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Fast computation of a gated dipole field
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Abstract

We address the need to develop efficient algorithms for numerical simulation of models, based in part or entirely on adaptive resonance theory.
We introduce modifications that speed up the computation of the gated dipole field (GDF) in the Exact ART neural network. The speed increase
of our solution amounts to at least an order of magnitude for fields with more than 100 gated dipoles. We adopt a ‘divide and rule’ approach
towards the original GDF differential equations by grouping them into three categories, and modify each category in a separate way. We decouple
the slow-dynamics part — the neurotransmitters from the rest of system, solve their equations analytically, and adapt the solution to the remaining
fast-dynamics processes. Part of the node activations are integrated by an unsophisticated numerical procedure switched on and off according to
rules. The remaining activations are calculated at equilibrium. We implement this logic in a Generalized Net (GN) — a tool for parallel processes
simulation which enables a fresh look at developing efficient models. Our software implementation of generalized nets appears to add little
computational overhead.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The continuous-time behaviour of neural circuits is often
described with systems of ordinary differential equations,
usually integrated numerically as their complexity rules out
analytical solutions. Today’s software packages that do this are
of high quality but require substantial computational resources.
Naturally, a demand develops for algorithmic modifications
aimed at efficiency.

One example for a set of computationally intensive tasks
are the models based on adaptive resonance theory (Grossberg
(1976); for an overview on ART see for example Carpenter and
Grossberg (2002)). Their implementations have addressed the
need for computational economy in a number of ways. One
has been to retain differential equations for only the adaptive
weights and use equilibrium solutions for all activations
as in ART 2 (Carpenter & Grossberg, 1987). ART 2-A
(Carpenter, Grossberg, & Rosen, 1991) has excluded the
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differential equations altogether. In some recent examples
(Grossberg & Raizada, 2000; Grossberg & Seitz, 2003;
Grossberg & Williamson, 2001) the fastest cell reactions have
been computed at steady state, other activity equations have
been solved with the Runge–Kutta–Fehlberg 4–5 method, and
adaptive weights have been solved at a reduced time scale
with Euler’s method. However, computational complexity still
remains an issue that limits simulations to relatively small
neural networks. In the case of a complex model with even
moderate dimensionality one may have a situation where “each
simulation. . . takes from a day to a month to run on a 1.4 GHz
Athlon processor” (Grossberg & Seitz, 2003).

Some ART implementations solve numerically all differ-
ential equations but this approach has worked for relatively
small-scale tasks as in Exact ART (Raijmakers & Molenaar,
1994; Raijmakers, van der Maas, & Molenaar, 1996; Raijmak-
ers & Molenaar, 1997). These authors have developed a real-
istic continuous-time model and have used a software package
for stiff problems. Naturally, their implementation requires a
lot of computing resources. Raijmakers and Molenaar did not
consider it as a problem because their objective had not been
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an efficient model, but just a correct working model. However,
the issue of efficiency quickly comes up when one needs in-
creased task dimensionality. In the present paper we propose
a set of modifications reducing the computational load when
solving numerically the gated dipole field equations in Exact
ART.

The gated dipole was introduced by Grossberg (Grossberg,
1972) to explain complex temporal processes in conditioning
and perception. Its main feature is opponent processing
whereby disappearance or unexpected absence of a positive
(negative) reinforcer can cause negative (positive) emotion. The
gated dipole has been modified to serve different purposes.
Applications include, among others, modeling Pavlovian
conditioning (Grossberg & Schmajuk, 1987), motor control
(Gaudiano & Grossberg, 1991), vision (Öĝmen, 1993; Öĝmen
& Gagne, 1990), and consumer decision making (Leven &
Levine, 1996).

Neural circuits that model different behaviours may contain
arrays of many gated dipoles. In (Grossberg, 1980) a gated
dipole field (GDF) was proposed as an implementation of
the category layer in ART. Raijmakers and Molenaar (1994,
1997) developed this idea into a working model. Öĝmen
(1993) proposed a modified array of dipoles to account
for retino–cortical dynamics. Couples of interacting dipoles
were used in different ways in (Leven & Levine, 1996) and
(Gaudiano & Grossberg, 1991).

Our algorithmic modifications are in part or entirely
implementable in all of the above cases, should the need for
efficient computation arise. The issue there would probably be
to devise algorithms for fast computing of the circuitry outside
the GDF. In another paper we will show how this can be done
for Exact ART.

The processes in a GDF develop at different time scales,
which can be separated and computed in parallel. Here
we decouple the slow neurotransmitters from the neuron
activations. We calculate the former with an analytical formula,
and divide the latter into two groups: (1) activations calculated
at steady state; (2) activations integrated by unsophisticated
numerical procedure, switched on and off. We implement this
logic in a Generalized Net, or GN (Atanassov, 1991), a tool for
simulating parallel processes of both discrete and continuous
nature. A GN software implementation proved the efficiency
of our approach. This paper also presents the first real-time
simulation of a GN model in neuroscience. It builds upon
previous efforts to model information transfer in the brain
with generalized nets (Atanassov, in press; Mengov, Pulov,
Atanassov, Georgiev, & Trifonov, 2003; Sgurev, Gluhchev, &
Atanassov, 2001).

This work deals not with an entire ART architecture but
only with the GDF circuit. In the following sections we
give an overview on GDF and present modifications for its
efficient computing. We compare our simulation procedure with
the standard numerical methods built in Mathematica. In an
Appendix we discuss generalized nets and outline the particular
GDF GN model.
2. Gated dipole field

2.1. The Raijmakers & Molenaar model

An array of gated dipoles could perform the winner-take-
all dynamics needed in the category layer of a continuous-time
ART network (Grossberg, 1980). Raijmakers and Molenaar
(1994, 1997) implemented this idea in their Exact ART system
whereby a GDF performs three functions:

1. The dipole with the strongest input signal should win the
competition and suppress all other dipoles. In this way its
neuron connected to the adaptive weights can stay switched
on until reset, and allow weight updating.

2. A reset signal should be able to suppress all dipoles
indiscriminately.

3. After a reset, the immediately preceding winner should
remain deactivated, and the dipole with the next strongest
input should win.

The following equations comprise the Raijmakers &
Molenaar model:

dy1 j

dt
= −y1 j + y5 j + AE (1)

dy2 j

dt
= −y2 j + [y6 j ]

+
+ AE (2)

dy3 j

dt
= −y3 j + z1 j y1 j (3)

dy4 j

dt
= −y4 j + z2 j y2 j (4)

dy5 j

dt
= −Ay5 j + (B − y5 j )((y5 j )

2
+ y3 j + eI j )

− y5 j

(
M∑

l 6= j

(y5l)
2
+ y4 j

)
(5)

dy6 j

dt
= −y6 j + (y4 j − y3 j ) (6)

1
ε

dz1 j

dt
= β(γ − z1 j ) − δ[y1 j − Γ ]

+z1 j (7)

1
ε

dz2 j

dt
= β(γ − z2 j ) − δ[y2 j − Γ ]

+z2 j . (8)

Here [. . .]+ denotes the rectification operator:

[ξ ]
+

= max{ξ, 0}.

The other notation is as follows. Variables y1 j , . . . , y6 j
represent node activities, z1 j and z2 j are chemical transmitters,
AE is arousal signal, I j is dipole input signal. Constants: A is
decay rate of neurons y5 j , B is maximum level of neuronal
activity, e is input signal strength, β is transmitter increase, γ

is maximum transmitter quantity, δ is transmitter decrease, Γ
is activity threshold, ε is neurotransmitter speed, M is number
of gated dipoles in the field, and j = 1, . . . , M is index of
dipole elements. Index J designates the current winner. Bold
characters indicate vectors (y1–y6, z1, z2, I). This notation
coincides with the one introduced in Raijmakers and Molenaar
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Fig. 1. The Raijmakers & Molenaar model of the gated dipole field.

(1997) to facilitate the understanding of our paper. The model
is shown in Fig. 1.

Note that this GDF configuration differs from what
Grossberg (1980) proposed — here the transmitter change is
also function of activity y5 rather than y1 only, due to the
feedback y5 → y1 (Fig. 1). Raijmakers and Molenaar (1994)
needed this to implement GDF function No 3 from above. Other
gated dipole arrays that fulfill the same three functions, for
example (Leven & Levine, 1996), may also benefit from this
change (Fig. 1) and hence from all the modifications proposed
in this paper.

2.2. Modifications

Our approach sought to achieve computational efficiency
due to joint action of three modifications to Eqs. (1)–(8),
discussed in the following sections. We implemented the GDF
in a generalized net operating in a fixed discrete-time scale.
Its time step coincided with that of the numerical integration
procedure. In our further discussion we rely on the fact that the
computation process is stepwise.

2.2.1. Neurotransmitters computed with an analytical formula
We solved the neurotransmitter Eqs. (7) and (8) analytically

and adapted the boundary value solution to account for a
continuously changing input. When an arousal burst causes
GDF reset, all dipoles compete for a short period. One
dipole wins and its y5J stays active long enough to update
its connected memory weights. During that period z1J is
consumed, while all other transmitters z1 j , j 6= J , refill
towards equilibrium. Thus, for some time the GDF operates in a
regime when its slowest process is continuously changing while
its fast node activations stay constant. The signals affecting the
release and replenishment of z1 are constant.

Consider the interaction in the j th pathway y1 j → z1 j ( j
may also be J ). The input into z1 j depends on node y1 j (Fig. 1)
and is S1 j = δ[y1 j −Γ ]

+ as per Eq. (7). With this substitution
Eq. (7) becomes

1
ε

dz1 j

dt
= β(γ − z1 j ) − S1 j z1 j . (9)
Let S1 j change at moment t0 and stay constant for long
enough. Term S1old

j denotes the input value at time step t0 − 1
and S1new

j at t0. While in general S1 j may change abruptly, z1 j
cannot, and therefore

z1 j (t0 − 1) ≈ z1 j (t0). (10)

For S1 j = const. Eq. (9) has this solution:

z1 j (t) =
βγ

β + S1old
j

exp
(
−(t − t0)(S1new

j + β)ε
)

+
βγ

β + S1new
j

[
1 − exp

(
−(t − t0)(S1new

j + β)ε
)]

. (11)

Grossberg (1984) used essentially the same formula to
describe transmitter release for a new sustained input. Eq.
(11) expresses the gradual shift of z1 j from equilibrium with
S1old

j to equilibrium with S1new
j . If the rate of input change

is high the transmitter does not have time to reach its new
asymptote βγ/(β + S1new

j ), and the formula is inapplicable.
However, with a modification, the latter can account for a
continuously changing input. Note that Eq. (11) can take S1new

j ,

corresponding to time step t0, and cannot take S1old
j for t0−1 as

the transmitter could not habituate. We introduce an equivalent
hypothetical Ŝ1old

j defined as the signal which, had it been
maintained for sufficiently long, would have equilibrated the
transmitter exactly to its value at t0 − 1. In other words, we
consider z1 j (t0 − 1) being the product of a different history
but with the same outcome. In that ‘alternative past’, a finished
habituation produced ‘mock’ equilibrium

z1 j (t0 − 1) =
βγ

β + Ŝ1old
j

.

Therefore the needed equivalent value is

Ŝ1old
j =

β
(
γ − z1 j (t0 − 1)

)
z1 j (t0 − 1)

.

In summary, at each time moment we calculate the new
z1 j in two steps. First, the actual previous z1 j (t0 − 1) is
used to determine an adjusted previous Ŝ1old

j . Then in the
second step the new z1 j (t0) is computed by Eq. (11) with
Ŝ1old

j and S1new
j . The same is done with transmitter z2 j . This

procedure decouples Eqs. (7) and (8) from the rest of the system
(Section 2.1). In practice Ŝ1old

j can be computed at a slower
time step, for example only at moments when the reset signal
AE is activated and then switched off. And even less frequent
Ŝ1old

j calculation can be satisfactory, for example only in the
events of winner change.

2.2.2. Fast node activations
We simplify Eqs. (3), (4) and (6) by setting the derivatives

to zero. The error thus introduced vanishes very quickly and
has no effect on the circuit performance. It is seen from Fig. 1
that nodes y3 j and y4 j receive signals from nodes y1 j and y2 j
conveyed by transmitters z1 j and z2 j respectively. Grossberg
and Gutowski (1987) and Grossberg and Schmajuk (1987)
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have shown that if the transmitters obey equations such as (7)
and (8), the mathematical product of transmitter and input can
adequately approximate the conveyed signal. Therefore Eqs. (3)
and (4) can become

y3 j = z1 j y1 j

y4 j = z2 j y2 j .

This simplification is justified because transmitters z1 j and
z2 j change at a rate, orders of magnitude slower than all
node activities. For example, Raijmakers and Molenaar (1997)
simulated Eqs. (7) and (8) with ε = 0.001, thereby introducing
speed difference of 2–3 orders of magnitude. In fact much less
difference (and greater ε) is still acceptable.

Eq. (6) can be simplified similarly:

y6 j = y4 j − y3 j . (12)

Grossberg and Gutowski (1987) used exactly the above
equation for y6 j . Node y6 j emits a positive signal only after
arousal AE had come and is gone. Eq. (12) produces adequately
the antagonistic rebound (important for analyses outside the
scope of this paper). The introduced small error has absolutely
no effect on the performance of the three GDF functions
(Section 2.1). In the Raijmakers and Molenaar (1994) analysis
y6 j could be removed entirely.

2.2.3. Numerical integration switched on and off
The third modification affects neurons that function in

alternating regimes of transient competition and equilibrium.
We implement rules for switching on and off the numerical
integration. It is these rules — and not the numerical
method, that account for the abrupt variable changes when
the transients begin and cease. Therefore the numerics could
be unsophisticated — Runge–Kutta 4 was acceptable, which
greatly reduced the overall computational load.

Raijmakers and Molenaar (1997) have shown that after
competition has finished, vectors y1, y2, and y5 simultaneously
reach equilibrium maintained indefinitely until new AE reset
occurs. This is in accord with the ART 2 design principle
“stable choice until reset” (Carpenter & Grossberg, 1987). Then
due to AE , new competition takes place and is eventually won
by a new node y5J , which approaches 1, while all other y5 j ,
j 6= J , are quenched to almost 0. From that moment t onward
numerical integration is not needed and we switch it off. The
winner y5J obtains value 1, and the rest y5 j obtain 0.

In practice we set a threshold, θH of 0.95, which must be
exceeded by a y5 j for this switch to happen. At the same time
all other y5 j must fall below another threshold θL , equal to
0.05. The exact rule for switching the numerical procedure off
is a bit more complex, because it must also account for the y1 j
and y2 j behaviour:

IF
∀ j (y1 j , y5 j ∈ [0; θL ] ∪ [θH ; 1] & y2 j ∈ [0; θL ]) &
∃J (y1J ∈ [θH ; 1] & y5J ∈ [θH ; 1])

THEN switch numerical procedure off. (13)

The above rule is valid for y1 j , y2 j , and y5 j activations
in the interval [0, 1], which is achieved with the choice of
simulation parameters (Appendix B). Numerical integration
is resumed when there is a reset signal AE > 0 released
indiscriminately towards all dipoles:

IF AE > 0 THEN switch numerical procedure on,
ELSE keep the current y1, y2, and y5 values.
As AE increases abruptly from 0 to 1 all signals along

pathways y1 j − y3 j − y5 j also increase and cause interaction
among the y5 j nodes via the inhibitory and excitatory
connections (Fig. 1). While all dipoles compete, the last winner
is at a disadvantage due to its exhausted z1J . Hence a dipole
with the next largest eI j in Eq. (5) wins (function No 3 from
Section 2.1).

AE must be strong enough to ensure that y5J would fall
below another y5 j , j 6= J , the next winner. Raijmakers and
Molenaar used a gaussian pulse with sufficient AE ‘energy’.
We preferred a rectangular pulse that ceased only after the
current winner had lost the competition, i.e., y5J < y5 j (GDF
function No 2). Our choice introduced a flexibility needed in
experiments with higher GDF dimensionality where the on-
centre off-surround interactions require increased AE ‘energy’
(and duration) to overturn the winner. A rectangular signal
was also more convenient for implementation in a mixed
logical–numerical system.

3. A generalized net model of the gated dipole field

As our goal was to speed up the GDF computation we
employed Generalized Nets in a software simulator. The
process of rethinking and reformulating the task in GN
terms enabled us to take a different look at the neural
interactions and to develop our modifications. The latter
could also be implemented without the GN framework,
however, we retained it for two reasons. First, GNs can
be useful in other neural modeling tasks (Atanassov, in
press; Sgurev et al., 2001) and therefore it was important
to have some estimate of their performance in general,
and of their computational overhead in particular. Second,
GNs are suitable for parallel machine algorithms (Atanassov,
1991), and though we used an ordinary PC in this case,
hardware with parallel processors remains an option. We give a
description of the GN implementation of GDF in Appendix A.
Source code and GDF GN demo are available from
http://www.clbme.bas.bg/Projects/gnifs/gn/GNsoftware.html.

3.1. Model simulation

The simulation of our GN model showed accurate
performance of the three GDF functions. Fig. 2 presents
the time course of y5 as computed by Mathematica’s
Runge–Kutta–Fehlberg 4–5 method (top), and by GN with
intermittent activation of the Runge–Kutta 4 procedure (middle
and bottom). We simulated a field of 100 gated dipoles
receiving constant input I = [0, 0.01, . . . , 0.99]

T . The field
was subjected to a sequence of AE bursts, which allowed the
different y5J winners to equilibrate at value 1 as per condition
(13), and then remain stable for some time. The other y5 j
nodes competed, but were eventually quenched. All winners

http://www.clbme.bas.bg/Projects/gnifs/gn/GNsoftware.html
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Fig. 2. Time course of y5 in gated dipole competition. Top: Mathematica simulation with 100 dipoles. Middle: Generalized net simulation with 100 dipoles. Bottom:
Generalized net simulation with 600 dipoles.
are clearly discernible in Fig. 2 (top and middle) due to their
different hue (or colour in the demo). It is evident that both in
Mathematica and GN simulations a new winner emerges after
each competition.

The essential difference between these two approaches was
in the behaviour of the quenched y5 j nodes. In uninterrupted
numerical integration (Fig. 2, top) some of them never reached
zero. The GN, in contrast, used switching off rule (13), which
blocked the integration procedure and automatically assigned
‘1’ to the winner and ‘0’ to all other y5 elements (Fig. 2,
middle).

4. Speed comparison

Because the ART model of Raijmakers and Molenaar (1994,
1997) consists entirely of differential equations it may be
considered plausible and, in that sense, realistic. Our GDF
was designed to be its computationally efficient variant with
respect to the three GDF functions (Section 2.1). Therefore it is
important to compare integration procedures with regard to the
speed with which a task is finished.

With all modifications (Section 2.2) it was reasonable to
expect that the GN would be much faster than traditional
numerical procedures. It is worth noting that our modifications
are invariant of the programming language used. Had we
worked directly in a C++ environment rather than GN
environment, we may have achieved even faster computation.
The interesting issues concerned algorithm performance
with regard to GDF dimensionality, task difficulty, and
computational cost. We chose as criterion in the dimensionality
experiments the CPU time needed for computation of a given
task. The GN workload was best measured by CPU time needed
for each time step. The task difficulty was changed in a number
of ways in the context of different experiments. We used a
personal computer with a 1.7 GHz Pentium 4 processor.
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4.1. Comparing GN with standard numerical integration
procedures

We compared the proposed system with the following
standard numerical methods implemented in Mathematica 4
(Wolfram, 1999): Runge–Kutta–Fehlberg 4–5, Adams, Gear,
and Adams–Gear. The CPU time needed for computing a
specific task was the main performance criterion. This time was
measured by the C++ run-time library function clock in the
GN system, and by the Mathematica Timing function applied
to the command NDSolve for solving differential equations
numerically.

We consider our comparison of such different software
solutions as a standard Mathematica procedure and the
proposed system as satisfactory. CPU time was the most
objective measure at our disposal. Note that the Mathematica
Timing procedure measures exactly the CPU time, which is
very different from the actual time needed by the computer
to solve a problem. We observed that with large-scale GDFs
the latter was 4–5 times longer than the former. We found that
for our tasks the CPU time consumed by Mathematica was
comparable with other similar packages.

We took special care to ensure that in the Mathematica
sessions our experiments were run under the same conditions.
This involved starting a new session before each run of
Timing[NDSolve[·]] and keeping constant as much as possible
all other influential factors described in the Mathematica Book
(Wolfram, 1999).

5. Results

5.1. Stable choice, maintained for long and short periods

We were interested in two regimes of the large-scale GDF:
First, enduring periods of equilibrium, occasionally interrupted
by resets and competition; second, frequent resets coming
shortly after each new winner had stabilized. We studied these
regimes with a field of 100 gated dipoles. In our experiments the
AE bursts came at regular intervals. We varied the ratio between
duration of the whole period (transient process followed by
equilibrium with a new winner), and duration of transient
process alone.

Figs. 3a and 3b show the system performance with transient
process lasting for 10% and 90% of the period respectively. The
top panels present the time course of all dipoles’ y5 signals,
while the mid panels show the depletion and replenishment of
z1. These plots confirm the correctness of the GN model, which
not only changed the winner after each reset, but also depleted
more neurotransmitter in the longer equilibrium periods.

The lowest two plots in Fig. 3 show simulation workload
in real time as measured by CPU time needed for GN
computation at each step. Fig. 3a (bottom) delineates periods of
equilibrium when workload was approximately constant from
periods with activated numerical procedure when the CPU
needed increasingly more time to calculate every step. Each
switching off of the numerical procedure was accompanied by
a momentary jump of CPU time, while no such jump appeared
at switching on. This can be explained by the complexity of the
activation rules: Detecting a new AE pulse is enough for the
numerical integration to begin. In contrast, stopping it requires
checks of conditions about all the elements of y1, y2, and y5.

Fig. 3a (bottom) also shows that on average, CPU time
during numerical integration did not even double as compared
to the equilibrium periods. This fact surprised us because
we expected a much larger difference. Apparently the use
of Runge–Kutta 4 instead of a more sophisticated procedure
caused this effect. GN performed in the same way when
equilibria were short and the numerical procedure was active
during 90% of the time (Fig. 3b).

Fig. 4 highlights the point that too frequent computation of
the adjusted signal Ŝ1old

j (Section 2.2.1) may not be necessary.
If, in response to abrupt input changes (Fig. 4, middle), adjusted
Ŝ1old

j is computed at each time step (Fig. 4, top), then the
transmitter vector z1 is computed precisely as in Raijmakers
and Molenaar (1997). This solution (Fig. 4, bottom) accounts
for the tiny little jumps in neurotransmitter consumption during
the competition transients (see the arrows in Fig. 4).

Virtually the same picture was obtained when Ŝ1old
j was

updated only at the moments of AE onset and switching off.
With even less frequent update of Ŝ1old

j , i.e., only at the
moments of winner change, the general picture remained intact,
but the little jumps disappeared (Fig. 3a, middle; 3b, middle).

5.2. Increasing the gated dipole field dimensionality

The main question in this research was how much
better could the GN system perform when compared to the
Mathematica numerical procedures with regard to large-scale
gated dipole fields. To answer it, we performed a number of
experiments with increasing dimensionality. We present the
results in Fig. 5a.

In the first experiment a GDF received linear input signal

I =

[
0,

1
M

,
2
M

, . . . ,
M − 1

M

]T

. (14)

This I was presented for 13 000 time steps, signal AE
lasted 10% of each period (Section 5.1), and the number of
gated dipoles M was gradually increased. Apparently the task
difficulty increased not only due to the rise of M , but also due
to the reduced differences between the elements of I — an
increase in dipole field size decreases the resolution of I among
neighbours and thus leads to increased competition. As seen
from Fig. 5a, with the traditional numerical methods the CPU
time grew rapidly with even moderate dimensionality increase.
The GN, in contrast, coped with this task quite well.

Fig. 5a also shows that Runge–Kutta–Fehlberg 4–5 was
computationally the most economical method among the
standard ones, and was useful for much bigger GDFs. The
former was also tested with AE lasting 90% of the time
(Section 5.1). Fig. 5b shows that in this case the standard
method needed much more time while GN was again very
efficient.

Finally we compared three cases of GN performance — each
with a different type of input I. Those types were: First, linear
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Fig. 3a. Performance of the generalized net in a regime with numerical method activated for 10% of the time. Top: Time course of y5. Middle: Time course of z1.
Bottom: CPU time needed at each time step. In the upper right-hand corner we show total CPU time needed to compute the behaviour of 100 dipoles for 13 000
time steps in GN with 1.7 GHz processor.
input as per Eq. (13); second, logistic curve that greatly reduced
the differences among the most competitive elements of I —
those close to 1; third, exponential curve that enhanced the
differences among these largest elements of I and thus eased
competition. The effect of input variation became noticeable
with 50 dipoles and more (Fig. 5c). As expected, the difficult
sigmoid input needed more CPU time than the other two, but
still, up to 100 dipoles this difference was not huge.

It should be noted that the Runge–Kutta 4 procedure used
in GN was good enough for large-scale GDFs as well. Fig. 2
(bottom) shows the time course of y5 in 600 gated dipoles
receiving exponential curve as input. In this case competition
lasted for quite long but was eventually won by a dipole.
6. Discussion and conclusions

In this work we achieved efficient computation of large-
scale gated dipole fields while fully preserving the essential
system dynamics. In fact the speed increase due to our
modifications amounted to at least an order of magnitude for
fields of 100 dipoles and more. We adopted a ‘divide and
rule’ approach, as we clustered the eight dipole equations into
three categories, and modified each category in a separate way.
Thus we ended up needing a simple numerical procedure, for
only three equations, and for only part of the time. Initially
we expected our controlled use of numerical procedure to
account for most of the gain, as a GDF in ART operates in
short transients and long equilibrium periods. It turned out,



G. Mengov et al. / Neural Networks 19 (2006) 1636–1647 1643
Fig. 3b. Performance of the generalized net in a regime with numerical method activated for 90% of the time. Top: Time course of y5. Middle: Time course of z1.
Bottom: CPU time needed at each time step.
however, that our logical–numerical system was much less
sensitive to the transient/equilibrium ratio than the standard
Runge–Kutta–Fehlberg 4–5 method. This was desirable but
unexpected and we concluded that the simplicity of the
procedure had greater impact than the short duration of its
activation.

We used Generalized Nets as a programming language —
in contrast to their more popular use as a modeling method.
We found this solution to be convenient because it added very
little computational overhead. We believe that in a different
development environment (e.g. C++) the overall speed might
be even higher, but the results as shown in Fig. 5a would be
essentially the same. With GNs in hand we freed our thinking
from more established approaches, and adopted a fresh look
towards developing an efficient model. Of course techniques
more or less similar to ours have been used in discrete-event
simulation in general, and in neural modeling in particular
(Bower & Beeman, 1998; Hines & Carnevale, 1997; Lee &
Farhat, 2001).

Our approach can be extended to a full continuous-time
ART system and this is a topic of future research. Such a
logical–numerical system would in its simplest variant probably
not detect bifurcation points as in Raijmakers et al. (1996)
because of the particular rule-based numerical integration.
However, once the system dynamics are known they would
easily be translated into rules for activating sets of y5 units. In
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Fig. 4. Effect of a frequent Ŝ1old
j update on neurotransmitter computation. Top: Time course of the adjusted equivalent Ŝ1old

j , computed at each time step. Middle:

Time course of S1new
j . Bottom: Time course of z1. The arrows highlight little jumps in transmitter consumption during transient processes.
Fig. 5a. CPU time needed by standard numerical integration methods and
generalized net for a task with growing dimensionality.
Fig. 5b. CPU time needed by the Runge–Kutta–Fehlberg 4–5 procedure and
the generalized net for an easy task (transient process lasted 10% of the time),
and a hard task (transient process lasted 90% of the time).
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Fig. 5c. CPU time needed by the generalized net for easy (Exp), medium
(Linear), and difficult (Sigmoid) tasks.

that case the model classification properties would be eligible
for comparison with dART (Carpenter, 1997) and other similar
systems. In the present paper we needed a subset of GN
components and simulation capabilities excluding bifurcation
analysis. However, GN theory could suggest other approaches
for efficient numerical integration in the bifurcation analysis
task, exactly as it did for this paper’s GDF computation.

Our work focused on GDF in Exact ART. Because the core
of adaptive resonance theory is not a set of equations but a set
of principles, we did not need to deal with issues of numerical
accuracy in the way other studies of neural systems did (cf. Lee
& Farhat, 2001). We developed an efficient system that could
correctly fulfill the GDF functions.

Appendix A. Generalized nets and GDF model

The Petri Net has seen many variants with different
modeling capabilities. One example is the Generalized Net
or GN (Atanassov, 1991, in press), which includes many
previously known modifications as partial cases. GN is
suitable for modeling parallel processes with concurrencies
and synchronization in production and other systems. It has
dynamical elements, temporal parameters, and memory. It
operates on a fixed discrete-time scale and at each step changes
its state. In various implementations some components may
be omitted to give a reduced GN. The reader is referred to
(Atanassov, 1991; Radeva, Krawczak, & Choy, 2002) for a
comprehensive treatment of the topic.

For the GDF task we used a reduced GN with computable
predicates and floating-point characteristic functions. Because
the gated dipole dynamics have been well studied they are easy
to model with GN. In general a GN consists of transitions
with places and tokens. Transitions are like ‘crossroads’ for the
information moving through the network places. These places
are the ‘parking lots’, and the tokens are ‘moving vehicles’.
Each token contains its own characteristic — the ‘useful load’
that a vehicle carries. Fig. 6 presents the complete GN model
of the gated dipole field. Since its thorough treatment would
Fig. 6. Generalized net model of the gated dipole field.
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be tedious we give only a general overview. Then we discuss
in detail an illustrative example with neurons y1, which are
among those computed by switching on and off the numerical
integration procedure.

The vertical lines with triangles on top (Fig. 6) are GN
transitions. For example, TY1 and TY2 in the left upper and
lower parts of the figure correspond to node vectors y1 and
y2 respectively. TS1 and TS2 represent the signals causing
transmitter release as discussed in Section 2.2.1. TZ up in
the middle is z1 and z2 transmitter transition, while TYE
stands for three node vectors: y3, y4, and y6. From GN
point of view it is convenient to combine the latter three
in one transition because they are computed with the same
simplification technique (Section 2.2.2). Note that we omit
some connections in Fig. 6 just for visual clarity — they
still exist in the real implementation. For example transition
TAE sends signals not only to TC and TY5 as shown in the
picture, but also to TY1, TY2, and TYE. Transitions TY5
and TAE (up to the right) do the y5 and AE computations
respectively. Transition TC in the middle does not correspond
to any gated dipole element, but coordinates the whole system
computation. Through its many input places TC receives data
about the other transition states, and emits two kinds of signals
to them. The first kind is commands to switch on or off
the numerical procedure (to transition TNum) or to produce
the next AE pulse (to TAE). The signals of the second kind
inform other transitions about various new events, such as an
input change from outside the GDF, appearance of a new AE
pulse, emergence of a new winner etc. Transition TC is also
responsible for communicating inputs I and AE to the system.
The latter two are external for the GDF. The experimenter sets
up the values of I and the frequency of AE before simulation.

How does the GN work? Let us focus on the y1 neurons
represented by TY1 transition. Imagine that a new AE reset
signal has arrived and has begun influencing all y1 j and
y2 j nodes (Fig. 1). The GN activities may be mapped onto
the GDF interactions in the following way. First, the TY1
transition (Fig. 6) receives a message from the controlling
transition TC that an input change has occurred. The carrier
of that information is a token that leaves TC and enters place
PY1C (deciphered as ‘position of the control token of y1’)
of TY1. Simultaneously another token registers in place PY1I
(deciphered as ‘input position of the token representing y1’).
The latter token has as its characteristic the current y1 values.
The token’s presence in PY1I is detected by coordinating
transition TC, which then orders switching the numerical
integration on. Now the token leaves PY1I and enters PY1N
(N stands for numerical procedure). This ‘crossing’ of the
transition by the token leads to calculation of all y1 values
for the next time step. The token moves along the arc of the
TY1 transition and comes back to position PY1N, calculating
y1 in the next time step. Transition TY1 sends the y1 values
via another token to place PC Y1, which is an entry place for
transition TC.

Simultaneously all other neurons and transmitters are
calculated, and their values sent to TC, which checks if a y5 j
node has won the competition. This circulation goes on until TC
finally detects a new winner and orders the numerical procedure
to switch off. Then the token we have followed enters place
PY1E (E stands for equilibrium) and circulates for the next time
steps until new events make coordinator TC give another order.
Thus we have explained the interaction of TC and TY1 with
regard to y1 computing. The remaining y2–y6, z1, and z2 can
be discussed in a similar way.

Appendix B

The following parameter values were used in the
simulations. Constants: A = 0.001, B = 1.0, e = 0.01,
β = 0.5, γ = 0.5, δ = 5.0, Γ = 0.1, ε = 0.001. Initial
values:

y1 j (0) = y2 j (0) = · · · = y6 j (0) = 0, z1 j (0) = z2 j (0) = 0.5,

j = 1, . . . , M; AE (0) = 0.
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