
Pattern Recognition 41 (2008) 995–1011
www.elsevier.com/locate/pr

Extensions of vector quantization for incremental clustering
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Abstract

In this paper, we extend the conventional vector quantization by incorporating a vigilance parameter, which steers the tradeoff between
plasticity and stability during incremental online learning. This is motivated in the adaptive resonance theory (ART) network approach and is
exploited in our paper for forming a one-pass incremental and evolving variant of vector quantization. This variant can be applied for online
clustering, classification and approximation tasks with an unknown number of clusters. Additionally, two novel extensions are described: one
concerns the incorporation of the sphere of influence of clusters in the vector quantization learning process by selecting the ‘winning cluster’
based on the distances of a data point to the surface of all clusters. Another one introduces a deletion of cluster satellites and an online split-
and-merge strategy: clusters are dynamically split and merged after each incremental learning step. Both strategies prevent the algorithm to
generate a wrong cluster partition due to a bad a priori setting of the most essential parameter(s). The extensions will be applied to clustering
of two- and high-dimensional data, within an image classification framework and for model-based fault detection based on data-driven evolving
fuzzy models.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays clustering plays an important role, whenever data
bases or data sets should be divided into local areas and new
observations be classified based on these local areas (denoting
different states or patterns within the system). Other application
tasks for clustering include the rule extraction for fuzzy mod-
els or forming neurons for neural networks. Data compression
for huge data bases can be carried out as well. This is possible
due to the fact that a cluster always can be seen as a group of
data that are more similar to each other than data belonging to
other clusters, see Ref. [1]. In this sense, a cluster center repre-
sents also a compact information about a local area or distinct
data cloud within the data. A popular and widely applied clus-
tering algorithm is vector quantization [2], which moves clus-
ter centers denoted as code-book vectors towards accumulation
points in the data set, a more detailed description follows in
Section 2. In literature there are several extensions of vector
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quantization proposed, the most famous ones are the self-
organizing maps (SOM) going back to Kohonen [3] and neural
gas network [4,5]. With the usage of both, different topologies
can be exploited (such as circular or grid ones), where ref-
erence vectors which are neighbors in the network topology
should possess similar weight vectors, i.e. cluster centers. An
extension for supervised learning tasks is the learning vector
quantization (LVQ) approach [6], which is for the purpose to
generate reference vectors which are then used for classifica-
tion of new samples (usually by nearest-neighbor approach).

In nowadays industrial systems a special emphasis is given
on incremental clustering processes. This is because in vari-
ous applications quite often online measurements are recorded
resulting in data streams. These data streams can roughly be
thought of as an ordered sequence of data items, where the
input arrives more or less continuously as time progresses
[7,8]. Hence, the data streams must generally be processed in
an online manner to guarantee that results are up-to-date (e.g.
a clustering structure) and that queries can be answered with a
small time delay (e.g. online classification statements based on
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clusters). This circumstance demands a self-automatic fast
incremental and evolving procedure for building up clusters
on a sample per sample basis, usually without using any
prior data. Different approaches have been presented in lit-
erature such as incremental mixture models [9,10], online
k-means algorithm [11] or a recursive calculation of cluster
potentials [12] (a kind of incremental extension of subtractive
clustering [13]).

In this paper an incremental and evolving variant of vec-
tor quantization is demonstrated, which builds up and up-
dates clusters sample per sample with new incoming data. In
this sense, it also omits the pre-definition of the number of
clusters, which has to be sent as parameter into conventional
vector quantization. Second, a different distance strategy is
incorporated by taking the distance of new incoming points
to the range of influence of clusters and not to the cluster
centers themselves. Of course, the range of influence in each
direction is also calculated incrementally. Third, a satellite
deletion strategy is proposed to remove not significant clusters
(satellites) after the complete learning process. This can be
not only applied in connection with the incremental clustering
approach described in this paper, but also in connection with
arbitrary crisp clustering techniques which generate cluster
centers. Fourth, a split-and-merge strategy is described, which
guides the incremental clustering process to cluster partitions
with a high quality (i.e. to cluster structures representing the
clustered nature of data streams quite well), even though an
undesired setting of the most essential vigilance parameter
was carried out in advance (before starting the whole learn-
ing process). In this sense, it omits a strong dependency of a
reasonable performance of the whole approach on an appro-
priate parameter setting, which is hardly possible to guess in
advance. This strategy can be generically applied after each
incremental learning step for all incremental clustering vari-
ants, which update cluster centers and ranges of influence.
All these issues will be demonstrated in different subsections
within Section 3. In Section 4 the extensions of vector quanti-
zation will be compared with conventional vector quantization
and some other well-known clustering methods based on
well-known high-dimensional clustering data sets with respect
to the quality of the obtained clusters measured by a well-
known cluster validation index. A performance comparison of
the various clustering methods based on image classification
and on evolving high-dimensional fuzzy models, which are
further used in an online fault detection framework for ob-
taining high fault detection rates, rounds off the Evaluation
section.

2. Vector quantization

The purpose of vector quantization [2] originally stems
from encoding discrete data vectors to compress data which
have to be transferred quickly e.g. for online communica-
tion channels. The prototypes, called code-book vectors here,
are the representatives for similar/nearby lying data vec-
tors. From the mathematical point of view, vector quantiza-
tion is basically a simplified version of k-means clustering

in sample-mode adaptation, i.e. it is capable to update the pa-
rameters point-wise. This should be not confused with a form
of incremental clustering, where no iterations over the com-
plete data set are possible. Let the dimensionality of the data to
be clustered be p. The amount of code-book vectors (clusters)
C has to be parameterized a priori, where each cluster has p
parameters corresponding to the p components of each cluster
center. With these notations and assuming that the input data are
a priori normalized due to their range (this is necessary as dis-
tances between multi-dimensional data vectors are calculated),
the algorithm for vector quantization can be formulated as in
Algorithm 1.

Algorithm 1. Vector quantization.

1: Choose initial values for the C cluster centers �ci, i =
1, . . . , C, e.g. simply by taking the first C data points as
cluster centers.

2: Fetch out the next data sample of the data set.
3: Calculate the distance of the selected data point to all

cluster centers by using a pre-defined distance measure.
Commonly, Euclidean distance is used.

4: Elicit the cluster center which is closest to the data point
by taking the minimum over all calculated distances →
winning cluster represented by its center cwin.

5: Update the p components of the winning clus-
ter by moving it towards the selected point �x:

�c(new)
win = �c(old)

win + �(�x − �c(old)
win ), (1)

where the step size � ∈ [0, 1] has to be chosen a priori
and should be chosen appropriately. A value for � equal to
1 would move the winning cluster exactly to the selected
data point in each iteration, a value near 0 would not
give a significant change for the cluster center over all
iterations, so a value between 0 and 1 is a more reasonable
choice.

6: If the data set contains data points which were not pro-
cessed through steps 2–5, goto step 2.

7: If any cluster center was moved significantly in the
last iteration, say more than �, reset the pointer to the
data buffer at the beginning and goto step 2, otherwise
stop.

It has to be remarked that indeed mostly the Euclidean norm
is used resulting in ellipsoidal clusters parallel to the main axes,
but others are also possible: for instance, with Mahalanobis dis-
tance ellipsoidal clusters in general position can be achieved
[14,15]. Furthermore, for a good convergence an adaptive learn-
ing gain � is recommended [16], which decreases with the
number of iterations.

3. Extensions of vector quantization

In this section necessary and recommended extensions are
demonstrated to be able to apply vector quantization for online
clustering tasks and to data sets with an unknown number of
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clusters. Moreover, an alternative distance strategy for omitting
more cluster centers in wide data clouds and a cluster satel-
lite deletion technique are demonstrated. The latter one assures
that cluster artifacts which can come up during the incremental
clustering process (e.g. due to significant movements of cluster
centers) are deleted. Furthermore, a split-and-merge strategy
will be proposed, which overcomes the drawback of generat-
ing incorrect cluster partitions due to a priori, inappropriately
set parameters.

3.1. Vector quantization in incremental mode

Algorithm 1 cannot be reasonably applied for online pro-
cesses, where incremental clustering is demanded, meaning
clustering techniques which update their parameter for each
newly loaded data block or even for each single data sample
without taking into account prior data. This is because Algo-
rithm 1 iterates over the loaded data buffer several times. If
this would be carried out for each incremental learning step
i.e. for each actual loaded data block separately, the cluster
centers would only represent a reliable partition of this data
block and forget the older data completely. Indeed, it is the-
oretically possible to collect all the data points recorded or
loaded so far, keep it in the virtual memory and perform a re-
estimation of the cluster centers from time to time. This pro-
cedure, however, would result in an inacceptable computation
performance, which could be verified in Ref. [17], when train-
ing fuzzy models from data with the help of vector quantization
for input/output space partitioning and rule generation (see also
Section 4.3).

Moreover, the number of clusters has to be known in ad-
vance, which can be a significant drawback, especially in case
of high-dimensional data sets as the number of clusters can usu-
ally not be seen. Furthermore, in the case of online clustering
the number of clusters are never known in advance as usually
the data have to be processed through the algorithm as these
are loaded (e.g. for online streams in data bases) or recorded
(e.g. for online measurement systems). It should be noticed that
for the offline case this problem can be indeed solved by apply-
ing cluster validation indices [18] and choosing that partition
with that number of clusters which optimizes the cluster vali-
dation index. However, for the online case the drawback still
remains. It could be also inspected that the convergence of con-
ventional vector quantization may be weak, when taking, for in-
stance, the first C data points as the C cluster centers to start, see
Section 4.1.

Hence, for omitting these drawbacks the idea of adaptive
resonance theory (ART) network [19] is exploited. These net-
works consist of neurons which are able to adapt to new in-
formation without forgetting or overwriting already learned re-
lationships, so as to overcome the famous stability/plasticity
dilemma. In ART networks, especially in the ART-2 algorithm,
this conflict is solved by the introduction of a vigilance pa-
rameter, which controls the tradeoff between adaptation of
already learned clusters and generation of new clusters. In
this sense, for each new data point the following condition is

checked:

‖�x − �cwin‖A �� and �x is not faulty (2)

with �x the actual data point, �cwin the winning cluster and A the
norm-inducing distance. If this condition is fulfilled, the proto-
type cC+1 of the new (the C + 1th) cluster is set to the actual
data point. In fact, it is true that the problem of a priori defining
the number of clusters C is shifted to finding a good value for
the vigilance parameter �. However, a better assessment for the
value of this parameter can be achieved, when clustering is ap-
plied onto data normalized into the hypercube [0, 1]p: it denotes
the maximal distance of a new data point to the cluster partition
obtained so far, such that no new cluster needs to be set. In a
trial and error tuning phase with quite a lot different data sets it
turned out that the following choice of this parameter should be
preferred:

� = 0.3
√

p√
2

. (3)

This fixed setting can made flexible by the split-and-merge
strategy which will be discussed in Section 3.4. The depen-
dency of � on the p-dimensional space diagonal, i.e.

√
p, can

be explained with the curse of dimensionality effect: the higher
the dimension, the greater the distance between two adjacent
data points, see Ref. [20]; therefore, the parameter � should
get the larger so as to prevent the algorithm to generate too
much clusters and causing strong overfitting effects. The sec-
ond part of condition (2) assures that the new data point does
not represent a faulty situation during data recordings, simply
denoted as ‘�x is not faulty’. In this sense, a faulty data point
or a faulty point is defined as a measurement or a data sam-
ple which is recorded during a faulty situation at a system, e.g.
a broken interface, an overheated sensor and so on. Indeed, it
is very hard to decide whether a new incoming data point ly-
ing far outside previously loaded data clouds denotes a new
operating condition, which should be in fact included into the
clustering process, or a faulty situation, which should be not
included. It is worthy to mention that in a fault detection frame-
work [21,22] (where the extended version of vector quantiza-
tion was applied for training fuzzy models) faulty points could
be detected and marked before and hence omitted in the clus-
tering process. Another possibility for excluding such points is
to wait for a certain amount of data points occurring in the same
newly gathered local area and to compare this local area with
respect to its range of influence, density and number of data
points with the other already obtained local areas ( = clusters)
so far. If it is completely different, a fault is more likely than a
new operating condition, as various operating conditions usu-
ally possess more similar ranges, densities, etc. In this case,
no new cluster would be generated. With these notations, vec-
tor quantization in incremental mode can be described as in
Algorithm 1.
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Algorithm 2. Vector quantization in incremental mode
(VQ-INC).

1: Initialize the number of clusters to 0
2: Collect a few tens of data samples and

estimate the ranges of all p variables
3: Take the next incoming data point (online

case) or fetch out a data sample from a data
matrix randomly or ordered (offline case)
and normalize it according to the ranges,
let us call it �x

4: if number of clusters = 0 then
5: Set i = 1
6: Set the first center c1 to the actual data point, hence

�c1 = �x
7: goto step 17
8: end if
9: Calculate the distance of the selected data

point to all cluster centers by using a pre-
defined distance measure. Commonly, Eu-
clidean distance is used

10: Elicit the cluster center which is closest
to the data point by taking the minimum
over all calculated distances → winning
cluster represented by its center cwin

11: if ‖�x−cwin‖A �� and �x is not faulty then
12: Set i = i + 1
13: Set �ci = �x
14: goto step 17
15: end if
16: Update the p components of the winning

cluster by moving it towards the selected
point �x, as in Eq. (1)

17: if �x is not faulty then
18: Update the ranges of all p variables
19: end if
20: If the data matrix still contains uncovered

data (offline case) or new incoming data
points are still available (online case) goto
step 3, otherwise stop.

From this definition it can be realized that each (newly
loaded) data point is processed only once through the update
process. This is quite reliable (opposed to conventional vector
quantization) as cluster centers are already initialized in new
local data clouds and hence restricted to move therein (due to
the fact that a movement is carried out only within a radius
smaller than or equal to �). For this algorithm, the learning gain
� cannot be decreased by the amount of iterations as no iter-
ations take place. On keeping it constant, it would result in a
bad convergence of the algorithm, as no matter how many data
points belong to one cluster (i.e. for which this cluster was the
winning cluster) the shift of the center would be always to the
same extent, causing a fluctuating cluster structure. A possibil-
ity for preventing this situation can be accomplished by steer-
ing � with the amount of data points belonging to each cluster

in a monotonic decreasing way:

�i = 0.5

ki

∀i (4)

with ki the number of data points belonging to cluster i. This
is implemented in this way in Algorithm 2 and a reasonable
choice as in k-means clustering algorithm [23] the step size is
also normalized by this number, whereas original vector quan-
tization is a simplified version of k-means clustering. Please
note that there are also some synergies to the CEM algorithm
(applied for incremental learning of Gaussian mixture models),
which generalize the update of the centers by multiplying the
inverse of the covariance matrix with the learning gain, see also
Ref. [9]. An estimation of an initial range is done by the first few
dozen of data samples, by which the data samples are normal-
ized before being processed through the core part of Algorithms
2 and 3. After that the ranges are updated further for each new
incoming fault-free sample (step 18). As it is not straightfor-
ward to decide, whether a new data sample represents a faulty
or a non-faulty situation (see comments above), an alternative
would be to apply 5%—respectively, 95%—quantiles (calcu-
lated incrementally) for estimating the range.

3.2. An alternative distance strategy

The problem with vector quantization in incremental mode
is that in the case of wider data clouds or points belonging to-
gether widely spread over the input space Algorithm 2 tends to
generate more clusters than necessary and hence performs an
‘overclustering’ and incorrect partition of the input space. This
fact is underlined in the left image of Fig. 1, where obviously
three clusters are the optimal case, but five clusters are gener-
ated. This is because for the big data pattern three clusters are
produced instead of one.

The reason for this unpleasant occurrence lies at hand: Algo-
rithm 2 (as well as conventional vector quantization) compares
each new incoming point with all the cluster centers, which
can happen to be far away even if the data point is close to
its spanned range of influence represented by those data points
already belonging to the cluster. Therefore, an obvious over-
coming of this drawback can be achieved by calculating the
ranges of influence during the incremental learning process and
taking the distance of new points to these ranges instead of to
the cluster centers. Whenever the Euclidean distance is used
as distance measure (which is more or less the most common
choice), axis-parallel ellipsoids are triggered as clusters, whose
range of influence (as 2�-area) can be calculated in incremental
mode by exploiting recursive variance formula [24]:

kwin�
2
win,j (new) = (kwin − 1)�2

win,j (old)

+ ki�c2
win,j + (cwin,j − xj )

2

∀j , (5)

where �cwin,j is the distance of the old prototype to the new
prototype in the jth dimension of the cluster nearest to the actual
point �x and kwin is the amount of data points lying nearest
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Fig. 1. (a) Clustering obtained by Algorithm 2 → too many clusters; (b) clustering obtained by its extended version with new distance strategy (Algorithm 3)
→ clusters are fine.

to cluster cwin and can therefore be simply updated through
counting. For the distance of the new data point to the surface
of the multi-dimensional ellipsoid spanned by a cluster we take
the distance along the direction from the actual point towards
the cluster center.

Lemma 1. Let therefore
∑p

j=1(xj − cij )
2/�2

ij = 1 be a multi-
dimensional ellipsoid of the ith cluster in main position, �ij the
variance of the data belonging to the ith cluster in dimension j,
then the Euclidean distance of the new data point (q1, . . . , qp)

to the surface along the direction towards the cluster center cij

is given by

dist = (1 − t)

√√√√ p∑
j=1

(qj − cij )
2 (6)

with

t = 1√∑p
j=1(qj − cij )

2/�2
ij

. (7)

Proof. Let �x = �ci + t (�q − �ci) be the straight line in the multi-
dimensional space between the new point (q1, . . . , qp) and
the ith cluster center. Then the crossing point of this straight
line with the multi-dimensional ellipsoid is obtained by set-
ting the parameter vector into the ellipsoid equation. Hence∑p

j=1t
2(qj − cij )

2/�2
ij = 1, and, by solving this equation af-

ter t, we achieve Eq. (7). The Euclidean distance between the
crossing point and (q1, . . . , qp) is computed by summing up

the squared differences (qj − cij − t (qj − cij ))
2 = (qj (1− t)−

cij (1−t))2 for all j and taking the root, resulting in Eq. (6). �

In fact, distance (6) is only computed for the actual data point
�q, if it is lying outside the ranges of influence of all clusters,
i.e. the condition

∃i

p∑
j=1

(qj − cij )
2

�2
ij

�1 (8)

is not fulfilled. Otherwise, the usual distance strategy is applied
to all clusters, in whose range of influence the actual data point
lies inside. This leads us to the extended version of vector
quantization in incremental mode, as described in Algorithm 3.

Algorithm 3. Extended version of vector quantization in in-
cremental mode (VQ-INC-EXT).

1: Initialize the number of clusters to 0
2: Collect a few tens of data samples and estimate

the ranges of all p variables
3: Take the next incoming data point (online case)

or fetch out a data sample from a data matrix
randomly or ordered (offline case) and normal-
ize it according to the ranges, let us call it �x

4: if number of clusters = 0 then
5: Set i = 1
6: Set the first center c1 to the actual data

point, hence �c1 = �x, set ��1 = �0 and the
number of data points belonging to the
first cluster to 1 (k1 = 1)
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7: goto step 26
8: end if
9: if The actual data point lies inside any cluster’s

range of influence, i.e. the condition Eq. (8) is
fulfilled for at least one i (where �ij are taken as
max(�ij , �) with � > 0 to stay numerically sta-
ble) then

10: Calculate the distance of the selected
data point to all those cluster centers
fulfilling Eq. (8) by using Euclidean
distance measure

11: Elicit the cluster center which is clos-
est to the data point by taking the min-
imum over all calculated distances →
winning cluster cwin

12: Set mindist = 0
13: else
14: Calculate Eq. (6) for all clusters
15: Elicit the cluster center which is clos-

est to the data point by taking the min-
imum over all calculated distances →
winning cluster cwin

16: Set mindist as the minimum over all
distances

17: end if
18: if mindist �� and �x is not faulty then
19: Set i = i + 1
20: �ci = �x, ��i = �0, ki = 1
21: goto step 26
22: end if
23: Update the p components of the winning cluster

by moving it towards the selected point �x as in
Eq. (1) with �win as in Eq. (4)

24: Update the range of influence in each direction
by using Eq. (5)

25: Increase the number of data points belonging to
the winning cluster by 1, i.e. kwin = kwin + 1

26: if �x is not faulty then
27: Update the ranges of all p variables

28: end if
29: If the data matrix still contains uncovered data

(offline case) or new incoming data points are
still available (online case) goto step 3, other-
wise stop.

Fig. 1 demonstrates the impact of this extended version of
vector quantization. While Algorithm 2 generates new clusters
for data points lying near the range of influence of another
cluster (Fig. 1(a)), the extended version performs better and
extends the range of influence (drawn as the 2�-range in each
dimension) of the nearby lying cluster (Fig. 1(b)). The cluster
centers are visualized as big dark data dots.

It should be noticed that Algorithm 3 can be extended
straightforwardly to the case when Mahalanobis norm is used,
which triggers ellipsoidal clusters in general position. For
this, the recursive covariance formula, which is similar to the

recursive variance formula, can be exploited for updating the
covariance matrix (as its inverse is the Mahalanobis-norm-
inducing matrix) of each cluster. The incremental calculation
scheme of the covariance between the two variables x and y is
defined as

cov(N + m)

= cov(N) + N�x̄(N + m)�ȳ(N + m)

+
N+m∑
k=N

(x(k) − x̄(N + m))(y(k) − ȳ(N + m)) (9)

with x̄ the mean value of variable x and �x̄(N+m) the deviation
between the mean value of x based on N + m samples and the
mean value based on the first N samples. Furthermore, Lemma
1 needs to be extended with an appropriate distance calculation
from a new data point to the surface of an ellipsoidal in general
position.

3.3. Satellite deletion

In the case of online learning the incremental training scheme
in Algorithm 3 may lead to undesirable tiny clusters, called
cluster satellites, which lie very close to significantly bigger
ones. An example is demonstrated in Fig. 2(a) (the data ‘clus-
terdemo’ taken from MATLAB), where the tiny cluster is obvi-
ously superfluous. The reason for this unpleasant effect is the
following (and could be also observed in other examples): at
the beginning of the incremental training process the first points
forming the bottom cluster appear at the upper region of this
cluster, the cluster had a very narrow range of influence at this
stage (see small ellipsis inside and surrounding a bigger dark
dot). Afterwards a data point at the lower region came in and
formed a new cluster, as being too far away from the small ellip-
sis in the upper region. This cluster forming at this stage of the
incremental (online) learning process was correct, as it seemed
that a new cluster arises there. Afterwards, newly loaded data
filled up the big hole between these two tiny clusters, causing
a movement and an expansion of the upper cluster. Finally, it
turned out that they in fact belong to one cluster. This causes
an ‘overclustering’ effect. This should be prevented as it leads
to false information when, for instance, performing classifica-
tions based on the clustering. In this sense, Algorithm 4 was
developed for deleting cluster satellites, which can be applied
after Algorithm 3, at the end of the whole learning process, as
no prior loaded data are needed.

Algorithm 4. Satellite deletion.

1: For all i = 1, . . . , C clusters generated by Algorithm
3 perform the following steps:

2: if ki/N < 1% where ki is the amount of data belonging
to the ith cluster and N the number of data points
loaded in sum then

3: Mark the ith cluster for cutting out,
as it only captures outliers

4: Continue with next cluster
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Fig. 2. (a) An unpleasant satellite cluster by applying Algorithm 3; (b) the unpleasant satellite cluster removed by applying Algorithm 4.

5: end if
6: if ki/N < low_mass then
7: if The ith cluster center lies inside the range of influ-

ence of any other cluster then
8: Elicit the closest centercwin (like in

step 15 of Algorithm 3)
9: If

∑p
j=1�ij /

∑p
j=1�win,j < �, where

�ij is the length of the jth axes of the el-
lipsoid spanned by the ith cluster, then
mark the ith cluster for cutting out

10: end if
11: else
12: Calculate the distance of the ith

cluster center to the surface of all
other clusters after Eq. Eq. (6) in
Lemma 1

13: Elicit the cluster which is closest to
the cluster center of the ith cluster,
let us say cluster win with distwin

14: If distwin < thr and
∑p

j=1�ij /∑p
j=1�win,j < �, where �ij is the

length of the jth axis of the ellip-
soid spanned by the ith cluster, then
mark the ith cluster for cutting out

15: end if
16: End For
17: Cut out all marked clusters.

This strategy is based on the investigations, what character-
izes in fact a satellite cluster, namely (1) a low mass i.e. a small

fraction of data points belonging to it, (2) the cluster center has
to be close or inside the range of influence of the (most) adja-
cent cluster, and (3) the cluster has to be significantly smaller
in its range of influence than the (most) adjacent cluster. More-
over, clusters with a very low mass will be marked for cutting
out immediately (see steps 2 and 3), as they usually denote out-
liers. The marking and not directly cutting out the other candi-
dates ensures that satellite clusters of satellite clusters are cut
out too.

Note that in Algorithm 4 satellite clusters are completely
cut out. This is opposed to the situation where two or more
significant clusters move together and an intrinsic penetration
of spheres or ellipsoids can be observed. In this case, which
can quite often occur during incremental learning steps, well-
known cluster merging algorithms can be applied, for instance,
Refs. [25,26].

3.4. A split-and-merge strategy during incremental learning

Even though the satellite deletion strategy as described in the
previous section deletes tiny, not really distinct clusters as may
be generated by Algorithm 3, an incorrect cluster structure still
may arise. The reason for this unpleasant effect is a bad setting
of the parameter �. This parameter has to be defined in advance
(before starting the whole incremental training process) and is
the essential parameter controlling the tradeoff between gener-
ating new clusters and adapting already existing ones. A favor-
able choice of this parameter is given by formula (3), which
is based on our best knowledge that it performed well on vari-
ous high-dimensional real-world data sets. However, a feasible
setting depends strongly on the nature and characteristics of
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Fig. 3. (a) An incorrect clustering structure obtained by standard setting of � as in Eq. (3); (b) correct clustering for the same data when increasing � to
0.7

√
p/

√
2.

the data, which is usually not known in advance, when loaded
buffer-wise or sample-wise as data streams into the memory.
In Fig. 3(a) an example is given, where the default setting of
� as in Eq. (3) leads to an undesired clustering, as for each
of the two big data clouds four clusters are generated. In this
sense, a higher value of � (0.7

√
p/

√
2) would have been a bet-

ter choice resulting in the correct cluster structure as visualized
in Fig. 3(b).

For solving this problem for the online case, a split-and-
merge strategy of clusters is proposed in this paper (see also
Ref. [27]): this strategy is based on the idea that a not-optimal
clustering structure which may arise during the incremental
learning process is prevented by merging clusters grown to-
gether (e.g. as in Fig. 3) or by splitting big clusters including
more than one distinct data cloud. After each (sample-wise) in-
cremental learning step, the updated cluster is first split into two
halves with respect to each axis and the quality of the obtained
clustering structures is calculated with a cluster validation in-
dex, which does not need any prior raw data, respectively, with
such an index which can be calculated incrementally and syn-
chronously to the cluster update(s). Furthermore, the updated
cluster is merged with the closest cluster and the new clustering
structure obtained in this way is again validated by the same
validation index. The same validation is done for the original
clustering obtained after the incremental learning step. The best
performing clustering structure out of these three is kept and
updated with the next incoming sample. Algorithm 5 gives a
concise formulation of this strategy (with C the number of clus-
ters). Please note that in Ref. [28] an online merging strategy
for Gaussian mixture models (concurrently seen as clusters) is

carried out as well; however, (1) there it is based on some other
criteria, i.e. not using cluster validation indices, but multivari-
ate statistical tests and (2) it requires new batches of data con-
taining significant amount of samples (as new mixture models
are learned from scratch of each batch) and cannot cope with
sample-wise incremental learning.

Algorithm 5. Split-and-merge strategy.

1: Calculate the quality of the actual cluster partition ob-
tained by Algorithm 3 → cl_qual1

2: Split the winning cluster (represented by cwin) into
two equal halves with respect to each axis and cal-
culate the quality of the obtained p cluster partitions
→ cl_qual2, . . . , cl_qualp+1

3: if C�3 then
4: Merge the winning cluster (represented by cwin) with

the closest cluster. The closest center is obtained in the
same way as through steps 9–17 inAlgorithm 3 with
�x = cwin

5: Calculate the obtained cluster partition → cl_qualp+2
6: max_ind = arg maxi=1,...,p+2(cl_quali)

7: Overwrite the actual cluster partition with that cluster
partition represented by max_ind, update the number
of clusters C (in case of a conducted split C = C + 1,
in case of a conducted merge C = C − 1)

8: end if
9: if C = 2 then
10: Determine if any clustering structure is present at all

in the data set (loaded so far)
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11: if no, merge the two clusters to one, set C = C − 1; if
yes, do nothing

12: end if.

If this algorithm is carried out after each sample which trig-
gered a cluster update (and not a generation of a new cluster),
i.e. immediately after step 25 in Algorithm 3, it is guaranteed
that always the clustering structure with the highest quality
value is transferred to the next incremental learning step. This
means that if the cluster validation index always prefers the
more precise clustering structure, a significant improvement of
the performance of VQ-INC-EXT with a fixed starting value
of � can be expected. A suitable cluster validation index is the
PS index [29] as in its crisp form it does not require any prior
data for calculating the quality of the clustering, just the num-
ber of data points k. belonging to each cluster (resp. those data
points which formed the different clusters during the incremen-
tal learning process so far):

PS(C) =
C∑

i=1

PSi (10)

with

PSi = ki

kmax

− e−mink 
=i (‖ci−ck‖)/�T , (11)

where

kmax = max
i=1,...,C

ki , (12)

�T =
∑C

i=1‖ci − c̄‖2

C
(13)

and c̄ the mean value of all cluster centers. The higher the
PS(C) gets, the better the data are partitioned into C clusters.
From this definition it is clear that the PS index only needs the
cluster centers and the number of data points belonging to each
center. Both information are updated by Algorithm 3, such that
the PS index can be re-calculated newly after each incremental
learning step without requiring any additional update informa-
tion.

Regarding splitting the winning cluster into two equal axis-
parallel halves with respect to dimension j, the following for-
mulas are applied (which do not use any prior data):

cwin,j (new1) = cwin,j (old) + �win,j (old),

cwin,j (new2) = cwin,j (old) − �win,j (old),

�win,j (new1) = �win,j (new2) = �win,j (old)

2
,

kwin(new1) = kwin(new2) = kwin(old)

2
. (14)

The number of data points belonging to the original cluster is
divided by 2 and assigned to each one of the two new clusters.
This is probably the deficiency of the whole split strategy, as the
data points may be unequally distributed within the two halves

of the original cluster. A reasonable merging of two clusters
can be carried out in the following way (∀j = 1, . . . , p):

cwin,j (new) = cwin,j (old)kwin + cclose,j (old)kclose

kwin + kclose

,

�win,j (new)

= max(�win,j (old), �close,j (old))

+
(

1 − max(kwin,j , kclose,j ) − min(kwin,j , kclose,j )

kwin,j + kclose,j

)

× min(�win,j (old), �close,j (old)),

kwin,j (new) = kwin,j (old) + kclose,j (old).

This guarantees that the center of the merged cluster is not
placed exactly in the middle of the two centers belonging to the
original clusters, but shifted towards the center of that cluster
which is more significant, i.e. which was formed by more data
points and hence possesses a higher weight. A similar consider-
ation is valid for the width of the new cluster in each direction
(the less significant cluster should influence the new width by
only a fraction of the more significant one).

In the case when only two clusters are present, cluster merg-
ing as in step 4 in Algorithm 5 is not carried out, as the PS
index is not able to discriminate between one or two clusters as
optimal partitions. Hence, in this case it has to be determined
if a cluster structure is present at all in the data set (loaded so
far). This can be achieved with the Hopkins index [30], whose
determination can be proceeded in the following way: first, m
data samples R = {r1, . . . , rm} are randomly selected from the
convex hull of the data space of the data set X, i.e. by gener-
ating random points within the ranges of each variables of X.
Then, further points S ={s1, . . . , sm} are randomly selected di-
rectly from the data set X, i.e. S ⊂ X. For those sets R and S,
the distances dr1 , . . . , drm , respectively, ds1 , . . . , dsm of R, re-
spectively, S to the nearest points in X are determined. Then
the Hopkins index h is defined by

h =
∑m

i=1d
p
ri∑m

i=1d
p
ri + ∑m

i=1d
p
si

(15)

with p the dimensionality of the data set. The incremental cal-
culation of the Hopkins index is quite straightforward, as for
each newly loaded data point the distances to R and S can be
calculated and the new minimal distances obtained. It has to be
taken into account, however, that sometimes the sets R and S
need to be changed a bit (R according to possible range exten-
sions in some variables and S according to new data points).

Remark. Another decision criterion for merging two clusters
generated by Algorithm 3 lies in the exploitation that two (axis-
parallel) ellipsoidal clusters enclose some minimal degree of
overlap. If this is the case, it is very likely that the two clusters
should be merged to one for a better representation of the data
partitioning.
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Fig. 4. (a) Clustering structure obtained by standard setting of � as in Eq. (3) and split-and-merge strategy as demonstrated in Algorithm 5; (b) clustering
structure for the same data when increasing � to 0.7

√
p/

√
2 by manual tuning (which is not possible for online clustering processes).

In Fig. 4(a) the obtained cluster partition is shown when ap-
plying the conventional parameter setting of � as in Eq. (3)
together with the split-and-merge algorithm after each incre-
mental learning step. In Fig. 4(b) the cluster partition obtained
by a setting of � = 0.7

√
p/

√
2 is shown again for comparison.

From this figure it can be recognized that the split-and-merge
strategy guides the algorithm to the correct cluster partition,
even though the conventional setting of � after Eq. (3) would
produce a totally incorrect partition, see Fig. 3(a). In this sense,
with the split-and-merge strategy it is possible to overcome an
inappropriate value of � set at the beginning of the incremental
training process.

4. Evaluation

In this section we evaluate the following new algorithms:

• VQ-INC: The basic incremental version of vector quantiza-
tion as described in Algorithm 2.

• VQ-INC-EXT: The extended incremental version of vector
quantization based on a new winner selection strategy as
described in Algorithm 3.

• evolving Vector Quantization (eVQ): VQ-INC-EXT com-
bined with satellite deletion (Algorithm 4) and split-and-
merge strategy (Algorithm 5).

This evaluation demonstrates the performance on some clus-
tering benchmark data sets, on image classification based on
extracted clusters in the feature space as well as the applica-
bility for generating high-dimensional fuzzy models by cluster

projection onto the axes. For the first case the new approach
is compared with conventional vector quantization as well as
some well-known clustering methods based on the cluster val-
idation index by Yang and Wu, the PS index [29]. For image
classification (into good and bad images) the obtained mis-
classification rates are compared when using different clus-
tering and batch classification methods for training an image
classifier. For the high-dimensional fuzzy modelling tasks the
obtained model complexities and accuracies with respect to
achieved fault detection rates are compared between the differ-
ent clustering methods.

Note that all the applied data sets except the online mea-
surements from the engine test bench (Section 4.3) are offline
data sets and were converted to pseudo-streams when apply-
ing VQ-INC, VQ-INC-EXT, respectively, eVQ. This is carried
out in online simulation procedures by taking sample per sam-
ple from the data sets and sending them into these algorithms.
In this sense, a comparison with reputable batch mode cluster-
ing methods (e.g. such as k-means) applied onto the data sets
as a whole serves as a valuable feedback regarding feasibil-
ity of the new incremental techniques. A summary of the ap-
plication cases, the used data sets and the applied methods as
well as some batch methods for comparison is demonstrated in
Table 1. A detailed description of the experimental setup, the
parameter setting and performance analysis for each of these
cases will be given in the subsequent sections.

4.1. Results on clustering data sets

In Table 2 a comparison between different clustering methods
(columns) performing on various data sets (rows) containing
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Table 1
Overview of application cases, data sets and applied methods described throughout the Evaluation section

Application Data set Applied new methods Methods for comp.

Two-dim. clustering Data set in Fig. 1 VQ-INC, VQ-INC-EXT VQ, k-means, subclust.
Clusterdemo data VQ-INC, VQ-INC-EXT VQ, k-means, subclust.
Deviation image data VQ-INC-EXT k-Means, subclust.

High-dim. clustering Wine data, iris data VQ-INC, VQ-INC-EXT VQ, k-means, subclust.
Image classification Online recorded CD-imprint images VQ-INC, VQ-INC-EXT, eVQ k-Means, subclust., CART, DA, NN
Online FD Offline data set (engine test bench) VQ-INC, VQ-INC-EXT, eVQ with consequ. est. Subclust. with consequ. est.

Online measurements (engine test bench) VQ-INC, VQ-INC-EXT, eVQ with FLEXFIS Subclust. with consequ. adapt.

Table 2
Quality of clusters denoted by the PS index obtained by five different clustering methods including VQ-INC-EXT

Method Parameter setting Two-dim. data set 1 Two-dim. data set 2 Iris data Wine data

k-Means # of cl. = 3 1.9379/3 2.098/3 1.38/3 1.57/3
Subclust. Best roc 1.934/2 2.024/3 1.10/3 1.75/3
VQ # of cl. = 3 1.9370/3 2.214/3 −0.16/3 1.31/3
VQ-INC � by Eq. (3) 0.004/5 −0.5841/6 −0.03/5 −8.59/5
VQ-INC-EXT � by Eq. (3) 1.935/3 2.167/3 1.14/3 1.77/3

cluster structures is demonstrated. The entries ahead the slashes
in the matrix correspond to the value obtained from the PS
index: the higher this value, the better the quality of the clusters,
i.e. the better the centers are set. If, for example, the correct
number of clusters present (and known) in the data set is missed,
this index will deliver a significant lower value than in the case
of the optimal amount. The entries after the slashes are the
number of clusters produced by the methods, whereas in all the
cases the three clusters are the optimal choice.

For comparison reasons all the clustering methods in Table 2
are crisp clustering methods, which produce centers and hence
are mainly applicable for finding clearly separable data clouds
in a data set. It should be noticed that for k-means [23] and
conventional vector quantization [2] the number of clusters has
to be set in advance (here to three as the clusters/classes were
known a priori), which is not the case for subtractive clustering
[13] and the extended versions of vector quantization proposed
in this paper. The essential parameter ‘radius of cluster’ in sub-
tractive clustering is iteratively changed along a pre-defined
grid (ranging from 0.05 to 0.9 with step size 0.05) and the best
clustering structure kept as the final structure. The correspond-
ing ‘radius of cluster’ is denoted as ‘best roc’ in Table 2 (second
column). The first three methods (k-means, subtractive cluster-
ing and VQ) are popular well-accepted batch mode algorithms
and hence serve as a welcome benchmark for the two incre-
mental variants of VQ demonstrated in this paper. The chosen
data sets include two two-dimensional ones, the first one is the
same as that visualized in Fig. 1, the second one is the obtained
set when extracting the first and the third column in the ‘clus-
terdemo’ data. The latter possesses three clusters, where two
are partially merged, but still clearly visible to human eyes.
Obviously, for both data sets the new Algorithm 3 can compete
with all the other clustering procedures.

For an evaluation based on high-dimensional data the two
famous data sets iris and wine data (available in the UCI

repository1 )are applied. While iris is a four-dimensional data
set, the wine data includes 13 dimensions; both data sets con-
tain three classes and hence the number of clusters is set to 3
for k-means and conventional vector quantization. For the iris
data set the performance of Algorithm 3 is second among all
methods and slightly worse than the best one, namely k-means,
whereas VQ-INC totally fails as producing an unacceptable
number of clusters (namely 5). For the wine data the new
extended version of vector quantization can even outperform
all the other methods with respect to the cluster quality. This
is quite a strong result for the satellite deletion strategy as for
this data set VQ-INC-EXT originally produced 13 different
clusters, where 10 represented just outliers and no significant
clusters. These could be removed by applying the satellite
deletion strategy as proposed in Algorithm 4. Again Algorithm
2 could not find the correct number of clusters and produced
an unacceptable result. It should be noticed that for all data
sets the standard parameter settings for �i and � as presented
in Eqs. (4) and (3) are applied together with satellite deletion.

In Fig. 5 another two-dimensional example is presented,
which stems from a deviation image (see also next section)
containing 17 objects which should be extracted fully automat-
ically from the binarized image. The dark dots represent the
foreground pixels whose gray levels are laid over a specific
threshold in the original gray-level deviation image. Extract-
ing the correct objects is an important issue whenever features
should be extracted and processed further for classifying im-
ages (see also next section). From this figure it can be real-
ized that VQ-INC-EXT (lower) extracts more feasible clusters
(16 in sum) than k-means (upper left) and subtractive cluster-
ing (upper right) when choosing the best parameter setting for
all these methods: for k-means this is the number of objects
present in the image (a priori known as 17), for subtractive

1 http://www.ics.uci.edu/mlearn/MLRepository.html.

http://www.ics.uci.edu/mlearn/MLRepository.html
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Fig. 5. (a) Extracted objects by applying k-means with 17 number of clusters; (b) extracted objects by subtractive clustering when choosing the best parameter
value for radius of influence; (c) extracted objects by VQ-INC-EXT when choosing � = 0.1

√
p/

√
2 as best parameter setting.

clustering the optimal radius of influence was 0.05 and for VQ-
INC-EXT the optimal setting of � was 0.1

√
p/

√
2. No better

cluster structures could be achieved when changing these pa-
rameters in each of these three methods.

4.2. Evaluation on image classification based on cluster
extraction in the feature space

In this section another evaluation on the new clustering meth-
ods VQ-INC, VQ-INC-EXT and eVQ is demonstrated based

on image classification into good or bad images. The prin-
cipal idea of the whole classification framework is shown in
Fig. 6. In the low-level processing part newly recorded images
are compared pixel-wise with a master image (by subtraction)
and the obtained deviation images are used for further process-
ing: first a binarization (for obtaining black/white images from
the gray-level images) is performed and afterwards various fea-
tures are extracted from the recognized objects in the bina-
rized images. These features are collected and stored in feature
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Fig. 6. Image classification framework.

vectors. A classifier is built up based on the feature vectors and
based on some images rated by operators during a test or in-
stallation phase of the system. The ratings can be carried out on
image level or on object level, the latter causing a higher effort
for the operator(s). In our specific case for image data from a
compact disc production process only a rating on image basis
was available, such that aggregated feature vectors, containing
features describing the collection of objects in an image as a
whole, served as most appropriate information about the char-
acteristics of the images. Examples of aggregated features are
the number of objects, the average size of the objects or the
maximal density of objects in an image. The images represent
CD imprints and may show faulty occasions which came up
during the production process. Someone may assume that if a
deviation image to the master image contains some pixels at all
(so it significantly deviates), it can be immediately classified
as a ‘bad’ image, i.e. an image which contains an error from
the production process. However, this is generally not true as
some deviations simply are not visible in the original image or
do not reflect an error at all (e.g. a small shift of the compact
disc in the tray would cause an arc-type object in the devia-
tion image which does not denote an error on the print itself).
In this sense, features characterizing different shapes, densities
and sizes of objects in an image are needed for a discrimination
between bad and good images.

The different clustering approaches already applied in the
previous section for clustering data sets are again applied here
for clustering the aggregated feature space and building up a
nearest-neighbor classifier based on the prototypes (centers) of
the obtained clusters: the prototype of each found cluster is
marked as a fault-free region of the feature space, when most of
the feature vectors representing the cluster are labelled with 0,
otherwise it is marked as a faulty region. In this sense a cluster
is represented by its center c and a label index l. A new incom-
ing feature vector (extracted from currently recorded/loaded
deviation image) is then classified as good or bad according
to the value of l of the nearest cluster center. The classifica-
tion results regarding mis-classification rates are visualized in
Table 3. Mis-classification rate is calculated in both directions,
i.e. number of samples which are classified as faults, but are ac-
tually good ones, plus number of samples which are classified
as fault free, but are actually bad ones, relative to the number of
samples as a whole. This is done in a 10-fold cross-validation

Table 3
Comparison of clustering algorithms when applied for image classification,
in the last four rows other well-known classification methods are listed

Method Mis-class Best param
rate (%) value

k-Means 10.96 # of clusters = 29
Subtractive clustering [13] 5.03 Radius of cluster = 0.2

VQ-INC 5.03 � = 0.1
√

p√
2

VQ-INC-EXT 5.01 � = 0.2
√

p√
2

eVQ 6.91 Default setting of �

Decision trees (CART) [31] 6.71 Optimal pruning
Discr. analysis [20] 6.33 Quadratic boundaries
Prob. neural networks [32] 4.9 Spread = 0.15
Gaussian mixture models [33] 7.86 # of models of p. class = 13

step [34], where the 10 different mis-classification estimates
are averaged to the final mis-classification rate. Moreover, the
final results stated in Table 3 are obtained by iterative cluster-
ing in batch mode, i.e. 10-fold cross-validation is carried out
multiple times with different parameter settings of the most es-
sential parameters in the different clustering methods, leading
to parameters responsible for the best results: for k-means and
VQ the most essential parameter is the number of clusters, for
subtractive clustering it is the radius of influence, for VQ-INC
and VQ-INC-EXT it is the vigilance parameter �. For eVQ the
default parameter setting of � (see Eq. (3)) is used.

From this table it is clear, that VQ-INC(-EXT) can compete
with all other clustering methods, also when using it for offline
batch mode training, i.e. by iteratively selecting different set-
tings of � and performing incremental clustering and classifi-
cation. However, in an online data stream mining process, this
search procedure for obtaining the best parameter setting is not
possible, as data samples are presented just once to the meth-
ods. Hence, it was tested how VQ-INC(-EXT) performs, when
using a default setting of � as proposed in Eq. (3). The accu-
racy decreased significantly to 11.45% (for VQ-INC-EXT) resp.
11.55% (for VQ-INC) falling behind the worst performing clas-
sifier (k-means). In this sense, the importance of eVQ is under-
lined, which always starts with the default setting and evolves,
merges and splits clusters on demand. Note that in Table 3
also the results of some other well-known and widely used
batch mode classification methods are stated for comparison



1008 E. Lughofer / Pattern Recognition 41 (2008) 995–1011

Fig. 7. Fault detection framework in an online measurement system, taken from Ref. [21].

(again achieved by using iterative 10-fold cross-validation with
different parameter settings): decision trees by applying the
CART approach with optimal pruning strategy [31], discrimi-
nant analysis with quadratic boundaries [20] and Gaussian mix-
ture models (trained with EM algorithm [33] and optimized # of
Gaussians) produced slightly higher mis-classification rates,
whereas probabilistic neural networks [32] with an optimized
spread of neurons produced slightly lower mis-classification
rates.

4.3. Evaluation on fault detection based on data-driven
high-dimensional fuzzy models

For demonstrating practical feasibility in an industrial pro-
cess, VQ-INC-MOD is applied for generating high-dimensional
fuzzy models from online measurement data. This is accom-
plished on the basis of cluster back-projection onto the one-
dimensional space as it is also carried out in approaches such
as FMCLUST [15] or genfis2 [13] implemented in MATLAB’s
fuzzy logic toolbox. For the offline training case, we exchange
subtractive clustering in genfis2 one time with VQ-INC, the
other time with VQ-INC-EXT and compare the performance of
these three methods onto high-dimensional measurement data
from an engine test bench with respect to quality and com-
plexity of the models. For the online training case, a similar
procedure is carried out, with the difference that conventional
genfis2 is only applied for the initial model training and the in-
cremental learning with new online data is conducted by rule

consequent adaptation alone exploiting recursive least squares
method [35]; VQ-INC and VQ-INC-EXT are connected with
the evolving fuzzy modelling method FLEXFIS [17] for the
online case.

The high-dimensional fuzzy models are not only compared
by their prediction quality and complexity, but also by their fault
detection performance when being applied as a fault-free ref-
erence situation in a fault detection framework for engine test
benches, see Fig. 7. The purpose of this framework is to auto-
matically detect as many system faults as possible, which usu-
ally include sensor overheatings, broken pipes or breakdowns
of complete components or interfaces. For doing so, it is tried to
extract as many dependencies between measurement channels
as possible in the form of approximation models, which is done
by fixing each channel as target and selecting the most impor-
tant ones for obtaining a good approximation by an extended
version of forward (variable) selection [36]. This guarantees a
best probable coverage of channels involved in the fault detec-
tion process. For more details about the update strategy of the
fuzzy models and the fault detection logic see Ref. [21]. Real
faults were simulated at the test bench while recording the data
for a specific diesel engine, which should be detected on the
basis of the trained fuzzy models by calculating the deviation
of actual measurements to the models. In sum, 70 measurement
channels were measured, where up to 56 five-dimensional rea-
sonable models could be extracted automatically from the data.
This gives a good coverage of channels, when taking into ac-
count that some of the remaining 14 appear in the input side
of the models. The question whether a model is reasonable or
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not could be answered by measuring the quality of the model
with r-squared-adjusted statistics, which is near 1 if an accurate
model is the case and, near 0, if the model has a bad accuracy.

The accuracies of the models are calculated by two measures:
a prediction quality measure lying in [0, 1], where a value near

Table 4
Comparison of clustering algorithms in connection with fuzzy system training,
first part: offline case, second part: online case

Method Complexity Quality Det. rate

Subclust. 5.07 0.9201 70%/75%
VQ-INC 4.5 0.941 72.5%/75%
VQ-INC-EXT/eVQ 3.25 0.942 77.5%/87.5%

Subclust. + consequ. adapt. 9.43 0.793 53.75%/50%
VQ-INC + FLEXFIS 8.24 0.934 66.25%/75%
VQ-INC-EXT/eVQ + FLEXFIS 7.12 0.936 70%/75%

Fig. 8. ROC curves for (a) genfis2 applying subtractive clustering and consequent adaptation; (b) FLEXFIS applying VQ-INC; (c) FLEXFIS-MOD applying
VQ-INC-EXT.

0 denotes an expected bad prediction quality and a value near 1
an expected good one, and an ROC curve representing the sen-
sitivity vs. specificity of the models when applying them as a
fault-free reference in a fault detection framework for detecting
system faults based on online recorded measurements. The sen-
sitivity is represented by the detection rate, i.e. the percentage
of faulty data points which are correctly detected, the speci-
ficity by the false detection rate, i.e. the percentage of fault-free
data points which are wrongly suggested as faults. In Table 4
the number of correctly detected faults is stated in Column 4
beside the quality (Column 3) and the complexity (Column 2)
of the fuzzy models, the latter measured in terms of the aver-
age number of rules within the different models. The chosen
parameter setting is stated in Column 1, which could be tuned
for the offline case (first part) and is set to the recommended
default parameter setting for the online case (second part). The
detection rates in this table are those ones obtained by setting
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the threshold at a level, such that no over-detections occurred,
compare ROC curves in Fig. 8. The table is split into two parts:
the first one represents the offline case, i.e. models are generated
in advance in an offline step (again with different parameter set-
tings, see also Section 4.2) and new online measurements are
checked; the second one demonstrates the online case, where
fuzzy models have to be adaptively trained and extended (with
the default parameter setting). A high-frequented re-building of
all the 56 models is not possible, as this would slow down the
whole process significantly, such that real-time performance
cannot be achieved, see Ref. [17]. In the case of genfis2 using
subtractive clustering an adaptation of linear rule consequent
parameters alone has to be carried out, as subtractive clustering
is a batch clustering variant with no cluster ( = rule) adjoin-
ing strategy. This is different for VQ-INC and VQ-INC-EXT,
which build up the clusters (and therefore rules and fuzzy sets)
in an incremental manner. A stable connection of premise part
and antecedent part learning in incremental manner is carried
out as described in Ref. [17], denoted as FLEXFIS. From this
point of view, it is quite obvious that subtractive clustering (in
connection with genfis2) fails completely opposed to VQ-INC
and VQ-INC-EXT (in connection with FLEXFIS); see quality
and detection rates in the second part of Table 4 and also the
ROC curves as shown in Fig. 8, which compare the methods
with respect to specificity vs. sensitivity. Note that the closer
the curve follows the left-hand border and then the top border
of the ROC space, the better the fault detection performance of
the method. For the offline case subtractive clustering performs
better, but is still behind the other two approaches with respect
to both quality and complexity. The complexity is measured
by the average number of rules over the 56 fuzzy models. All
the detection rates are measured on two bases: the first number
corresponds to the measurement basis i.e. all by a fault affected
measurements are counted (in sum 80), the second one corre-
sponds to the fault bases, i.e. all different kinds of faults are
counted (in sum eight). It should be noticed that for VQ-INC
and VQ-INC-EXT again the standard values for the parameters
�i and � were applied, eVQ produced here the same results as
VQ-INC-EXT.

5. Conclusion and outlook

A new extended version of vector quantization (VQ-INC-
EXT) was proposed. It extends conventional vector quantiza-
tion to an incremental variant and incorporates a new distance
strategy, which takes into account the range of influence of
clusters. In this sense, the generation of more clusters within
wide data clouds is prevented. A satellite deletion strategy can
be appended to any clustering technique producing cluster cen-
ters and the range of influence of clusters. This is for remov-
ing not really significant clusters or clusters representing just
outliers in the data set, which can come up during incremental
learning as the future data points are unknown at each learning
step. Furthermore, the online split-and-merge strategy guides
the incremental clustering process to more accurate cluster par-
titions, whenever a badly a priori setting of the vigilance pa-
rameter � was carried out. The connection of VQ-INC-EXT

with satellite deletion and split-and-merge strategy leads to the
evolving variant of vector quantization, denoted as eVQ. When
inspecting the results in Sections 4.1–4.3, it can be realized that
VQ-INC-EXT and eVQ can compete with or even outperform
conventional clustering methods with respect to the accuracy
and quality of the clusters (represented by a well-known clus-
ter validation index), with respect to classification rates and
with respect to accuracies of fuzzy models obtained via clus-
ter projection for forming the premise part and least squares
antecedent learning afterwards. This is quite a strong result, as
the new method acts on the data set on a point-per-point basis
and therefore can be applied for data streams in fast online ap-
plications or for huge data bases, which cannot be loaded into
virtual memory at once.

As the split-and-merge strategy may suffer from computa-
tion speed (as PS index is calculated for several clustering par-
titions), a special emphasis for a possible future work is placed
on an adaptation of the vigilance parameter itself based on
changing characteristics of the incoming data. Another focus
concerns strategies on reacting to drifts or shifts in the data.
The first one changes the distribution of the underlying data
smoothly over time, such that approaches for weighting older
data points less than newer ones are required. The latter trig-
gers abrupt and sudden changes of the data characteristics, such
that a complete resetting of the cluster structure obtained so far
may be required during online processing.
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