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In this paper, the integration of artificial neural networks and genetic algorithms is explored for
solving uncured composite stock cutting problem, which is an NP-complete problem. The input
patterns can be either rectangular or irregular, and the proposed approach can accommodate any
orientation and size restrictions. A genetic algorithm is used to generate sequences of the input
patterns to be allocated. The scrap percentage of each allocation is used as an evaluation criterion.
The allocation algorithm uses the sliding method integrated with an artificial neural network, based
on the adaptive resonance theory (ART1) paradigm, to allocate the patterns according to the
sequence generated by the genetic algorithm. The results obtained by this approach give packing

densities on the order of 80-95%.
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1. Introduction

Different competitive thrusts have played leading
roles in creating manufacturing strategies and systems
during the past decades (Dagli, 1994). Nowadays,
flexibility of the manufacturing system has become a
competitive thrust. Mass production systems used in
the past decades were operationally focused and
emphasized short-term  financial performance.
Flexible manufacturing systems that respond to
differing customer demands quickly replaced the
mass production systems having only product focus.
A flexible automated manufacturing system that
integrates the product design and the production
system must be created.

Currently, a large majority of firms have, or are in
the process of, transferring their product design
process into an electronic environment. There is a
need for an automated stock cutting system that
provides flexibility with efficient usage of high cost
materials as the use of composite materials has
increased dramatically over the past decade (Dagli
et al., 1990). In addition to the flexibility of the
manufacturing systems, cost still plays a major role in
the stock cutting. A 1% reduction of the high cost

materials in some industries, means millions of dollars
in savings each year. Besides the major cost reduction
of direct materials, the automated system also
provides direct labor and overhead cost savings to
the company. Inventory and manufacturing lead times
are also reduced by system automation.

This research work provides performance enhance-
ment to production systems in the stock cutting
industry. It concentrates on nesting uncured compo-
site materials, which is categorized as a two-
dimensional stock cutting problem. The problem is
to create the cutting patterns for the required patterns
that are not restricted to any shapes or orientations. An
automated system that generates nests with minimum
scrap is proposed.

The problem of allocating irregular and/or rectan-
gular patterns arises frequently in applications where
it has to be determined how a set of two-dimensional
shapes will fit onto a large stock sheet of finite
dimensions, in such a way that the resulting scrap is
minimized. This problem is common to many
industries such as aerospace, shipbuilding, clothing,
shoe manufacturing, VLSI design, steel manufac-
turing, flat glass and furniture.

The two-dimensional single plate rectangular
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pattern allocation problem is NP-complete (Garey and
Johnson, 1979). The problem becomes more compli-
cated for multiple plates, variable length plates or
irregular patterns. Because of the diversity of
structures in real world stock cutting problems, there
exists no general standard method for solving them.
Solution approaches proposed over the years can be
categorized into three major areas: optimization,
heuristics, and the use of emerging technologies.
The approaches proposed are summarized in many
survey articles (Hinxman, 1980; Golden, 1976;
Haessler and Sweeney, 1991; Dowsland, 1992;
Dyckhoff, 1989). In the following paragraphs, the
research work carried out in these areas is discussed.

1.1. Optimization approaches

Initially, one-dimensional stock cutting problems,
wherein the other two dimensions of the items being
cut are assumed constant, are studied. A mathematical
formulation of the one-dimensional problem was first
proposed by Kantorovich in 1939, but it was not
published in English until 1960 (Kantorovich, 1960).
Problems in these areas have been formulated into
mathematical programming problems by many
researchers (Paull, 1956; Metzger, 1958; Vajda,
1958). Linear programming is used by Eisemann
(1957), Gilmore and Gomory (1965), Farley (1988,
1990), Haessler (1980). Gilmore and Gomory (1961)
used the technique called delayed column-generation.
The approach is later modified and used by Dyckhoff
(1989), Scheithauer (1991), Haessler (1980), Heassler
and Sweeney (1991).

Besides the linear programming methods, other
approaches such as branch-and-bound (Pierce, 1966;
Goulimis, 1990); Monte-Carlo simulation (Duta and
Fabian, 1984), and, especially, dynamic programming
have been used extensively in this problem setting
(Richter, 1992; Hahn, 1986; Adamowicz and Albano,
19764, b). Christofides and Whitlock (1977) propose a
tree-search algorithm. Gemmill and Sanders (1991)
uses optimization homotopy which is a stochastic
technique.

The proposed optimization approaches have
restrictions in application due to the NP-complete
nature of the problem. Many applications involve an
astronomical number of variables, so the amount of
time required to generate solution patterns may not be
practical. Furthermore, switching from an optimal
fractional-valued solution to an optimal integer-
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valued solution is not easy. If the demands are in
small enough quantities, then the optimal integer-
valued solution may be quite different from the
original optimal fractional-valued solution. To over-
come these difficulties various heuristic approaches
are proposed.

1.2. Heuristic approaches

Albano (1977) offers an interactive algorithm to
improve the two-dimensional layout in which
decision maker interventions are included. Albano
and Orsini (1980) combines heuristic and exact
techniques to find an approximate solution.

Dagli and Nisanci (1981), and Dagli and Tatoglu
(1983, 1987) propose heuristic algorithms which can
process both rectangular and irregular patterns. At the
first stage of Dagli and Tatoglu’s (1983, 1987)
procedure, initial allocation of patterns to the plates
is made through mathematical programming; then,
based on this initial allocation, detailed two-dimen-
sional allocation is accomplished through heuristic
algorithms in the second stage. Extensions of this
work that combine heuristics and optimization
methods are presented in Dagli (1988a, b).

Beasley (1985), Ghandforoush and Daniels (1992)
propose heuristic methods to handle guillotine-
constrained problem. Daniels and Ghandforoush
(1990) propose an algorithm to solve the non-
guillotine-constrained two-dimensional cutting stock
problem. A mistake in their equation is later
commented on and updated by Dowsland (1992)
and George (1992).

Wang (1983) proposes two combinatorial methods
that solve a constrained rectangular stock cutting
problem where only guillotine cuts are allowed.
Wang’s algorithm is improved by Oliveira and
Ferreira (1990) to increase computational speed,
using reduced memory. Another modification and
extension of the Wang’s algorithm is proposed by
Viswanathan and Bagchi (1988, 1993).

Chung et al. (1990) proposed the heuristic solution
for allocation of irregular patterns on the resource that
is highly irregular, with not only irregular boundaries
but also defective areas. Haims and Freeman (1970),
Hinxman (1973), Adamowicz and Albano (1976b),
Albano and Sapuppo (1980), Bengtsson (1982), Qu
and Sanders (1989), Dietrich and Yakowitz (1991),
Foronda and Carino (1991) are some of the other
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papers that propose heuristic solutions to the stock
cutting problem.

1.3. Emerging approaches

Instead of using only optimization or heuristic
approaches as a solution to the stock cutting problem,
many researchers have been investigating the possi-
bility of combining these methods into a solution
approach to overcome the disadvantages of each of
them. An example of this type of solution is proposed
by Schollmeyer et al. (1991). In their model, a
heuristic expert system generates many possible
solutions using knowledge bases that contain the
rules related to cutting restrictions, nesting methods,
and allocation goals. Then, they use a linear
programming model to select those solutions which
will result in a minimum amount of scrap.

During the past decades, new technologies such as
simulated annealing, neural networks, and genetic
algorithms, or hybrid approaches, have also been used
as solution approaches. They are discussed in the
following paragraphs.

Simulated annealing proposed by Kirkpatrick et al.
(1982) is inspired by the metal annealing process. It
has the ability to avoid entrapment at a local
minimum, which is very important in solving
optimization problems. Simulated annealing is
designed to optimize functions of several hundred
variables or more, and is especially attractive when
the functions are not smooth and have many local
minima. An algorithm that uses simulated annealing
as a solution to the bin packing problem is proposed
by Kampke (1988). Harris and Zinober (1988)
implement this technique to solve the problem of
reducing the number of stacks of different panel types
around the operator during cutting in the wood
industry. Other researchers (Dagli, 1990; Dagli and
Hajakbari, 1990; Lutfiyya et al., 1992) apply this
technique to the two-dimensional nesting problems.
Lirov et al. (1992), combines simulated annealing
with case based reasoning as a knowledge-based
solution to a cutting stock problem.

Neural networks could contribute greatly to the
solution of the stock cutting problem due to their
ability to identify various pattern configurations and
their parallelism (Dagli, et al., 1990). The neocogni-
tron is a multistage network which simulates the
human vision system. Because this network is capable
of training with both unsupervised learning and
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supervised learning, it is selected in the literature as
a network paradigm to identify scrap patterns
generated for the combination of various composite
patterns. This paradigm is also used as a feature
selector for various patterns to determine the weights
that measure the degree of match between patterns as
a part of the simulated annealing solution approach
(Dagli, 1990).

Poshyanonda et al. (1992a, b) use a back-propaga-
tion neural network in the pattern generation phase
and produce these patterns for a linear programming
model to find the solution. They use adaptive
resonance theory (ARTI1) to identify the scarps
generated by the process in each stage (Poshyanonda
and Dagli, 1992).

Genetic algorithms also play an important role in
many optimization problems, including stock cutting
problems. This technique simulates the natural
evolution process which is simple but powerful.
Gemmill (1992) used genetic algorithms as a solution
to an assortment problem and compared his result
with Beasly (1985). Genetic algorithms have out-
performed the traditional approach when the number
of possible stock sizes increased. Poshyanonda and
Dagli (1992) combine the genetic algorithm with a
heuristic method to solve a nesting problem. Genetic
algorithms are used to generate a proper sequence of
the required patterns to the heuristic nester by
exploring the search space.

The following observations can be made regarding
the approaches proposed for solving stock cutting
problems:

(1) Heuristics play an important role, since they are
flexible enough to take into account various additional
restrictions and objectives appearing in practice. The
quality of heuristics is generally problem specific, and
they can identify a pattern which is ‘‘good’’ for the
particular problem in question. They also can be
integrated into intelligent decision support systems
easily.

(2) In almost all proposed linear programming
models, a two stage approach is used. Initially various
cutting patterns are generated based on given stock
sheet dimensions and input pattern shapes, then a
decision variable is assigned for each cutting pattern
and a linear programming model is formulated.

(3) Generally, linear programming approaches are
not widely used in practice. Most of the time,
heuristics are preferred for selecting patterns. This is
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basically due to the large number of possible patterns
combinations (in the order of hundred millions) which
cannot be represented in linear programming for-
mulations.

(4) The linear programming approach cannot be
applied to any of the irregular-shaped problems due to
its difficulty in generating overlapping constraints.
Most of the literatures related to irregular-shaped
patterns are heuristics based.

(5) However, heuristic approaches do not produce
optimal solutions and are yet constrained to a specific
problem. An approach should produce a near optimal
solution, should be able to handle generic irregular-
shaped patterns, and should not require extreme
computation time. New approaches such as simulated
annealing, artificial neural networks and genetic
algorithms seem to satisfy these needs and produce
a better solution to the stock cutting problems. Each
approach has advantages and disadvantages over the
others.

A combination of these techniques that utilizes the
advantages of each may produce a better solution to
the problem. A solution approach that combines these
emerging techniques to solve a general two-dimen-
sional cutting stock problem is described in the
following sections.

2. The proposed model

The patterns used in this study are not restricted to any
particular shapes or orientations. Holes within a
pattern are not considered to be as a material to be
utilized. Margins between patterns that may be
required by the cutting operations are omitted. The
composite material of the stock sheet is assumed to be
equally distributed over the material’s surface and the
stock sheet is defined as rectangles which can be
divided into two different types, namely, sheets which
are restricted in both width and length, and sheets
restricted only in width having infinite length. In the
problem of multiple stock sheets which are restricted
to both width and length, all of them must have the
same dimension.

The objective of the problem is to minimize the cost
function f(x), which is in this case, the total area
required to allocate patterns on a two dimensional
space. The problem of allocating a set of N required
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patterns {P1,...,PN} on stock sheet(s) can be
defined as

Minimize f(N) = Total area of the stock sheet
used to allocate N patterns

= width of the stock sheet * total
length of the sheet used

without violating one of the following constraints:

o There must be no overlaps between patterns.
e Patterns must be totally allocated within the
stock sheet boundary.

In this paper, the width of the stock is fixed for each
of the nesting problems, therefore, the objective
function of the problem can be defined as minimizing
the total length of material used. In other words, this is
a problem of minimizing the maximum x coordinate
of all patterns allocated on the stock sheet(s) which
can be defined as

Minimize f(x) = max{x;}
subjected to

X;j >0,

'Xij S L7

Yij = 0,

y ij S W7 and

P; does not overlap with P,
where W is the width of the stock sheet(s), L is the
length of the stock sheet(s) and (x;;, y;;) is the location
of the jth point that represents the pattern i(P;).

To be able to compare the performance between
different results, packing density of the stock sheet is
used as a comparison unit which can be defined as

Packing density = Total usage area/

Total required area

2.1. Representation scheme

In this paper, each pattern is represented by a list of
vertex coordinates [(x;, ¥;)...(Xy, yur)] where M is
the number of vertices used in representing the
pattern. During the allocation process the degree of
overlap among patterns on the stock sheet should be
tested. With the coordinate representation, the overlap
test can be performed by checking intersections
between line segments of the patterns allocated on
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the stock plate. The time required by this process
increases exponentially when the number of patterns
allocated on the stock sheet is increased.

In order to overcome this difficulty, the matrix
representation (Dagli, 1990) is used. Each pattern is
represented by a matrix of size K by L which is the
smallest rectangular enclosure of the irregular shaped
pattern. Each value of the matrix at location i, j, (V)
is defined as

V. — { 1 if location i,j is inside the pattern
: 0 otherwise

An example of the matrix representation is given in
Fig. 1(a) and (b). The values of K and L are
determined based on the desired precision for the
computations.

A stock sheet is represented by the matrix S(z)
where S;(¢) is the value at the location (i, j) on the
stock sheet after the first ¢ patterns have been
allocated. S;;(¢) is computed as below:

S;(t) =S;(t—1)+P;(t) and S;(0)=0

where S;(t—1) is the value of the matrix at the
location (i,j) on the stock sheet after the first # — 1
patterns have been allocated; S;;(0) is the value of the
matrix at the location (,/) on the stock sheet at the
beginning of the allocation process; P;;(t) is the value
of the matrix representation at location (i, j) of the th
pattern to be allocated on the stock sheet.

A value in the stock sheet matrix which is greater
than one is an indication of an overlap. Although the
overlap test can be performed easily and quickly, there

|
J

(@) FTTIII111110
P1TTITLIT1T1
FTTTIT1T1T11
I11111111110
I11111110000
I11111110000
I11T11110000
FTTTIT111000
FTITITITI0T]
RERSERERERE

(b) 000000000100
000000011110
000001111110
000111111110
001111111100
111111111000
011111111000
001111110000
000111110000
000011100000
000001000000 |

Fig. 1. Binary representations.
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is a need for a large memory for this representation
scheme. Consequently, only required matrices are
generated by the algorithm while the overlap test is
performed.

2.2. The center of gravity

In this paper, the center of gravity (area) (Cx, Cy) is
used as the reference point for each pattern. It is
calculated using the corresponding matrix representa-
tion. The formulas are
L K ponks K L Ny
Cx_zz':1(2j:1pl])*’ Cy_Zj:I(Zi:IPl]) J
- L K p.. 0 = L K p.-
Zf:lE;‘:lPU Zi:lZi:lPlJ

2.3. Pattern orientation

Different orientations of a pattern may produce
different scrap areas. In this paper, a rectangular
enclosure, which can accommodate the whole
irregular-shaped pattern, is used as an approximation
of the area required to allocate the pattern on a stock
sheet. A pattern with different orientations may
produce different sizes of rectangular enclosures.
The smallest enclosure found defines the upper bound
of the area required to allocate the pattern.

In order to find the smallest rectangular enclosure
of a pattern, 90 different orientations (0=0,...,89)
of the pattern are obtained and the angle 0., that
produces the smallest rectangular enclosure is
selected as the orientation of the pattern. For precision
purposes, rotations and rectangular enclosure compu-
tations are performed using list of vertex coordinates
representation. The selected orientation of the pattern
is then converted to matrix representation.

The rotated pattern is obtained as follows:

o] =155 o)) ]

where (x;,y,) denotes the coordinates of the kth
vertex of the original pattern and (x;, y,y) denotes the
coordinates of the kth vertex of the rotated pattern.

M .M

RC, = [max |k:1{xk0} — min |k:1{xk0}}
M .M

* [max |k:l{ykg} — min ’kzl{)’k()}]

Among the 90 different rectangular enclosures
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111000000
111100000
111100000
111110000
L11111000
111111100
11111100
LIrrrrrnto
IEERERRENE
Fig. 2. Binary representation.
(0=0,...,89), the size of the minimum rectangular

enclosure is
. 189
RCpy, = min |,_ RC,

The pattern in Fig. 1(b) is reoriented in such a way
that the minimum rectangular enclosure is produced
(Fig. 2). As a result, the rectangular enclosure which
defines the area required by the pattern is reduced
from an 11 x 12 to a 9 x 9 unit. This orientation is
used by the allocation algorithm which is described in
the following sections.

2.4. System architecture

The system developed in this research consists of
three main components: pre-processing module,

Cad software
(part design)

Required patterns
in CAD format
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detailed allocation algorithm (part 1-2), and sequence
generator. The first part of the detailed allocation
algorithm is performed for every sequence generated
by the sequence generated. The second part is
performed only after the best performance sequence
is determined. The system architecture of the hybrid
system is illustrated in Fig. 3.

2.5. Pre-processing module

A pre-processing module is required to interface with
a CAD software so that the system can read the
required parts and create their representation schemes
used by the system. A simple heuristic is also
employed at this stage. Patterns are reoriented in
such a way that they require minimum area for their
individual allocations (see pattern orientation section
for more detail). These reoriented patterns are used
later by the detailed algorithm to generate nesting
patterns.

2.6. Detailed allocation algorithm

Pattern allocation is performed sequentially based on
the order given by the sequence generator. During
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Pre-processing

y Required patterns
in Cartesian and
matrix representations
<l

module

Required patterns
in Cartesian and

»

Detailed
allocation
algorithm

p Final packing
pattern

Best performance

allocation

algorithm

Allocation
performance

matrix representations sequence
A 4 Sequence of
i required patterns
Detailed
Sequence

generator

Fig. 3. System architecture.
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Sequence of patterns

'

»  Getnext
pattern

Calculate Performance
allocation
performance

Pattern
matching

Pattern allocation on
selected scrap area

Normal allocation
through
sliding pattern

Fig. 4. Flow chart of the detailed allocation algorithm.

each pattern allocation, an incoming pattern is placed
as closely as possible to the previously allocated
pattern to minimize the cost function. However, many
scrap areas are produced as a result of this process.
One of these scrap areas might be reconsidered as an
allocation area if it is large enough to accommodate
the next allocation. This will result in a higher packing
density value of the nesting pattern at that stage. The
generated scrap areas are collected and compared with
the incoming pattern to find a match. If there is a
possible match, the selected area is used for the
pattern allocation, otherwise, a strategy called
“‘sliding pattern’’ is employed. The flow chart of the
detailed allocation algorithm is summarized in Fig. 4.
Details of the ‘‘sliding pattern’’ strategy and the scrap
area selection used in the research are described
extensively in the following sections.

2.6.1. Sliding pattern

““Sliding pattern’” is a heuristic method used to
relocate the current pattern on a stock sheet without
affecting any other allocated patterns. It tries to
minimize the total required area, the objective value,
which is the total length of material used times the
width of the stock sheet. This objective value can be
stated as
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Objective value of sliding pattern = xxn +y

where x is the coordinate of the pattern along the X
axis of the stock sheet’s matrix representation; y is the
coordinate of the pattern along the Y axis of the stock
sheet’s matrix representation; n is the width of the
stock sheet (Yax)-

By using this approach, when the stock sheet is
empty the first allocated pattern is placed at the lower
left hand corner (the minimum value along both X and
Y axes) so the objective value is minimized. The
following patterns are allocated along the Y axis until
there is not enough space that can be used to allocate a
pattern, then, a new row of patterns along the X axis is
formed. The direction of the pattern allocations is
demonstrated in Fig. 5.

Although a pattern is reoriented in such a way that it
requires a minimum area in its individual allocation,
different orientations of the pattern may create
different results once it is actually allocated on the
stock sheet. Four different orientations are generated
from the pattern by rotating it 0°, 90°, 180° and 270°.
These four combinations require the same amount of
space for an individual allocation. ‘‘Sliding pattern’’
is performed on all combinations and only the best
result is selected. Based on its objective value, the
candidate pattern needs to move to the left most
possible on the stock sheet, which is the minimum
value along the X axis. However, another objective
must also be considered. The pattern must be packed
along the Y axis if it is possible, hence, it is moved
downward toward the origin. Each movement is
terminated if one of the following conditions occur;
new move produces more overlap area, or the
resulting pattern can not be fit within the current
stock sheet. These movements are performed for all

«——— Lengh ——»

tE

Width

|~

Fig. 5. Allocation sequence.
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Width

Fig. 6. Rotation in allocation.

four combinations but only the one with the minimum
objective value is selected as the final solution. An
example of pattern allocation by sliding pattern
method is demonstrated in Fig. 6.

2.6.2. Area selection

In the proposed detailed allocation algorithm, scrap
areas generated by previous allocations, which are the
complements of the allocated patterns (Fig. 7), may be
reused to increase the packing density of the nesting
pattern at a particular stage. The status on the stock
sheet at each allocation stage is considered as the
current configuration of the problem. It carries
information on both previously allocated patterns
and generated scrap areas. The areas used by allocated
patterns are indicated by ones in the matrix
representation. The scrap areas which are the
complement of the allocated patterns are indicated
by zeros. These scraps areas are extracted from the
stock sheet using the following steps:

(a) Scan each row of the matrix representation and
create line segments from consecutive zero values.

(b) Merge overlapping line segments from con-
secutive rows to create irregular-shaped scrap areas.
All zero values are converted into ones, therefore, the
matrix representation of scrap areas are formed.

(c) Construct Cartesian coordinate representation
from the minimum and maximum x values of each
line segments.

Only one of the generated scrap areas can be
selected as the allocation area for the input pattern at a
particular stage. The selected scrap area (C)) must
satisfy the following conditions:

Poshyanonda and Dagli

 — Lt.!l'lglll g
r 3 :I! | {

Width

&
—*» Scrap areas

v ﬂ‘l

Fig. 7. Scrap areas generated.

Cre{Cy,...,C,}

m i—1
653

=1 j=1

Cy =min{C,|C; > P;,j=1,..., m}

where P; is a pattern that is allocated at stage i, m is the
number of scrap areas generated at stage i and S is the
total area of the stock sheet.

From the equations given above, only the best
(smallest possible) fitted scrap area is selected as the
allocation area for the pattern (P;). The selection
process can be done directly by comparing an
incoming pattern to each of these irregular-shaped
scrap areas through the use of an artificial neural
network.

An adaptive resonance theory (ART) paradigm,
which is an extension of competitive learning,
proposed by Carpenter and Grossberg (1987) is
selected as the artificial neural network for the scrap
selection procedure to enhance performance of the
matching process. An ART network is a neural
network structure that has two layers of processing
namely competitive layer and input layer. These two
layers are connected to each other through top-down
and bottom-up connections. A feedback mechanism,
controlled by a vigilance parameter, between the
competitive layer and the input layer is added to be
able to learn new information without destroying the
old one. The information in an ART network is sent
back and forth between layers until the resonance state
is achieved. The time required for the network to
achieve the resonance state is much less than the time
used to change the weight values of the processing
elements, therefore, no learning occurs before the
resonance state is accomplished. There are two causes
that lead to the resonance state. If the input
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Input matrices

Fig. 8. Binary representation of scrap areas.

information is previously learned by the networks, the
resonance state can be obtained quickly and the stored
pattern is updated. On the other hand, if the input
information is not immediately recognized, the rest of
the stored patterns will be rapidly searched for a
match. If no match is found, the network will go into
the resonance state to store the input information as a
new pattern.

Even though these scrap areas can be directly
matched with an input pattern, different orientations
of the scrap areas or the orientation of the input
pattern may cause a mismatch. Before any compar-
ison, scrap areas are transformed into Cartesian
coordinates so that they can be rotated to the standard
form which is the orientation that generates the
minimum rectangular enclosure. Then, new matrix
representations for the scrap areas in standard form
are generated and used as the training patterns for the
ART1 network (Fig. 8). All the scrap areas generated
in the previous stage are stored in the network, ready
to be compared with the incoming input pattern.

It is important to note that the input sequence of
training patterns into the ART1, which is in this case,
scrap areas, has an impact on the patterns stored in the
network’s memory. The bigger patterns will be
eliminated by the smaller patterns if they are
previously stored in the ART1 memory. This is not
a desired characteristic; hence, ART1 is modified for
this purpose. While scrap areas are trained, the pattern
matching process of ART1 is omitted and every scrap
area is stored in the network’s memory. As a result, all
scrap areas are kept in the network to compete to be
the best match to the next incoming pattern.

When an input shape needs to be allocated on the
stock sheet, it is presented to the ART1 network to
locate a possible match among previously generated
scrap areas stored in the network’s memory. All stored
scrap areas compete with each other to find the best

match with the incoming pattern. If there is a possible
match between an incoming pattern and a scrap area, a
processing element which contains the best fit scrap
will win the competition (Fig. 9). The winning area is
then used for the allocation. However, before it is
placed onto the area, the input pattern needs to be
rotated by the angle that the winning scrap forms. The
orientation of the scrap area was saved earlier during
the scrap gathering process. If the selected scrap area
is larger than the part to be allocated, sliding method is
used to position the new part in the scrap area.

2.7. Sequence generator

The detailed allocation algorithm depends heavily on
the sequence of the input shapes. Different sequences
of same set of patterns may result in different packing
densities. This is a permutation problem similar to the
well-known traveling salesman problem. The
sequence of the input shapes given to the algorithm
can be mapped to all the cities traveled by the
traveling salesman. The total material used is similar
to the total cost of the salesman’s travel. However,
this traveling salesman problem cannot be solved by
an old-fashioned optimization method because the
cost function is non-linear. Genetic algorithm which is
suitable for these types of problems is selected as a
solution technique in the sequence generator module.

The sequence generator maps each possible
sequence into a string (chromosome). Each element
of the string is a pattern identifier. Position of the
element in the string corresponds to the rank of the
corresponding pattern in the input sequence. The
initial population is randomly created. The fitness
rating of each string is the allocation performance of
the corresponding sequence by the detailed allocation
algorithm. Offsprings are repeatedly generated
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Candidate scrap areas
stored in ART! memory

Best fitted

Input pattern

arca

Fig. 9. Selecting best scrap area for allocation through ART1.

through genetic operators until a satisfactory result is
encountered.

2.7.1. Genetic operators

In any permutation problem, the main concern is the
order of the sequence. Different sequences of the
same set of elements result in different solutions. In a
permutation problem, every element of the problem
must exist in each possible solution, but may be in
different positions. The standard crossover operator
where a random crosspoint is selected and the
substring of the parents are exchanged to form the
offstrings is not suitable for permutation problems.
Standard crossover violates permutation constraint
since after crossover every element of the parent may
not exist in an offstring and some of the elements may
exist more than once. The standard mutation operator,
where some randomly selected genes are flipped (ones
changed to zeros, zeros changed to ones) has the same
problems, violates permutation constraints. There are
some reordering operators that combine features of

inversion and crossover into a single operator.
Partially matched crossover (PMX) and order cross-
over (OX) stated in Oliver er al. (1987) attempt to
preserve absolute position in ordering in their off-
springs. According to Oliver et al. (1987) OX shows
better performance, thus OX is selected as the
crossover operator for our sequence generator
module.

Because the OX operator does not give sufficient
exploration into new search space, a mutation
operator must also be considered. As the mutation
operator inversion is selected. Inversion creates a new
pattern string from the parent by inverting the order of
a portion of the parent’s string, all the elements of the
parents are kept in the new string, none repeated.

2.7.2. Fitness scaling

The sequence generator module uses three genetic
operators to generate new offsprings: reproduction,
OX and inversion. A reproduction operator simply
duplicates the individual strings into the next
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generation based on their fitness values, which is in
this case, their packing densities resulting from the
detailed allocation module. Using the normal selec-
tion rule, the extraordinary individuals would take
over a significant portion of the population and cause
a premature convergence. To prevent a premature
convergence a simple procedure called linear scaling
(see Goldberg, 1989, for more details) is used.

In order to find their raw fitness values, the new
individuals generated by the genetic operators are
evaluated by the detailed allocation module, which
performs the actual layout based on the sequence
specified by each individual. Repeated strings such as
the ones that are generated by the reproduction
operator do not need to be re-evaluated. Their raw
fitness values can be directly copied from their
parents. As a result, the time required for each
generation is tremendously reduced when system
converges.

This section only discusses the model formulation
and the solution approach to solve the stock cutting
problem. The details of how to implement each
module of the model is discussed in the following
sections. Experiments used to test the performance of
the model, the values of the parameters used, and the
results obtained are also summarized.

3. Implementation of the model

All of the programs that are used to implement the
model are written in C++ except the interface
modules used in the communication process of the
parallel system which are implemented in C because
of the unavailability of the communication support
routines in the available C ++ compiler used.

As described earlier in the previous section the
solution model consists of three major components,
pre-processing module, detailed allocation module,
and sequence generator. The implementation of these
modules is discussed in the following paragraphs.

3.1. Pre-processing module

The pre-processing module reads required patterns
from the AutoCAD software and converts them into
Cartesian coordinates and matrix representations used
by the system. AutoCAD must provide these patterns
in the plotter format by plotting these individual
patterns into separate *.PLT files. The software is
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customized to read a file created by AutoCAD
software which must be configured for a laser jet
printer with a resolution of 300 DPI as its plotter
device. This module then reorients the pattern in
question corresponding to its rectangular enclosure to
provide the minimum required area. Finally, it
generates both Cartesian coordinates and matrix
representations according to the pattern’s new
orientation. The resolution of the matrix representa-
tion used in each program may vary, the system
implemented in this research let users specify
different resolution for different problems.

3.2. Detailed allocation module

This module is the most important module of the
system. It reads both formats of the required parts
generated by the pre-processing module and performs
the actual layout based on a sequence given by the
sequence generator. Required parts and dimension of
stock sheet(s) used are given in configuration files.
Parts are allocated sequentially by the algorithm based
on their sequence given to the module using the
“‘sliding pattern’’ heuristic along with the artificial
neural network (ART1).

3.2.1. Sliding pattern

Sliding pattern heuristic first allocates the pattern on
the far end of the parts allocated on the stock sheet.
Then it tries to relocate the pattern toward the left
bottom position of the current stock sheet to reduce
gaps between the pattern itself and the allocated
patterns on the stock sheet so the total required length
can be reduced. Steps and constraints used to relocate
the pattern are stated in the previous chapter. The
movement is only one unit of the matrix representa-
tion on each step. Even though the time required in
relocating each pattern is very high, the total
computational time used does not increase when the
number of parts allocated on the stock sheet increases.
Once the process is finished, the Cartesian coordinates
of the pattern is updated and referenced to its new
locations.

3.2.2. Area selection

The scrap areas are extracted from the stock sheet by
scanning each row of the matrix representation of the
stock plate (or the active sheet in multiple plate
problems). The result of scanning the sheet is a pool of
line segments as sections of scrap areas. These line
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Fig. 10. Active portion of stock sheet during allocation.

segments are later combined and form scrap areas.
However, this process consumes significant amounts
of computational time, only an active portion of the
stock plate at each stage is scanned. A rectangular
area with the size of (the width of the stock plate) unit
at the end of the stock sheet is considered as the active
portion of the stock sheet at each allocation stage (Fig.
10). Furthermore, short line segments of scraps are
ignored in order to reduce the scan time. Only
significantly long line segments are included in the
scrap segment pool so the scrap areas that are smaller
than the required parts are eliminated at this stage.
Line segments are grouped together and form a
scrap area based on their relative positions on
consecutive rows (whether the corresponding inter-
vals overlap or not). If the amount of overlap is less
than half of the shorter segment’s length, the segments
should be considered as different scrap areas.
Consequently, two scrap areas with a small connected
portion are separated from each other (Fig. 11).
After the scrap areas are formed, the algorithm
eliminates the areas that are smaller than the current
input pattern from the pool so the number of the
candidates is reduced. For the remaining scrap areas
Cartesian coordinates (vertex coordinate lists) are
obtained from the list of line segments, these areas are
then reoriented to the standard form where the
selected orientation produces the smallest rectangular
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Scrap #l

$Linc segments
Scrap #2

Fig. 11. Line segment representation of scrap areas.

enclosure, new matrix representations are generated
from reoriented scrap areas. Due to the fixed size of
the input layer of the ART1 network, the variable
sized scrap areas cannot be directly trained into the
ART1 memory. These areas must be transformed into
matrices of the same size that must be sufficiently
large to accommodate major area of a scrap, yet not
too big concerning the memory capacity and the time
complexity of the selection process. The center of
each area is used as a referenced point to the center of
the standard matrix for its transformation. Finally, the
transformed matrix can be used to train the network
(Fig. 12).

During the testing process, same transformations
should be applied to the incoming pattern. Before it is
inputted to the ART network, incoming pattern should
be reoriented to form the smallest rectangular
enclosure and its standard size matrix representation
should be generated. During the testing process for
each incoming pattern the best fit scrap pattern stored
in the ART1 memory is searched. The vigilance
parameter used in the matching process is set to one.
The reason for using high vigilance values in this
application is the need of a perfect match between the
pattern and a scrap area. The selected scrap area must
be able to accommodate the incoming pattern without
creating any overlaps on the stock sheet. If there is no
possible match between any scrap areas with the

Input matrices

N\

Center of areas

Fig. 12. Determination of scrap area centers.
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Fig. 13. The control flow of the detailed allocation module.

current pattern the ‘‘sliding pattern’’ is employed.
Finally, the current configuration of the stock sheet is
updated. This process is repeated for each of the
required patterns based on the sequence given by the
sequence generator. The system flow of the detailed
allocation module is summarized in Fig. 13.

3.3. Sequence generator

This module uses genetic algorithms as a technique to
improve performance of the system by generating
new sequences to allow the detailed allocation module
to perform a better layout. The number of individuals
used in each problem is varied based on the size of the
problem that is provided in an input configuration file.
The first individual (sequence) of the first population
is generated by a heuristic, the rest of the individuals
are randomly generated. Elements of this first
sequence are sorted in descendent order of pattern’s
area. This sorted order groups similar sized parts
together. It also has smaller parts towards the end of
the sequence which is important because those
smaller parts that are allocated later may fit into
gaps generated by previously allocated larger parts.
This sequence may improve the performance of the
system once it is crossed over with the other
sequences in order to generate new offsprings.

As stated earlier in the model description, the
selected genetic operators used in this research are
reproduction, OX and inversion. The reproduction
operator is applied to the old population to create their
offsprings. The best individual within the current
population is automatically carried to the next
population, so the best solution found is kept within
the population at all times. Crossover and mutation
rate used by the OX and inversion operator are
specified as input parameters to the system. The rates
of 0.6-0.8 and 0.001-0.020 are used for the OX and
inversion respectively to test the performance of the
solution system.

4. Experimental results

Different problem sets are tested to evaluate the
performance of the proposed system. Both rectangular
and irregular-shaped parts are used in the test runs.
Tests are performed for different crossover rates (0.6—
0.8) and different mutation rates (0.001-0.020).
Population sizes are set up to three times of the
number of required parts.
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4.1. Rectangular problems

. . different rectang
The system is tested with 37 rectangular parts created

ular patterns
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Table 1. Dimensions and demands corresponding to eight

from eight different pattern types. Their dimensions Pattern

Dimension (Width)
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and corresponding demands are randomly generated
using normal distributions (Table 1). These parts are
used in two different problems. In the first problem,
they are allocated on a stock sheet with a finite width
of 30 inches but infinite in length. In the second
problem, the same required parts are tested with stock
sheets that are finite in both width and length with
dimensions of 30 x 60 inch?. A fixed population size
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Fig. 15. The best packing pattern of 37 rectangular parts on finite size stock sheets.



Genetic neuro-nester

P
ﬂ 5

.

—
-

Fig. 16. Stock patterns used.

of 91 with different crossover and mutation rates are
used in both problems. Five hundred generations are
produced for each test run. Various results for these
problems are obtained through different sets of
parameters as shown in Tables 2 and 3, respectively.
The best final packing patterns found for both
problems are demonstrated in Figs. 14 and 15(a),
(b), respectively.

4.2. Irregular-shaped problems

Ten different irregular-shaped patterns are provided
by an outside company (see Fig. 16). Thirty required
parts, three parts from each pattern, are first tested on
the continuous stock sheet having a width of 60 inches
to see the grouping characteristics among these parts.
Different parameter sets are used to run these tests.
Results obtained are shown in Table 4, and the best
final packing pattern with the packing density of
80.61% is shown in Fig. 17.
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Table 2. Results of allocating 37 rectangular parts on an
infinite length with finite width of 30 inches stock sheet
(packing density (%))

Crossover rates Mutation rate

0.001 0.01 0.02
0.6 91.31 93.61 92.83
0.7 93.61 92.83 96.03*
0.8 92.06 93.61 95.21

*The best solution found.

Table 3. Results of allocating 37 rectangular parts on two
30 x 60 inch? stock sheet (packing density (%))

Crossover rates Mutation rate

0.001 0.01 0.02
0.6 87.72 87.72 87.72
0.7 87.72 93.61 87.72
0.8 87.72 88.41 94.41%*

*The best solution found.

Table 4. Results of allocating 30 irregular-shaped parts on
an infinite length with finite width of 60 inches stock sheet
(packing density (%))

Crossover rates Mutation rate

0.001 0.01 0.02
0.6 80.54 84.35 81.61%*
0.7 80.54 79.78 79.36
0.8 80.52 77.09 80.56

*The best solution found.

5. Conclusion

Automated irregular-shaped pattern cutting design is
becoming a requirement in manufacturing due to large
product variety, low product life, and high demands
for manufacturing flexibility. This research work
introduced recently emerging techniques to continue
to meet these objectives. Many solution approaches to
various stock cutting problems are reviewed and
commented on, but as yet, there is no single powerful
algorithms that can solve this problem effectively.
New technologies in the early 1990s such as artificial
neural networks and genetic algorithms are investi-
gated and found to be useful tools. A new approach
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Fig. 17. Final allocation of patterns.

that combines the use of both techniques is proposed
as a solution for both rectangular-shaped and
irregular-shaped cutting stock problems.

Parts that are designed using a design tool such as a
CAD system are able to be retrieved by the proposed
automated system. The proposed system consists of
three main components: a pre-processing module, a
detailed allocation algorithm and a sequence gen-
erator. The pre-processing module functions as an
interface between the system and a CAD software.
The detailed allocation algorithm performs the part
layout based on the sequences of parts given by the
sequence generator. It sequentially allocates each part
in such a way that the resulting scrap is minimized. An
artificial neural network paradigm, ART], is selected
as a tool for the detailed allocation algorithm. The
sequence generator, on the other hand, deals with
another optimization problem. The objective of this
module is to find an optimum part sequence to be used
by the detailed allocation algorithm in which the
minimum scrap is generated. Genetic algorithms are
chosen as a solution technique to this problem.

The performance of the solution approach is tested
using several nesting problems using varying para-
meter sets. Different rectangular and irregular patterns
were used in both one-and-a-half and two dimensional
problems and the results obtained are satisfactory.
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