Journal of Intelligent Manufacturing (1997) 8, 203-214

Feature recognition using ART2:
a self-organizing neural network

KISHORE LANKALAPALLI*, SUBRATA CHATTERIJEE
and T.C. CHANG

1287 Grissom Hall, School of Industrial Engineering, Purdue University, West Lafayette,
IN 47907, USA

Received November 1995 and accepted June 1996

A self-organizing neural network, ART2, based on adaptive resonance theory (ART), is
applied to the problem of feature recognition from a boundary representation (B-rep) solid
model. A modified face score vector calculation scheme is adopted to represent the features by
continuous-valued vectors, suitable to be input to the network. The face score is a measure of
the face complexity based upon the convexity or concavity of the surrounding region. The face
score vector depicts the topological relations between a face and its neighbouring faces. The
ART?2 network clusters similar features together. The similarity of the features within a cluster
is controlled by a vigilance parameter. A new feature presented to the net is associated with
one of the existing clusters, if the feature is similar to the members of the cluster. Otherwise,
the net creates a new cluster. An algorithm of the ART2 network is implemented and tested
with nine different features. The results obtained indicate that the network has significant

potential for application to the problem of feature recognition.

Keywords: Feature recognition, feature representation, neural networks, ART

1. Feature recognition

To automate manufacturing there is a need to establish an
interface between computer-aided design (CAD) and
computer-aided process planning (CAPP). The designs
need to be analyzed for functional considerations such as
manufacturability and assemblability in order to generate
effective process plans. Solid models depict the complete
geometric and topological information of engineering
components. The two prominent solid models known are
boundary representation (B-rep) and constructive solid ge-
ometry (CSG). The B-rep model of a solid contains the
geometric and topological information of a solid in terms
of low-level entities such as faces, loops, edges, vertices and
the relationships between these geometric entities. This
low-level information cannot be directly used for analyzing
designs for functional considerations. Feature recognition
is the most promising approach to bridge the gap between
solid models and process planners. The problem of feature
recognition involves recognition of higher-level geometric
entities, termed features, from the lower level entities in the
solid model.

*Author to whom all correspondence should be addressed

0956-5515 © 1997 Chapman & Hall

1.1. Classification of features

Features are physically distinguishable geometric elements
of engineering significance. It is the faces of a solid com-
ponent that constitute a feature. From this perspective,
features can be classified as simple, intermediate and
complex. Each face of a solid, by itself, is a simple feature.
Planar, convex and concave surfaces are simple features.
Intermediate features are a combination of two or more
simple features. The topological relationship between the
simple features determines the intermediate feature. Ex-
ample of intermediate features are slots, pockets, and holes.
The third category, complex features, results from the in-
teraction of multiple intermediate features. A cross-slot
belongs to this category. To generate a complete process
plan all the simple, intermediate and complex features
should be recognized from the solid model. The informa-
tion about a simple feature can be directly accessed from
the solid model. Researchers have succeeded, to some ex-
tent, in recognizing intermediate features using various
methods. It is the complex features that make the problem
of feature recognition quite difficult, and research is in
progress in this area.

204

1.2. Review of feature recognition research

Feature recognition from B-rep models has been studied by
a number of researchers since the early 1980s. The various
approaches proposed include: a syntactic pattern recogni-
tion approach by Kyprianou (1980) and Choi (1982); a
rule-based approach by Kung (1984) and Henderson
(1984); and a graph-based approach by Joshi and Chang
(1988). A detailed discussion of these approaches and a
summary of feature recognition studies until 1987 were
reported by Chang (1990). A number of studies based on
the above approaches have been reported since 1987, some
of which are: rule-based systems by Hwang (1988) and
Vanderbrande (1990); and graph-based systems by Sakurai
and Gossard (1988), and Chuang (1991). A graph-based
system using a differential depth filter technique to reduce
the search space was proposed by Gadh and Prinz (1991).
The first-known neural networks approach using a per-
ceptron for feature recognition was proposed by Hwang
and Henderson (1992). Unfortunately, none of the systems
reported is perfect, and all of them have limitations for
practical use. The drawbacks of these systems can be at-
tributed to the methodology as well as to the implemen-
tation algorithms.

1.3. Feature recognition using a perceptron

An approach for feature recognition from a B-rep solid
model using a single-layer perceptron was proposed by
Hwang and Henderson (1992). The perceptron is a pattern
classifier with supervised training, which can classify only
linearly separable patterns. Supervised training involves
presenting a sequence of training vectors, or patterns, each
with an associated target vector, until the network adapts
its weights according to a learning algorithm. Because the
input to a perceptron or any other neural network is usu-
ally a vector of real numbers, an empirical face score vector
calculation method to represent features was adopted. The
network was trained to recognize intermediate features
such as a pocket, a slot and a through-hole. When pre-
sented with partial features, the network was able to rec-
ognize them with certain confidence, but it failed to
recognize complex features, such as a cross-slot. When the
network was retrained by including the cross-slot feature in
the training set, it was able to identify the feature with a
high level of confidence. Supervised neural networks such
as the perceptron perform well when the training set used is
a good representative of the entire domain. In problems
such as feature recognition it may not be possible to train
the net with all possible features.

1.4. Current approach

Self-organizing neural networks based on adaptive reso-
nance theory (ART) may overcome the problems associ-

Lankalapalli et al.

ated with using a perceptron for feature recognition. The
ART networks cluster similar features together without
supervision. The degree of similarity of patterns placed on
the same cluster can be controlled. Clustering of features is
unique and always guaranteed. When the network is pre-
sented with an “‘unfamiliar’ feature — a feature that does not
belong to any of the previously formed clusters — it creates
a new cluster with the new feature as an exemplar for the
cluster, unlike the perceptron, which fails to do so. In this
paper, the feasibility of using a self-organizing neural net-
work, ART?2, for feature recognition is studied. The face
score vector method proposed by Hwang and Henderson
(1992) is modified to obtain a suitable feature representa-
tion scheme. An algorithm of ART2 network is imple-
mented in MATLAB™ and the results obtained are
reported.

In the next section, a brief overview of adaptive reso-
nance theory is given. A detailed description of the face
score vector calculation for nine different features is pre-
sented in Section 3. In Section 4, a step-by-step algorithm
for ART2 is provided. In Section 5, the results of the net-
work, when presented with the nine features, are reported,
followed by a discussion.

2. Adaptive resonance theory

Adaptive Resonance Theory (ART) was developed by
Carpenter and Grossberg (1987a). The network ARTI1 was
designed for clustering binary vectors, and later ART2,
which clusters continuous-valued vectors, was developed
(Carpenter and Grossberg, 1987b). These networks cluster
inputs by unsupervised learning. Each time a pattern is
presented, an appropriate cluster unit is chosen, and the
cluster’s weights are adjusted to let the cluster unit learn the
pattern. The degree of similarity of patterns placed in the
same cluster is controlled by a reset mechanism via a vig-
ilance parameter. A new feature presented to the net is
associated with one of the existing clusters, if the feature is
similar to the members of the cluster. Otherwise, the net
creates a new cluster.

In networks with supervised learning algorithms, such as
a perceptron or a backpropagation network, an input
training set is presented sequentially until the network
finishes learning the entire training set. When an additional
pattern is presented to the network, the network has to be
completely retrained with all the training patterns. If the
network learns an additional pattern alone, in the process,
it forgets the previous learning and classifies the previously
learned patterns incorrectly. The ability of a network to
learn a new pattern is called plasticity, and the ability for
the new learning not to be affected by the previous learning
is called stability. The quest for stable-plastic networks led
to the development of ART networks. According to Car-
penter (1989):

Feature recognition using ART?2

ART networks are designed, in particular, to resolve
the stability—plasticity dilemma: they are stable enough
to preserve significant past learning, but nevertheless
remain adaptable enough to incorporate new infor-
mation whenever it might appear.

2.1. Basic architecture

The basic architecture of an adaptive resonance network
involves three groups of neurons: input processing units
(F1 layer), cluster units (F2 layer), and reset units (Fausett,
1994). The F1 layer consists of two parts: the input units
(F1(a) layer) and the interface units (F1(b) layer). The in-
terface units combine signals from the input units and the
F2 layer to compare the similarity of the input signal to the
weight vectors of the cluster units. A schematic of the basic
architecture is shown in Fig. 1.

There are two sets of connections between the layers
F1(b) and F2. The bottom-up weights connecting F1(b) to
F2 are denoted by b;; and the top-down weights connecting
F2 to Fl(b) are designated ¢;. The cluster unit with the
largest net input becomes the candidate to learn the input
vector. The activations (outputs) of all other F2 units are
set to zero. Whether or not this cluster unit is allowed to
learn the input vector depends on how similar its top-down
weight vector is to the input vector. This decision is made
by the reset unit, based on signals it receives from the input
and interface units of the F1 layer and a vigilance param-
eter. If the cluster unit is not allowed to learn, it is inhib-
ited, and a new cluster unit is selected as the candidate. In
this paper, the cluster units correspond to features and the
input vectors correspond to face score vectors.

2.2. Vigilance parameter

The criterion for an adequate match between an input
pattern and a chosen cluster (feature) is determined by a
vigilance parameter, which ranges between 0 and 1. All
other things being equal, higher vigilance imposes a stricter
matching criterion, which in turn partitions the input set
into finer clusters. Lower vigilance tolerates greater mis-
matches, leading to coarser clusters. The choice of the
vigilance parameter is critical to the performance of a ART
network, but there are no guidelines for setting the value of
vigilance (Kusiak and Chung, 1991). The choice of vigi-
lance parameter is application specific, and is usually de-
termined by experimentation. In some applications a
variable vigilance parameter has also been used.

2.3. Learning

Learning updates top-down and bottom-up weights until
equilibrium weights are obtained. Once a cluster has been
selected for learning, the bottom-up and top-down signals
are maintained for an extended period, during which weight
changes occur. This is the ‘resonance’ that gives the theory

205
b b B B e h b
—1, ;Gluster Units §§%§§g§r§;
FaEn ey bij it
¢ ‘Reset ’ !
» 2 nits,
S EREEY]

e i ereiiiih
t Interface, Units » £

LR T T I

i '?fﬁk)ﬂi-éuniféﬁ% AR {a)dayer: s

Fogr e B M W oW _@gﬁ.&.@@

Fig. 1. Basic structure of ART networks.

its name. Learning can occur in two modes: fast learning
and slow learning. In the fast learning mode, weight updates
during resonance occur rapidly, whereas in slow learning
mode the changes are slow, relative to the length of time a
pattern is presented on any particular trial. A learning trial
in ART consists of the presentation of one input pattern.
Many more presentations of the patterns are required for
slow learning than for fast learning. A fast learning mode is
typically used for ARTI1, whereas a slow learning mode
appears to be more suitable for ART2 (Fausett, 1994). Slow
learning is less susceptible to noise, and is not influenced by
the order of presentation of the patterns.

2.4. ART?2 versus ARTI

The differences between ART2 and ARTI1 reflect the
modifications needed to accommodate patterns with con-
tinuous-valued components. The F1 field of ART2 is more
complex because continuous-valued input vectors may be
arbitrarily close together. The F1 field in ART2 includes a
combination of normalization and noise suppression, in
addition to the comparison of the bottom-up and top-
down signals needed for the reset mechanism. A typical
ART?2 architecture is shown in Fig. 4 and an algorithm is
explained step by step in Section 4.

3. Face score vectors

Hwang and Henderson (1992) proposed the concept of face
score vectors in order to represent features as vectors
suitable for neural network input. Face score is a function
of the face, edge and vertex geometries, and is a measure of
the face complexity based upon the convexity or the con-
cavity of the surrounding region. The face score vector
depicts the topological relations between a face and its
neighbouring faces. A modified face score calculation and
vector formation method is used in this paper. Each face of

206

a solid, represented by a B-rep model, has a number of
edges and vertices. Also, each face may have one or more
inner loops. The following scores are assigned to edges,
loops and face geometry:

Edge scores (E)

Convex edge +0.5
Concave edge -0.5
Loop scores (L)

Positive inner-loop +1.0
Negative inner-loop -1.0

Face geometry scores (Fy)

Plane surface 0
Convex surface +2.0
Concave surface -2.0

The numerical values chosen for the edge, loop and face
geometry scores reflect the geometric nature of the entities.
Face geometry is more important than the inner loops on
the face, which, in turn, are more important than the edges
in determining a feature. By using positive and negative
scores for geometrically opposite entities, a strikingly dif-
ferent representation is obtained for geometrically opposite
features such as a slot and a tab.

The vertex score is calculated by:

3
V= Z i (1)
i=1
where V' is the vertex score, and E1, E> and E3 are the scores
of the three edges that intersect to form the vertex.
The face score is given by:

F:Zn:%nLFngZm:Lk (2)
j=1 k=1

where 7 is the number of vertices shared by the face, and m
is the number of inner loops present on the face.

A slot feature is shown in Fig. 2(a). The ten faces are
identified by numbers 1-10 inscribed at the center of the
corresponding face. In Fig. 2(b), a two-dimensional rep-
resentation of the solid is given, depicting the adjacency
relationships between the faces. The face score calculation
for each of the ten faces is illustrated below.

Table 1. Face scores for the slot feature

Lankalapalli et al.

(a) (b
I——F i 8 I 1
¥ 6
& 7
q 57 4
’ o 4]
H o
oo,) 1 3
8 /1 _ 1ol "k) N
F 5 1
_ 2 I 7
D y L
B C ¢ K

Fare Scare Vector: { 1.5 L5 10 125 0.5 125 10 15 1.5)
4
15

10— /

ic)

oo

™

L - -]

Fig. 2. (a) A slot feature; (b) two-dimensional representation of
the solid, depicting the adjacency relationships of the faces; (c)
graphical representation of the same vector.

3.1. Face score calculation

In Fig. 2(a), all the edges are convex except GO and FN.
Therefore all the vertices except G, F, O and N have a
vertex score equal to 1.5, whereas vertices G, F, O and N
have a vertex score of 0.5 each according to Equations 1
and 2. Because all the faces are planar, the face geometry
score corresponding to each face is equal to zero. There are
no inner loops associated with any face in this example.
The face score values corresponding to each face are listed
in Table 1.

Face no. Face (s) Face score
1 GFNO 0.54+05+05+0.5
1 =0.5
23 ABCDEFGH 1.5+1'5+1'5+1'5+1é5+0.5+0.5+1.5+1'5:1‘25
IJKLMNOP
4,5 GHPO and FEMN i 1.5: oAl =1.0
6-10 AHPI, EMLD, ABJI, l’5+1'521'5+1'5: 1.5

DCKL, BCKIJ

Feature recognition using ART?2

3.2. Face score vector formation

A nine-element face score vector corresponding to each
face is formed in accordance with the following rules:

(1) The fifth element of the vector is the face score of the
face under consideration (main face);

(2) The immediately adjacent faces with highest scores
comprise the fourth and the sixth elements, the next highest
scores are the third and the seventh elements, and so on;

(3) If the solid has less than nine faces, then the re-
maining elements of the vector are set to 1.5.

A graphical representation of the face score vector cor-
responding to face 1 of the slot feature is shown in
Fig. 2(c). The fifth element of the vector has a score of 0.5
corresponding to the score of face 1. Faces 2, 3, 4 and 5 are
immediately adjacent to face 1. Of the faces 2, 3, 4 and 5, 2
and 3 have a higher score than 4 and 5: hence they com-
prise the fourth and sixth elements of the face score vector,
and faces 4 and 5 comprise the third and seventh elements.
Faces 6, 7, 8 and 9 comprise elements 2, 8, 1 and 9 res-
pectively. The face score of the tenth face does not appear
in the face score vector corresponding to face 1.

Because the effect of the faces far away from the main
face plays a minor role in determining the feature associ-
ated with the main face, a nine-element vector is deemed
sufficient for this purpose. The face score vectors for nine
intermediate features, which are input to the net for clus-
tering, are shown in Fig. 3.

4. ART?2 algorithm

The following ART2 algorithm is taken from Fausett
(1994). A typical ART2 architecture (Fausett, 1994) is re-
produced in Fig. 4 for reference. Notice the additional
layers present in the F1 layer compared with the basic ar-
chitecture presented in Fig. 1. The computational cycle of
the F1 layer can be initiated with the calculation of the
activation (output) of the layer U. Each of the layers P, Q,
U, V, W, X and R has the same number of units, equal to
the number of elements in the input vector (nine in the
present case).

Before proceeding with the algorithm, two functions,
normalize and threshold, need to be defined. In the fol-
lowing, bold italic letters indicate vectors.

Let X =(x1,X2,...,%,)

N(x) = Normalize (x) ad

~lxll

where ||x|| = \/(xf +x3 4+ +x2)

T(x) = Threshold (x) = (T(x;), T(x2), ... T(x,))
fx ifxi=0
T(x;)Threshold (x;) = {0 ifx, <0

207

The algorithm consists of the following steps.

Step 0

Initialize parameters

a=10;6=10;0=0.1;¢c=0.1;d = 0.9;

o(learning rate) = 0.6; p (vigilance parameter) = 0.9;

for i = 1 to n (number of nodes in F1 layer) and
j=1to m (number of clusters)

Z‘j[=0 and
1
bi < i
Step 1

Do steps 2—-12 N_EP (number of epochs) times. An epoch
is one presentation of each pattern.

Step 2

Do steps 3—11 for each input vector s.

Step 3

u=0 w=s, p=0, x=N(s), ¢=0, v=T(x);
u=N(), w=s+au, p=u, x=N(w), ¢q=N(p),

v="T(x)+bT(q).

Step 4

Compute the net input of the F2 units.
Forj=1tom

Y= Z bijpi
i=1
Step 5
While reset is true, do steps 6-7.

Step 6

Find J = j, corresponding to the F2 unit with largest net
input.

Step 7
Check for reset.
u=N(),
fori=1ton

pi = u; +diy

u; + cp;

[lull +cllpll

If ||¥]| < p, then
y; = —1 (inhibit Jth node from participation)
reset = true
repeat step 5

v

If ||r|| > p, then
w=s+au, x=N(w),
reset = false

go to step 8

Step 8

Do steps 9-11 N_IT times (N_IT: number of iteration,
equal to 1 in the present case).

g=N(p), v=T(x)+bT(q)

208 Lankalapalli et al.

Tab | (1.5 1.0 1.0 1.25 1.5 1.25 1.0 1.0 1.5)

l,:‘ a /\
4 c
! | e 1.0
R s
Hf c 0.8
/ o
4
r
) e 8 6 4 2 ple3 5 7 9
(1.51.51.01.250.51.251.0 1.5 1.5)
Slot !
! ;
YAV Fi.
4 a
!
:] C
N O e L0 /
s
S
/f ¢ 0.
Fs
’ o
T S
e 8642F?ace3579
(1,5 -.50.50.51.50.50.5-0.5 1.5)
Protrusi e Il e
rotrusion h 1/ ‘
- F
K 1.5~
:’I -1
] C
: e 1.0~
/'_ R

SV-:I. 2 plee 3 sw 9
0.5

Fig. 3. Face score vectors of nine features.

Feature recognition using ART?2 209

Pocket

{ 1.5 2,01 -0.5 -0.5 -1.5 -0.5 -00.5 2.0 1.5}

; S Face

£
e 8 6 } 7 9
)/ o 05— |3

Through-hole (L51.51.525-20251.51.5L5)

’ - S 8 6 4 2FM.3 5 7 9

B
0% | _ | ({L5151.5052.00.01.51.515)

Y
o 0w orm

-
—
.

.
L1 B T =2 A

8642FLW3579

Fig. 3. (contd.)

210
Step
1
|
—_————
I
i
/
.
I
s
Cross-slot
/
1 j 1 d
Al 2 o
=
i
4
ks
I
s
!
Blind-hole

Fig. 3. (contd.)

(1.51.51331.510151331.51.5)

Lankalapalli et al.

8 6 4 2 phed 5 7 9

(0.750.75 1.25 1.25 0.16 1.25 1.25 0.75 0.75})

-

8 6 4 2 pheed 5

7

9

(1.51.51.52.5-2.0001.5 1.5 1.5}

§ 6 4 2 5

Feature recognition using ART?2

Fig. 4. A typical ART2 architecture.

Step 9

Update weights for unit J.
ty; = odu; + {1 + ad(d — 1)}ty
biy = adu; + {1 + od(d — 1) }by

Step 10
u=N(), w=s+au, p=u-+dt,
x=N(w), q=N(p), v=T(x)+bT(q).
Step 11

Test stopping condition for weight updates.

Step 12
Test stopping condition for number of epochs.

5. Results and discussion

The algorithm for the ART2 network, presented in the
previous section, was implemented in MATLAB™. The
face score vectors corresponding to the nine features pre-
sented in Section 3 are input to the ART2 network. The net
clustered the nine patterns into eight different clusters, as
shown in Table 2. A value of 0.9 is used for the vigilance
parameter, and slow learning mode is used for updating
weights (N_IT = 1). The noise suppression parameter (6)

211

Table 2. Network results

Feature Cluster

Epoch 1 Epoch 2 Epoch 3

Tab 1 6 6

Slot 2 7 7
Protrusion 1 1 1
Pocket 2 2 2
Through-hole 3 3 3

Boss 4 4 4

Step 5 8 8
Cross-slot 5 5 5
Blind-hole 3 3 3

is chosen to be 0.1. In Table 2, the first column corresponds
to the features that are being clustered, and they are input
to the net from tab to blind hole in the order given. In the
second column the output node to which the feature is
clustered after each epoch is shown. An epoch is one pre-
sentation of each pattern to the net.

When the face score vector corresponding to the tab
feature was input to the net for the first time it was asso-
ciated with the first output node. Then the slot feature
formed a new cluster. The next two features, protrusion
and pocket, were clustered by the first and second nodes
respectively. This indicates that the weights corresponding
to the first two nodes have not changed significantly after
two presentations to differentiate between tab and pro-
trusion and slot and pocket. The next three features created
their own clusters. Cross-slot was grouped with step and
blind hole with through-hole.

By the end of the second epoch, the network learned to
differentiate between tab and protrusion, slot and pocket
and step and cross-slot. But the network still clustered
through-hole and blind hole together. By the end of the
second epoch the net stabilized as it repeated the same
classification in the ensuing epochs. By increasing the
number of epochs, equilibrium weights were obtained.
Figures 5 and 6 show graphical representations of the top-
down and bottom-up weights after 10 and 50 epochs res-
pectively. Initially, the top-down weights (¢;) are set to
zero, and bottom-up weights (b;;) are set to a constant
value, as given in the algorithm. As shown in Fig. 5, by the
end of ten epochs the weights change slightly towards the
shape of the input pattern. Figure 6 shows that the weights
for all the clusters except cluster 3 stabilize to values similar
to the input patterns. Because cluster 3 has learned both
through- and blind holes, the corresponding weights sta-
bilized to a pattern intermediate to the two patterns.

The effect of the changes in the vigilance and the noise
suppression parameters on the network performance were
investigated, and the results are summarized in Table 3.
The cluster units shown in Table 3 correspond to stabilized
clustering at the chosen values of 0 and p. The network did
not differentiate between through-hole and blind hole until

212

Fig. 5. The status of the top-down and bottom-up weights after ten epochs for the nine features.

the vigilance parameter (p) was increased to 0.9995. The
values of the noise suppression parameter (0) between 0.1
and 0.3 did not affect the net performance. At a value of 6
equal to 0.3 and p equal to 0.9 the clustering became
coarse, and the net clusters slot, through-hole, step, cross-

Feature Top-down Weights, t
0
-2 -2
2 4 6 8 2 4 6 B
ot 2 2
0 0
S —
-2 -2
2 4 b B 2 4 & 8
2 2
protrusion \/_/w
0 0
o — T —]
-2 -2
2 4 & 8 2 4 6 B
ot 2 2
ocke
P 0/\\/_/\ Of\v/\
-2 2
2 4 6 8 2 4 ©§ 8
2 2
thru-hole
0 0—/\/———
-2 -2
2 4 B 8 2 4 6 8
b Y Vs
0sS
(] 0
-W
-2 -2
2 4 6 8 2 4 8 B
2
ste e
P 0
-2 -2
2 4 6 8 2 4 6 8
2 2
cross-slot | —" " ——
0
]
-2 -2
2 4 6 8 2 4 6 B
2
blind-hole
0 G——/\/-»—
-2 -2

2 4 6 B

2 4 6 8

2
0
-2
B
2
I —
0
-2
8
2
Mo
0
-2
8
2

0
-2
8
2
,_..______’/\\/_
0
-2
8
0
-2
8
e
-2
8
2

-2

Lankalapalli et al.

Bottom-up Weights, b

slot and blind hole features together. As the vigilance pa-
rameter was increased the clustering became finer. When p
was increased to 0.995 the network formed a separate
cluster for blind hole, and as p was further increased to
0.9999, the slot and step features were classified together

Feature recognition using ART?2

Feature Top—-down Weights, t
2
0 Q
_5 -2
2 4 6 8 2 4 6 8
2 2
0 0
-2 -2

2
protrusion
0

0
~2 -2
2 4 6 8 2 4 6 8
ket 2 2
ocke
P O/\wf 0/\\/_/\
-2 -2
2 4 6 8 2 4 6 8
2
thru-hole
0 0
-2 -2
2 4 B8 8 2 4 6 8
2 2
boss NS — N\
0 0
-2 -2
2 4 B 8 2 4 6 8
2
ste T] b ——
P 0
_2 -2
2 4 8 8 5 2 4 6 8
cross-slot N\ — NS
0
) -2
2 4 B8 8 2 4 &6 __ 8
2 2
blind-hcle
0 0
) -2

Fig. 6. The status of the top-down and bottom-up weights after 50 epochs for the nine features.

with the other features forming individual clusters. Finally,
when p was made equal to 0.999 99, nine different clusters
were formed. The components of the normalized input
vector that are less than the noise suppression ratio, 8, were
set to zero. When 0 was increased to 0.3, some of the values

2 4 6 8

2 4 6 8

-2

2 4 & 8
2
0
-2

2 4 6 8
2
../\\/—-_
0
-2

2 4 6 8
L\
—2

Bottom-up Weights, b

213

in the input vectors were set to zero, and this made some of
the patterns more similar to each other. This explains the
coarser clustering that occurred when 6 was set to 0.3 and p
was set to 0.9. The values of p below 0.9 were observed to
have no effect on the clustering.

214

Table 3. Sensitivity analysis

Lankalapalli et al.

Feature Cluster units

6 =0.1 0=0.3

p=0.9 p =0.9995 p=0.9 p=0.995 p=0.9999 p =0.99999
Tab 6 7 5 5 1 1
Slot 7 2 3 3 2 2
Protrusion 1 1 1 1 3 3
Pocket 2 3 2 2 4 4
Through-hole 3 4 3 3 8 5
Boss 4 5 4 4 5 6
Step 8 8 3 3 2 9
Cross-slot 5 6 3 3 6 7
Blind hole 3 9 3 6 7 8

The results obtained in this paper only indicate the po-
tential of using unsupervised ART neural networks for
feature recognition from a solid model. The main advan-
tages of the neural network approach are high recognition
speed, ability to recognize partial and complex features,
minimal memory storage, and ease of computation. Be-
cause both graph-based and rule-based systems perform
exhaustive searches for matching their patterns, the exe-
cution time can become very high, depending on the
complexity of the component. Neither graph-based nor
rule-based systems have the ability to learn or dynamically
improve their performance. The performance of the net
depends highly on the representation of the features, and
further research is needed to develop a more robust face
score vector calculation scheme or some other way of
representing the features. The possibility of applying some
other variations of ART networks, such as fuzzy ART, for
feature recognition problem should be considered in the
future.

References

Carpenter, G. A. (1989) Neural network models for pattern rec-
ognition and associative memory. Neural Networks, 2, 243—
257.

Carpenter, G. A. and Grossberg, S. (1987a) A massively parallel
architecture for a self-organizing neural pattern recognition
machine. Computer Vision, Graphics, and Image Processing,
37, 54-115.

Carpenter, G. A. and Grossberg, S. (1987b) ART2: self-organi-
zation of stable category recognition codes for analog input
patterns. Applied Optics, 26, 4919-4930.

Chang, T. C. (1990) Expert Process Planning for Manufacturing,
Addison-Wesley, Reading, MA, pp. 73-103.

Choi, B. K. (1982) CAD/CAM compatible tool oriented process
planning system, PhD Thesis, Purdue University.

Chuang, S. (1991) Feature recognition from solid models using
conceptual shape graphs, PhD Thesis, Arizona State Uni-
versity.

Fausett, L. (1994) Fundamentals of Neural Networks: Architec-
tures, Algorithms and Applications, Prentice-Hall, Englewood
Cliffs, NJ, pp. 218-287.

Gadh, R. and Prinz, F. B. (1991) Shape feature abstraction in
knowledge-based analysis of manufactured products, in
Proceedings of the 7th Conference on AI Applications, Miami
Beach, FL, IEEE Computer Society Press, CA, pp. 198-204.

Henderson, M. R. (1984) Extraction of feature information from
three dimensional CAD data, PhD Thesis, Purdue Univer-
sity.

Hwang, J. (1988) Rule-based feature recognition: concepts,
primitives and implementation, MS Thesis, Arizona State
University.

Hwang, J. -L. and Henderson, M. R. (1992) Applying the per-
ceptron to three-dimensional feature recognition. Journal of
Design and Manufacturing, 2(4), 187-198.

Joshi, S. and Chang, T. C. (1988) Graph-based heuristics for
recognition of machined features from a 3D solid model.
Computer Aided Design, March, 20(2), pp. 58—66.

Kung, H. (1984) An investigation into development of process
plans from solid geometric modeling representation, PhD
Thesis, Oklahoma State University.

Kusiak, A. and Chung, Y. (1991) GT/ART: using neural net-
works to form machine cells. Manufacturing Review, 4(4),
293-301.

Kyprianou, L. K. (1980) Shape classification in computer aided
design, PhD Thesis, University of Cambridge, UK.

Sakurai, H. and Gossard, D. C. (1988) Shape feature recognition
from 3D solid models, in Proceedings of the 1988 ASME
International Computers in Engineering Conference, Amer-
ican Society of Mechanical Engineers, NY, pp. 515-519.

Vanderbrande, J. (1990) Automatic recognition of machinable
features in solid models, PhD Thesis, University of Rochester.

	Abstract
	Feature recognition
	Adaptive resonance theory
	Face score vectors
	ART2 algorithm
	Results and discussion
	References

