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Abstract—A new architecture, called utARTMAP, is proposed datasets typically cause Fuzzy ARTMAP to generate too many
to impact a category proliferation problem present in Fuzzy rules [7]. This problem is known as category proliferation [8].
ARTMAP. Under a probabilistic setting, it seeks a partition of |1+ is due to the application of the match tracking mechanism
the input space that optimizes the mutual information with the - !
output space, but allowing some training error, thus avoiding that however IS necess_ary t_° g_uarantee fast, accurate, on line
overfitting. It implements an inter-ART reset mechanism that l€arning. This mechanism is fired after a pattern has been
permits handling exceptions correctly, thus using few categories, presented, if the selected category in ARiredicts a wrong
especially in high dimensionality problems. It compares favorably |abel: vigilance is raised and a finer or new category is selected.

to Fuzzy ARTMAP and Boosted ARTMAP in several synthetic ; ; ; ;
benchmarks, being more robust to noise than Fuzzy ARTMAP :)J:t?:r%is[sggry categories will be committed to leam noisy

and degrading less as dimensionality increases. Evaluated on a . o
real-world task, the recognition of handwritten characters, it Category proliferation in Fuzzy ARTMAP has been handled

performs comparably to Fuzzy ARTMAP, while generating a in different ways in the literature. It can be overcome by a rule

much more compact rule set. extraction process, after training has been completed, which
Index Terms—Boosted ARTMAP, category proliferation, excep- Proceeds by selecting a small set of highly predictive categories
tions, Fuzzy ARTMAP, uARTMAP. [7]. Other approaches propose modifications of the architecture

or the training algorithm. Distributed ARTMAP (dARTMAP)
[10] introduces distributed coding to avoid commitment of un-
necessary categories, but category proliferation is only reduced
A RTIFICIAL neural networks have been successfully agor a particular type of problem [11]. Gaussian ARTMAP [9]
plied to a wide variety of real-world problems and are cajefines the ART choice and match functions to be the discrim-
pable of outperforming some common symbolic learning alginant function of a Gaussian classifier, achieving a reduced
rithms [1]. However, they are not usually applied to problemsumber of categories along with better performance than Fuzzy
in which comprehensibility of the acquired concepts is inpOARTMAP when trained on noisy data. However, geometric
tant [2]. This includes tasks where a human supervisor musterpretation of categories changes in these architectures, and
have confidence in the way the network makes its predictionerefore dARTMAP and Gaussian ARTMAP are not useful
or detection of salient features hidden in the data and preftr IF-THEN rule extraction.
ously unnoticed [3]. In addition, neural networks could be used Boosted ARTMAP [12] defines a probabilistic setting to eval-
for knowledge refinement if their concepts were easily interate the need for committing new categories, without modi-
pretable [4]. Despite several advances achieved in multilayfging the architecture of unsupervised Fuzzy ART modules. The
perceptron (MLP) backpropagation-type neural networks [3hter-ART reset mechanism is suppressed and thus an unsuper-
[5], IF-THEN rules can be derived more readily from a Fuzzyised on-line learning cycle is performed. An off-line evaluation
ARTMAP [6] architecture, besides other well-known advarsf the training error will determine if a new cycle with higher
tages of adaptive resonance theory (ART) networks. In Fuzglgilance is required to create finer categories. This approach
ARTMAP each category in they field (Fig. 1) roughly corre- optimizes the size of categories, so that a reduced set of them is
sponds to a rule. Each node is defined by a weight vector thginerated. However, because of the lack of an inter-ART reset
can be directly translated into a verbal or algorithmic descripechanism, Boosted ARTMAP cannot handle exceptions prop-
tion of the antecedents of the corresponding rule [7]. erly, as discussed in Section Ill.
Though Fuzzy ARTMAP inherently represents acquired In this paperyARTMAP (read MicroARTMAP, use of Mu-
knowledge in the form of IF-THEN rules, large or noisytual Information for Category Reduction in fuzzy ARTMAP)
architecture is proposed, which combines probabilistic informa-
tion in order to reduce the number of categories by optimizing
Manuscript received December 13, 2000; revised April 12, 2001. This wotkeir sizes and the use of an inter-ART reset mechanism which
was supported En part by Spanish CICYT gnder Pr_ojectTIC1999-O446-C0_2-Q,;1,”| allow the correct treatment of exceptions.
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Theory, Communications and Telematics Engineering, University of Valladolid, The rest of this paper 1S Orgamzed as follows: for com-
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J. M. Cano-lzquierdo and J. L6pez-Coronado are with the Department gfchijtecture and training algorithm, discussing the category
System Engineering and Automatic Control, Polytechnical University of Carta- .. . . .
gena, Murcia, Spain. proliferation problem. Section Il reviews Boosted ARTMAP,
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Fig. 1. Fuzzy ARTMAP architecture [6]. In ARTmodule, input is complemented to form vectéf, that is transmitted té'* throughFy'. Category choice in
ART® reflects inF¢ activity, y©. The same process is carried out in ART ART ¢ prediction is disconfirmed by ART match tracking proceeds, raising ART
vigilance, so thape > |I* A w%|/|I¢| and a new ART category is searched, that correctly predlsts

while preserving original Fuzzy ART modules. The proposed Initially all weights are set to one, since all categories are
#ARTMAP architecture is presented in Section IV. Seaincommitted. When a category is first selected then it becomes
tion V presents a comparative evaluationy@SRTMAP with committed6] and as patterns are learned its associated weights
Fuzzy ARTMAP and Boosted ARTMAP, on variations of thelecrease, but never increase. Thus eagleonverges to a limit
well-known circle-in-square benchmark and in the difficuland learning is stable.
real-world task of handwriting recognition. Finally Section VI 1) Category Choice:The choice field nodes operate with
draws the main conclusions and outlines future research taskgnner-take-all dynamics, i.e., at most ahgnode can become
active at a given time, that is said to win the competition. To

Il. Fuzzy ARTMAP select this node for a given inplie.choice functioril; is com-
Fuzzy ARTMAP [6] is the most popular architecture derivel] uted for each nodgalready committed ifF, given by
from ART. It is capable of performing fast, stable learning in a LA w;]
supervised setting. In includes two unsupervised Fuzzy ART i) = a+ |w @)

[8] modules, that partition the input and output spaces; how-

ever, fuzzy ARTMAP may suffer from category proliferationwhere A denotes the fuzzy intersection [13] defined fgy A

[8]-[10]. This section reviews the architecture and dynamieg: = min(p;, ), « > 0 is the choice parameter (typically

of Fuzzy ARTMAP and thus serves as a basis for Boosted= 0) and| - | denotes the.* norm defined by

ARTMAP [12] and tARTMAP, the proposed architecture. N

Emphasis will be placed on the causes of category proliferation. Ip| = Z Ipil. @)
t=1

A. Fuzzy ART

Fuzzy ART [8] is an extension of the original binary ART 1heJth winner node inf’; is selected byt = max; {7} :
1 system to the analog domain through the use of fuzzy AND= L+ --»V }. Whenacategory is chosery; = 1andy; = 0
operator {), instead of the logical intersection Fuzzy ART 077 # J. _
is a modular network (see Fig. 1) that includes an input flgjd _ £5(1) measures the degree of match between the currentinput
of nodes that store the current input vector; a choice figld I and the LTM weights of thgth node,w;. In particular, the
that contains the active categories; and a matching figlthat  atio [T A w;|/|w;] reflects the fuzzy subsethood ef; with

receives bottom-up input from, and top-down input froni,.  'espect td. If there is anyw, that is a fuzzy subset di, then
The F, activity vector is denoted by = (I1,...,Iy;), I; € L/ W;l/lw;| = 1and thereford;(I) > Tp.(I) for k # ;. The
[0,1], i = 1,...,M. The F, andF; activity vectors arex = choice parametar determines the winner category when both

(¢1,...,an) andy = (y1,... yx), respectively. Eacti, Wi andwy are fuzzy subsets df by selecting the nodgsuch

node is called a category and represents a prototype of the ;5'&‘?—'[ [wjl > [wi. _ i .
terns selecting that category during the self-organizing activity2) ResonanceThe match field {1) activity vectorx obeys

of the Fuzzy ART module. Associated to edchcategory node { I if %, is inactive
X =

IAwy ifthe Jth F5 node is active.

j (G = 1,...,N) there is a vectow; = (wj1,...,w;n) ®3)
of adaptive weights, or long-term memory (LTM) traces. This
weight vectorw; subsumes both the bottom-up and top-down Vectorw s, that represents an expected template if ndde

weight vectors of ART 1. active, is fed down fron¥, and the input vectof comes from
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Fy. They are combined to form, which must be sufficiently for the jth node toF?". All activity vectors are reset to zero
similar toI to meet the vigilance criterion between input presentations.
LA wy| Map_ Field Activation: The map field F%* receives _input
T >p (4) from either or both of the ART and ART category fields.
Therefore, its activation is governed by bdth andF¢ activity
wherep € [0, 1] is the vigilance parameter. as shown in (6) at the bottom of the page.

When this happens, the network is said to entexsenance  Ifthe Jth Fi¢ category is active, it sends input to the map field
state and the LTM weight vectev; can be updated. Otherwise.via the weightsw?’, which represent the possible predictive
if [LA wy|/[I] <0 mismatcthappens, the system is reset anglasses. IfF} is also active, therd™** remains active only if
unit J is inhibited (i.e.,7’; = 0) for the rest of this input pre- ART® predicts the same category as ARTe.,x% = 0if y?
sentation. If no nodg is found to meet the vigilance criterion, fails to confirm the prediction made by?”. In such a case the

anew node is committed. _ match tracking mechanism is triggered.
~ 3) Learning: When search s finished, the weight vectoy Match Tracking: When an input is first presented to ART
is updated according to the vigilance parametes® is set to its baseline valug?. The
; g , i
WSneW) — 31 AWSold)) (11— [3)Wgo1d) ) map field vigilance parameter* governs matching between

categories in ART and ART, i.e., if [x%*| < p®|y"| a predic-
wheres € [0, 1] is the learning rate parameter.4f= 1 then tive error occurs. In this case match tracking rajgesuch that
fast learningis carried out. Throughout this paper, fast learning* > |I* A w%|/|I%| and search for a news coding node is
will be assumed for all networks. triggered. This process is performed until an AR%&tegory is
4) Complement CodingNormalization of Fuzzy ART in- selected that correctly predicts ARElass, or a new category is

puts prevents category proliferation to some extent [8]. Normaemmitted in ART.

ization is achieved ifI| = ~ for all inputsI. One way to nor-  Map Field Learning: LTM traces associated withy — F¥
malize the input and preserve amplitude information is complpaths are stored in the map field weight matrix. Initiaﬂ% =

ment coding. Ifa € [0, 1]" denotes the original input, thentakel, 5 = 1,...,N® andj = 1,..., N’ When resonance oc-
I=(a,a%) € [0,1]*, wherea® = {a$} anda = 1 —aq,. This curs with the ART.Jth category activew?’ is set equal tex®’.
vector is normalized sinc@| = M. The Jth category in ART always predict the same category in

Thus, the newty, layer input vectod is complement coded ART".
and bothl andw; are of dimensior2A/.
C. Category Proliferation in Fuzzy ARTMAP
B. Fuzzy ARTMAP Category proliferation may occur in any system, including
Fuzzy ARTMAP [6] is a supervised neural architecture tha&RT networks, run with fast, on-line learning. Thus many works
incorporates two Fuzzy ART modules, called ARdhd ART, have been devoted to reducing this problem [7], [9], [10], [12].
linking them via an inter-ART modul&'®’ called themap field  This section will analyze how a inter-ART reset mechanism is
as shown in Fig. 1. This field retains predictive associatiomequired, but the match tracking process carried out in Fuzzy
between categories and implements thatch tracking mech- ARTMAP causes unnecessary category recruitment.
anism i.e., the ART vigilance parametes” is increased inre-  Fuzzy ART categories can be seen as hyperbaxgsyhose
sponse to a predictive mistmach at ARThis process is nec- corners are defined by their associated weight vestgrdJsing
essary in order to guarantee that the category that resonatestasidearning and complement codingj; andl —w; 74 equal
the highest degree of matching to the input pattern. the minimum and maximum values of tit component among
The two Fuzzy ART modules accept inputs in comall the patternsa that selected category Therefore, we can
plement code, denotel? = (a,a®) andI® = (b,b?), define thejth category sizéR;| by
where a is the stimulus and is the response. For ART M
x* = (2%,...,2%y.) denotes theFy output vector; |Rj| = M — |w;| = Zlﬁ 7)
vy = (¥}, ...,9¥%.) denotes theF§ output vector; and i1
wi = (W, ..., wiype.) is the jth ART® weight vector. For wherel;; = (1 — wj y4i) — wj; is the range along thith
ART’, x* = (af,...,25,,,) andy® = (4f,...,0%.) are component of the patterns learned by jite category.
the output vectors of field#'y and Fy, respectively, while  When a category learns a pattern, either this pattern is already
wh = (wh, ..., wl,, ) is thekth ART® weight vector. For inside the hyperbox, or the hyperbox enlarges just enough to in-
the map fieldx® = (z¢*,...,2%,) denotes the"® output clude it. The choice function (1) determines the winner category,
vector andw$® = (wi{, ..., wi},) denotes the weight vector showing preference for those whose hyperbox needs smaller

y* Aw% if the Jth Fi node is active and’} is active
ab wg" if the Jth F¢ node is active and? is inactive
y if £¢ is inactive andF? is active
0 if £¢ is inactive andr? is inactive.

(6)
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Now consider the use of Fuzzy ARTMAP to carry out a su-
pervised learning. While the ARTmodule performs an un-

Ry supervised clustering of the patterns in the input space as de-
scribed above, the match tracking mechanism will ensure that,
for a given input sample, the category that resonates has a
better match, so that if the pattern is presented again this cate-
gory will be selected. Increasing after.Jth category has been
_Rypay reset implies that the next category selected, Bayerifies that

|R; &a| < |Ry®al. After learning, the new hyperbdR ;- b a

is the smallest containing the pattern and thus if patidsmpre-

sented again it will select this category.

Now consider Fig. 2 and suppose that each category has a dif-
ferent associated class label through the inter-ART map. Con-
sider that patterm; has the same class label as that predicted

: : by categoryR;. If this pattern is presented, categaiy will

Y SO ‘ I be selected, since it offers higher choice value. However, since
‘ : : : : categoryR, predicts a wrong class, the match tracking mech-

anism is triggered raising®, by an amount sufficient to have

p® > I A wy|/|I*| = 0.7. Also categoryR, is inhibited

and then category; is evaluated. However, since the match

tracking mechanism raisgd, this unit does not meet the vigi-

Fig. 2. Geometric representation of two hyperboxes associated to Fuzzy A!Igl_nce criterion, i.e.JI* A W_1|/|Ia| = 0'6_ < 0.7 < p* and thus

categories in a two-dimensional input space. If pattaris presented, category it iS also reset. However, if baseline vigilange = 0 and cat-

1}2 will be Seb;z}edvt.SinC% it Ptfgiucngmggfr :r:}girci Vﬁ:U;-SH ifraézznseﬁns'@goryRQ had not been already created, because all its patterns

!f ézatbégzt)lrg/vgogredsi?tlssgé v?tlrtl)ng c}I/ass Iabel),/thoug% éategorypl may predict%wg retobe presented later, pattaﬁrc_ould have be_en Ieam?d by

correct one, a new hyperbox will be created of smaller size [Ran® a,|, categoryRZ;. Thus, the match tracking mechanism, that is nec-

because of the match tracking mechanism. Patierwill select categoryiz;,  essary to preserve predictive accuracy, can also cause category

unless their predictions do not match. proliferation in some circumstances.

o On the contrary, if pattera, is presented and categofs
changes to cover the pattern and whose size is smaller (largege|ected, but their associated labels differ, the match tracking
[w; ). In addition, the vigilance condition (4) sets an upper limitachanism will create a new category. This category will be
on the hyperbox size, given by selected next tima,, is presented and the prediction would be

R; < M(1—p%) (8) correct. If hyperboxk; would have bgep let to grow to cover

_ ) ag, then|R; @ az| > |R:| and prediction would have been
which applies for Fuzzy ART and also for Fuzzy ARTMARong next timea. is presented. If additional patterns with the
consideringp®, the baseline vigilance parameter. However, agme class label are closestq they form whatin this paper will
match tracking can rais€f during one pattern presentation, thigye calledpopulated exceptionse., sets of patterns associated
bound may be very relaxed for Fuzzy ARTMAP. In fact, in they one class label, with significant probability, surrounded by
experiments shown in this papgt will be set to zero and thus gther patterns with different class label. However, if patteis
this inequality is meaningless. However, itis important for othejoisy, then the newly created category will seldom be selected
architectures discussed later in the paper. and therefore it could be obviated.

These ideas are illustrated for a two-dimensional case inThus, it can be said that the match tracking mechanism allows
Fig. 2. First consider a Fuzzy ART architecture (i.e., unsihe correct treatment of populated exceptions, but may produce
pervised learning is performed), with two categories alreadpme category proliferation together with factors such as pattern
existing, with associated weights; = (0.2;0.2;0.5;0.6) and presentation order, presence of noise in data or, class overlap.
wo = (0.7;0.7;0.1;0.1) and sizegR;| = 0.5 and|R»| = 0.4.

If a new patterna; = (0.6;0.6) is presented, t_hen the c_hoiqe Il BOOSTEDARTMAP
function is evaluated for each category, using (1), yielding

Ty = 0.800 and7> = 0.875 (with « = 0). In this case, Boosted ARTMAP [12] attempts to reduce category prolifer-
categoryR, wins the competition and its hyperbox could bation by allowing some error on the training data and letting the
eventually enlarged to cover pattesn, yielding a hyperbox underlying data distribution select the category size. Itis a mod-
denoted byR; @ a;. However, ifp is such thatR; & a;| > p ification of Fuzzy ARTMAP for conducting boosted learning in
then this unit is reset. If so, categofy; would be selected a probabilistic setting. It is designed to improve generalization
and the vigilance criterion evaluated on it. If it could not béy optimizing category size and allowing a small training error.
satisfied, a new unit with a hyperbox of null sizesaivould be Itis a modification of PROBART [14], which replaces the calcu-
created. In an unsupervised setting, patters= (0.8;0.8) will  lation of the F%* activity (6) by (9) shown at the bottom of the
select category?. since it implies no changes to its hyperboxnext page, where the fuzzy AND operation)(is replaced by
Note that in Fuzzy ART training is unsupervised and thus thke addition §). Thus, map field weights now contain informa-
match tracking mechanism is not present. tion about the association frequencies between categoriés in
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andFy, i.e., thejth ART® node has been associatef§, imes
to the kth ART? node, during the training. Initiallyugg =0,
j=1,...,N* k=1,...,N"

In PROBART there is no match tracking and thus paramete
p®® does not exist. Therefore, the size of categories in ART
governed only by*. This ensures that a given input to ART
will always select the same category and makes the networ £
more robust to noise. Nevertheless, for a correct mapping =1 =
needs to be very high. Therefore the number of categories ig:
also large, since very fine categories will be created averywhere
in the input space. @) ()

Boosted ARTMAP (BARTMAP) allows categories formed [ ] .
during training to define their own sizes. It has two unsupervisec E
fuzzy ART modules, linked by a map whose activation is given ==
by (9), as in PROBART. However, ARTmodule is modified to
associate @ vigilance parameter to each categgrynstead of
a singlep®. They are usually initialized with low values, which
can resultin poor generalization. To correct this, instead of using
a match tracking mechanism, batch training is carried out. Aftel
one training epoch is complete the total training eregr, is
computed. Since thith ART® category predicts th& ;th class

label that has been associatedj taith highest frequency, i.e., © (d)
K; = arg max;, {w% k=1,... No}' er is given by Fig. 3. The circle-in-the-square problem is depicted in (a), while (b), (c),
J and (d) show the hyperboxes created by Fuzzy ARTMAP, BARTMAP and

p#ARTMAP, respectively, for the best category structure (i.e., the least cate-
gories) among those resulting from the ten training sets.

Y na(wg*| = wik ) (10)
S W IV. ©ARTMAP

Boosted ARTMAP offers a means to solve the Fuzzy
which is the averaged sum of the error contribution of all cats\RTMAP category proliferation problem, while preserving
egories in ART. This error is compared to a user parametehe association of each category to a hyperbox, which allows
Emax- If €7 > emax then the vigilance parameter of nodes witlkstraight IF-THEN rule extraction from the learned weights.
maximal error contribution is raised, " = p?'! + Ap, It suppresses the match tracking mechanism, that may cause
whereAp is a user parameter, and another training epoch pigategory proliferation on noisy data, though it guarantees accu-
ceeds. During the training, the size of a categonyz;|, willbe  racy. Therefore, BARTMAP introduced an off-line evaluation
limited by its vigilance parameter?, as shown by (8). mechanism in order to preserve predictive accuracy. However,

Through this mechanism, BARTMAP allows some error oBARTMAP lacks of an inter-ART reset mechanism that allows
the training set, improving Fuzzy ARTMAP generalization andorrect handling ofpopulated exceptiong:ARTMAP is pro-
reducing the number of categories, when patterns from differggdsed as a modification of Fuzzy ARTMAP that includes an
classes overlap or data are noisy. In addition, category size @ater-ART reset mechanism, that does not raise ARgilance
be determined by the underlying distribution rather than a vigind thus does not cause category proliferation, while the
lance parameter. predictive accuracy is guaranteed by an off-line learning stage.

However, since no inter-ART reset is performed, a hyperbox The architecture oft:ARTMAP is similar to that of Fuzzy
cannot be created inside another hyperbox. This is importskRTMAP (Fig. 1): there are two unsupervised Fuzzy ART
when many patterns with one class label are surrounded opdules, that perform a clustering in the input and output spaces,
many other patterns with a different class label, i.e., the $ioked by an associative map field governed by (9), i.e., one-to-
calledpopulated exceptionss Fig. 3(a). Since the size of themanyF¢ — F¥ relations are allowed and their probabilistic
surrounding region increases with the dimensionality of theformation stored inuj,‘; weights, as in PROBART. By storing
input space, this limitation of BARTMAP will become critical probabilistic information the need of committing a new category
in problems with a large number of input features. can be evaluated in terms of incrementing the correctness of

e =

y* +wsb if the Jth F§ node is active and is active
ab _ ) WY if the Jth F'¢ node is active and? is inactive
y if ¢ is inactive andt? is active
0 if F is inactive andF? is inactive

C)
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the mapping. In addition, an off-line map field with weightdVe can calculaté ; that represents the contribution to the total
vg,‘; is introduced, which stores the probability Bf — F? entropy of the/th unit if it was allowed to learn this pattern. If
relations when inter-ART reset is disabled, i.e., in predictiol; > k..., then this category is too entropic and thus ik
mode. Therefore these weights allow the system to evaluarede in ART is inhibited for the rest of this pattern presentation
the predictive entropy of the training set. Finally, a vigilancby settingZ’;(I*) = 0, but its vigilance parameter iotraised.
parameter is associated to each category node irfAgtilarly  Other categories will be chosen in ARTintil the entropy con-
to BARTMAP, so that category size can be determined by tfibution criterion is met. If a previously uncommitted category

underlying distribution. is selected, say’, thenp;c = 1, whilep, = 0fork # K
and thereforé.; = 0. Then weights in ART and ART are up-
A. Definitions dated and also in the map field, oy’ = x°.

Given partitions of the input spacd into N¢ sets A; 2) Off-Line E\./aluation:After. a.II patterns have been pro-
and output spac into N’ setsB;, the conditional entropy cessed, the off-line map field is initialized by = 0, j =
H(B|A), here denoted simply b, is given by 1,...,N% k =1,...,N" and the data are presented again to

Ne o A update these weights. However, this time the entropy contribu-
H—_ Zp” Zprk log, pi (11) fcion criterion is not evaluated, so tha_t units are selected inART
i I e~ G in an unsupervised manner and weights in ARRd ART are

not updated. In fact, this is equivalent to making a test on the
training data and storing the results in weighgé. Replacing
p; andp;y in (11) by

wherep; is the probability of occurrence of clasls andp;y, is
the conditional probability oB;, assumingd;. Let us denote

Nt
hj ==p; > pirloga pin (12) _
k=1 Pik = gan|
Vi
the contribution taH of setA;. |veb
It is important to remark that the mutual information of P = (24)
the partitions inA and B is given byMI(B; A) = H(B) — Dima [v§?

H(B|A), where H(B) is the entropy for the output space .
[15, Ch. 15]. Therefore, for a giveH (B) (as in classification the entropyH, is computed and compared ff.x. If H >

tasks), minimizing the conditional entropy is equivalent to thé[Inax then the mapping d_efmed WARTMAP between the
maximization of the mutual information. input and output partitions is too entropic and thus a finer par-

titioning of the input space is necessary to improve predictive
B. ARTMAP Training and Prediction relations. To achieve this, the ARThodeJ that has maximal
Before training all weights are initialized as in Fuzzf Ont]r\lft‘)‘u?:get:réuzcjoﬁi:gggg)ids r: n?;\%éga()\;\;hl:cj:h rﬁ]e/a: 31__7
ARTMAP, butwst — 0,j — L....N%k — 1,...,. N0 A 5o - :

ab _ i iqi i
baseling® is set as a starting vigilance. This should be setto ze%oandWJ = 0), after the baseline vigilance is set to

to minimize the number of categories, unlagsiori knowledge
ofthe problemindicates thatfine categories will be requiredin all
the input space. In addition, two user parametgrs. andH ;.
are defined to setupper boundsgrandH , as explained below. sothat newly created categories will have smaller size|tRah
Training proceeds by presenting input—output paish]. since the category size is bounded as shown in (8). All the pat-
When a patteri is presented to ART, a category, say, is se- terns that previously selected th¢h ART* category are pre-
lected according to (1) and if it is a newly committed categoryented again in a new training epoch, while the rest of the pat-
thenp; = p®. The reset condition is evaluated usingin (4). terns are not. This will make a finer partition of the input space
If this condition is not satisfied, this node will be inhibited and @reviously covered by the removed category, while the rest of
new search triggered. Pattdsris presented to ART selecting the categories remain the same. The process carries on until
the Kth category. Then the map field activity is calculated acH < H.

max-

|wy| Ry
- —1-— A 15
Me M 5P (15)

cording to the PROBART equation (9). pARTMAP Prediction :As in BARTMAP, tARTMAP pre-
1) Inter-ART ResetAfter map field activityx® has been diction is carried out by selecting thih ART® category node
calculated, replacing; andp;; in (12) by that has highest; (I) value and then predicting the class label
R corresponding to thé ;th ART® category node, wher& ; =
Pjk :M ifj=1J argmaxy {w3, : k=1,...,N'},i.e, K is the most frequent
x| association to nodg.
b; = No -
x|+ 3711 e [WE C. Discussion
wf}: ] If p* = 0, hmax = 0 and fast learning is assumed, the first
Dik =wer| otherwise training epoch oftARTMAP will generate as many ARTcat-
J

wb egories as existing class labels, i.e., as AR&tegories. This
w3l (13) means that all patterns associated to a given class label will lie

B |xet| 4+ Zf:uw |wab|’ inside the same ARThyperbox, which can be arbitrarily large.

by
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The off-line evaluation will measure the probabilistic overlap- TABLE |

ping of the created hyperboxes. This is related to the number COMMITTED CATEGORIES AND GENERALIZATION ERROR FOR THE
. . CIRCLE-IN-THE-SQUARE PROBLEM

of patterns that select a different category when inter-ART reset

is enabled and when it is disabled, which occurs because the classifier rules  error

inter-ART reset_doe_s not raise ARVigiIan(_:e. _ _ Fuzzy ARTMAP 252 5.69%
If pat_terns with _dlfferent class_ labels lie apart m_the input BARTMAP 391 6.83%

space, i.e., there is no overlapping, = 0 and learning can

be stopped. However, this overlapping will often be large, i.e., pARTMAP 9.9 524%

H > H,,, and some of the categories must be refined. To re-

fine a hyperbox, it is deleted and all patterns that previously se-

lected it are presented again, but smaller hyperboxes are fordéljPe to test the capabilities of each architecture to reduce cat-
to cover the same region. Through this batch learning proce€g0rY Proliferation, while preserving generalization. The first
large hyperboxes are placed in regions where all patterns hé% of _benchmarks will consist of variations of the _weII—knowq
the same class label, while small categories are placed in f#¢!€-in-the-square problem [17] that has been widely used in
boundaries between classes. In additjpopulated exceptions ARTMAP literature [6], [9], [10]. It will serve to illustrate the
can be handled with one large hyperbox, which is a general r§@1c€pt opopulated exceptioand its effect on the training of
and one smaller hyperbox, which represent a specific rule. the evaluated networks. In addition, the influence of the dimen-

Parameterh,,., is intended to avoid that nonpopulatec?iona"ty of the input space will be assessed on a variation of

exceptions, i.e., outliers, create new single-point categoridS problem. _ _
Though most of the patterns that select one category willAnother benchmark, with patterns generated by Gaussian
predict the same class label, by setting.. > 0 a few patterns SOUrces, will test the performance when there is class overlap.
with a different one can be allowed. In addition, gaussian noi§§ @ particular cause for overlapping, the impact of additive
can be controlled by settiny.. > 0 and then tuning,., "°ise Will also be evaluated on the circle-in-the-square bench-

so that it partitions again regions where noise is strong, asTf™® . _ -
the problems shown in Section V-C. In the limit, if,.. — In addition, all networks will be evaluated in the difficult

log, N* uARTMAP suppresses the inter-ART reset and thgigal-world task of on-line handwriting recognition, on UNIPEN
behaves similarly to BARTMAP and i, = log, N? t00 [18] uppercase letters. In this problem, there is a definite need

the off-line stage is not necessary aniRTMAP reduces to a for a reduced set of comprehensible rules, that can be used for
PROBART network. syntactic recognition, or for handwriting reconstruction [19].

As in Fuzzy ARTMAP, zARTMAP rules can be extracted In order to achieve maximal generalization, in all the experi-
from the weights in the form mentsp® = 0 and« = 0.001 for the three networks, which will
favor the creation of a smaller number of categories [20]. Fuzzy
IF a is C; THEN output is L; (priority P;) (16) ARTMARP is trained until category stability is achieved, i.e., no
more categories are created even if training continues for more
where ‘ais C';” means “patterma selects thgth category” and epochs.
L, is the predicted label. The priority of the rule is the choice
function (1), that reduces to an inverse proportionality to the hy: Circle in the Square
perbox size, if patterns are inside hyperboxes. Considering this RN . .
#ARTMAP algorithm is related to the way D3 [16] constructs The circle n the-square p_roblem .[F'.g' 3@ requires a
o . ) . . system to decide whether points are inside or outside a circle
decision trees, if categories are #it&ributeson which rules are *~. o L. .
. . lying within a square of twice its area [8]. This problem
evaluated, as in (16). Initially, the most general rule (categoPgl ! :
: . , R ifustrates the concept gfopulated exceptiorand there is not
with largest hyperbox) is evaluated. If the first rule is impure n ootimum number of cateqories since decision boundaries
ID3 adds an attribute that partitions the patterns in order to in- P 9

crement the information gain, whilkARTMAP dynamically ?r?lnr;()tthgepgreff)?rrrl]gi(iewgfh FzzzgIt;RglliﬂrgifrB(:R?ﬁ:;bgﬁ?.

finds some category (another attribute) that augments the mutu TMAP was evaluated comparing both the number of

information between input and output partitions. When entroﬁL . . o
- - ommitted categories, or generated rules and the generalization
has been sufficiently reduced, both ID3 amRTMAP training :
performance. For the experiments, data were generated ran-

algorithms stop. ThoughARTMAP does not generate a deci-

. . %?mly from an uniform source, to form ten 1000-point training
sion tree, its rules are constructed to be as general as possi % and one single 10 000-point test set. Results are averaged

?jglsrfg others with increasing specificity to refine the gener%?Table I, for BARTMAP traingd Withe,yy = 0.04 andAp —
0.02 and tARTMAP trained withh,,, = 0.0, Hy,x = 0.15
andAp = 0.02.

As shown in Fig. 3(c), BARTMAP must create a number

A comparative study of Fuzzy ARTMAR,ARTMAP and of categories to cover the region surrounding the circle, since
BARTMAP performance will be conduced on several benclit cannot create hyperboxes inside others, due to the lack of
marks. Performance will be evaluated by the error rate onaa inter-ART reset mechanism. Though Fuzzy ARTMAP has
test data set and by the number of categories generated, i.e.atmanter-ART reset mechanism, because the match tracking

number of rules that could be extracted. Therefore, the objectm®cess always raises ARVigilance, smaller categories are

V. EXPERIMENTAL WORK
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TABLE I
COMMITTED CATEGORIES AND GENERALIZATION ERROR FOR THE
OVERLAPPING GAUSSIANS PROBLEM

classifier rules  error

Fuzzy ARTMAP 27.0 6.44%

BARTMAP 16.1 6.29%
uARTMAP 11.6 5.45%
created. In addition, because Fuzzy ARTMAP must learn to () (b)

correctly classify all training patterns, several categories are_—
created along the circle boundary [see Fig. 3(b)], which im- |
prove very slightly generalization performance. Fig. 3(d) also
shows howyARTMAP dedicates only one ARTcategory to
predict the classutside while several categories are dedicated
to describe the classircle, resulting in better generalization
performance, while a reduced set of rules is generated.

In [10], JARTMAP is proposed to impact category prolifer-
ation and evaluated on the circle-in-the-square problem. Whe
distributed learning is enabled, a pattern can be learned by se : : ‘
eral categories simultaneously, so that the input space need not © )
be covered thorO-Uthy' However, when the W-inn.ing ARCEL- .Fig. 4. (a) Patterns from five Gaussian sources, the four outermost associated
egory node predicts the wrong class !abel, distributed Iearnlﬁﬁgne' class label and the inner to a different class label. (b), () and (d) show
is disabled and the network behaves like Fuzzy ARTMAP. Thise hyperboxes created by Fuzzy ARTMAP, BARTMAP, andRTMAP,
implies that ART vigilance can be raised, creating Categoriergspeqti\_/ely, for the simplest network structure among those resulting from the
that are necessary but possibly of small relevance to the gerigt-rning sets-
alization error. In [10], JARTMAP is reported to use 10.8 cate-
gories to produce 7.9% generalization error on the circle-in-thiére other sources, since it cannot represent sobiGe;, ;)
square problem. As it can be seesARTMAP uses a similar as apopulated exceptionBecause of this, it generates more
number of rules achieving higher test accuracy, by adequateljes than;ARTMAP. However, since both BARTMAP and
positioning the hyperboxes and allowing some errors near clagsRTMAP allow some error in the training set, they do not

boundaries. commit categories to describe the multiple points of overlap-
ping between classes and therefore generate more compact rule

B. Overlapping Gaussians sets than Fuzzy ARTMAP and have superior generalization per-
formance.

In the previous experiment there is no overlap between
classes. However, class overlap is a major cause of category pro- _
liferation in Fuzzy ARTMAP, since match tracking is often trig-c' Robustness to Noise
gered and small categories are required to cover exceptions thathe presence of noise in the training data is one major cause
are statistically unimportant. Consider the problem where poirtgé category proliferation in a fast-learning on-line system [9].
are generated from five Gaussian sources with means= However, if there are just a few outliers, several single-point
(0.5,0.5), p2 = (0.2,0.2), us = (0.2,0.8), py = (0.8,0.2), categories will be created, with little influence on the predic-
ps = (0.8,0.8) and deviations; = 02 = 03 = 04 = o3 = tionerror. If additive noise corrupts all data, decision boundaries
(0.1,0.1). Each sourceN(uo,09), N(us,o3), N(ua,04) are more vague and prediction will degrade. In this situation,
and N(us,05), has probability 1/8 and is associated to thelass overlapping occurs and, as shown in the previous experi-
same class label, while sour@é(s:;, 1) has probability 1/2 ment, BARTMAP andtARTMAP can allow some error on the
and is associated to a different output class. Therefore, bathining set and thus it can be expected that they degrade less
classes have the same total probability. The geometry of thiign Fuzzy ARTMAP due to additive noise.
problem resembles the circle-in-the-square problem, but in thisTo evaluate the impact of noise experimentally, the same
case no zero error decision boundary exists. For performamtza sets generated for the circle-in-the-square problem (Sec-
comparison, ten 1000-point datasets were generated and tioe V-A) were used and additive Gaussian noise added to the
single 10000-point test set and all input patterns were nanput patterns, i.ea,, = a+ N(0, o). Different levels of noise
malized to the unit square. The results are shown in Table Were used, given by, = o, = k1072, k = 0,1,...,10.
for BARTMAP trained withe,,, = 0.04 andAp = 0.02 Parameterss,,,, in BARTMAP and hp.. and H,.. in
and pARTMAP trained withh,,,,. = 0.0, Hyae = 0.1 and  pARTMAP, were progressively relaxed as the level of noise
Ap = 0.02. increased, in order to avoid overfitting to noisy data.

As seen in Fig. 4(c), BARTMAP can roughly describe source Fig. 5 jointly plots the number of categories (abscissa) and
N(p1,01) with a few hyperboxes, dedicating several more tthe generalization error (ordinate). The lower left of this graph
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Fig. 5. From left to right along each curve, marks represent the number of categories versus the generalization error, for Gaussian noise adgieelito the o
data, of deviatiowr = k10-2,k = 0,1,...,10.

is the desired performance region, where low error is achievadhypersphere cocentered with the hypercube. The radius of the
with few categories. All networks offer their best performanckypersphere is selected so that its intersection with the hyper-
in the absence of noise and degrade as its level increases. Thise has volume 1/2, while the hypercube itself has volume 1.
is especially noticeable for Fuzzy ARTMAP, that suffers strongor A/¢ = 1, 2,3 the hypersphere is contained in the hyper-
category proliferation and accuracy losses. BARTMAP arzuibe, while for largef/ ¢ itis not. This implies that fod7¢ > 3
#ARTMAP are clearly more robust than Fuzzy ARTMAP, buthe “outside” class will not be connected. Its patterns distribute
wARTMAP degrades more with strong noise. When noise &ong the corners of the cube, which are smaller but many more
low, one single category can be used to describeotiiside as dimension increases. This problem maintains the main fea-
class. However, if noise increases, categories with associatiecks through the different dimensions (equal probability to each
insideclass label are placed outside the circle. To correct thitass and an inner class surrounded by an outer class) and there-
effect, more categories predictingtsideare generated. This is fore can be used for this study. Experimentally, ten 1000-point
achieved by increasinb,..x. In fact, the last two simulations, training sets and one single 10 000-point test set were gener-
o = 0.09 ando = 0.1, were carried out withh,,,,, = 1, ated for each problem in the series, fram® = 1 through
i.e., without inter-ART reset mechanism and thtSRTMAP  A/® = 10. Note that the number of training samples is inde-
behaves similarly to BARTMAP. pendent ofA/*. Training parameters are those indicated above
for the circle-in-the-square problem.
In Fig. 6, from left to right along each curve the number of
categories (abscissa) and the generalization error (ordinate) are
Performance of many statistical and machine learning algointly plot, for A/ = 1 thoughM* = 10. This graph clearly
rithms degrades in problems with high dimensionality [21]. Thishows that performance degrades for all three networkd as
is due to the fact that, as the number of dimensions increases,itfieeases, thoughARTMAP always offers a better solution,
input space will be sampled more sparsely. In addition, becausshieving a lower error rate using fewer categories.
Fuzzy ART categories are associated to hyperboxes, they catt is remarkable that, while relative degradation for
be inefficient for high dimensionality [9], since the hyperbox izARTMAP and Fuzzy ARTMAP is similar, BARTMAP is
defined by the minimum and maximum of its data and not byseverely affected. This is due to the lack of an inter-ART
tighter curve bound. Therefore, if sampling is sparse, the cateset mechanism to allow placing hyperboxes inside others.
gory infers the existence of data where no evidence exists. Tiilsus, many categories must be placed in the boundaries of the
may cause the recruitment of smaller categories at the cornieypersphere [see Fig. 3(c)]. Since increasing dimensionality
associated to a different ARTElass label, resulting to poor gen-means a wider boundary, a larger number of categories need
eralization on new data. to be recruited. This example shows that handirogpulated
Though it is convenient for rule interpretation to represemixceptiongorrectly is important in concept learning problems
templates by hyperboxes, it must be assumed that performadeéined on a high dimensional input space.
degradation will occur for high dimensionality. This degrada-
tion can bg evalgateq by defining a s_erjes of problems of ig_ On-Line Handwriting Recognition
creasing dimensionality}/*, but with similar geometry. Here
we propose a generalization of the circle-in-the-square, namedn-line handwriting recognition has been in the focus of re-
the hypersphere-centered-in-the-hypercube, i.e., it must be gearch for many years [22]. Currently, itis a key issue in the de-
cided if points within the unit hypercube also lie or not insideelopment of wireless computing that requires small, easy to use

D. Influence of Dimensionality
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Fig. 6. From left to right along each curve, marks represent the number of categories vs. the generalization error, for the hypersphere-tuilegagipem,
an M *-dimensional generalization of the circle-in-the-square problemjfér= 1 throughM ¢ = 10.

devices [23]. Nevertheless, it presents intrinsic difficulties due TABLE Il
to the variability existing among writers, languages, or and dige™" NUMPER OFRULES AND AVERAGEERRORRATE FOR THERECOGNITION
itizing pads. Additionally, recognition of on-line written char-

acters normally involves several tasks, including segmentation classifier rules  error
of sentences into words, words into characters and characters Fuzzy ARTMAP 254 6.02%
into strokes. This last step is motivated by biological models of BARTMAP 489 6.74%

handwriting generation. According to [24], a stroke is a piece of
handwriting generated by a simple motor impulse to the hand
and a component (handwriting between pen lifts) is made of a
series of overlapping strokes. Besides segmentation, discrigi-its strokes, plus one additional feature, the ratio between
nant features must be extracted for constructing the input to @ sides of the box containing the whole character. For more
classifier. details see [25].

Once handwriting data have been reduced to vectors of feaSince training samples have different numbers of strokes, six
tures, machine learning approaches can be taken to build a cfiferent networks are trained, with networktrained only on
sifier [25]. However, in order to better understand the humaamples witm strokesp = 1, ..., 6. Therefore, the dimension
capability for both recognition and generation tasks, it is usefof input vectors is different for each network, namgly, +1. If
to build a syntactic recognizer with a reduced number of rulescharacter has more than six strokes it is considered badly seg
[19], as noted by the many different research approaches masented and counted as a wrong prediction. All networks were
to this problem (e.g., [26]). For this purpose, Fuzzy ARTMARrained, withh,,.x = 0.0, Hy.e = 0.2 andAp = 0.02 for
and especially:ARTMAP, can be used. pARTMAP ande,,.,. = 0.04, Ap = 0.02 for BARTMAP.

For the experiment shown here, data were taken from theln this difficult task, given a test pattern each network will
train_r01_vO02 UNIPEN data release. The UNIPEN projecprovide a ranked list of all possible class labels. This informa-
[18] has collected more than 5000000 characters, from matign can be used by a postprocessing algorithm using contextual
writers, languages, and pads, so that conclusions can be genefatmation, like [27], where a syllabic dictionary is employed.
enough. Here 2106 samples were selected to build the trainifigerefore, in this work a prediction will be considered cor-
set, while 2092 different samples form the test set, provideekct if the expected class label is among the first two predicted.
that all writers contribute to both sets and samples are restricteable Ill shows total number of rules, comprising the six net-
to be upper case letters, i.e., there are 26 class labels, thowginks (each devoted to characters of a given number of strokes)
similar conclusions can be extracted from the recognition ahd the average rate of the expected class label not being among
digits or isolated lower case letters. Characters were segmerntteslfirst two ranked by the classifier.
using velocity minima, as inspired by biological models [24] Fuzzy ARTMAP achieves a high accuracy, but it commits
and 11 features were extracted for each stroke: length, theehigh number of categories, i.e., it generates a large rule set.
angles that describe the curvature of the stroke (each angl®isthe contraryARTMAP achieves slightly lower recognition
represented by its sine and cosine and therefore six featurates with a much simpler set of rules. Considering that there are
are required), lasyy coordinate, mean: and meany values 26 output class labels, an average of four rules for class label is
of the strokes coordinates and a discrete feature indicatinggénerated, while Fuzzy ARTMAP dedicates an average of ten.
the stroke starts and/or ends a component. The feature vectdFhis can be explained considering that, due to the high dimen-
corresponding to a character is made by the sum of the featusemality of the problems and the variability of handwriting, pat-

uARTMAP 105 7.03%
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terns with the same class label are distributed in several “cloudsARTMAP has been shown to outperform BARTMAP, another
in the input space, which can be seen as case of mufiggd@- ARTMAP-based approach to reduce category proliferation that
lated exceptiondn addition,isolated exceptionappear if one suppresses the inter-ART reset.
writer contributes with very few samples, or he is unstable or In addition, becaus@ARTMAP, as BARTMAP, allows a
uncomfortable writing on the digitizing pad, or some characteggnall error on the training set, it finds more compact rule sets
are badly labeled. By allowing hyperboxes be as large as neoghen there is overlap between concept classes and therefore
sary, but accepting small a training erroARTMAP generates no exact solution. This results generalizes:8RTMAP and
such a compact rule set. In addition, since Fuzzy ARTMAP diBARTMAP being more robust to noise than Fuzzy ARTMAP.
tributes training samples among several categofieRTMAP Furthermore zARTMAP has been tested in a difficult real-
is a better estimator of the underlying distribution. Thus, it willyorld task, i.e., recognizing upper-case letters written on-line on
be simpler to apply rule pruning by usage frequency [7] to thejr digitizing pad, where the extraction of a reduced set of rules
rules than to those generated by Fuzzy ARTMAP. is very important. Because of the high variability of the data,

BARTMAP accuracy lies between that of Fuzzy ARTMARyatterns are organized as many “clouds” in an input space of
and tARTMAP, but at the expense of a large number of catgigh dimensionality, where many of these clouds are surrounded
gories. This is due to the appearance of mpogulated excep- py patterns with other labels, i.@opulated exceptionsn this
tions as already mentioned. In these high-dimensionality inpsituation,,/ARTMAP significantly reduces the number of gen-
spaces, many categories are devoted to describe the surroungaged rules, to achieve similar performance. In addition, these
of thesepopulated exceptiontn fact, BARTMAP performance ryles reflect more reliably the underlying distribution of the data
degrades as the number of strokes, and thus the dimensiona|i{yl thus postprocessing methods could be more efficient. On the
of the problem, increases, pointing out the utility of some kingontrary, BARTMAP fails to produce a reduced number of rules
of inter-ART reset. because the lack of an inter-ART reset mechanism becomes crit-

ical in this high-dimensional problem.
VI. CONCLUSION Current research pursues modifyipdRTMAP to control

A new neural architecture callgtARTMAP has been intro- category growth on each input feature independently. This is
duced as a solution to the category proliferation problem soniBteresting because the vigilance criterion (4) limits the total
times present in Fuzzy ARTMAP-based architectures. It th&f7e of the hyperbox, while priori knowledge, or the under-
reduces the number of committed categories, while preserviiind distribution, may determine that restriction should be ap-
generalization performance, without changing the geometry Rjfed only in some particular direction. By doing this, a smaller
category representation. Therefore, a compact set of IF-THIENMber of categories would be recruited in some problems,
rules can be easily extracted. This is important for favoring tiehile gaining independence of the order of pattern presentation
use of neural networks in problems where comprehensibility and an indirect measure of feature importance could be derived.
decisions is required, or where itis important to gain insight into !n addition, an interesting topic of ongoing research to re-
the problem through the data. duce category proliferation concerns the assessment of modified

To achieve this category reductigpARTMAP intelligently architectures, such as dARTMAP, BARTMAP or the proposed
positions hyperboxes in the input space and optimizes their si#g@RTMAP, as compared to rule pruning or extraction methods.
For this purpose, two different learning stages are considered!isome cases some of the rules generated by Fuzzy ARTMAP
the first stage an inter-ART reset mechanism is fired if select8#y contribute little to the predictive accuracy and thus could
ART® category has an entropic prediction. However, ARTg- be removed, yielding a network with a compact set of rules, but
ilance is not raised. In the second stage, total prediction entrdfi¢serving the on-line feature. In [28] we partially address the
is evaluated and, if required, some patterns are presented ag#dy of the computational implications and effectiveness to re-
with increased ART vigilance values. This wayARTMAP al- duce category proliferation of rule pruning methods, while more
lows some training error, avoiding committing categories witBxtended research is an important issue for future works.
small relevance for generalization and also permits placing hy-
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