.11E+00 1.43E+03 -2.81E+03 -3.48E+01 1.30E+01 1.33E+00 3.06E+00
trichloromethane tr C 1 H 1 Cl 3 4.97E+00 1.96E+00 0.00E+00 -1.94E+01 3.10E+00 1.47E+03 -2.87E+03 -4.07E+01 1.30E+01 1.33E+00 2.96E+00
triiodomethane tr C 1 H 1 I 3 9.08E+00 4.33E+00 0.00E+00 -1.77E+01 5.84E+00 1.36E+03 -2.68E+03 -3.15E+01 1.30E+01 1.33E+00 2.55E+00
dichloromethane tr C 1 H 2 Cl 2 4.97E+00 1.60E+00 0.00E+00 -2.05E+01 6.30E+00 8.81E+02 -1.71E+03 -4.09E+01 1.00E+01 2.00E+00 3.20E+00
formaldehyde tr C 1 H 2 O 1 3.12E+00 2.89E-01 0.00E+00 -2.17E+01 1.88E+01 3.92E+02 -7.24E+02 -4.91E+01 6.00E+00 0.00E+00 2.90E+00
formic acid tr C 1 H 2 O 2 3.43E+00 4.94E-01 0.00E+00 -2.74E+01 1.21E+01 9.05E+02 -1.70E+03 -7.09E+01 9.00E+00 2.00E+00 3.04E+00
bromomethane tr C 1 H 3 Br 1 5.96E+00 1.96E+00 0.00E+00 -2.12E+01 4.02E+00 4.38E+02 -8.35E+02 -3.87E+01 7.00E+00 0.00E+00 2.33E+00
chloromethane tr C 1 H 3 Cl 1 5.13E+00 1.13E+00 0.00E+00 -2.17E+01 6.14E+00 4.59E+02 -8.76E+02 -4.12E+01 7.00E+00 0.00E+00 3.26E+00
nitromethane tr C 1 H 3 N 1 O 2 5.26E+00 7.57E-01 0.00E+00 -3.86E+01 1.82E+01 1.61E+03 -3.06E+03 -9.50E+01 1.20E+01 1.33E+00 2.97E+00
methanol tr C 1 H 4 O 1 5.45E+00 4.47E-01 0.00E+00 -2.82E+01 1.23E+01 5.73E+02 -1.07E+03 -6.14E+01 7.00E+00 0.00E+00 3.75E+00
nitrotrichloromethane tr C 1 N 1 O 2 Cl 3 5.16E+00 2.25E+00 0.00E+00 -3.52E+01 1.25E+01 3.94E+03 -7.99E+03 -9.37E+01 2.10E+01 1.85E+00 2.40E+00
1,2,4,5-tetramethylbenzene tr C 10 H 14 2.12E+01 3.65E+00 1.10E+00 -7.80E+01 1.01E+00 6.27E+03 -1.23E+04 -1.95E+02 2.10E+01 2.94E+00 3.84E+00
sec-butyl-benzene tr C 10 H 14 2.07E+01 3.89E+00 1.02E+00 -1.47E+02 5.13E-01 6.41E+03 -1.25E+04 -2.97E+02 2.70E+01 4.00E+00 3.35E+00
1-decanol tr C 10 H 22 O 1 2.98E+01 5.02E+00 1.25E+00 -1.78E+02 2.69E+00 8.33E+03 -1.63E+04 -3.56E+02 3.40E+01 1.00E+01 3.67E+00
1-methyl naphthalene tr C 11 H 10 1.65E+01 3.82E+00 1.39E+00 -1.45E+02 1.03E+00 6.52E+03 -1.26E+03 -3.01E+02 2.70E+01 3.16E+00 3.26E+00
1-dodecanol tr C 12 H 26 O 1 3.52E+01 6.02E+00 1.60E+00 -2.11E+02 3.32E+00 1.03E+04 -2.08E+04 -4.21E+02 4.00E+01 1.20E+01 4.11E+00
1-tetradecanol tr C 14 H 30 O 1 4.06E+01 7.02E+00 1.95E+00 -2.45E+02 2.90E+00 1.27E+04 -2.55E+04 -4.87E+02 4.60E+01 1.40E+01 4.52E+00
1-hexadecanol tr C 16 H 34 O 1 4.61E+01 8.02E+00 2.31E+00 -2.78E+02 2.58E+00 1.52E+04 -3.04E+04 -5.52E+02 5.20E+01 1.60E+01 3.70E+00
1-heptadecanol tr C 17 H 36 O 1 4.88E+01 8.52E+00 2.48E+00 -2.95E+02 2.44E+00 1.64E+04 -3.29E+04 -5.85E+02 5.50E+01 1.70E+01 4.71E+00
tetrachloroethene tr C 2 Cl 4 5.53E+00 2.51E+00 0.00E+00 -7.96E+01 6.43E+00 2.77E+03 -5.45E+03 -6.68E+01 1.80E+01 2.22E+00 3.42E+00
1,1,2-trichlorotrifluoroethane tr C 2 F 3 Cl 3 5.53E+00 2.52E+00 0.00E+00 -3.36E+01 1.61E+00 5.94E+03 -1.09E+04 -9.29E+01 2.50E+01 1.75E+00 4.63E+00
trichloroethene tr C 2 H 1 Cl 3 5.47E+00 2.07E+00 0.00E+00 -3.03E+01 1.36E+00 1.96E+03 -3.85E+03 -6.55E+01 1.50E+01 2.25E+00 3.69E+00
pentachloroethane tr C 2 H 1 Cl 5 7.74E+00 3.29E+00 0.00E+00 -3.37E+01 4.85E+00 4.10E+03 -8.24E+03 -7.29E+01 2.20E+01 1.85E+00 2.96E+00
1,1,2,2-tetrabromoethane tr C 2 H 2 Br 4 1.10E+01 4.86E+00 0.00E+00 -3.31E+01 5.14E+00 3.05E+03 -6.02E+03 -6.50E+01 1.90E+01 2.22E+00 3.08E+00
1,1,2,2-tetrachloroethane tr C 2 H 2 Cl 4 7.68E+00 2.95E+00 0.00E+00 -3.32E+01 5.19E+00 5.47E+03 -1.08E+04 -8.54E+01 2.50E+01 2.22E+00 2.30E+00
chloroethene tr C 2 H 3 Cl 1 5.42E+00 1.06E+00 0.00E+00 -3.20E+01 1.66E+00 7.90E+02 -1.51E+03 -6.34E+01 9.00E+00 2.00E+00 2.70E+00
1,1,1-trichloroethane tr C 2 H 3 Cl 3 7.90E+00 2.20E+00 0.00E+00 -3.59E+01 4.31E+00 2.27E+03 -4.45E+03 -7.31E+01 1.60E+01 1.00E+00 3.98E+00
1,1,2-trichloroethane tr C 2 H 3 Cl 3 7.68E+00 2.52E+00 0.00E+00 -3.61E+01 6.32E+00 2.34E+03 -4.58E+03 -7.38E+01 1.60E+01 2.25E+00 2.92E+00
acetonitrile tr C 2 H 3 N 1 4.95E+00 7.24E-01 0.00E+00 -3.71E+01 1.80E+01 6.89E+02 -1.29E+03 -7.74E+01 8.00E+00 2.00E+00 3.44E+00
2,2,2-trifluoroethanol tr C 2 H 3 O 1 F 3 5.79E+00 1.24E+00 0.00E+00 -4.25E+01 6.44E+01 3.54E+03 -6.90E+03 -1.15E+02 1.90E+01 1.63E+00 2.38E+00
1,2-dibromoethane tr C 2 H 4 Br 2 9.34E+00 3.27E+00 0.00E+00 -3.60E+01 6.75E+00 1.43E+03 -2.89E+03 -6.90E+01 1.30E+01 3.00E+00 2.03E+00
1-bromo-2-chloroethane tr C 2 H 4 Cl 1 Br 1 8.51E+00 2.69E+00 0.00E+00 -3.65E+01 7.23E+00 1.51E+03 -2.94E+03 -7.12E+01 1.30E+01 3.00E+00 1.81E+00
1,2-dichloroethane tr C 2 H 4 Cl 2 7.68E+00 2.10E+00 0.00E+00 -3.70E+01 7.75E+00 1.54E+03 -2.99E+03 -7.34E+01 1.30E+01 3.00E+00 2.83E+00
acetaldehyde tr C 2 H 4 O 1 5.99E+00 8.13E-01 0.00E+00 -3.84E+01 8.00E+00 8.93E+02 -1.69E+03 -8.20E+01 9.00E+00 2.00E+00 2.82E+00
ethylene oxide (oxirane) tr C 2 H 4 O 1 5.82E+00 1.08E+00 2.20E-01 -3.80E+01 1.34E+01 8.89E+02 -1.81E+03 -8.12E+01 9.00E+00 2.22E-01 1.86E+00
acetic acid tr C 2 H 4 O 2 6.36E+00 9.28E-01 0.00E+00 -4.39E+01 7.91E+00 1.57E+03 -3.01E+03 -1.04E+02 1.20E+01 1.33E+00 3.52E+00
methyl formate tr C 2 H 4 O 2 6.39E+00 8.80E-01 0.00E+00 -4.40E+01 9.21E+00 1.57E+03 -3.00E+03 -1.02E+02 1.20E+01 3.00E+00 3.20E+00
bromoethane tr C 2 H 5 Br 1 8.67E+00 2.09E+00 0.00E+00 -3.78E+01 3.12E+00 9.87E+02 -1.90E+03 -7.18E+01 1.00E+01 2.00E+00 3.13E+00
chloroethane tr C 2 H 5 Cl 1 7.84E+00 1.51E+00 0.00E+00 -3.83E+01 9.39E+00 1.01E+03 -1.94E+03 -7.40E+01 1.00E+01 2.00E+00 3.26E+00
nitroethane tr C 2 H 5 N 1 O 2 7.97E+00 1.35E+00 0.00E+00 -5.52E+01 1.52E+01 2.25E+03 -4.59E+03 -1.28E+02 1.50E+01 2.25E+00 3.04E+00
ethanol tr C 2 H 6 O 1 8.15E+00 1.02E+00 0.00E+00 -4.49E+01 8.80E+00 1.13E+03 -2.16E+03 -9.39E+01 1.00E+01 2.00E+00 3.85E+00
dimethyl sulfoxide tr C 2 H 6 O 1 S 1 9.28E+00 2.09E+00 0.00E+00 -4.85E+01 1.64E+01 1.57E+03 -3.19E+03 -9.76E+01 1.30E+01 1.33E+00 4.16E+00
dimethyl sulfide tr C 2 H 6 S 1 9.22E+00 2.44E+00 0.00E+00 -4.31E+01 4.54E+00 9.90E+02 -1.89E+03 -8.25E+01 1.00E+01 2.00E+00 3.52E+00
ethanethiol tr C 2 H 6 S 1 9.05E+00 1.65E+00 0.00E+00 -3.81E+01 6.59E+00 8.51E+02 -1.73E+03 -7.47E+01 9.00E+00 2.00E+00 3.29E+00
1,3-dichloropropene tr C 3 H 4 Cl 2 8.13E+00 2.20E+00 3.02E-01 -4.74E+01 7.58E+00 1.90E+03 -3.84E+03 -9.61E+01 1.50E+01 4.00E+00 2.67E+00
3-chloro-1-propene tr C 3 H 5 Cl 1 8.12E+00 1.62E+00 0.00E+00 -4.84E+01 8.63E+00 1.40E+03 -2.70E+03 -9.53E+01 1.20E+01 3.00E+00 2.85E+00
1,2,3-trichloropropane tr C 3 H 5 Cl 3 1.04E+01 3.07E+00 3.70E-01 -5.25E+01 7.43E+00 3.17E+03 -6.21E+03 -1.06E+02 1.20E+01 3.20E+00 2.51E+00
propanenitrile tr C 3 H 5 N 1 7.65E+00 1.28E+00 0.00E+00 -5.37E+01 1.43E+01 1.20E+03 -2.42E+03 -1.10E+02 1.10E+01 3.00E+00 1.59E+00
1,2-dibromopropane tr C 3 H 6 Br 2 1.22E+01 3.50E+00 0.00E+00 -5.27E+01 5.78E+00 2.25E+03 -4.54E+03 -1.02E+02 1.60E+01 2.25E+00 2.87E+00
1,3-dibromopropane tr C 3 H 6 Br 2 1.20E+01 3.77E+00 1.36E+00 -5.27E+01 3.36E+00 2.16E+03 -4.36E+03 -1.02E+02 1.60E+01 4.00E+00 2.87E+00
1,2-dichloropropane tr C 3 H 6 Cl 2 1.05E+01 2.44E+00 0.00E+00 -5.37E+01 6.55E+00 2.39E+03 -4.66E+03 -1.06E+02 1.60E+01 2.25E+00 3.29E+00
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Table 2. (Continued)

information

compd ID formula 0ø 1ø 4ø EE HP NNR ENA RE NFL κ

exp
log(LD50)

acetone tr C 3 H 6 O 1 8.91E+00 1.20E+00 0.00E+00 -5.51E+01 1.04E+01 1.47E+03 -2.98E+03 -1.15E+02 1.20E+01 1.33E+00 3.76E+00
propionaldehyde tr C 3 H 6 O 1 8.69E+00 1.35E+00 0.00E+00 -5.50E+01 6.34E+00 1.52E+03 -2.91E+03 -1.15E+02 1.20E+01 3.00E+00 3.15E+00
ethyl formate tr C 3 H 6 O 2 9.10E+00 1.47E+00 6.80E-02 -6.06E+01 7.23E+00 2.31E+03 -4.46E+03 -1.35E+02 1.50E+01 4.00E+00 3.27E+00
N,N-dimethylformamide tr C 3 H 7 N 1 O 1.04E+01 1.39E+00 0.00E+00 -6.60E+01 1.37E+01 2.35E+03 -4.53E+03 -1.43E+02 1.50E+01 2.25E+00 3.45E+00
1-nitropropane tr C 3 H 7 N 1 O 2 1.07E+01 1.85E+00 1.75E-01 -7.19E+01 1.20E+01 3.23E+03 -6.22E+03 -1.60E+02 1.80E+01 3.20E+00 2.66E+00
1-propanol tr C 3 H 8 O 1 1.09E+01 1.52E+00 0.00E+00 -6.15E+01 6.87E+00 1.80E+03 -3.46E+03 -1.27E+02 1.30E+01 3.00E+00 3.27E+00
1-butanol tr C 4 H 10 O 1 1.36E+01 2.02E+00 1.58E-01 -7.82E+01 5.65E+00 2.45E+03 -4.94E+03 -1.59E+02 1.60E+01 4.00E+00 2.90E+00
2-butanol tr C 4 H 10 O 1 1.37E+01 1.95E+00 0.00E+00 -7.81E+01 5.71E+00 2.65E+03 -5.14E+03 -1.59E+02 1.60E+01 2.25E+00 3.81E+00
2-methyl-1-propanol tr C 4 H 10 O 1 1.37E+01 1.88E+00 0.00E+00 -7.82E+01 5.74E+00 2.55E+03 -5.14E+03 -1.59E+02 1.60E+01 2.25E+00 3.39E+00
diethyl ether tr C 4 H 10 O 1 1.38E+01 1.99E+00 2.04E-01 -7.82E+01 2.94E+00 2.60E+03 -5.05E+03 -1.58E+02 1.60E+01 4.00E+00 3.08E+00
tert-butyl alcohol tr C 4 H 10 O 1 1.39E+01 1.72E+00 0.00E+00 -7.82E+01 5.60E+00 2.72E+03 -5.28E+03 -1.59E+02 1.60E+01 1.00E+00 3.54E+00
1-butanethiol tr C 4 H 10 S 1 1.45E+01 2.65E+00 4.73E-01 -7.14E+01 4.65E+00 2.27E+03 -4.40E+03 -1.40E+02 1.50E+01 4.00E+00 3.18E+00
diethyl sulfide tr C 4 H 10 S 1 1.46E+01 3.14E+00 6.11E-01 -7.64E+01 3.10E+00 2.35E+03 -4.56E+03 -1.48E+02 1.60E+01 4.00E+00 3.77E+00
diethylamine tr C 4 H 11 N 1 1.49E+01 2.12E+00 2.50E-01 -8.35E+01 2.28E+00 2.56E+03 -4.96E+03 -1.67E+02 1.60E+01 4.00E+00 2.73E+00
thiophene tr C 4 H 4 S 1 7.53E+00 2.41E+00 6.79E-01 -5.78E+01 0.00E+00 1.72E+03 -3.32E+03 -1.18E+02 1.30E+01 1.44E+00 3.15E+00
butyraldehyde tr C 4 H 8 O 1 1.14E+01 1.85E+00 1.18E-01 -7.17E+01 5.28E+00 2.24E+03 -4.32E+03 -1.47E+02 1.50E+01 4.00E+00 3.40E+00
tetrahydrofuran tr C 4 H 8 O 1 1.12E+01 2.08E+00 5.10E-01 -7.18E+01 5.69E+00 2.39E+03 -4.81E+03 -1.49E+02 1.50E+01 1.44E+00 3.22E+00
ethyl acetate tr C 4 H 8 O 2 1.20E+01 1.90E+00 2.03E-01 -7.72E+01 5.35E+00 3.22E+03 -6.26E+03 -1.68E+02 1.80E+01 3.20E+00 3.75E+00
1-chlorobutane tr C 4 H 9 Cl 1 1.33E+01 2.51E+00 4.00E-01 -7.17E+01 5.54E+00 2.42E+03 -4.70E+03 -1.39E+02 1.60E+01 4.00E+00 3.43E+00
2-chlorobutane tr C 4 H 9 Cl 1 1.34E+01 2.35E+00 0.00E+00 -7.17E+01 5.50E+00 2.51E+03 -4.88E+03 -1.39E+02 1.60E+01 2.25E+00 4.24E+00
N,N-dimethyl acetamide tr C 4 H 9 N 1 O 1 1.34E+01 1.82E+00 0.00E+00 -8.27E+01 1.15E+01 3.15E+03 -6.35E+03 -1.76E+02 1.80E+01 2.22E+00 3.69E+00
2-pentanone tr C 5 H 10 O 1 1.43E+01 2.26E+00 3.52E-01 -8.84E+01 7.73E+00 3.13E+03 -6.08E+03 -1.81E+02 1.80E+01 3.20E+00 3.20E+00
3-methyl-2-butanone tr C 5 H 10 O 1 1.45E+01 2.15E+00 0.00E+00 -8.85E+01 7.26E+00 3.24E+03 -6.30E+03 -1.80E+02 1.80E+01 2.22E+00 2.17E+00
pentanal tr C 5 H 10 O 1 1.41E+01 2.35E+00 2.87E-01 -8.83E+01 4.46E+00 2.92E+03 -5.90E+03 -1.80E+02 1.80E+01 5.00E+00 3.51E+00
tetrahydropyran tr C 5 H 10 O 1 1.39E+01 2.58E+00 6.87E-01 -8.85E+01 4.66E+00 3.32E+03 -6.68E+03 -1.82E+02 1.80E+01 2.22E+00 3.48E+00
isopropyl acetate tr C 5 H 10 O 2 1.49E+01 2.30E+00 3.32E-01 -9.38E+01 4.15E+00 4.13E+03 -8.32E+03 -2.00E+02 2.10E+01 3.06E+00 3.48E+00
1-pentanol tr C 5 H 12 O 1 1.63E+01 2.52E+00 3.62E-01 -9.49E+01 4.50E+00 3.38E+03 -6.57E+03 -1.92E+02 1.90E+01 5.00E+00 3.48E+00
3-methyl-1-butanol tr C 5 H 12 O 1 1.64E+01 2.38E+00 2.58E-01 -9.48E+01 4.55E+00 3.39E+03 -6.82E+03 -1.92E+02 1.90E+01 3.20E+00 3.11E+00
pyridine tr C 5 H 5 N 1 8.33E+00 1.85E+00 3.13E-01 -7.41E+01 8.84E+00 2.38E+03 -4.60E+03 -1.58E+02 1.50E+01 2.22E+00 2.95E+00
cyclopentene tr C 5 H 8 1.13E+01 2.15E+00 5.89E-01 -7.68E+01 1.28E+00 2.14E+03 -4.13E+03 -1.52E+02 1.40E+01 1.44E+00 3.22E+00
N-methyl-2-pyrrolidinone tr C 5 H 9 N 1 O 1 1.35E+01 2.54E+00 7.83E-01 -9.29E+01 1.23E+01 3.87E+03 -7.80E+03 -1.99E+02 2.00E+01 1.85E+00 3.59E+00
hexachlorobenzene tr C 6 Cl 6 9.79E+00 4.90E+00 2.00E+00 -7.58E+01 8.60E+00 8.58E+03 -1.70E+04 -1.72E+02 3.30E+01 3.40E+00 4.00E+00
cyclohexanone tr C 6 H 10 O 1 1.44E+01 2.91E+00 9.46E-01 -9.88E+01 6.30E+00 4.00E+03 -7.80E+03 -2.04E+02 2.00E+01 2.34E+00 3.19E+00
cyclohexane tr C 6 H 12 1.62E+01 3.00E+00 1.06E+00 -1.00E+02 0.00E+00 3.38E+03 -6.58E+03 -1.97E+02 1.80E+01 2.22E+00 4.47E+00
1-hexen-3-ol tr C 6 H 12 O 1 1.67E+01 2.62E+00 4.14E-01 -1.05E+02 4.65E+00 3.97E+03 -8.00E+03 -2.13E+02 2.10E+01 4.17E+00 3.67E+00
2-hexanone tr C 6 H 12 O 1 1.70E+01 2.76E+00 4.26E-01 -1.05E+02 6.77E+00 4.02E+03 -7.83E+03 -2.13E+02 2.10E+01 4.17E+00 3.41E+00
3,3-dimethyl-2-butanone tr C 6 H 12 O 1 1.74E+01 2.45E+00 0.00E+00 -1.05E+02 6.15E+00 4.34E+03 -8.48E+03 -2.13E+02 2.10E+01 1.85E+00 2.79E+00
4-methyl-2-pentanone tr C 6 H 12 O 1 1.72E+01 2.62E+00 5.75E-01 -1.05E+02 6.78E+00 4.17E+03 -8.12E+03 -2.13E+02 2.10E+01 3.06E+00 3.32E+00
hexanal tr C 6 H 12 O 1 1.68E+01 2.85E+00 4.78E-01 -1.05E+02 3.86E+00 3.91E+03 -7.61E+03 -2.13E+02 2.10E+01 6.00E+00 3.69E+00
ethyl butyrate tr C 6 H 12 O 2 1.74E+01 2.96E+00 4.37E-01 -1.10E+02 4.13E+00 5.13E+03 -1.00E+04 -2.33E+02 2.40E+01 5.14E+00 4.11E+00
hexanoic acid tr C 6 H 12 O 2 1.72E+01 2.99E+00 5.26E-01 -1.11E+02 0.00E+00 5.00E+03 -9.73E+03 -2.35E+02 2.40E+01 5.14E+00 3.48E+00
n-butyl acetate tr C 6 H 12 O 2 1.74E+01 2.90E+00 3.60E-01 -1.11E+02 3.64E+00 5.07E+03 -9.89E+03 -2.33E+02 2.40E+01 5.14E+00 4.03E+00
hexane tr C 6 H 14 1.88E+01 2.91E+00 5.00E-01 -1.06E+02 0.00E+00 3.37E+03 -6.56E+03 -2.06E+02 1.90E+01 5.00E+00 4.46E+00
1-hexanol tr C 6 H 14 O 1 1.90E+01 3.02E+00 5.39E-01 -1.12E+02 3.91E+00 4.14E+03 -8.32E+03 -2.25E+02 2.20E+01 6.00E+00 2.86E+00
3-methyl-3-pentanol tr C 6 H 14 O 1 1.94E+01 2.84E+00 2.50E-01 -1.11E+02 5.86E+00 4.72E+03 -9.22E+03 -2.25E+02 2.20E+01 2.34E+00 2.85E+00
4-methyl-2-pentanol tr C 6 H 14 O 1 1.93E+01 2.81E+00 6.82E-01 -1.11E+02 6.16E+00 4.44E+03 -8.94E+03 -2.25E+02 2.20E+01 3.06E+00 3.41E+00
diisopropyl ether tr C 6 H 14 O 1 1.96E+01 2.78E+00 5.44E-01 -1.11E+02 2.29E+00 4.65E+03 -9.09E+03 -2.23E+02 2.20E+01 3.06E+00 3.93E+00
dipropylamine tr C 6 H 15 N 1 2.03E+01 3.12E+00 4.79E-01 -1.17E+02 1.42E+00 4.28E+03 -8.35E+03 -2.32E+02 2.20E+01 6.00E+00 2.97E+00
triethylamine tr C 6 H 15 N 1 2.06E+01 3.07E+00 6.71E-01 -1.17E+02 5.59E+00 4.47E+03 -8.98E+03 -2.31E+02 2.20E+01 4.17E+00 2.66E+00
1,2-dichlorobenzene tr C 6 H 4 Cl 2 9.57E+00 2.96E+00 7.10E-01 -7.88E+01 6.35E+00 4.01E+03 -7.85E+03 -1.67E+02 2.10E+01 2.52E+00 2.70E+00
bromobenzene tr C 6 H 5 Br 1 1.03E+01 2.89E+00 7.19E-01 -7.90E+01 5.51E+00 2.97E+03 -5.98E+03 -1.63E+02 1.80E+01 2.34E+00 3.43E+00
chlorobenzene tr C 6 H 5 Cl 1 9.52E+00 2.48E+00 5.60E-01 -7.97E+01 4.27E+00 3.11E+03 -6.06E+03 -1.66E+02 1.80E+01 2.34E+00 3.36E+00
fluorobenzene tr C 6 H 5 F 1 8.76E+00 2.10E+00 4.15E-01 -7.98E+01 9.02E+00 3.05E+03 -6.15E+03 -1.72E+02 1.80E+01 2.34E+00 3.64E+00
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Table 2 (Continued)

information

compd ID formula 0ø 1ø 4ø EE HP NNR ENA RE NFL κ

exp
log(LD50)

iodobenzene tr C 6 H 5 I 1 1.09E+01 3.16E+00 8.23E-01 -7.88E+01 6.39E+00 3.04E+03 -5.92E+03 -1.62E+02 1.80E+01 2.34E+00 3.26E+00
nitrobenzene tr C 6 H 5 N 1 O 2 9.65E+00 2.46E+00 5.37E-01 -9.61E+01 9.09E+00 4.98E+03 -9.67E+03 -2.18E+02 2.30E+01 3.24E+00 2.81E+00
benzene tr C 6 H 6 9.46E+00 2.00E+00 3.85E-01 -8.06E+01 0.00E+00 2.37E+03 -4.58E+03 -1.65E+02 1.50E+01 2.22E+00 3.52E+00
5-methylfurfural (5-methylfuraldehyde) tr C 6 H 6 O 2 1.05E+01 2.34E+00 5.17E-01 -9.16E+01 1.23E+01 4.03E+03 -8.13E+03 -2.03E+02 2.10E+01 2.52E+00 3.34E+00
4-methylpyridine tr C 6 H 7 N 1 1.13E+01 2.26E+00 4.26E-01 -9.09E+01 7.32E+00 3.24E+03 -6.29E+03 -1.91E+02 1.80E+01 2.34E+00 3.11E+00
aniline tr C 6 H 7 N 1 1.10E+01 2.20E+00 4.53E-01 -9.16E+01 5.16E+00 3.24E+03 -6.29E+03 -1.94E+02 1.80E+01 2.34E+00 2.40E+00
2-heptanone tr C 7 H 14 O 1 1.97E+01 3.26E+00 6.24E-01 -1.22E+02 5.97E+00 4.96E+03 -9.67E+03 -2.46E+02 2.40E+01 5.14E+00 3.22E+00
4-heptanone tr C 7 H 14 O 1 1.97E+01 3.33E+00 6.83E-01 -1.22E+02 5.97E+00 5.02E+03 -9.80E+03 -2.46E+02 2.40E+01 5.14E+00 3.57E+00
5-methyl-2-hexanone tr C 7 H 14 O 1 1.99E+01 3.12E+00 4.92E-01 -1.22E+02 6.03E+00 5.12E+03 -9.99E+03 -2.46E+02 2.40E+01 3.94E+00 3.51E+00
heptanal tr C 7 H 14 O 1 1.95E+01 3.35E+00 6.54E-01 -1.22E+02 3.41E+00 4.83E+03 -9.42E+03 -2.46E+02 2.40E+01 7.00E+00 4.15E+00
1-heptanol tr C 7 H 16 O 1 2.17E+01 3.52E+00 7.15E-01 -1.28E+02 3.60E+00 5.22E+03 -1.02E+04 -2.58E+02 2.50E+01 7.00E+00 2.70E+00
benzoic acid tr C 7 H 6 O 2 1.07E+01 2.59E+00 5.81E-01 -1.02E+02 7.05E+00 4.90E+03 -9.54E+03 -2.27E+02 2.30E+01 3.24E+00 3.23E+00
benzyl chloride tr C 7 H 7 Cl 1 1.22E+01 3.06E+00 7.45E-01 -9.60E+01 7.16E+00 3.93E+03 -7.90E+03 -1.98E+02 2.10E+01 3.11E+00 3.09E+00
3-nitrotoluene tr C 7 H 7 N 1 O 2 1.26E+01 2.87E+00 7.24E-01 -1.13E+02 7.89E+00 5.85E+03 -1.18E+04 -2.52E+02 2.60E+01 3.41E+00 3.03E+00
2-methoxynitrobenzene (2-nitroanisole) trC 7 H 7 N 1 O 3 1.30E+01 2.99E+00 7.63E-01 -1.18E+02 9.88E+00 7.28E+03 -1.47E+04 -2.72E+02 2.90E+01 4.13E+00 2.87E+00
1-6-heptadiyne tr C 7 H 8 1.23E+01 2.28E+00 2.93E-01 -1.04E+02 1.37E+00 3.62E+03 -7.05E+03 -2.08E+02 1.90E+01 6.00E+00 3.36E+00
toluene tr C 7 H 8 1.24E+01 2.41E+00 5.34E-01 -9.74E+01 7.49E-01 3.23E+03 -6.27E+03 -1.99E+02 1.80E+01 2.34E+00 3.70E+00
o-cresol (2-hydroxytoluene) tr C 7 H 8 O 1 1.28E+01 2.55E+00 5.63E-01 -1.03E+02 4.98E+00 4.27E+03 -8.30E+03 -2.20E+02 2.10E+01 2.52E+00 2.08E+00
p-cresol (4-hydroxytoluene) tr C 7 H 8 O 1 1.28E+01 2.54E+00 5.45E-01 -1.03E+02 4.98E+00 4.05E+03 -8.16E+03 -2.20E+02 2.10E+01 2.52E+00 2.32E+00
2-aminotoluene tr C 7 H 9 N 1 1.39E+01 2.62E+00 5.87E-01 -1.08E+02 4.39E+00 4.12E+03 -8.27E+03 -2.27E+02 2.10E+01 2.52E+00 2.83E+00
ethyl benzene tr C 8 H 10 1.51E+01 2.97E+00 7.14E-01 -1.14E+02 6.50E-01 4.17E+03 -8.13E+03 -2.31E+02 2.10E+01 3.11E+00 3.54E+00
m-xylene tr C 8 H 10 1.53E+01 2.82E+00 8.07E-01 -1.14E+02 9.11E-01 4.18E+03 -8.14E+03 -2.32E+02 2.10E+01 2.52E+00 3.70E+00
4-ethenylcyclohexene tr C 8 H 12 1.71E+01 3.21E+00 1.03E+00 -1.20E+02 1.17E+00 4.65E+03 -9.08E+03 -2.40E+02 2.20E+01 3.11E+00 3.41E+00
cyclohexyl acetate tr C 8 H 14 O 2 2.04E+01 3.96E+00 1.42E+00 -1.38E+02 3.26E+00 7.27E+03 -1.46E+04 -2.89E+02 2.90E+01 4.00E+00 3.83E+00
di-butyl-ether tr C 8 H 18 O 1 2.47E+01 3.99E+00 5.95E-01 -1.45E+02 1.85E+00 6.30E+03 -1.23E+04 -2.89E+02 2.80E+01 8.00E+00 3.87E+00
acetophenone tr C 8 H 8 O 1 1.33E+01 2.86E+00 6.73E-01 -1.13E+02 8.57E+00 4.87E+03 -9.49E+03 -2.39E+02 2.30E+01 3.24E+00 2.91E+00
1,2,3-trimethylbenzene tr C 9 H 12 1.82E+01 3.24E+00 8.98E-01 -1.31E+02 9.79E-01 5.33E+03 -1.04E+04 -2.65E+02 2.40E+01 2.72E+00 3.70E+00
2,6-dimethyl-4-heptanone tr C 9 H 18 O 1 2.55E+01 4.04E+00 9.94E-01 -1.55E+02 4.90E+00 7.47E+03 -1.46E+04 -3.11E+02 3.00E+01 4.76E+00 3.76E+00
2-nonanone tr C 9 H 18 O 1 2.52E+01 4.26E+00 9.77E-01 -1.55E+02 4.82E+00 6.98E+03 -1.37E+04 -3.12E+02 3.00E+01 7.11E+00 3.51E+00
5-nonanone tr C 9 H 18 O 1 2.52E+01 4.33E+00 8.73E-01 -1.55E+02 4.82E+00 6.90E+03 -1.39E+04 -3.11E+02 3.00E+01 7.11E+00 3.00E+00
1-octadecanol te C 18 H 38 O 1 5.15E+01 9.02E+00 2.66E+00 -3.11E+02 2.32E+00 1.77E+04 -3.55E+04 -6.18E+02 5.80E+01 1.80E+01 4.30E+00
hexachloroethane te C 2 Cl 6 7.79E+00 3.65E+00 0.00E+00 -3.27E+01 4.58E+00 5.34E+03 -1.06E+04 -7.28E+01 2.50E+01 1.75E+00 3.65E+00
1,1,1,2-tetrachloroethane teC 2 H 2 Cl 4 7.74E+00 2.85E+00 0.00E+00 -3.49E+01 5.76E+00 3.17E+03 -6.25E+03 -7.32E+01 1.90E+01 1.63E+00 2.90E+00
1,1-dichloroethane te C 2 H 4 Cl 2 7.84E+00 1.88E+00 0.00E+00 -3.72E+01 4.44E+00 1.59E+03 -3.09E+03 -7.37E+01 1.30E+01 1.33E+00 2.86E+00
2-nitropropane te C 3 H 7 N 1 O 2 1.08E+01 1.74E+00 0.00E+00 -7.19E+01 1.20E+01 3.34E+03 -6.44E+03 -1.60E+02 1.80E+01 2.22E+00 2.86E+00
2-propanol te C 3 H 8 O 1 1.10E+01 1.41E+00 0.00E+00 -6.15E+01 6.12E+00 1.76E+03 -3.56E+03 -1.26E+02 1.30E+01 1.33E+00 3.70E+00
2-butanone te C 4 H 8 O 1 1.16E+01 1.76E+00 0.00E+00 -7.18E+01 9.01E+00 2.31E+03 -4.47E+03 -1.48E+02 1.50E+01 2.25E+00 3.44E+00
methyl propanoate te C 4 H 8 O 2 1.20E+01 1.88E+00 1.44E-01 -7.72E+01 6.04E+00 3.24E+03 -6.29E+03 -1.68E+02 2.20E+01 3.20E+00 3.70E+00
3-pentanone te C 5 H 10 O 1 1.43E+01 2.33E+00 2.50E-01 -8.85E+01 7.65E+00 3.17E+03 -6.15E+03 -1.81E+02 1.80E+01 3.20E+00 3.33E+00
n-propyl acetate te C 5 H 10 O 2 1.47E+01 2.40E+00 2.46E-01 -9.39E+01 4.14E+00 4.13E+03 -8.03E+03 -2.00E+02 2.10E+01 4.17E+00 3.97E+00
3-hexanone te C 6 H 12 O 1 1.70E+01 2.83E+00 4.56E-01 -1.05E+02 6.70E+00 4.06E+03 -7.92E+03 -2.13E+02 2.10E+01 4.17E+00 3.53E+00
cyclohexanol te C 6 H 12 O 1 1.66E+01 3.07E+00 1.08E+00 -1.05E+02 4.04E+00 4.40E+03 -8.59E+03 -2.16E+02 2.10E+01 2.34E+00 3.31E+00
isobutyl acetate te C 6 H 12 O 2 1.76E+01 2.76E+00 2.84E-01 -1.11E+02 3.67E+00 5.24E+03 -1.02E+04 -2.33E+02 2.40E+01 3.94E+00 4.13E+00
1,4-dichlorobenzene te C 6 H 4 Cl 2 9.57E+00 2.95E+00 6.81E-01 -7.88E+01 5.35E+00 3.94E+03 -7.70E+03 -1.67E+02 2.10E+01 2.52E+00 2.70E+00
3-methyl pyridine te C 6 H 7 N 1 1.13E+01 2.26E+00 4.48E-01 -9.09E+01 7.32E+00 3.24E+03 -6.29E+03 -1.91E+02 1.80E+01 2.34E+00 2.60E+00
2,4-dimethyl-3-pentanone te C 7 H 14 O 1 2.01E+01 3.09E+00 6.67E-01 -1.22E+02 5.57E+00 5.21E+03 -1.05E+04 -2.46E+02 2.40E+01 3.11E+00 3.55E+00
2-nitrotoluene te C 7 H 7 N 1 O 2 1.26E+01 2.88E+00 7.52E-01 -1.13E+02 7.89E+00 6.22E+03 -1.21E+04 -2.52E+02 2.60E+01 3.41E+00 2.95E+00
m-cresol (3-hydroxytoluene) te C 7 H 8 O 1 1.28E+01 2.54E+00 6.28E-01 -1.03E+02 4.98E+00 4.21E+03 -8.19E+03 -2.20E+02 2.10E+01 2.52E+00 2.38E+00
styrene te C 8 H 8 1.27E+01 2.61E+00 5.89E-01 -1.07E+02 1.20E+00 3.81E+03 -7.42E+03 -2.20E+02 2.00E+01 3.11E+00 3.70E+00
1,2,4-trimethyl-benzene te C 9 H 12 1.82E+01 3.24E+00 8.91E-01 -1.31E+02 9.79E-01 5.26E+03 -1.03E+04 -2.66E+02 2.40E+01 2.72E+00 3.70E+00

a ø ) valence connectivity index; EE) exchange energy; HP) Hansen polarity; NNR) nuclear-nuclear repulsion; ENA) electron-nuclear attraction; RE) resonance energy; NFL) number of filled
levels;κ ) kappa index.
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The simplest neighboorhood function is the bubble func-
tion, which is constant over the whole neighborhood of the
winner neuron (node) and zero elsewhere. A more convenient
function is the Gaussian neighborhood function defined by

whereσ(t) is the neighborhood radius att, which self-adapts
after each epoch. The type of neighborhood function and
the number of neurons used determine the sensitivity and
the granularity of the map, respectively.

The learning rateR(t) in eq 3 is a decreasing function of
t over [0,1]. A power series function in commonly used

whereRo andRT are respectively the initial and final learning
rates andT is the size of the training set, i.e., the number of
epochs selected for training. Training is coarse over the first
T ) 100 epochs. During this initial trainingR(t) decreases
monotonically according to eq 5, withRo ) 0.5, and the
neighborhood radius changes linearly between an 3 and 1.
This coarse training is refined afterward for the followingT
) 10 000 epochs, keeping the radius at 1 while decreasing
R(t) according to 1/(training samples- 1), with Ro ) 0.05.

SOM is suitable for multivariable data analysis because
of its prominent visualization capabilities. A preliminary idea
of the number of clusters in the SOM as well as of their
spatial relationships can be acquired by visual inspection of
the map. The most common method used to visualize the
cluster structure of SOM is the distance matrix or U-matrix.
The U-matrix indicates the overall shape of the data set by
means of the distances between prototype vectors of neigh-
boring map units. Since neighbor nodes typically have similar
prototype vectors, the U-matrix is closely related to a single
linkage measure.10 From the distance matrix, the different
component maps for each descriptor and for the target
activity variable can be obtained and clustered according to
their topology. The main assumption of the current approach
is that descriptors from the same cluster contribute with the
same type of information to the QSARs. Thus, the repetitive
inclusion of indices from the same cluster into a best set of
molecular descriptors can only be justified after all relevant
information from the other clusters has been considered and
if their correlation with the target variable is higher than the
average for the whole pool of descriptors.

To determine when all relevant information from other
clusters has been considered, it is necessary to analyze the
sensitivity of the maps to input variations. This sensitivity
can be estimated by means of the dissimilarity between two
maps L and M, measured as the averaged difference in their
representation of the sample vectors used for training

In this equationE is the average expectation, andd(x) the
distance fromx to the second BMU, denoted bymc′(x),
beginning at the first BMU or winner neuron, denoted by
mc(x). Of all possible paths betweenmc(x) andmc′(x) the shortest

path passing continuously between neighbor units is selected

This distance, which was proposed by Kaski and Lagus,18

combines an indication of the continuity of the mapping from
the data set to the two-dimensional neural grid with a
measure of the accuracy of the map in representing the data
set.

The smallest average dissimilarity value calculated with
eq 6 for any given set of descriptors indicates the similarity
in quality and quantity of the information represented by the
maps. Thus, the process of including indices to form the best
set of molecular descriptors can be stopped when the
dissimilarity measure stabilizes, i.e., the maps for these
different indices are very similar.

Nevertheless, the clustering of the data set must be quite
accurate to properly answer the question, whatsimilar
means? Since the final objective is to predict toxicity values,
the clusters are labeled according to the toxicity of its center
of mass and the quality of the clustering is determined by
the correlation within the cluster members (homogeneity).
The indices chosen by its minimal average dissimilarity (6)
provide a good representation of the clusters formed and
should constitute the best set of molecular descriptors for
QSPR/QSAR.

FUZZY ARTMAP

Fuzzy ARTMAP,26-28 the neural system chosen to estab-
lish QSAR models once the best set of molecular descriptors
has been determined, is a supervised classifier that learns to
categorize inputs as they are presented online using fuzzy
logic to pattern recognize features. The architecture consists
of a pair of fuzzy ART classifiers (artA and artB) that create
stable recognition categories in response to arbitrary se-
quences of input patterns, as illustrated in Figure 1. The input
vectors include both the molecular descriptors or target
variable and the corresponding conjugates (complement
coding). During supervised learning, the molecular descrip-
tors (input patterns) of each chemical are presented to artA,
while the corresponding values for the target activity or
property are presented to artB. An associative learning
network and an internal controller that ensure autonomous
operation in real time link the information categorized by

ηo ) exp(- |rc - r|2

2σ2(t) ) (4)

R(t) ) Ro(RT

Ro
)t/T

(5)

D(L,M) ) E[dL(x) - dM(x)

dL(x) + dM(x)] (6)

Figure 1. Block diagram of the fuzzy ARTMAP architecture.

d(x) ) |x - mc(x)| + min
i

∑
k)0

Kc′(x)-1

|mIi(k) - mIi(k+1)| (7)
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these two modules. The controller is designed to create the
minimal number of artA categories, or hidden units, needed
to match the accuracy criteria. It incorporates a minimum-
maximum learning rule that enables fuzzy ARTMAP to learn
quickly while ensuring minimum predictive error with
maximum generalization. This scheme automatically links
predictive success to category size on a trial by trail basis
using only local operations. It works by increasing the
vigilance parameterFa of artA by the minimal amount needed
to correct the predictive error at artB.

When an input vector ab formed by the best set of
descriptors is presented to the artA module, the bottom-up
activation from F1a causes the F2a layer to choose a category
based on the fuzzy membership of the input in that category.
Information of chosen category is then sent back to the F1

a

layer, and it is compared with the input vector ab. The fuzzy
intersection of this top-down activation with the input vector
produces a match value that indicates the confidence of the
classification in that given category. The vigilance parameter
Fa sets the threshold confidence value above which artA

accepts the category activated by an input as appropriate,
rather than continue the search for a better class through an
automatically controlled process of hypothesis testing.
Module artB follows an equivalent and simultaneous clas-
sification procedure when presented with the corresponding
activity or property values during training.

The original fuzzy ARTMAP system was not designed to
include predictive capabilities. The modification in archi-
tecture proposed by Giralt et al.29 was implemented to allow
predictions. Once the training of the neural system was
completed, the input and hypothesis layers of artB were
disconnected so that predictions of the target variable (output)
could be obtained from the category layer of artB for any
set of descriptors ab presented as input to artA.

METHODOLOGY

The general procedure proposed here to build QSPR/
QSAR models is summarized in the flow diagram shown in
Figure 2. Briefly, the experimental data for the two different
sets of compounds and toxicities were processed to obtain
the corresponding molecular structure using commercial
software.24 The geometry was optimized using MOPAC 6.0
and SOM was applied. A global map for all available
molecular descriptors and target activity was calculated to
select the best set of descriptors from the pool of available
indices listed previously. The maps corresponding to each
weight, i.e., the component planes (C-planes) for each input
variable, were clustered based on visual inspection and by
using linear correlations and curvilinear component analysis
to unambiguously obtain an ordered representation of the
component planes. This ordering implies that nearby maps
have similar projections to the input data or molecular
descriptors, i.e., highly correlated component planes depict
similar spatial patterns over the two-dimensional neuronal
distribution. The consistency of this clustering process for
the component maps was checked against the values of the
covariances between all variables calculated with the Pearson
algorithm.

To ensure the best description of the input and output
spaces, information from all clusters was first accounted for.
To this end the descriptors with the highest covariance within

each cluster were first selected, with the only restriction that
the covariance was higher that the average value calculated
for the whole pool of indices. After all relevant and
nonrepetitive information from all clusters had been con-
sidered, with one descriptor per cluster included as the first
elements of the best set, additional indices were added in
order of decreasing absolute covariance with the target
variable irrespectively of cluster membership. A map was
obtained for each subset of descriptors formed. The dis-
similarity between these maps was then calculated with eq
6 to obtain an unbiased measure of the information gained
by the addition of each descriptor to the previous subset.
The subset of descriptors whose map yielded the minimal
average dissimilarity was selected as the best molecular input
information to establish sound QSARs for the target variable
considered. This is justified by the fact that any increase in
dissimilarity indicates that the inclusion of the additional
input information to the previous subset does not provide
supplementary information to characterize de data set.

Once the best set of descriptors was chosen, the predictive
fuzzy ARTMAP neural system was used to build the QSARs,
following the procedure proposed by Espinosa et al.16 First,
the experimental toxicity data and the corresponding mo-
lecular descriptors of both sets of chemicals were assigned
to either a train or a test subset using the fuzzy ART neural
classifier. Assignment by classification is usually better than
by a random selection procedure because the target property
or activity might be unevenly distributed over the entire data
set and the use of most of the relevant and redundant
information during training is crucial for developing any
neural network based QSPR/QSAR. The histograms for the
69 data of-log(LC50) and 155 of log(LD50), respectively,
depicted in Figures 3 and 4 show that the distributions of
both sets of toxicity values are indeed uneven over the range
studied. Tables 1 and 2 show that about 85% of compounds
from each set, 59 for LC50 and 135 for LD50, were selected
for training (tr) after presenting the input vectors formed by
the molecular descriptors and the target toxicity value to

Figure 2. Flow diagram of the methodology followed to select
the training and test sets.
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fuzzy ART. The two fuzzy ARTMAP based QSARs for
toxicity of benzene derivatives and for the heterogeneous
set of organic compounds were finally built from the training
sets. It was checked that the above selection procedure
yielded always the lowest errors in the prediction of the test
data (te) for the two toxicity sets compared to the selection
of a training set with random partitioning.

LC50 FOR BENZENE DERIVATIVES

Best Set of Indices. The LC50 toxicity data of 69 benzene
derivatives were clustered with SOM, according to the
integrated methodology summarized in Figure 2 and de-
scribed above. Figure 5 depicts the distribution of six families
(different kind of substituents on the aromatic ring) of
benzene derivatives over the component plane for the target
LC50. The clusters of the different families are identified in
this figure by capital letters: (A) halogen substituents; (B)
hydroxyl; (C) nitro; (D) combined halogens and hydroxyl
groups; (E) alkyl; and (F) additional combination of the
previous ones. The derivatives are distributed according to
family and molecular similarity, i.e., similar families are
located nearby at positions where compounds are similar.
For example, the family A, which is formed by halogenated
derivatives, interfaces at several positions with family D,
which is integrated by derivatives containing a combination
of halogen and hydroxyl groups.

Figure 6 shows the clusters of the component planes
obtained by applying SOM to the target variable and the
pool of 16 topological and quantum descriptors considered
in the current study. Note that the component plane for LC50,
which has been considered in the clusterization process and
is given in Figure 5, is not included in Figure 6 because is
the target variable, i.e., the output information. The corre-
sponding covariance matrix is included in Table 3. The
analysis of these results for this homogeneous family of
compounds shows unambiguously that

(i) The molecular connectivity indices of order one,
two, three, and four and the sum of atomic numbers con-
stitute the first cluster of indices. They show in Table 3

Figure 3. Histogram of-log(LC50) for the entire set of benzene
derivatives.

Figure 4. Histogram of log(LD50) for the entire heterogeneous
set of organic compounds.

Figure 5. Overview of the distribution of the six families of
benzene derivatives with (A) halogen, (B) hydroxyl, (C) nitro, (D)
halogen and hydroxyl, (E) alkyl, and (F) additional substituents
generated by SOM. The gray levels indicate the clustering intensity,
n, of the LC50 data set.

Figure 6. Clusters of the component maps for LC50 with current
descriptors. The gray levels indicate distances.
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consistent high covariances among themselves.
(ii) Both types of polarizability indices, the one calculated

by the additive contribution of Hansen groups and the
average one determined by a semiempirical calculation, are
highly correlated with the number of filled levels, the
nuclear-nuclear repulsion, and the kappa index. They all
form the second cluster.

(iii) The electron nuclear attraction, the resonance energy,
and the exchange energy are correlated among them and
clustered together in the third group of indices.

(iv) The connectivity index of order zero, the dipole
moment, and the Hansen hydrogen index are combined in
the last cluster.

Table 4 includes the dissimilarities measures between 13
sets of molecular descriptors formed according to the
methodology described before. The first set is formed by
the representatives of the four clusters and the other 12 by
adding the remaining 12 indices. The representatives of the
four clusters given in Figure 5 and Table 3 are the
connectivities of order zero and one (0ø, 1ø), the average
polarizability (AP), and the electron nuclear attraction (ENA).
The average dissimilarity reaches the minimum value of
0.1387 when in addition to these four cluster representative
indices the following six ones are included in order of
decreasing absolute covariance with the target LC50: the
connectivity of order three (3ø), the sum of atomic numbers
(N), the connectivity of order two (2ø), the number of filled
levels (NFL), the nuclear-nuclear repulsion (NNR), and the
connectivity of order four (4ø). If the best set of indices had
been formed with the solely criteria of decreasing absolute
covariance the only change would have been the inclusion
of the kappa index (κ) instead of the connectivity of order
zero (0ø). This apparently small modification causes small
but very relevant changes in the classification of several
chemicals as is discussed in the following subsection.

QSAR. The fuzzy ARTMAP model with the best set of
descriptors was trained with 59 compounds selected with
the fuzzy ART classifier (identified bytr in Table 1) with
the vigilance parameter set toFa ) 0.9 and tested for the 10
chemicals identified withte in the same table. The-log-
(LC50) predictions obtained with the fuzzy ARTMAP-based

QSAR are depicted in Figure 7. This QSAR model predicts
the -log(LC50) of the complete data set of 69 compounds
with an average absolute error of 0.02 log units (0.46%) and
a standard deviation of 0.06 log units (1.35%). The average
absolute error and standard deviation for the test set are 0.14
log units (3.18%) and 0.11 log units (2.04%), respectively.

Figure 7 also includes the predictions obtained with a fuzzy
ARTAMP model based on the set of 10 descriptors formed
by strict order of covariance, i.e., by substituting0ø in the
best set byκ. This change modifies the classification of the
3-methyl-2,4-dinitroaniline and 2,6-dimethylphenol in the test
set, which are respectively identified in Figure 7 by the
numbers 1 and 2. While the impact of these changes in
classification on the overall performance is very small, the
consequences are important from the point of view of
individual errors or predictive reliability, as illustrated in
Figure 7. Recognition categories obtained with the best set
of descriptors do not show any misclassification. For
example, the largest relative predictive error of 8.1%
corresponds top-cresol that was classified into the cluster
of its homologousm-cresol.

The performance of the current fuzzy ARTMAP/QSAR
is significantly superior than that for previously reported
multilinear regression models (MLR)19,20 as illustrated also
in Figure 7. The absolute errors and standard deviations for
predicted LC50 with the Hall et al.19 and Gute and Basak20

structure-toxicity models are similar and about 0.22 (5.2%)
and 0.2 (4.3%) log units, compared to and 0.02 (0.05%) and
0.06 (1.4%) log units for the current model. A direct
comparison of the largest relatives errors also corroborates
the superior performance of the present fuzzy ARTMAP-
based QSAR. While the largest relative error of the fuzzy
ARTMAP model is 7.2% for 1,2,4,5-tetrachlorobenzene, the
highest one for the MLR model reported by Gute and Basak20

is 21.1% for the 5-methyl-2,4-dinitroaniline.
It is informative to examine the performance of current

and previous models by inspecting the positional influence
of functional group-specific errors given in Table 5 and
Figure 8. The influence of ring position on toxicity proposed
by Hall et al.19 is presented in Table 5 for chlorobenzenes,
halogenated derivatives with hydroxil substituents, alkyl

Table 3. Clustering and Covariance Matrix Using SOM for the LC50 of Benzene Derivativesa

ID 1ø 3ø N 2ø 4ø AP NFL NNR κ HP ENA RE EE 0ø HH µ LC50

1ø 1.000 0.927 0.911 0.968 0.615 0.798 0.544 0.489 0.351 0.386-0.487 -0.143 -0.067 0.044-0.062 0.013 0.688
3ø 0.927 1.000 0.801 0.924 0.529 0.649 0.350 0.293 0.134 0.230-0.290 0.071 0.134-0.057 -0.040 -0.113 0.672

I N 0.911 0.801 1.000 0.832 0.605 0.852 0.688 0.634 0.541 0.654-0.634 -0.280 -0.144 -0.113 0.076 0.204 0.669
2ø 0.968 0.924 0.832 1.000 0.608 0.659 0.350 0.288 0.131 0.217-0.287 0.055 0.110-0.001 -0.083 -0.113 0.645
4ø 0.615 0.529 0.605 0.608 1.000 0.426 0.288 0.255 0.179 0.254-0.255 -0.027 0.033-0.053 0.021 0.124 0.400
AP 0.798 0.649 0.852 0.659 0.426 1.000 0.906 0.875 0.782 0.739-0.874 -0.642 -0.541 0.199 0.087 0.395 0.586
NFL 0.544 0.350 0.688 0.350 0.288 0.906 1.000 0.994 0.964 0.825-0.994 -0.855 -0.744 0.211 0.109 0.535 0.478

II NNR 0.489 0.293 0.634 0.288 0.255 0.875 0.994 1.000 0.972 0.801-1.000 -0.880 -0.773 0.227 0.100 0.533 0.454
κ 0.351 0.134 0.541 0.131 0.179 0.782 0.964 0.972 1.000 0.813-0.973 -0.900 -0.793 0.196 0.052 0.577 0.361
HP 0.386 0.230 0.654 0.217 0.254 0.739 0.825 0.801 0.813 1.000-0.804 -0.626 -0.461 -0.140 0.322 0.563 0.344
ENA -0.487 -0.290 -0.634 -0.287 -0.255 -0.874 -0.994 -1.000 -0.973 -0.804 1.000 0.880 0.773-0.225 -0.103 -0.535 -0.453

III RE -0.143 0.071-0.280 0.055-0.027 -0.642 -0.855 -0.880 -0.900 -0.626 0.880 1.000 0.975-0.543 -0.162 -0.625 -0.080
EE -0.067 0.134-0.144 0.110 0.033-0.541 -0.744 -0.773 -0.793 -0.461 0.773 0.975 1.000-0.705 -0.128 -0.585 0.038
0ø 0.044 -0.057 -0.113 -0.001 -0.053 0.199 0.211 0.227 0.196-0.140 -0.225 -0.543 -0.705 1.000 0.105 0.228-0.308

IV HH -0.062 -0.040 0.076-0.083 0.021 0.087 0.109 0.100 0.052 0.322-0.103 -0.162 -0.128 0.105 1.000 0.187-0.268
µ 0.013 -0.113 0.204-0.113 0.124 0.395 0.535 0.533 0.577 0.563-0.535 -0.625 -0.585 0.228 0.187 1.000-0.092
LC50 0.688 0.672 0.669 0.645 0.400 0.586 0.478 0.454 0.361 0.344-0.453 -0.080 0.038-0.308 -0.268 -0.092 1.000

a 0-4ø ) valence connectivity index; N) sum of atomic numbers; AP) average polarizability (PM3); NFL) number of filled levels; NNR)
nuclear-nuclear repulsion;κ ) kappa index; HP) Hansen polarity; ENA) electron-nuclear attraction; RE) resonance energy; EE) exchange
energy; HH) Hansen hydrogen;µ ) dipole moment.
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benzenes, and mixed phenol derivatives. For the chloroben-
zene family the absolute mean errors for the Gute and
Basak20 and Hall et al.19 models are 0.11 (2.2%) and 0.04
(1%) log units, respectively, compared to 0.08 log units
(1.6%) for the fuzzy ARTMAP model. The corresponding
standard deviations are 0.11 (2.3%), 0.08 (1.7%), and 0.17
(3.2%) log units. The good performance of MLR models
for the homogeneous chlorobenzene set contrasts with the
relatively high errors of fuzzy ARTMAP, which has immense
generalization capabilities when properly trained. Only 59
chemicals were used to train the fuzzy ARTMAP model for
LC50, seven of which belonging to the chlorobenzene family.
In addition, the quantum chemical descriptors included in
the present pool of 16 molecular indices may not be the best
choice for providing the required information to distinguish
chlorobenzenes. Inspection of Table 5 shows that indeed the
1,3-dichlorobenzene (te) cannot be distinguished from the
1,4-dichlorobenzene (tr), and the 1,2,3,4-tetrachlorobenzene
(tr) from the 1,2,4,5-tetrachlorobenzene (te). In fact, fuzzy
ARTMAP clearly outperforms MLR models and yields LC50

accurate predictions for the other three families of compounds
in Table 5. The errors and standard deviations for all the
compounds included in the training set are zero and

Figure 7. Comparison of experimental with predicted-log(LC50)
toxicity values of benzene derivatives.

Table 4. Dissimilarity Measures between the Maps for the LC50 Set of Benzene Derivativesa

molecular
descriptors

used

0ø, 1ø,
AP,
ENA

0ø, 1ø,
AP,

ENA,
3ø

0ø, 1ø,
AP,

ENA,
3ø, N

0ø, 1ø,
AP,

ENA,
3ø, N,

2ø

0ø, 1ø,
AP,

ENA,
3ø, N,

2ø, NFL

0ø, 1ø,
AP,

ENA, 3ø,
N, 2ø,
NFL,
NNR

0ø, 1ø,
AP,

ENA,
3ø, N,

2ø, NFL,
NNR, 4ø

0ø, 1ø,
AP,

ENA, 3ø,
N, 2ø,
NFL,
NNR,
4ø, κ

0ø, 1ø,
AP,

ENA, 3ø,
N, 2ø,
NFL,

NNR,4ø,
κ, HP

0ø, 1ø,
AP,

ENA, 3ø,
N, 2ø,
NFL,

NNR,4ø,
κ, HP, HH

0ø, 1ø,
AP,

ENA, 3ø,
N, 2ø,
NFL,

NNR, 4ø,
κ, HP,
HH, µ

0ø, 1ø,
AP,

ENA, 3ø,
N, 2ø,
NFL,
NNR,

4ø, κ, HP,
HH, µ, RE

0ø, 1ø,
AP, ENA,
3ø, N, 2ø,

NFL,
NNR,4ø,

κ, HP, HH,
µ, RE, EE av

0ø, 1ø, AP, ENA 0.0484 0.0643 0.0964 0.1258 0.1620 0.1841 0.2192 0.2491 0.3386 0.3850 0.3998 0.4148 0.2240
0ø, 1ø, AP, ENA,

3ø
0.0484 0.0193 0.0522 0.0860 0.1229 0.1459 0.1825 0.2126 0.3022 0.3500 0.3652 0.3806 0.1890

0ø, 1ø, AP, ENA,
3ø, N

0.0643 0.0193 0.0342 0.0693 0.1089 0.1313 0.1688 0.1983 0.2866 0.3351 0.3504 0.3660 0.1777

0ø, 1ø, AP, ENA,
3ø, N, 2ø

0.0964 0.0522 0.0342 0.0471 0.0870 0.1070 0.1474 0.1737 0.2590 0.3081 0.3237 0.3396 0.1646

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL

0.1258 0.0860 0.0693 0.0471 0.0460 0.0660 0.1093 0.1349 0.2246 0.2750 0.2908 0.3071 0.1485

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR

0.1620 0.1229 0.1089 0.0870 0.0460 0.0263 0.0695 0.0956 0.1913 0.2429 0.2592 0.2761 0.1406

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø

0.1841 0.1459 0.1313 0.1070 0.0660 0.0263 0.0498 0.0736 0.1685 0.2208 0.2372 0.2541 0.1387

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø, κ

0.2192 0.1825 0.1688 0.1474 0.1093 0.0695 0.0498 0.0344 0.1319 0.1847 0.2013 0.2187 0.1431

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø,
κ, HP

0.2491 0.2126 0.1983 0.1737 0.1349 0.0956 0.0736 0.0344 0.1031 0.1549 0.1717 0.1894 0.1493

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø, κ,
HP, HH

0.3386 0.3022 0.2866 0.2590 0.2246 0.1913 0.1685 0.1319 0.1031 0.0562 0.0733 0.0935 0.1857

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø, κ,
HP, HH,µ

0.3850 0.3500 0.3351 0.3081 0.2750 0.2429 0.2208 0.1847 0.1549 0.0562 0.0224 0.0437 0.2149

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø, κ,
HP, HH,µ, RE

0.3998 0.3652 0.3504 0.3237 0.2908 0.2592 0.2372 0.2013 0.1717 0.0733 0.0224 0.0242 0.2266

0ø, 1ø, AP, ENA,3ø,
N, 2ø, NFL,
NNR, 4ø, κ,
HP, HH,µ,
RE, EE

0.4148 0.3806 0.3660 0.3396 0.3071 0.2761 0.2541 0.2187 0.1894 0.0935 0.0437 0.0242 0.2423

a 0-4ø ) valence connectivity index;κ ) kappa index; N) sum of atomic numbers; HP) Hansen polarity; HH) Hansen hydrogen; NFL)
number of filled levels;µ ) dipole moment; AP) average polarizability (PM3); RE) resonance energy; EE) exchange energy; ENA) electron-
nuclear attraction; NNR) nuclear-nuclear repulsion.
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insignificant for the test compound 2,4,6-trichlorophenol.
Figures 8a-c depict the experimental and predicted LC50

for benzene derivatives with halogen, hydroxyl, and nitro
substituents. The first family is an extension of the chlo-
robenzes included in Table 5. The absolute mean errors for
predictions in Figure 8a are 0.16 (3.5%), 0.14 (3%), and 0.07
(1.4%) log units for the Gute and Basak20 and Hall et al.19

fuzzy ARTMAP models, respectively. The results for the
hydroxyl substituents plotted in Figure 8b show that the fuzzy
ARTMAP-based QSAR performs well with an absolute mean
error 0.09 (2.4%) log units compared to 0.16 (4.8%) log units
for the Gute and Basak20 and 0.19 (5.2%) log units for the
Hall et al.19 models. Finally, Figure 8c illustrates the influence
of nitro substituents on the toxicity LC50 values in a rather
heterogeneous data set. In this family fuzzy ARTMAP
outperforms literature MLR models19,20 in terms of errors
by a factor larger than ten.

The enormous differences between previous MLR mod-
els19,20and the current fuzzy ARTMAP-based QSAR cannot
be attributed to differences in the quality and quantity of
the molecular information used in the three cases but to the
nonlinear nature and the superior performance of cognitive
classifiers, as has been already demonstrated in the literature.
Gute and Basak20 used multiple linear regression analysis
with seven parameters to model LC50: the Zagreb group
parameter, the path of length nine, structural information for
the zeroth order neighborhood of vertices in a hydrogen-
filled graph, the 3-D Wiener number for hydrogen-filled
structures, the second lowest unoccupied molecular orbital
(LUMO), the heat of formation, and the dipole moment. On
the other hand, Hall et al.19 used multiple linear regression
analysis to obtain the coefficients in a Free-Wilson equation
for each substituent group.

To distinguish the effect of molecular descriptors from
that of algorithm in the performance of the current QSAR
for LC50, a fuzzy ARTMAP model using the indices of Gute
and Basak20 was also derived. This model yielded predictions
for the complete data set of 69 benzene derivatives with an
absolute mean error of 0.02 (0.58%), which is comparable
to that of 0.02 (0.46%) for the current fuzzy ARTMAP
model. Nevertheless, the generalization capability of the
current model with the best set of descriptors is slightly
superior, as shown by the predictions and errors listed in
Table 6 for the 10 compounds that constitute the test set.
The absolute mean error and standard deviation for the fuzzy
ARTMAP-based QSAR with the indices of Gute and Basak20

are 0.17 (3.84%) and 0.13 (2.67%), respectively, compared

Figure 8. Comparison of the positional influence on the-log-
(LC50) toxicity measured and predicted for the three families of
benzene derivatives with (a) halogen, (b) hydroxyl, and (c) nitro
substituents.

Figure 9. Clusters of the component maps for LD50 with current
descriptors. The gray levels indicate distances.
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to 0.14 (3.18%) and 0.11 (2.04%) for the current model.
These differences are due to changes in the classification of
1,3-dichlorobenzene, 3-nitrotoluene, andp-cresol. For ex-
ample, the current model classifies correctly thep-cresol with
its homologouso-cresol and predicts its toxicity with a 5.31%
error, while the fuzzy ARTMAP model with the descriptors
of Gute and Basak20 misclassifies it with the 3-chlorotoluene
and the predictive error increases slightly to 7.26%, as shown
in Table 6.

LD50 FOR ORGANIC COMPOUNDS

Best Set of Indices.The clusters of component maps,
which were obtained from the U-matrix calculated for the
set of indices and the corresponding LD50 values given in
Table 2, are depicted in Figure 9. The component maps in
the four clusters are in good agreement with the Pearson
covariances presented in Table 7. The analysis of these results
for this heterogeneous family of compounds shows unam-
biguously that

(i) The molecular connectivity indices of order zero and
four are correlated with the nuclear nuclear repulsion index,

the number of filled levels, and the kappa index.

(ii) The exchange energy, the resonance energy, and the
electron nuclear attraction indices are correlated among
themselves.

(iii) The connectivity indices of order one, two, and three
are correlated with the average polarizability and the sum
of atomic numbers.

(iv) The Hansen polarizability, the Hansen hydrogen
planes, and the dipole moment are correlated.

It is instructive to compare the clusters of the component
maps for the heterogeneous LD50 set in Figure 9 (Table 7)
with those for the homogeneous LC50 set in Figure 6 (Table
3). In the homogeneous set of benzene derivatives all
topological information contained in the connectivity indices
and in the sum of atomic numbers (mostly in cluster I of
Figure 6) was very relevant in terms of both covariances
with LC50 and cluster representatives (cluster IV). Also, the
need to distinguish isomers gave an important roll to the
average polarizability. The introduction of heterogeneity
reduces the impact of any trend related to homogeneity and

Table 5. Positional Influence of Functional Groups on Acute Toxicity LC50

name formula
exp

-log (LC50)
Gute
et al.20

Hall
et al.19

FAM
-log (LC50)

Chlorobenzenes
chlorobenzene C 6 H 5 Cl 1 3.77 3.75 3.84 3.77
1,2-dichlorobenzene C 6 H 4 Cl 2 4.40 4.29 4.40 4.40
1,3-dichlorobenzenea C 6 H 4 Cl 2 4.30 4.37 4.40 4.62
1,4-dichlorobenzene C 6 H 4 Cl 2 4.62 4.51 4.40 4.62
1,2,3-trichlorobenzene C 6 H 3 Cl 3 4.89 4.89 4.89 4.89
1,2,4-trichlorobenzene C 6 H 3 Cl 3 5.00 5.04 5.00 5.00
1,3,5-trichlorobenzene C 6 H 3 Cl 3 4.74 5.11 4.74 4.74
1,2,3,4-tetrachlorobenzene C 6 H 2 Cl 4 5.43 5.62 5.43 5.43
1,2,4,5-tetrachlorobenzenea C 6 H 2 Cl 4 5.85 5.80 5.85 5.43

Halogen and Hydroxyl Substituents
2,3,4,5,6-pentachlorophenol C 6 H 1 O 1 Cl 5 6.06 6.03 5.96 6.06
2,3,4,5-tetrachlorophenol C 6 H 2 O 1 Cl 4 5.72 5.36 5.40 5.72
2,4,6-tribromophenol C 6 H 3 O 1 Br 3 4.70 4.89 4.64 4.70
2,4,6-trichlorophenola C 6 H 3 O 1 Cl 3 4.33 4.79 4.85 4.30
2,4-dichlorophenol C 6 H 4 O 1 Cl 2 4.30 4.33 4.30 4.30

Alkyl Substituents
toluene C 7 H 8 3.32 3.66 3.51 3.32
1,2-dimethylbenzene C 8 H 10 3.48 3.93 3.74 3.48
1,4-dimethylbenzene C 8 H 10 4.21 3.87 3.74 4.21
1,2,4-trimethylbenzene C 9 H 12 4.21 4.09 3.96 4.21
benzene C 6 H 6 3.40 3.42 3.29 3.40

Halogenated, Nitro, and Hydroxyl Substituents
4-chloro-3-methylphenol C 7 H 7 O 1 Cl 1 4.27 3.87 3.97 4.27
2,4-dinitrophenol C 6 H 4 N 2 O 5 4.04 3.76 3.87 4.04
2-methyl-4,6-dinitrophenol C 7 H 6 N 2 O 5 5.00 4.21 4.09 5.00
4-nitrophenol C 6 H 5 N 1 O 3 3.36 3.61 3.53 3.36
2-chlophenol C 6 H 5 O 1 Cl 1 4.02 3.79 3.74 4.02

a Compounds used for testing.

Table 6. Comparison of the Performance of Fuzzy ARTMAP-Based QSARs for LC50 of Benzene Derivatives Using Gute and Basak20

Descriptors and the Current Best Set during Generalization (Test Compounds)

name formula
exp

-log(LC50)
Gute and
Basak20

relative
error %

current
model

relative
error

1,2,4,5-tetrachlorobenzene C 6 H 2 Cl 4 5.85 5.43 7.18 5.43 7.18
2,4,6-trichlorophenol C 6 H 3 O 1 Cl 3 4.33 4.30 0.69 4.30 0.69
1,3-dichlorobenzene C 6 H 4 Cl 2 4.30 4.62 7.44 4.40 2.32
2,4-dichlorotoluene C 7 H 6 Cl 2 4.54 4.74 4.40 4.74 4.40
3-nitrotoluene C 7 H 7 N 1 O 2 3.63 3.75 3.35 3.57 1.65
5-methyl-2,6-dinitroaniline C 7 H 7 N 3 O 4 4.18 4.21 0.72 4.21 0.72
2-methyl-5-nitroaniline C 7 H 8 N 2 O 2 3.35 3.24 3.24 3.24 3.28
p-cresol (4-hydroxytoluene) C 7 H 8 O 1 3.58 3.84 7.26 3.77 5.31
3-methyl-2,4-dinitroaniline C 7 H 7 N 3 O 4 4.26 4.21 1.17 4.21 1.17
2,6-dimethylphenol C 8 H 10 O 1 3.75 3.86 2.93 3.86 2.93
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Table 7. Clustering and Covariance Matrix Using SOM for the LD50 of a Heterogeneous Set of Organic Compoundsa

ID 0ø NNR NFL κ 4ø EE RE ENA 1ø 3ø AP 2ø N HP HH µ LD50

0ø 1.000 0.881 0.874 0.900 0.799-0.947 -0.933 -0.876 0.846 0.614 0.568 0.441 0.514-0.308 -0.063 -0.049 0.432
NNR 0.881 1.000 0.988 0.845 0.852-0.900 -0.910 -0.984 0.886 0.751 0.724 0.537 0.684-0.205 -0.063 -0.005 0.392

I NFL 0.874 0.988 1.000 0.842 0.831-0.900 -0.907 -0.974 0.891 0.754 0.756 0.559 0.705-0.221 -0.072 -0.027 0.389
κ 0.900 0.845 0.842 1.000 0.734-0.859 -0.844 -0.848 0.815 0.573 0.518 0.374 0.531-0.231 -0.026 -0.001 0.365
4ø 0.799 0.852 0.831 0.734 1.000-0.847 -0.850 -0.826 0.825 0.714 0.702 0.420 0.565-0.282 -0.156 -0.114 0.356
EE -0.947 -0.900 -0.900 -0.859 -0.847 1.000 0.993 0.883-0.788 -0.599 -0.653 -0.339 -0.448 0.276 0.079-0.004 -0.402

II RE -0.933 -0.910 -0.907 -0.844 -0.850 0.993 1.000 0.891-0.770 -0.593 -0.659 -0.323 -0.439 0.245 0.055-0.057 -0.391
ENA -0.876 -0.984 -0.974 -0.848 -0.826 0.883 0.891 1.000-0.875 -0.734 -0.688 -0.530 -0.677 0.190 0.046-0.014 -0.388
1ø 0.846 0.886 0.891 0.815 0.825-0.788 -0.770 -0.875 1.000 0.842 0.735 0.752 0.861-0.349 -0.181 -0.229 0.326
3ø 0.614 0.751 0.754 0.573 0.714-0.599 -0.593 -0.734 0.842 1.000 0.702 0.626 0.789-0.267 -0.155 -0.259 0.220

III AP 0.568 0.724 0.756 0.518 0.702-0.653 -0.659 -0.688 0.735 0.702 1.000 0.571 0.684-0.313 -0.232 -0.176 0.188
2c 0.441 0.537 0.559 0.374 0.420-0.339 -0.323 -0.530 0.752 0.626 0.571 1.000 0.912-0.258 -0.165 -0.284 0.174
N 0.514 0.684 0.705 0.531 0.565-0.448 -0.439 -0.677 0.861 0.789 0.684 0.912 1.000-0.224 -0.136 -0.245 0.167
HP -0.308 -0.205 -0.221 -0.231 -0.282 0.276 0.245 0.190-0.349 -0.267 -0.313 -0.258 -0.224 1.000 0.658 0.472-0.289

IV HH -0.063 -0.063 -0.072 -0.026 -0.156 0.079 0.055 0.046-0.181 -0.155 -0.232 -0.165 -0.136 0.658 1.000 0.196-0.205
µ -0.049 -0.005 -0.027 -0.001 -0.114 -0.004 -0.057 -0.014 -0.229 -0.259 -0.176 -0.284 -0.245 0.472 0.196 1.000-0.083
LD50 0.432 0.392 0.389 0.365 0.356-0.402 -0.391 -0.388 0.326 0.220 0.188 0.174 0.167-0.289 -0.205 -0.083 1.000

a ø ) valence connectivity index; NNR) nuclear-nuclear repulsion; NFL) number of filled levels;κ ) kappa index; EE) exchange energy;
RE ) resonance energy; ENA) electron-nuclear attraction; AP) average polarizability (PM3); N) sum of atomic numbers; HP) Hansen
polarity; HH ) Hansen hydrogen;µ ) dipole moment.

Table 8. Dissimilarity Measures between the Maps for the LD50 of the Heterogeneous Set of Compoundsa

molecular
descriptors

used
0ø, 1ø,

EE, HP

0ø, 1ø,
EE, HP,

NNR

0ø, 1ø,
EE, HP,
NNR,
RE

0ø, 1ø,
EE, HP,

NNR, RE,
NFL

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,
ENA

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,

ENA, κ

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,
ENA,
κ, 4ø

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,

ENA,κ,
4ø, 3ø

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,

ENA,κ,
4ø, 3ø,
HH

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,

ENA,κ,
4ø, 3ø,

HH, AP

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,

ENA, κ,
4ø, 3ø,
HH, 2ø

0ø, 1ø,
EE, HP,

NNR, RE,
NFL,
ENA

κ, 4ø, 3ø,
HH, 2ø, N

0ø, 1ø,
EE, HP,
NNR,

RE, NFL,
ENA, κ,

4ø, 3ø, HH,
2ø, N, µ

0ø, 1ø, EE, HP 0.0491 0.0845 0.1075 0.1265 0.18960.2471 0.2815 0.3221 0.3410 0.3615 0.3908 0.4499
0ø, 1ø, EE, HP, NNR 0.0491 0.0390 0.0612 0.0806 0.14460.2035 0.2387 0.2802 0.2996 0.3208 0.3513 0.4136
0ø, 1ø, EE, HP,

NNR, RE
0.0845 0.0390 0.0260 0.0468 0.1095 0.1686 0.2049 0.2466 0.2664 0.2881 0.3194 0.3835

0ø, 1ø, EE, HP,
NNR, RE, NFL

0.1075 0.0612 0.0260 0.0219 0.0856 0.1456 0.1823 0.2241 0.2443 0.2663 0.2981 0.3631

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA

0.1265 0.0806 0.0468 0.0219 0.0664 0.1269 0.1641 0.2058 0.2262 0.2484 0.2806 0.3461

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA, κ

0.1896 0.1446 0.1095 0.0856 0.0664 0.0630 0.1013 0.1431 0.1646 0.1881 0.2221 0.2881

0ø, 1ø, EE, HP,
NNR, RE, NFL,
ENA, κ, 4ø

0.2471 0.2035 0.1686 0.1456 0.1269 0.0630 0.0421 0.0821 0.1049 0.1300 0.1638 0.2304

0ø, 1ø EE, HP, NNR,
RE, NFL, ENA,
κ, 4ø, 3ø

0.2815 0.2387 0.2049 0.1823 0.1641 0.10130.0421 0.0460 0.0671 0.0935 0.1290 0.1953

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA, κ,
4ø, 3ø, HH

0.3221 0.2802 0.2466 0.2241 0.2058 0.14310.0821 0.0460 0.0296 0.0601 0.0913 0.1527

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA, κ,
4ø, 3ø, HH, AP

0.3410 0.2996 0.2664 0.2443 0.2262 0.16460.1049 0.0671 0.0296 0.0348 0.0707 0.1340

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA, κ,
4ø, 3ø, HH, 2ø

0.3615 0.3208 0.2881 0.2663 0.2484 0.18810.1300 0.0935 0.0601 0.0348 0.0468 0.1122

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA, κ,
4ø, 3ø, HH,
2ø, N

0.3908 0.3513 0.3194 0.2981 0.2806 0.22210.1638 0.1290 0.0913 0.0707 0.0468 0.0770

0ø, 1ø, EE, HP,
NNR, RE,
NFL, ENA, κ,
4ø, 3ø, HH, 2ø,
N, µ

0.4499 0.4136 0.3835 0.3631 0.3461 0.28810.2304 0.1953 0.1527 0.1340 0.1122 0.0770

average 0.2459 0.2068 0.1819 0.1688 0.1617 0.14720.1423 0.1455 0.1570 0.1653 0.1792 0.2034 0.2621

a 0-4ø ) valence connectivity index;κ ) kappa index; N) sum of atomic numbers; HP) Hansen polarity; HH) Hansen hydrogen; NFL)
number of filled levels;µ ) dipole moment; AP) average polarizability (PM3); RE) resonance Energy; EE) exchange energy; ENA)
electron-nuclear attraction; NNR) nuclear-nuclear repulsion.
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the need for redundancy in topological information and
enhances the roll of quantum chemical descriptors.

Again, maps for the different subsets of descriptors are
compared by the dissimilarity measures given in Table 8.
The best set of indices for LD50 is integrated by the following
10 molecular descriptors: the molecular connectivity indices
of order zero, one, and four, the kappa index, the exchange
energy, the Hansen polarizability, the nuclear nuclear repul-
sion, the resonance energy, the number of filled levels, and
the electron nuclear attraction. The changes with respect to
the LC50 best set are the substitution of the connectivity of
second and third order, the sum of atomic numbers and the
averatge polarizability by the exchange energy, the Hansen
polarizability, the resonance energy, and the kappa index.

QSAR. The performance of the fuzzy ARTMAP toxicity
model for LD50 with the best set of descriptors selected above
is depicted in Figure 10, where predictions are compared
with experimental values. The mean absolute error is 0.02
(0.53%) log units with a standard deviation of 0.07 (1.84%)
log units for the entire data set listed in Table 2. The absolute
mean errors for the training and test sets are 0.00 (0.06%)
and 0.13 (3.68%) log units, respectively. The standard
deviations for these two sets respectively are 0.07 (1.84%)
and 0.15 (3.92%) log units. The largest individual error of
12.50% obtained with this model corresponds to then-propyl
acetate. This and other smaller errors are not caused by
misclassification of the any of the 155 heterogeneous
compounds included in the LD50 set. For example, the
n-propyl acetate is correctly classified with its homologous
isopropyl acetate. It should be noted that specific interactions
play an essential roll in the toxicity of any compound; small
stereochanges can alter significantly toxicity and, thus,
generate predictive errors as large as the 12.50% above
without misclassification.

CONCLUSIONS

The identification of relevant molecular indices for QSAR
can be carried out systematically by the use of self-organizing
maps, since it is possible to establish the influence of input
parameters in their topology and to cluster them according

to similarities. The selection of the minimum set of most
significant indices necessary to distinguish, for example,
between toxic and nontoxic compounds has been carried out
by incorporating the more representative indices of each
cluster as well as the ones with higher absolute covariance
with the target variable. The two best sets with 10 different
indices for LC50 and LD50 have been used as input to a fuzzy
ARTMAP classifier, modified to effect predictive capabili-
ties.

The fuzzy ARTMAP-based QSAR for LC50 predicts the
toxicity of 69 benzene derivatives without misclassifications
and with average absolute errors of 0.02 (0.46%) and 0.14
(3.18%) log units for the whole and test sets, respectively.
This neural system outperforms the two previously reported
QSAR models19,20 both in terms of overall errors and
classification. The fuzzy ARTMAP based QSAR for the
toxicity LD50, of 155 heterogeneous compounds yield
predictions with mean errors of 0.02 (0.53%) log units for
the complete data set and 0.13 (3.68%) log units for the test
set. The largest single error of 12.50% observed corresponds
to then-propyl acetate and is not caused by misclassification.
As a consequence, the proposed integrated SOM-fuzzy
ARTMAP approach is a useful tool to establish systemati-
cally sound QSAR/QSPR models.
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