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Abstract—A new neural network architecture for incremental supervised learning of analog multidimensional maps is
introduced. The architecture, called Gaussian ARTMAP, is a synthesis of a Gaussian classifier and an adaptive
resonance theory ( ART) neural network, achieved by defining the ART choice function as the discriminant function
of a Gaussian classifier with separable distributions, and the ART match function as the same, but with the
distributions normalized to a unit height. While Gaussian ARTM AP retains the attractive parallel computing and
fast learning properties of fuzzy ARTMAP, it learns a more efficient internal representation of a mapping while
being more resistant to noise than fuzzy ARTMAP on a number of benchmark databases. Several simulations are
presented which demonstrate that Gaussian ARTM AP consistently obtains a better trade-off of classification rate to
number of categories than fuzzy ARTMAP. Results on a vowel classification problem are also presented which
demonstrate that Gaussian ARTMAP outperforms manv other classifiers.
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1. INTRODUCTION

Systems for incremental learning of multidimensional
maps build and update an internal representation of
the mapping on a case by case basis and typically
without any a priori knowledge of the problem
domain. For each new training sample, which
consists of a pair of input and output vectors, this
internal representation is refined in order to improve
future prediction given a test sample, which consists
solely of an input vector. Desirable characteristics of
learning systems are as follows.

Parallel computation. Use simple local operations
which are suitable for implementation in parallel
hardware.
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Fast learning. Learn the mapping quickly and
reliably from as few training samples as possible.

Efficient representation. Minimize the storage
requirement of the internal representation while
maximizing predictive accuracy.

Resistant to noise. System’s representation should
remain efficient even if data are noisy. Training
samples often contain incorrect or inconsistent input/
output pairings, due to either errors in the collection
data, or to the intrinsic discriminative insufficiency of
the data features.

The development of incremental supervised
learning systems has included a promising line of
research investigating ARTMAP neural network
architectures. The most prominent ARTMAP
system for classifying analog data is fuzzy ARTMAP
(FA), which has been shown to perform well in a
number of benchmarks with respect to other learning
systems (Carpenter et al., 1991a, 1992a, b). In this
paper, a new ARTMAP system called Gaussian
ARTMAP (GA) is introduced. GA satisfies the above
criteria for incremental learning systems better than
FA because it produces a more efficient representa-
tion and is more resistant to noise.

This paper is organized as follows. In Section 2,
FA is briefly reviewed; two deficiencies of FA are
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described and argued to stem from its fuzzy set
category descriptions. In Section 3, an alternative
network called Gaussian ARTMAP (GA) is pro-
posed, which uses Gaussian defined categories by
incorporating components of a Gaussian classifier
into the ART choice and match functions. Section 4
describes the equations of Gaussian ART and
Gaussian ARTMAP. In Section 5, GA and FA are
evaluated on several data sets.

2. FUZZY ARTMAP
2.1. ART

The supervised learning ARTMAP architecture is an
extension of the unsupervised clustering ART
(adaptive resonance theory) architecture (Carpenter
et al.,, 1991b). An ART network incrementally
clusters its input into stable categories (Carpenter &
Grossberg, 1987). The number of categories that are
formed depends upon the vigilence parameter, p,
which determines how “spread out” in feature space,
according to the network’s distance metric, samples
coded by the same category may be. A vital ART
concept is the separation of choice and match criteria.
The choice function selects the network’s current
estimate of the category an input is most likely to
belong to. The match function, on the other hand,
determines if the chosen category’s template is
sufficiently similar to the input vector to satisfy p,
the vigilance parameter. If the chosen category
satisfies the match function, the system resonates
and the category ‘“learns”: its template approaches
the input vector. If not, the category is reset, and
another category is chosen. If no existing category
satisfies the match criterion, then a new category is
recruited. Thus, ART incrementally produces the
number of categories necessary to represent clusters
of input samples, with the inclusivity of categories
inversely related to p.

2.2. ARTMAP

ARTMAP extends ART into a supervised learning
system by cleverly taking advantage of ART’s
unsupervised clustering mechanism (Carpenter et
al,, 1991b). In ARTMAP, the chosen ART cate-
gories (hidden units) learn predictions, which are
mappings to output classes, during training. If a
chosen ART category makes the wrong prediction,
then the vigilance parameter p is temporarily raised to
the level required to reset the category. This match
tracking process guarantees that, for a given input
sample, the category that resonates has a better
match than all categories that are reset. Thus, the
system organizes its clustering of the data based on
predictive feedback from the labels it assigns to the
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clusters, as well as from how the data are distributed
in feature space.

2.3. Fuzzy ARTMAP

The most prominent ARTMAP system for classifying
analog data is fuzzy ARTMAP (Carpenter et al.,
1992b). Fuzzy ART is an extension of the original
binary ART 1 system to the analog domain through
the use of the A AND fuzzy operator instead of the N
logical intersection (Carpenter et al., 1991b).

With FA, an input vector I=1,..., Iy is
complement coded into [I:=ILF={L,..., Iy,
Iy =1-1,...,hy =1~ IM}. Each category j

is initialized with a weight vector
w; = W) = --- = wapr = 1. The choice function,
|7/ w)
J=argmax| T;(I) = £, 1
gms (,() a+|wj|) ™)

picks the non-reset category J with a combination of
the best matching weight vector |[IAw;| and the
smallest (i.e., most specific) weight vector |w;|. The
relative contributions of these components is
determined by «, the choice parameter. If a is
small, categories with small weight vectors |wj|, and
thus large categories in feature space, are favored; if o
is large, the opposite.
The match criterion,

IAwW
| m 4>

2)

requires that a chosen category’s weight vector be
sufficiently close to the input vector. Due to
complement coding, the denominator |I] in (2) is
constant and can be ignored. Fast learning simply
updates the weight vector of the chosen category with

Wy = I/\W]. (3)

Thus, the length of all weight vectors is non-
increasing over time.

Each category’s 2M-dimensional weight vector
can be viewed as an M-dimensional hyperrectangle,
where the minimum and maximum values of the
hyperrectangle in each dimension correspond to the
minimum and maximum values of all the samples
coded by that category if fast learning is used. Thus, a
small o gives advantage to large inclusive categories
(large hyperrectangles). This generally causes the
system to create fewer categories than it would if a
were large.
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2.4. Fuzzy ARTMAP Deficiencies

Fuzzy ARTMAP has been shown to perform well in
certain benchmarks with respect to other learning
systems. However, two potential weaknesses of FA
may be noted: (1) sensitivity to noise, and (2)
inefficiency of fuzzy categories.

2.4.1. Sensitivity to Noise. When a FA category j
makes a false prediction during training, it is reset
and another category j' is chosen. If |w; A 1| = |w;|
and |w;AI| = |w;]| (e, the training sample falls
within the intersection of the two hyperrectangles),
then |w;| > |w;|, and thus category / must have a
smaller hyperrectangle than category j. When
training data are noisy, so that regions of feature
space essentially map randomly to different predic-
tions, FA proliferates categories. Because satisfaction
of each reset often requires a smaller, more specific
category as outlined above, a succession of contra-
dicting predictions in nearby random locations
resuits in the continual recruitment of new cate-
gories. This category proliferation problem is partly
due to the fact that the choice and match functions
are flat within a category’s hyperrectangle, and partly
due to the use of fast learning. The problem of
category proliferation in noise has been addressed by
restricting the invocation of match tracking through
an appropriate use of slow learning of class
predictions that enables the network to learn
conditional probabilities in a nonparametric setting
(Carpenter et al.,, 1994). Here it is shown how
category proliferation can be limited even during
fast learning by modifying network dynamics.

2.4.2. Inefficiency of Fuzzy Categories. A related
problem with FA is the potential inefficiency of
fuzzy categories for representing distributions of
data. Each category is represented by perhaps the
simplest statistics about its data: the minimum and
maximum values in each dimension, which are
learned to conjointly minimize predictive error and
maximize predictive generalization. A hyperrectangle
represents the range of acceptable category vectors.
Such a representation is perhaps best suited to data
that are uniformly distributed within hyperrectangles.
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FIGURE 1. Two ways to fit a cluster of data: with a square and a
circle.
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FIGURE 2. Ratio of volume of hypersphere to volume of

hypercube with same dlameter, as a function of the number of
dimensions.

A “typical” cluster of real data may, however, be
better characterized by the data points shown in
Figure 1. The cluster of points is bounded by a fuzzy
category forming a square in two dimensions (left),
but is better fit by a bounding circle (right). Note that
in the corners of the square, the category has inferred
the existence of data where no evidence exists. If this
inference turns out to be nonpredictive, then new
categories may need to be created to “‘chip away at”
the corners, in order to provide correct classification
in those areas of feature space.

Figure 2 illustrates the way that this problem
scales to higher dimensions by plotting a ratio, the
volume of a hypershere divided by that of a
hypercube with equal diameter, as a function of
dimension. As feature space approaches 10 dimen-
sions, the volume of a fuzzy category is dominated by
the comners, for which little or no evidence may exist.

3. GAUSSIAN ARTMAP

To deal more efficiently with problems of category
proliferation in noise and category shape, a new ART
module called Gaussian ART is introduced, which
uses categories defined as Gaussian distributions.
Gaussian ART is incorporated into an ARTMAP
architecture to create Gaussian ARTMAP (GA). The
motivations for using Gaussian distributions are that:
(1) Gaussian-defined choice and match functions,
which monotonically increase toward a category’s
center, should produce less proliferation of categories
in noise than do FA’s flat choice and match
functions; and (2) Gaussian distributions have useful
generalization properties in high dimensional spaces
(Duda & Hart, 1973; Powell, 1987; Broomhead &
Lowe, 1988; Poggio & Girosi, 1989).

Components of a Gaussian classifier are incorpo-
rated into an ART module to create Gaussian ART.
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This network has the familiar properties of ART
networks because categories are incrementally
formed to represent clusters of input samples, and
the inclusivity of the categories is inversely related to
a vigilance parameter, p. The novelty of Gaussian
ART is that each ART category is defined as a
Gaussian distribution, with a mean and standard
variation in each dimension, and an a priori
probability.

The choice function picks the most likely
category for a given input. A category’s likelihood
is determined by the likelihood that the input
belongs to its distribution, as well as by the
category’s a priori probability. The match function,
on the other hand, is based on how well the input
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fits the category’s distribution, which is normalized
to a unit height.

When Gaussian ART is extended into Gaussian
ARTMAP, the prediction of an output class during
testing is interpreted as picking the class with the
highest net probability. Therefore, all category
predictions are summed to yield the most likely net
prediction of a class, rather than basing the
prediction on the maximum ART category, as in
FA (but see also Carpenter and Ross, 1995).

Gaussian ARTMAP is essentially an incremental
learning Gaussian classifier in which each output
class is determined during training to correspond
to any number of sources of Gaussianly distributed
data. One limitation in this analogy is that GA
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FIGURE 3. Top: Data which vary independently in each dimension (left, middle), and which covary between dimensions (right). Middle:
GA categories, which are defined by separable Gaussian distributions, can capture independent variance well. Shown are Gaussian
distributions that fit the independently varying data. Bottom: GA categories cannot capture covarying data as well. Two possibilities for
fiting these data are two smaller distributions (left), and one larger distribution (right).
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can only define its categories with separable
Gaussian distributions. This limitation is necessary
so that GA uses only simple operations that can
be implemented in parallel. Figure 3 (top) illus-
trates three possible ways that data can be
distributed in two dimensions. A GA category can
easily fit data that vary independently in each
dimension (middle), but cannot easily fit data that
covary between dimensions (bottom). If GA were
to represent covariance, then each category would
need to store a covariance matrix, and classifica-
tion would require computing the determinant
and inverse of this matrix. By using only separable
Gaussians, on the other hand, GA has storage
and computational requirements similar to those of
FA. One implication of this limitation, which also
holds true for FA, is that GA most efficiently
represents data that are uncorrelated across dimen-
sions. It is interesting to note that humans also
scem to have trouble representing covariance
between dimensions (Kruschke, 1992).

4, GAUSSIAN ARTMAP EQUATIONS
4.1. Gaussian ART

4.1.1. Categories. Each Gaussian ART category j is
defined by an M-dimensional vector yu; representing
its mean, o; representing its standard deviation, and a
scalar n; representing its count, the number of
training samples it has coded. Thus, each Gaussian
ART category requires 2M + 1 components to
represent an M-dimensional input, = (I}, ..., Iy).

4.1.2. Category Choice. During training, the category
whose Gaussian distribution is the most probable
“source” for input 7 is chosen. The a posteriori
probability of category j given input [ is

pin =220, @)

Categories are defined by separable Gaussian
distributions, so the conditional density of I given
category j is

N 1 l [l,j,'—I,' 2
p(IU)_(Zﬂ’)M/?HlM:lo‘ﬂ Xp( 2 ( ;i ))7 (5)

and the a priori probability of j is simply

n;

N )
Ej’-—'l nj'

P(j) = (6)

where N is the number of categories. The density p(J)
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in (4) is ignored because it is the same for all
categories. For computational ease, a discriminant
function g;() is used to evaluate each category,
obtained by taking the log of the numerator m @
with the dimensional scaling factor, (27r) , dis-
counted (see Duda & Hart, pp. 22-31),

(1) = log((2m)™p(11)) P())

_ M
= ZZ (uj’o’n ) - log(i:xaﬁ) + loe(?0)
™

The non-reset ART category J with maximum
discriminant function is chosen,

J = arg max(g;(1)). (8)

4.1.3. Category Resonance and Reset. If a chosen
category’s match value does not satisfy the ART
vigilance parameter, p, then the category is reset.
Category match is determined by how well input 7/
matches with the shape of category /s distribution,
which is normalized to a unit height,

g = log(<27r)”“(Ha,.) 111))
U (i — I
—ig ( Cji )
= gs(I) — log(P(J)) + log (H ”in’)- ©

If g/(I) > p, then the category resonates; otherwise
it is reset. Once a category is reset, it remains
inactive until presentation of the next itnput. If no
committed ART category meets the vigilance
condition, then an uncommitted category J', with
n; = 0, is chosen.

Figure 4 shows a 1-D example of the match
and choice functions, given three categories, A, B,
and C, and an input sample, I. In this example,
the first category chosen is A (top), however A
does not meet the match criterion (bottom), so it
is reset. The next category chosen is C, which
meets the match criterion, and thus resonates.
Therefore, category C learns input 72 C’s mean and
standard deviation are updated by I, and its count
is incremented.

4.1.4. Learning. When category J learns an input
sample I, its count, mean, and standard deviation
variables are updated to represent the sample count,
mean, and standard deviation,
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Choice Function: Gaussian distributions with a priori probabilities.

Match Functon:  Gaussian distributions with unit height.

FIGURE 4. Example in one dimension of choice and match
functions of three different GA categories. Input sample is
denoted by L In this example, category A wins the choice
competition. However, category A’s distribution, normalized to
unit height, is Insufficient to meet the maitch criterion,
determined by p. Therefore, category A is reset, and the
category with the next highest choice function, category C, is
chosen. Category C meets the malch criterion, so category C
resonates, and learns the input: ts mean, standard devlation,
and count variables are updated.

nyi=ny;+1, (10)

pri= (1= p, + 0yl (1)

UJ,':={\/(l—n;l)a.zli+n;l(“li-li)2 if n;>l,

~ otherwise.
(12)

The initial standard deviation, <, determines the
isotropic spread in feature space of a new category’s
distribution about its first sample.

4.1.5. Input Normalization. Gaussian ARTMAP can
use inputs of any value. Because categories are
initialized with a constant standard deviation ~ in
each dimension, however, it is usually desirable that
inputs have roughly equal standard deviations in each
dimension.

4.2. Gaussian ARTMAP

The Gaussian ART module plays the same role
within the ARTMARP architecture as does an ART 1
module (Carpenter et al., 1991a), or a fuzzy ART
module (Carpenter et al., 1992b). The most basic
ARTMAP system is presented here. For a full
network description of ARTMAP, see Carpenter et
al. (1991a, b, 1992a, b).

J. R. Williamson

4.2.1. Training. When an ART category J is chosen
for the first time during training, it is assigned the
prediction, K, of the current training sample,

QN =K. (13)

The function () maps category J to its prediction,
class K. This function is generally many-to-one, so
that J € Q~'(K). If category J is again chosen in
response to another training sample, and its
prediction K' is incorrect (K # K), then match
tracking is invoked. The vigilance parameter is
raised to the value of the category’s match function,

p=gl), (14)

and category J is reset. Match tracking assures that a
correct prediction comes from a category whose
distribution is a better match to the training sample
than all reset categories. Upon presentation of the
next training sample, p is reassigned its baseline
value, p = p.

4.2.2. Testing. During training, each prediction is
made by the category with the maximum discrimi-
nant function in (8), and therefore is the maximum
estimated likelihood of being the source for that
prediction. During testing, on the other hand, the
goal is to make the best prediction, not to assign
credit to the most deserving category. Therefore, the
prediction with the maximum estimated probability is
chosen, where the probability estimates are obtained
by summing the activations of all the categories that
map to each prediction. The prediction K’ with the
maximum net probability is chosen,

K'=argmgX( 3> exp(gj(l)))- (15)

JEX1 (k)

4.2.3. Voting. FA is sensitive to the order of its
training samples. By independently training different
FA systems on different orderings of the same data,
and combining their predictions during testing by
voting, performance can be significantly improved
(Carpenter et al., 1992b). GA also benefits from
combining the outputs of independently trained
systems, although the benefit typically seems to be
smaller than for FA, presumably because GA is less
sensitive to the order of training samples. Just as a
single GA prediction is based on net probabilities,
determined by the sum of all category predictions in
(15), so is GA voting also based on the sum of all
category predictions across different GA systems,
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FIGURE 5. Circle-in-square. 1st Row: From left to right, 10 to the power 2, 3, 4, and 5 training samples. 2nd Row: GA (with = 0.5)
decision regions. 3rd Row: Underlying GA difference of discriminant functions. 4th Row: FA (with a= 0.1) decision regions. 5th Row:
Underlying FA difference in discriminant functions.
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K':argmfx(z Z GXP(gy,j(I))), (16)

v=1 e\ (k)

where ¥ is the number of GA systems which are
voting. While the operation in (16) would more
accurately be called “summing” than “voting”, I

retain the latter term for historical consistency with
FA.

4.2.4. Comparison with Potential Functions and
Gaussian Classifier. It is interesting to note that if
training results in each category coding only one
sample, then GA becomes identical to the method of
potential functions using Gaussian distributions. If
training results in each output class corresponding to
only one ART category, on the other hand, then GA
becomes identical to a Gaussian classifier with
separable Gaussians. Therefore, GA’s extremes of
minimal and maximal code compression correspond
respectively to classification with potential functions
and with a Gaussian classifier.

5. SIMULATIONS

Both FA and GA have internal parameters which
affect the number of categories created during
training. One of these is the vigilance parameter, p.
Since this parameter has the same function in both
systems, its baseline value is set to zero for both
systems in all simulations. Each system has another
parameter affecting the number of categories created,
which has no analog in the other system. In FA this is
a, the choice parameter. As mentioned earlier, o
covaries with the number of categories created by
FA. In GA, this parameter is v, the initial standard
deviation of categories, which inversely covaries with
the number of categories created. FA and GA can
thus be evaluated under conservative and non-
conservative regimes by varying o and .

5.1. Circle-in-Square

The circle-in-the-square problem requires identifica-
tion of which points lie inside and which outside a
circle lying within a square of twice its area (Carpenter
et al., 1991b). The performances of FA and GA were
evaluated based on the number of categories created
and on test error rate. Figure 5 (top row) shows the
training data with, from left to right, 10 to the power 2,
3,4, and 5 samples. Training samples belonging to the
circle are shown in white, and those belonging to the
background are shown in black. Testing consisted of
10,000 samples evenly spaced across the image. FA
was evaluated with a = 0.1 and o = 1.0, and GA with
v=1.0 and v=0.5.
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Circle-in-Square
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FIGURE 6. Circle-in-square test results. Graph jointly plots error
rate (abscissa) and number of categories (ordinate). Along each
curve (from left to right), each successive point corresponds to
training on a larger training set. So, each curve shows the error
rate and number of categories resulting from training on 10 to
the power 2, 3, 4, and 5 training samples.

Figure 6 jointly plots the number of categories
(ordinate) and error rate (abscissa) for the different
number of training samples, with successive points
along each line corresponding to training with 100,
1000, 10,000, and 100,000 training samples. The
lower left of this graph is the desirable zone: low error
rate with few categories. GA, with either value of ~,
outperforms FA, with either value of o, because it
achieves an equally low error rate using far fewer
categories.

Figure 5 (second and third rows) visually
illustrates GA’s classification results, with v=0.5,
corresponding to the training samples above. In the
second row is shown the decision regions, and in the
third row the difference of the sum of discriminant
functions in (8) for the two classes,

Y. ed(gn) - Y emle). A7)

JjeQ (1) JE'(0)

Note that large Gaussian “blobs” appear at the
beginning of training (left), and as training progresses
these blobs are tightened, and smaller blobs
(additional categories) are added to refine the
decision boundaries.

Figure 5 (fourth and fifth rows) shows the
corresponding results for FA with a =0.1. Note
that the decision boundaries are more choppy than
those for GA, and that the difference in the maximum
discriminant functions for the two classes,

Ti(1), (18)

max T;(I) -

max
JjeQ-1(1) jen-'(0)

is not as revealing as the corresponding GA difference
in (17).
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Cross-section of Noisy Spirals PDFs
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FIGURE 7. Cross-section, vertically down the middle, of nested
spirais probability density functions (PDFs) using Gaussianly
distributed noise.
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5.2. Noisy Nested Spirals

5.2.1. Gaussianly Distributed Noise. Now that we
have seen how the two systems perform on the
relatively simple circle-in-square problem, it is
interesting to see how they do on a more difficult
problem that contains both noise and multimodally
distributed data. One such task is that of discriminat-
ing noisy nested spirals (Carpenter et al., 1995). In
this task, a square of range [0..1] in each dimension
contains two intertwined spirals that a classifier
attempts to discriminate. In our implementation of
this problem, each spiral consisted of 97 isotropic
Gaussian distributions centered along the spiral, each
Gaussian having a standard deviation of 0.025.
Figure 7 illustrates the large amount of overlap
between the two classes, showing a vertical cross-
section of the PDFs taken in the middle of the image.
The task differs from the one in Carpenter et al.
(1995) in that training samples were drawn randomly
from all 194 Gaussians, rather than being restricted
to 20 samples from each Gaussian, and the Gaussians
were defined with a larger standard deviation (0.025
rather than 0.01).

For comparison with the circle-in-square results
shown in Figure 5, GA and FA were evaluated with
the same parameters, v = 0.5, and a = 0.1, respec-
tively. In addition, FA was evaluated with two
methods introduced in Carpenter et al. (1995) for
coping with noisy data. These methods combine
restriction of match tracking with slow learning of the
mappings from chosen categories to output classes in
order to obtain nonparametric probability estima-
tions. The two methods differ in how match tracking
is restricted. In the slow learning method, match
tracking can only take place after enough evidence of
a wrong prediction from a given category has been
accumulated via the slow learning process. In the max
nodes method, match tracking is completely turned
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off after a certain number of categories are created.
Because GA is an ARTMAP system, it can also use
the slow learning and max nodes methods to improve
its resistance to noise, however here the performance
of GA with only fast learning is compared to that of
FA with the additional noise resistance mechanisms.

In Carpenter et al. (1995), nine different systems
were independently trained on different orderings of
the training data, and their outputs averaged. Here,
the output of a single trained system was evaluated,
rather than the outputs of nine different systems, so
more nodes (500 rather than 75) were used in the max
nodes method than in Carpenter et al. (1995).
Otherwise, the slow learning and max nodes
parameters were the same as in Carpenter et al.
(1995).

Figure 8 (top row) shows the training data with,
from left to right, 10 to the power 2, 3, 4, and 5
samples. Figure 8 (second and third rows) illustrates
GA'’s classification results. After 10,000 training
samples, GA has captured the form of the spirals
quite well; its decision regions are further refined
following 100,000 training samples. Figure 9 illus-
trates FA’s classification results. The top row shows
the fast learning results, the middle row the slow
learning results, and the bottom row the max nodes
results. With fast learning, FA creates very many
categories, and the resulting decision regions visually
resemble the noise. With slow learning, fewer
categories are created, and the results are improved,
yet still quite noisy. With max nodes, the decision
regions markedly improve after the number of
categories is restricted (far right), yet the results are
not as good as GA'’s results in Figure 8.

Figure 10 plots the performance of GA and FA on
100,000 randomly generated test samples. GA
converges to near the optimal error rate of 20%
with fewer than 800 categories. With fast learning
and slow learning, FA creates far more categories
without significantly reducing its error rate. With
max nodes, FA’s error rate begins to approach that
of GA after the number of categories is bounded at
500.

5.2.2. Uniformly Distributed Noise. A shortcoming of
the above comparisons between FA and GA is that
GA may have an unfair advantage due to the nature
of the problems. The circularly shaped decision
boundaries are more easily fit by Gaussian distribu-
tions, as are the Gaussian noise distributions in the
noisy nested spirals problem. In order to remove this
latter possible confound, training and testing on the
same noisy nested spirals problem was repeated,
except with samples perturbed with uniformly rather
than Gaussianly distributed noise. The uniformly
distributed noise had the same standard deviation
(0.025) as the previous Gaussianly distributed noise.
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FIGURE 8. Nested spirals with Gaussianly distributed noise. 1st Row: From left to right, 10 to the power 2, 3, 4, and § training samples.
2nd Row: GA (with = 0.5) decision regions. 3rd Row: Underlying GA difference in discriminant functions.

Figure 11 plots the results on uniformly distrib-
uted noise, which correspond to the results on
Gaussianly distributed noise plotted in Figure 10.
The high similarity in the two sets of results indicates
that GA’s advantage over FA depends much more on
the amount of noise rather than on how the noise is
distributed.

5.3. Letter Image Recognition

Frey and Slate (1991) developed a benchmark letter
image recognition task. In this task, data consist of 16
features obtained from machine generated images of
alphabetical characters (A to Z). The classification
problem is to predict the correct letter from the 16
features. Classification difficulty stems from the fact
that the characters are generated from 20 different
fonts, are randomly warped, and only simple features
such as the total number of “on” pixels, and the size
and position of a box around the “on” pixels, are
used. The database consists of 20,000 samples, the
first 16,000 of which are used for training, and the last
4000 for testing. The database is archived in the UCI
Repository of Machine Learning Databases and

Domain Theories, maintained by D. Aha and P.
Murphy (ml_repository@ics.uci.edu).

Frey and Slate (1991) tested several variations of
Holland-style genetic classifiers, and achieved max-
imum performance of a little over 80%. Carpenter et
al. (1992a) obtained dramatically better results with
FA, with a maximum performance of 96% correct.
This result was obtained using a subset of 11 of the 16
features. The first five features apparently have littie
discriminative value, and FA achieves better classifi-
cation results without them.

FA and GA were evaluated with all 16 features, as
well as with the reduced set of 11 features. To
compare FA and GA, each parameter variation of
each system was evaluated on the data by indepen-
dently training the classifier five times, each for a total
of 20 epochs (iterations through the data), or until the
network equilibrated. The average performance, as
well as the performance with voting, was obtained.
Between each training epoch, the order of samples
was randomly scrambled. FA was evaluated with the
same parameters used in Carpenter et al. (1992a),
a = 1.0 and a = 0.1. The input data were renorma-
lized to have a range of [0..1] in each dimension for
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FIGURE 9. Nested spirals with Gaussianly distributed noise: FA results with a= 0.1. 1st Row: FA decision regions with fast learning. 2nd
Row: FA decision regions with slow learning. 3rd Row: FA decision reglons with max nodes.

Nested Spirals with Gaussian Noise
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FA, alpha = 0.1 -
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SOk FA, alpha = 0.1, slow learning % 7

Error Rate (%)

0 200 400 600 BOO 1000

Number of Categories

FIGURE 10. Nested spirals with Gaussianly distributed noise:
test results. Graph jointly plots number of categories (ordinate)
and error rate (abscissa). Along each curve (from left to right),
each successive point corresponds to training on a larger
training set. So, each curve shows error rate and number of
categories resulting from training on 10 to the power 2, 3, 4, and
5 training samples.

FA. GA was evaluated with vy values that yielded
similar numbers of categories as FA, v = 2.0, and
~=4.0. The input data were renormalized to have
unit variance in each dimension for GA. Also, for

50

Error Rate (%)

Nested Spirals with Uniform Noise
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FA, alpha = 0.1
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-
-
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FIGURE 11. Nested spirals with uniformly distributed noise: test

resuits.
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TABLE 1
Table Shows Number of Categories and Final Classification
Results, for Frey-Slate Letter Image Recognition Problem (with
Fill Set of 16 Features), of Nearest-neighbor (NN \k ), Fuzzy
ARTMAP (FA), and Gaussian ARTMAP (GA). FA was Run with
a=1.0 and a=0.1, for which it Equilibrated after 7 and 13
Epochs, Respectively. GA was Run with y= 2.0 and y— 4.0 for 20
Epochs. For each Parameter Setting, FA and GA were Trained
Independently five different times. The five results were
Averaged to Produce 1-Voter Resuits, and were Combined
using FA’s and GA’s Respective Voting Methods to Produce the
Five-Voter Results

Percent
Correct

16,000 95.80

Number Number of
Classitier Parameter of Voters Categories

NN — —

FA ~=10 1 1035 91.90
FA a=0.1 1 807 86.53
GA 4 =20 1 1044 93.97
GA y=40 1 975 93.71
FA a=10 5 5175 94.85
FA o =01 5 4035 91.73
GA =20 5 5218 95.95
GA y=40 5 4876 95.30

comparison, the nearest-neighbor (NN ) classifier was
evaluated.

Table 1 summarizes the final results using all 16
features. FA with a = 0.1 equilibrated after seven
epochs, and with o = 1.0 after 13 epochs. Without
voting, GA’s classification rates with either value of v
are about 2% better than FA’s best rate, with
o = 1.0. With voting, FA gains ground on GA, so
that GA’s rate with v = 2.0 is about 1% better than
FA’s best rate, and GA’s rate with v = 4.0 is about
0.5% better. The only result superior to the nearest-
neighbor (NN) rate of 95.80% is the GA result (with
v = 2.0 and voting) of 95.95%.

Table 2 summarizes the final results with the
reduced set of 11 features. With the reduced feature
set, none of the systems equilibrated before 20
epochs. Note that FA’s classification rate on the
reduced feature set is higher than on the full set, while
its number of categories remains roughly constant.
GA'’s classification rate, on the other hand, only
improves slightly, but the number of categories it uses
decreases substantially. Thus, additional features
with low discriminative value had a different effect
on the two systems: they caused FA’s classification
rate to decrease while its number of categories
remained stable, and caused GA’s classification rate
to remain stable while its number of categories
increased.

With the reduced feature set, GA achieves a higher
classification rate without voting than FA, while
using fewer categories. With voting, GA (with
v = 2.0) and FA (with a = 1.0) both achieve a rate
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TABLE 2
Table Shows Number of Categories and Final Classification
Results, for Frey-Siate Letter Inage Recognition Problem (with
Reduced Set of 11 Features), of Nearest Neighbor (NN), Fuzzy
ARTMAP (FA), and Gaussian ARTMAP (GA). FA and GA were
Trained for 20 Epochs without Equilibrating

Number Number of Percent
Classifier Parameter of Voters Categories Correct
NN — — 16,000 96.55
FA a=1.0 1 1062 94.03
FA a=0.1 1 800 89.54
GA vy=20 1 844 94.55
GA ¥y=4.0 1 768 94.10
FA a=10 5 5312 95.82
FA a=0.1 5 4001 93.16
GA =20 5 4208 95.98
GA v=4.0 5 3838 95.55

of nearly 96% correct, however GA uses fewer
categories. The best result is obtained by NN, with
96.55% correct.

Figure 12 plots the test error rates and number of
categories produced by GA and FA, across all 20
training epochs, for the full feature set. The abscissa
ranges from 700 to 1050 categories, and the ordinate
ranges from 0% to 17% error. Note that GA and FA
have similar error rates following one training epoch,
but with subsequent epochs GA’s error rate decreases
more than FA’s, so that GA ends up with a lower
error rate.

The performance when tested on the training data

Letter Image Recognition:
Performance on Test Data

—— T  — T T T
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FA, alpha =
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FIGURE 12. GA and FA number of categories (ordinate) and
error rates (abscissa) on test data of letter image recognition
task, with full set of 16 features. Each successive point along a
curve (from left to right) corresponds to a training epoch. Results
are averaged across five independently trained systems. The
same train/test partition of 16,000 train and 4000 test samples is
used on all five runs.
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Letter Image Recognition:
Performance on Train Data
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FIGURE 13. GA and FA error rates on train data of letter image
recognition task, with full set of 16 features.

is quite different. Figure 13 shows that FA has a
much lower error rate on the training data than GA.
The difference between the error rate on training data
and testing data is particularly striking for FA with
a=0.1. FA has a tendency, especially when o is
small, to overlearn its training data and generalize
poorly to its testing data.

Figure 14 plots the test error rates with voting.
Note that although both systems benefit from voting,
FA benefits more than GA, achieving error rates
nearly as low as those for GA. In fact, for the first
couple epochs, FA (with « = 1.0) achieves a lower
error rate than GA, but GA, for both settings of ~,
overtakes FA’s best results with sufficient training.

With the reduced feature set, the shape of the error
rate curves are quite similar to those for the full

Letter Image Recognition:
Performance on Test Data with 5 Voters
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FIGURE 14. GA and FA error rates, with five voters, on test data
of letter image recognition task with full set of 16 features.
Ordinate represents average number of categories used by the
five voting systems.
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Letter Image Recognition (reduced feature set):
Performance on Test Data
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FIGURE 15. GA and FA number of categories (ordinate) and
error rates (abscissa) on test data of letter image recognition
task, with reduced set of 11 features.

feature set, although the curves are shifted somewhat.
Figure 15 plots the test error rates and number of
categories produced, in which the abscissa ranges
from 550 to 1100 categories, and the ordinate ranges
from 0% to 17% error. With respect to the full
feature set results plotted in Figure 12, GA’s curves
are primarily shifted to the left, and FA’s curves
primarily shifted downward. The training curves and
voting curves in Figures 16 and 17 are similarly
shifted. In Figure 17, note that FA, with voting,
achieves its highest classification rate after a couple of
epochs, while GA requires several epochs to achieve a
similarly high rate.

5.4. Speaker Independent Vowel Recognition

GA and FA were also evaluated on a speaker

Letter Image Recognition (reduced feature set):
Performance on Train Data
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FIGURE 16. GA and FA error rates on train data of letter image
recognitiont task, with reduced set of 11 features.
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Letter Image Recognition (reduced feature set):
Performance on Test Data with 5 Voters

T

16 GA, gamma = 2.

GA, .
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0
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FIGURE 17. GA and FA error rates, with five voters, on test data
of letter image recognition task with reduced set of 11 features.
Ordinate represents average number of categories used by the
five voting systems.

independent vowel recognition database, for which
results of many other neural classifiers are available
for comparison. The data were collected by Deterd-
ing (1989), who recorded examples of the 11 steady-
state vowels of English spoken by 15 speakers. The
vowel data are electronically available from the
Carnegie-Mellon University connectionist bench-
mark collection (see Fahlman, 1993).

Table 3 shows the ASCII approximation to the
International Phonetic Association (IPA) symbol for
the 11 vowel sounds, and the word in which each was
recorded. Each word was spoken once by each of the
15 speakers, seven of whom were female and eight
male. The speech signals were low pass filtered at 4.7
kHz and then digitized to 12 bits with a 10-kHz
sampling rate. Twelth-order linear predictive analysis
was carried out on six 512 sample Hamming
windowed segments from the steady part of the
vowel. The reflection coefficients were used to
calculate 10 log area parameters, giving a 10-
dimensional input space. Each speaker thus yielded
six samples of speech from the 11 vowels, resulting in
990 samples from the 15 speakers.

Robinson (1989) used this data to investigate
several types of neural network algorithms. He
partitioned the data into 528 samples for training,
from four male and four female speakers, and 462
samples for testing, from the remaining four male and
three female speakers. He examined several classi-
fiers: a single-layer perceptron, multilayer networks
with sigmoidal, Gaussian, and quadratic activation
functions, a modified Kanerva model, radial basis
networks, and nearest neighbor. Robinson’s results
are shown in the first part of Table 4. Each result is
based on a single run using random starting weights.

TABLE 3

J. R. Williamson

Words Used for Recording Vowels to Create Vowel Recognition
Database (Adapted from Robinson, 1989)

Vowel Word Vowel Word

i Heed O Hod

| Hid C: Hoard
E Head U Hood
A Had u: Who'd
a: Hard 3: Heard
Y Hud

All results are reported following about 3000 epochs,
although peak performance may have been obtained
with fewer. In most cases, performance peaked at
around 250 (54%) correct, after which it degraded by
different amounts. See Robinson (1989) for more
details.

Much better results on this database were obtained
with a classifier called growing cell structures (GCS),
which is similar to a radial basis network (Fritzke,
1994). With GCS, each radial basis function
corresponds to a cell in a self-organizing feature
map (Malsburg, 1973; Grossberg, 1976, 1978;
Kohonen, 1984), a topological graph of a preconfi-
gured dimensionality, in which learning of input
patterns is shared between a cell and its nearest
neighbors in the graph. Each cell’s basis function
(e.g., a Gaussian distribution) has a standard
deviation determined by the mean length of graph
edges connected to that cell. Self-organization of the
RBF layer and the supervised adaptation of output
weights are done in parallel during training, and
training error is used to determine where to insert
new cells.

Like GA, therefore, GCS incrementally creates the
appropriate number of hidden units to adequately
perform the input/output mapping, using smooth
basis functions. Unlike GA, however, GCS does not
use simple local update rules which could be readily
implemented in parallel hardware. Insertion of new
cells into the graph is a particularly complex nonlocal
operation (see Fritzke, 1994, p. 1447). The GCS
results of Fritzke (1994) are summarized in the
second section of Table 4, in which results from
three runs of a three-dimensional GCS network, and
two runs of a five-dimensional GCS network, are
averaged.

The results of FA and GA are shown in the third
and fourth sections of Table 4. Presumably because
the database is so small, FA and GA produced results
with rather high variability on independent runs, due
to different orderings of the training data. Therefore,
the results of five different voting runs were averaged.
Each voting run in turn consisted of five runs for each
of the voters. Unlike the other neural network
systems, FA and GA both trained very rapidly. FA
achieved its maximum performance after just two
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TABLE 4
Table Shows (Rounded to Nearest Integer) Number of Training Epochs, Number of Categories, Number of Correctly Classified Samples,
and Percentage Correct Classification of Speaker Independent Vowel Recognition Task for Several Classification Methods from three
Different Studies. The First Section Shows the Results Obtained by Robinson on many Neural Network Classifiers, as well as the Nearest
Neighbor Classifier. The Ground Section Shows the Average Results Obtained by Fritzke with a Three-dimensional and Five-
dimensional GCS Network. The Third Section Shows the Results Obtained, with and without Voting, by FA with a= 1.0, and = 0.1. The
Fourth Section Shows Results Obtained, with and without Voting, by GA with = 2.0, and y=4.0

Number of Categories

Classifier Number of Epochs (Hidden Units) Correctly Classified Percent Correct
Single-layer perceptron 3000 — 154 33
Multilayer perceptron 3000 88 234 51
Multilayer perceptron 3000 22 206 45
Multilayer perceptron 3000 11 203 44
Modified Kanerva Model 3000 528 23 50
Modified Kanerva Model 3000 88 197 43
Radial basis function 3000 528 247 53
Radial basis function 3000 88 220 48
Gaussian node network 3000 528 252 55
Gaussian node network 3000 88 247 53
Gaussian node network 3000 22 250 54
Gaussian node network 3000 11 21 a7
Square node network 3000 88 253 55
Square node network 3000 22 236 51
Square node network 3000 11 217 50
Nearest Neighbor 1 528 260 56
Three-dimensional GCS 80 159 292 63
Five-dimensional GCS 80 166 307 66
FA,a=1.0 2 66 236 51
FA, a=0.1 2 56 229 49
FA, a = 1.0, 5 voters 10 329 246 53
FA, a = 0.1, 5 voters 10 279 244 53
GA, v=20 4 56 262 57
GA, vy=4.0 20 55 269 59
GA, v = 2.0, 5 voters 20 279 287 62
GA, v = 4.0, 5 voters 100 273 292 63

epochs for both settings of a. GA achieved its
maximum performance after just four epochs with
v =2.0, and after 20 epochs with v = 4.0. Without
voting, GA achieved better results (57% and 59%
correct for v = 2.0 and -y = 4.0 respectively) than FA
with or without voting, better than all neural
networks tested by Robinson, and better than the
nearest-neighbor classifier. With v = 2.0, this result
was obtained after only four training epochs, using 56
categories. With voting, GA achieved classification
results comparable to those of the three-dimensional
GCS network. With v=2.0, GA achieved 62%
correct using 20 net training epochs (four epochs
and five voters = 20 epochs) and 279 categories
among the five trained systems. By setting v higher
(y=4.0), GA relaxed more slowly and achieved
better final classification, with 63% correct using 100
net training epochs and 273 categories.

6. CONCLUSION

A new neural network architecture called Gaussian
ARTMAP has been introduced, which is based on

the synthesis of a Gaussian classifier and an
ARTMAP neural network. In comparison to
another ARTMAP architecture called fuzzy ART-
MAP, Gaussian ARTMAP has more complex
learning rules and choice and match functions, yet
retains fuzzy ARTMAP’s attractive fast learning and
parallel computing properties. Gaussian ARTMAP
has been shown to generalize better to test data and
to be more resistant to noisy training data than fuzzy
ARTMAP. Gaussian ARTMAP has also achieved
results on a vowel recognition database which are
better than those of many standard neural network
classifiers, and nearly as good as the best previously
published results, which were achieved with the
growing cell structures network (Robinson, 1989;
Fritzke, 1994).

Resistance to noise is important for incremental
learning systems, such as fuzzy ARTMAP, Gaussian
ARTMAP, and growing cell structures, which create
a sufficient number of categories, or hidden units, to
perform a multidimensional mapping of their
training data. In a real-world task, such as
incremental learning by a mobile robot, a network
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would receive a virtually infinite number of training
samples, which may be very noisy, from sensor
inputs. For this reason, it is not sufficient to
demonstrate that a network avoids category prolif-
eration when trained for several epochs on the same
small data set. In this paper, Gaussian ARTMAP was
trained on large, noisy data sets and achieved very
good classification with only a moderate proliferation
of categories.

An area for future investigation is how best to
initialize the variance of Gaussian ARTMAP
categories. Currently, they are initialized with a
constant standard deviation of v in (12). Using a
large ~ results in slower training with fewer
categories, while using a small 4 results in faster
training with more categories. In terms of classifica-
tion rate, an optimal v exists for each data set, but
this value varies between data sets. It might be useful
to vary « over time, perhaps to start training with a
large ~, and decrease <y as training progresses.

Another area for investigation is to further restrict
the proliferation of categories. One way to do this is
to prune categories which are chosen infrequently
and/or have low predictive value, as was done by
Carpenter and Tan (1995) using fuzzy ARTMAP for
the learning of IF-THEN rules in medical database
classification. Similar extraction of IF-THEN rules
based on GA’s category means, variances, and a
priori probabilities is also an area for investigation.
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NOMENCLATURE

I input vector for a training or testing
sample

M number of features per sample

J index of ART category

J index of chosen ART category

T;(1) fuzzy ART choice function

arg max;(T;(1)) picks index j for which T;(I) is
maximum

wy:=IAws  same as; W™ = T A S

¥ length of 1: M 1,
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weight vector for fuzzy ART
category j

fuzzy ART choice parameter

ART vigilance parameter, and
baseline vigilance parameter

mean vector for Gaussian ART
category j

standard deviation vector for
Gaussian ART category j

count scalar for Gaussian ART
category j

a posteriori probability of category j
given input

conditional density of input I given
category j
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a priori probability of category j
number of ART categories
Gaussian ART choice function
Gaussian ART match function
Gaussian ART standard deviation
initialization parameter
ARTMAP class prediction of
chosen category J
ARTMAP function which maps
categories to a class prediction
number of ART systems which are
combined via voting



