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Abstract

This article derives a real-time theory of motivated behavior and presents
some of its physiological and pharmacological correlates. The theory
mechanistically explicates instrumental concepts such as reinforcement, drive,
incentive motivation, and habit, and describes their relationship to cognitive
concepts such as expectancy, competition, and resonance. The theory shows
how a real-time analysis of an animal’s adaptive behavior in prescribed
environments can disclose network principles znd mechanisms which imply
a restructuring and unification of the data in terms of design principles and
mechanisms rather than the vicissitudes of exeprimental methodology or
historical accident. A comparative analysis and unification of other theories
is then possible, such as the classical theories of Hull, Spence, Neal Miller,
Estes, Logan, Livingston, and John. The data which are discussed include
overshadowing and unblocking; suppression by punishment; reinforcement
contrast effects; hypothalamic self-stimulation; differential effects of drive,
reinforcement, incentive motivation, expectancies, and short-term memory
competition on learning rate, behavioral choice, and performance speed; the
role of polyvalent cortical cells, multiple sensory representations, recurrent
on-center off-surround neocortical and paleocortical interactions, hippo-
campal-hypothalamic, medial forebrain bundle, and thalamocortical inter-
actions on motivated behavior; effects of drugs like chlorpromazine, reserpine,
monoamine oxidase inhibitors and amphetamine on instrumental behavior.
Of special interest are network ‘hippocampal’ computations that are suggested
to accomplish several distinct roles: influenc: transfer of short-term to
long-term memory both directly and indirectly, directly by triggering con-
ditioning of conditioned reinforcers, indirectly by generating positive
attentional feedback to neocortical polyvalent cells; and influence the
organization of a motor map which controls approach and avoidance
behavior by eliciting motivationally biased signals to this motor mapping
system.
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287 A psychophysiological theory of reinforcement

1. Introduction

The phenomena of classical and instrumental conditioning are wonderfully
varied, interesting, and confusing (Bolles, 1967; Brush, 1971; Campbell and
Church, 1969; Estes, 1969; Gilbert and Sutherland, 1969 ; Honig, 1966 ; Mackintosh,
1974 Pearce and Hall, 1980; Rescorla and Wagner, 1972; Tapp, 1969; Wagner,
1978). It has often seemed nigh impossible to state a law, or generalization, in this
area that does not admit important exceptions. For exaraple, are classical con-
ditioning and instrumental conditioning mechanistically independent? If not,
exactly how are they related ? Do specific drives really exist, such as a hunger drive?
Do generalized drives exist, such as an exploratory drive ? If so, why do both types
of drives exist? Are drives independent, such as hunger and thirst, or hunger and
exploratory drive ? What is the difference between a drive and an incentive ? What
is the difference between a drive and a habit? Do drives have some properties of
habits ? In particular, can drives act as stimuli that can be associatively joined to
responses, or do they act simply as sources of energy? Is reinforcement due to
drive reduction ? If so, what drive is reduced to reinforce language behavior ? If not,
why does reinforcement often seem to be related to drive reduction? The list of
questions goes on and on. After a while, one can become exhausted by the sheer
variety of concepts, and by the seemingly endless introduction of exceptional rules
or subtle distinctions to handle difficult special cases.

Because these difficulties are so formidable on the level of consensual language,
we need to find a formal language which is powerful enough to describe instru-
mental concepts and mechanisms without ambiguity. A method must be found
whereby this formal language can be constructed. Such a method has been gradually
developed over the past two decades. The method starts by identifying environ-
mental pressures to which an organism must adapt in orcler to survive. In other
words, the theory is derived from real-time constraints on the self-organization
(learning, development) of individual behavior. The method shows how each
environmental problem is solved by a principle of behavioral organization. These
principles are realized by mathematical laws which embody the principles in the
most parsimonious, or minimal, way. Once a minimal solution is found, one can
more readily classify individual and species differences as variations on the minimal
theme. In every case studied to the present, these mathematical realizations can be
interpreted as neural networks.

The derivation of these principles and laws can be achieved using thought
experiments which show us, in simple stages, how prescribed environmental
pressures force adaptive designs on the behaving brain. [ contend that various
other psychological theories have failed to derive significant conclusions about
brain design because they have ignored real-time constraints on the self-
organization of individual behavior. The concepts that arise from this procedure
are, not surprisingly, related to traditional ideas, but they diverge from traditional
ideas in crucial ways that allow us to penetrate into areas where the traditional
notions are misleading or too vague to follow.
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This procedure eventually leads to a principled reorganization of the data. For
example, our first thought experiment is about a dilemma concerning classical
conditioning (Grossberg, 1971a). Namely, how does a network learn associatively
despite the fact that the time intervals between successive CS and UCS presentations
can vary across learning trials? This seemingly innocent question forces us into
explicit mechanisms of instrumental conditioning, into a role for cognitive process-
ing in the direct evaluation of reinforcement, and to the threshold of studies about
short term memory, attention, and the development of cognitive codes. Herein I
follow the path by which these mechanisms were historically derived, since it
provides a convenient route through the data along a gradually rising conceptual
pathway. Each constraint along this pathway provides us with a necessary con-
straint on network design, which we then translate into a minimal realization
before classifying related possibilities. Similar mechanistic conclusions can be
derived from a thought experiment about cognitive development (Grossberg,
19804, 19824). This multiplicity of derivations, always leading to conclusions that
support and sharpen previous results, endows the theory with an aura of conceptual
coherence and robustness.

The historical procedure is not without its expository difficulties. Each stage of
the derivation sheds new light on a variety of nontrivial data. However, in a living
organism, often mechanisms other than the ones that have just been derived are
also at work. My choice is whether to defer all intcrpretations until the whole
theory is derived, or to provide data markers along the way using experiments that
emphasize the mechanisms then being discussed. I have chosen the latter procedure
and along the way will try to direct the reader to the related mechanisms too.

For example, 1 was led to mechanisms for reinforccment and incentive
motivation before being driven by the theory to consider expectation mechanisms.
In the theory, these two classes of mechanisms often closely interact, but are
distinct. In the data, it is often hard to tease them apart. Thus Mackintosh (1974,
p. 233), after a sophisticated data analysis, wrote that

Stimuli associated with reinforcements do not motivate instrumental responses;

they may become established as goals for instrumental responses. Their effect on

instrumental behavior therefore may be similar to that of unconditional reinforcers;

they may, in other words, serve as conditional reinforcers.
I will also argue that stimuli which are associated with reinforcements can serve
as conditioned reinforcers. However, I will argue, contrary to Mackintosh, that
such stimuli can motivate instrumental responses anc that, although they may
become established as goals, this goal property is, strictly speaking, related to
expectancy mechanisms and not to reinforcer properties per se.

To understand the distinction between Mackintosh’s claim that reinforcers do
not motivate instrumental responses, and my claim that they do, one must under-
stand what position Mackintosh is arguing against; namely, the classical idea that
motivation acts in a nonspecific fashion. The theoretical development in this paper
argues against the classical position, but also leads to a mechanism of motivation
that is important in reinforced behavior. The theory also shows how the reinforcing
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properties of stimuli can easily be confused with their motivating properties. Tt
hereby suggests how Mackintosh could be led by considerations of parsimony to
climinate motivation from his discussion. I will argue that the two concepts are
really fundamentally distinct, and will attach them to distinct psychophysiological
parameters.

Once we embrace the evolutionary method, we must te prepared to organize
our mechanistic understanding into a succession of conceptual stages. The article
is structured as such a succession. This procedure is inherent in the evolutionary
method. and is the price we pay for understanding very well, sometimes painfully
well, just what each stage’s organizational principles do and do not imply.

2. Buffer the learning cells

Before beginning the thought experiment, let us put it into perspective with some
introductory remarks It is obvious that cells which are capable of learning should
be buffered against being activated except by appropriate inputs. In particular,
during adult human behavior. cells near the sensory and motor periphery should
not be capable of substantial learning. If adult retinas could learn, we would see
a superposition of all the visual scenes that occurred for hours past. If aduit motor
neurons could learn. our next motion would be an inaccurate weighted average of
all our recent motor commands. To prevent this, the cells that are most capable
of learning will. in the adult, be found away from the sensory or motor periphery,
where they are carefully surrounded by protective networks. This is one reason
why learning cells have cither been hard to isolate by tlinc elcctrode penetrations.
or where cells have been reliably isolated, they often have disappointing learning
capabilities (Hoyle, 1977; Kandel, 1976: Morrell, 1961).

3. A digression on classical conditioning

The thought cxperiment demonstrates that classical and instrumental con-
ditioning sharc certain mechanisms in common. These mechanisms embed., or
buffer. the cells capable of learning in a network that prevents the cells® activation
except under appropriate circumstances. The thought experiment builds upon
prior work which derives laws of associative learning from the simplest concepts
of classical conditioning: see Grossberg (1974, 1982¢) for a review. In this work,
laws for neural networks are derived from a real-time aralysis of how pairing a
conditioned stimutus (CS) with an unconditioned stimulus (UCS) on learning
trials enables the CS 1o elicit a conditioned response (CR), or UCR-like event, on
performance trials. The network dynamics are described by interactions between
the short-term memory (STM) traces x(t) of cell body populations v, and the
long-term memory (LTM) traces z;(t) of the axonal pathways ¢; from v; to v
as in Figure 1. For present purposes. the exact form of these interactive STM-LTM
laws is not important. What is important are two properties of these laws.
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Fig. 1. Short-term memory traces (or potentials) x, at cell populations v, emit signals along the
directed pathways (or axons) e;; which are gated by long-term memory traces z;; before they can
perturb their target cells v,.

A. The unit of LTM is a spatial pattern.
B. There exists a stimulus sampling operation.

By (A) I mean the following. Consider the network in Figure 2a. This network
depicts the minimal anatomy that is capable of learning by classical conditioning.
The population v, receives a CS-activated input. Population v, can thereupon
emit signals along its axons e,; whose terminals, or synaptic knobs, Sg;
(i=1,2,...,n) abut on the UCS-activated populations v,, v,,...,v,. The
LTM traces z,; are computed at the synaptic knob terminals. Each z,; computes
a time average of the signal along ey; multiplied by the STM trace x; of v;. In
particular, z,; cannot discern the value of x; unless the axonal signal is positive.
Stimulus sampling means that z,; can only detect the effect of the UCS pattern on
Xx; at times when signals from v, reach the synaptic knobs S,;.

The network of Figure 2a is called an outstar because it can be symmetrically
redrawn as in Figure 2b. Property (A) means that an outstar can learn an arbitrary
spatial pattern. A spatial pattern is a UCS to the cells v,, v,, ..., v, whose inten-
sities have a fixed relative size through time; that is, the input 7(r) to v; satisfies
I()=0J11),i=1,2,..., n The constants, or ‘reflectances’, 8, are nonnegative

n
and are normalized such that Y 6, == 1 to achieve the convention that /(¢) is the
k=1

total UCS input; viz. I(t) = Y I(¢). The outstar can learn the pattern weights
k=1

0=1(,86,,...,06, at a rate that depends upon the size of the CS input /,(z)
and the total UCS input /() (Grossberg, 1970a).
The stimulus sampling probabilities of an outstar are the relative LTM traces

n -1
6] Zy = ZOi(kX___:lZOk> o

As CS-UCS pairing takes place, the functions Z,; approach the values 8, respec-
tively. During later performance trials, a CS input to v, creates equal signals in
the ey; axons. These signals are gated, or multiplied, by the LTM traces z,;. Since
each z,; is proportional to 8;, the gated signal to v; is also proportional to 8,. The
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Fig. 2. In (a) the conditioned stimulus (CS) activates population v, which thereupon sends sampling
signals to the unconditioned stimulus (UCS) activated populations vy, ¥3,..., v in (b) the ourstar
is the minimal network capable of classical conditioning.

CS hereby elicits responses in the STM trace x; that are proportional to 6,. In
short, after CS-UCS pairing, the CS can reproduce the pattern 0.

Stimulus sampling can be described as follows. The stimulus sampling proba-
bilities Zy; can change only when signals from v, reach the synaptic knobs Soi
Unless the CS perturbs these knobs, their LTM traces cannot ‘see’ what UCS
patterns are received at the cells v, v,, .. .. v,. )

These simple ideas about classical conditioning can be generalized to prove a
universal theorem about associative learning. The universal theorem guarantees

e
.-I:"ﬂ:
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unbiased spatial pattern learning by arbitrarily mary, simultaneously active
sampling populations that are activated by arbitrary continuous data preprocessing
in an essentially arbitrary anatomy (Grossberg, 1969a, 19715, 19724). The same
laws also, for example, imply many properties and predictions of serial learning,
paired associate, and free recall data (Grossberg, 196956, 1978a; Grossberg and
Pepe, 1971). In the present article, I will develop implications of these laws that
are based on properties (A) and (B) above.

4. Motor synergies as evolutionary invariants

Although I will not dwell on these applications and generalizations of the
associative learning laws, the reader should realize that the outstar is a general
purpose pattern learning device. To illustrate this fact, suppose that the pattern
weights 6 describe the relative activities of motor control cells, and that these
constant relative activities are transmuted into fixed relative rates of muscle
contraction across their controlled muscle groups. Then the fact that an outstar
can learn and later perform a spatial pattern without destroying the memory of
the pattern means that a motor synergy can be learned and stably performed by a
single command population v,. The fact that the same pattern 8 can be performed
by different CS sampling signals means that performarce of the motor synergy
is effected by synchronous contraction of all the muscles. Distinct synchronous
performance signals can alter the absolute muscle contrzction rates through time,
but preserve the relative contraction rates. Since the muscle positions before
outstar read-out do not equal the terminal motor pattern encoded by 6, these
invariant ratios will be easier to measure nearer to the end than the beginning of
the synergetic motion. Analogous properties have recen tly been reported during
motor performance (Kelso et al., 1979; Soechting and Lacquaniti, 1981). From
the perspective of the present theory, these properties reflect an invariant of the
learning or evolutionary process; namely, that outstass encode pattern ratios
which are left invariant by synchronous performance signals.

5. A thought experiment: the synchronization problem of classical conditioning

Our thought experiment will be based on obvious real-time constraints which
classical conditioning imposes upon a behaving individual. The fact that the
constraints are obvious does not mean that they are trivial. In the present case,
it means they are so ubiquitous and we have adapted so well to them that they
seem obvious. The very obviousness of these constrzints gives force to our
argument.

The two main constraints are the following (Grossberg, 1971a).

C. The time intervals between CS and UCS presentation on successive
learning trials can differ; and

D. The CS alone can elicit a CR on performance trials.
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Postulate (C) describes the obvious fact that successive stimulus presentations
under natural conditions in real-time are not always perfectly synchronized;
postulate (D) describes the outcome of classical conditicning, and simply asserts
that this simplest example of associative learning is possible. We now show that
to satisfy these postulates in a world wherein events continually buffet our senses,
and wherein our long-term memories are spatially, elbeit nonlocally, coded
requires additional network structure.

To see this, we observe a continual stream of patterns from the viewpoint of an
outstar. We ask, how can an outstar learn anything at all if unsynchronized
patterns continually flow by? In particular, suppose that the outstar 0, attempts
to learn a prescribed pattern 8" in a sequence 6*), 6®, 6@, . . . of spatial patterns
by practising as the sequence is presented on successive learning trials. Denote
0,’s sampling population, or source, by v{¥ and 0,’s sampled populations, or
border, by the field F® = {¥{V, v§V, ... WV}, If postulate (C) holds, then the
time lag between the CS that excites ¥{? and the onset of the UCS sequence
6, 9 9 | that perturbs F) can be different on successive learning
trials. If v{?) fires whenever the CS occurs, then @, can sample a different pattern
6™ on every learning trial. @, will consequently learn an average pattern that is
derived from all the sampled patterns; i.e., ‘noise’. To avoid this catastrophe, 0,
must know when to sample the ‘important’ pattern 6. Somehow the onset of
sampling by v{¥ and the arrival of the UCS at the field #") of sampled cells
must be synchronized so that 0, can sample 6*), and only 6", on successive
trials.

How can the onset of v{¥) sampling be synchronizec to occur a fixed time
before the UCS arrives at #!) if the CS and UCS onset times are themselves
unsynchronized? This can only happen, in principle, i’ several properties aie
imposed.

First, the CS itself must be insufficient to elicit a sampling signal from v{®.
Second, the UCS must let v{¥’ know when it will arrive at ¥ by sending a
signal to v{¥. Third, v{*) must be prevented from eliciting a sampling signal unless
large CS and UCS signals converge simultaneously at v\?). In other words, v{?
should not fire at all unless it represents the CS and should not fire until the correct
time before the UCS arrives at #(*). In particular, if the CS input arrives so long
before the UCS that its signal to v{*’ decays before the 1JCS signal reaches v{*,
then v{¥ cannot fire. Fourth, the UCS signal must arrive at v{*) before the UCS
pattern activates #1), since (2> must be able to send a signal to #') in time to
sample 6'*). In other words, the UCS activates a bifurcating pathway. One branch
in the pathway arouses v{¥'; that is, it gets v{*’ ready to sample the UCS that will
soon perturb &), The other branch delivers the UCS pattern to F a little
while later (Figure 3). Fifth, the UCS does not know to which CS it will be paired
in a given experiment. It could be paired with any CS! The above argument holds
for every CS with which the UCS can possibly be associated. Thus the UCS must
be able to arouse all of the sampling cells that these CS's activate; namely, the
whole field 2 = (W, v?, .. ., P} of CS-activated sampling cells. Thus the
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UCS nonspecifically arouses the entire field &2 Just befcre it delivers its pattern
to £ (Figure 4).
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Fig. 3. Population v{*’ can fire only if CS and UCS-arousal signal simultaneously converge upon
it. The UCS input bifurcates to deliver a UCS pattern at %) and arousal to sampling cells
like v{®,
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Fig. 4. UCS-activated arousal is nonspecifically delivered to all the sarnpling cells % ® because
it cannot be known a priori which CS-UCS association will be imposed by the environment.
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In summary, simultaneous convergence of the CS input and the UCS non-
specific arousal at a sampling cell are needed to ﬁre this cell. Thi chani
synchronizes the onset of CS-activated sampling signals fr ‘a1
of UCS patterns at %) on successive learning trials. Synchronization is a neces-
sary condition in order for practice on successive trials to avoid massive associative
confusions among spatially encoded patterns that stream into the network through
time.

6. Some experimental connections

Before continuing with the thought experiment and the consequent derivation
of increasingly precise neural structure, let us realize that some basic psycho-
physiological facts are already coming into view.

(i) Nonspecific arousal

The thought experiment teaches us that sampling cells cannot fire unless they
are nonspecifically aroused, even if they receive specific CS inputs. At least since
the work of Moruzzi and Magoun (1949), it has been known that inactivity of
nonspecific subcortical projection systems to the cerebral cortex can prevent the
cortex from supporting conscious behavior. The field #® of sampling cells
become a rudimentary analog of the cortex in our thought experiment.

(ii) Events have cue and arousal functions

To organize the flood of data that followed Moruzzi and Magoun’s study,
Hebb (1955) suggested that every sensory event has two quite different effects: its
cue function and its arousal or vigilance function. The cue function represents the
information in the event that selectively guides behavior. The arousal function
energizes the behavior. Hebb suggested that learning without arousal is not
possible. Hull (1943) had earlier dichotomized information and energetic variables
by distinguishing habit strength (sHg) from drive (D). Hull suggested that drives
energize habits via the multiplicative law sEg = ¢Hg X D for reaction potential
sEr- Actually, the distinction between information, or reason, and energy, or
passion, is a very old one that was already embraced by the rationalists (Bolles,
1967) in their efforts to construct a comprehensive philosophical framework by
which to understand human behavior. The distinction has even been a force
guiding social policy as in Vienna during the time of Wittgenstein (Janik and
Toulmin, 1973), where men were supposed to embody the principle of reason, and
women the principle of passion that was considered to te destructive of reason.
This belief was used to justify various unpleasant social policies. By contrast with
the Viennese notion, the thought experiment requires both principles to compute
the simplest memories, reasonable or not.

In Figure 4, the UCS has both a cue and an arousal function due to its bi-
furcating pathway, but the CS has only a cue function. Does this distinction say
something basic about the difference between CS and UCS? The next section will
suggest an answer,
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(ili) Polyvalent cells

The thought experiment implies that the sampling cells can be polyvalent cells,
or cells that are influenced by more than one modality. For example, if the CS is
a tone and the UCS is a visual cue of food. then both auditory and visual cues will
be needed to fire the corresponding sampling cells. In other words, the sampling
cells only fire in response to the sum of CS and UCS inputs, and their firing
patterns influence the occurrence or nonoccurrence of network learning. John
(1966, 1967) has discovered neocortical cells that satisfy all of these properties.

(iv) D.C. porential shifts

Such workers as Rusinov (1953) and Morrell (1961) have shown that electrodes
that induce anodal d.c. potential shifts of cortical tissue can augment conditioning
within the cortex, whereas cathodal d.c. shifts tend to inhibit conditioning. These
results suggest that the anodal d.c. shifts have effects on cortical activity that are
analogous to nonspecific arousal.

7. Conditioned arousal

To continue the thought experiment, we now consider postulate (D). This
postulate is that classical conditioning is possible, or that the S alone can elicit
a CR after conditioning occurs. In particular, after conditioning occurs, a CS
input to #* can elicit a sampling signal that reads out the learned pattern across
FM, Postulate (D) forces us to consider the following paradox. If a cell in #
can only be fired when a specific CS signal and a nonspecific UCS signal converge
on the cell, then how does the CS alone fire the cell after learning occurs?

(2)
7

CS

ucs

Fig. 5. On learning trials, the CS samples both the UCS pattern at %" and the nonspecific
arousal source 7.
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In order for a cell v$2' to fire, it must receive simultaneous specific and nonspecific
signals. However, only the CS is present on recall trials to activate both of these
signals, since during recall trials, no UCS is presented to activate the nonspecific
pathway. Thus the CS itself must activate both pathways. Before learning occurs,
the CS does not have this capability. Somehow, as a result of pairing the CS and
the UCS on learning trials, the CS gains control over the nonspecific pathway
that is activated by the UCS. In other words, the nonspecific arousal pathway can
be conditioned, and the CS can sample this conditionable pathway (Figure 5).

In summary, two conditioning processes occur in parallel during classical
conditioning: (1) the CS, via F, samples the cells in F!) that control the CR;
and (2) the CS also samples the cells that control nonspecific arousal. Once the
CS accomplishes both tasks, it can, by itself, fire cells in #?' that read out the
learned CR pattern from F‘!.

An important implication of this argument is that there must exist cells, other
than sampling cells #*’ and sampled cells #(!', that rarticipate in classical con-
ditioning. These are the arousal cells, denoted by & in Figure 5, at which the CS
and UCS signals gain control of nonspecific arousal signals to the sampling cells.

8. Secondary reinforcers

The network in Figure S begins to explain how secondary reinforcers operate.
The UCS in a given learning experiment might have been only the CS in a previous
learning experiment. How is this possible? For example, consider an animal & at
two successive stages, E, and E,, of its development. At stage £, & salivates in
response to the smell of food but not to visual presentation of food. After classical
conditioning with CS = visual presentation of food and UCS = smell of food,
the animal salivates when it sees the food. This ability characterizes stage E,.

Now a second conditioning experiment is performed ia which CS = ringing bell
and UCS = visual presentation of food. Ultimately, & salivates when it hears the
ringing bell. How does the visual presentation of food in Lhe first experiment enable
this event to become a UCS in the second experiment?

The network in Figure 5 suggests an answer. The UCS of the first experiment is
a UCS because it controls both the nonspecific arousal pathway and a specific
pathway. The CS of this experiment becomes a UCS by gaining control over the
nonspecific arousal pathway as well as its specific pathway. We can now begin
to see that activation of the nonspecific arousal pathway is closely related to the
motivational properties of the UCS, and that any cue that can activate such a
pathway acquires motivational properties. The synchronization property of
classical conditioning has hereby begun to force us into basic mechanisms of
instrumental conditioning. '

9. Minimal network realization of conditioned nonspecific arousal

We now have enough information available to construct the minimal network
capable of conditioning nonspecific arousal and using it to elicit overt behavior.
We know that the CS, via cells in #®), can learn to activate nonspecific arousal
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from . The arousal, in turn, is needed to elicit sampling signals to #!). We now
show that the CS-activated cells that sample % and that receive feedback from &
cannot be the same cells.

Figure 6 depicts the four general ways in which the CS can act. Figure 6a is
impossible for the following reason. The CS-activated cells # cannot fire on
recall trials unless they are aroused by &. Cells in & cannot fire, however, unless
they are activated by #'?! Hence the cells that sample s¢ cannot be the same as
the cells that are aroused by &.

Figure 6b tries to remedy this difficulty by expanding the cells ¥{*) of #*’ into
two successive stages v{¥) and {2’ of processing, in which the first stage v{? excites
the second stage v{3’, and in which one stage samples «/ and the other stage is
aroused by &. In Figure 6b, however, the connections to &7 are in the wrong order.

(2) @)
Vi Vi1

et s

Cs; cs;

(2)

Viz

a
a }(1) ](1)

(a] (b]

vi2 w2 V2

(2)
i1

Cs;

e 3(1) (74 ](1)

(3] (d]

Fig. 6. Networks (2) and () do not work because their polyvalent cells can never fire. Network (c)
can fire but it is incapable of storing the CS in STM. Network (d) is tte minimal network capable
of realizing postulates (A)-(D) and storing the CS in STM.
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Stage v{3) can only fire if it is aroused by &, but &/ can only fire on recall trials
if it is sampled by v{2’, which in turn can only fire if it is activated by v{?’. This is
again an impossible arrangement. Consequently, two processing stages only help
if they are connected in the correct fashion.

Both the networks in Figure 6¢ and 6d are possible, but Figure 64 enjoys an
important advantage. In Figure 6¢, the CS activates both stages v{’ and v{3.
Stage v{?) samples the arousal cells &, and stage v{2’ can fire if it receives the CS
input plus feedback from &. Thereupon v{2’ samples the pattern at £, The major
disadvantage of this network is that sampling of #!) becomes impossible as soon
as the CS shuts off. In Figure 6d, the CS activates stage v{3, which thereupon
sends a signal to stage {3’ and samples . Stage {3’ can fire when it receives
the signal from v{}’ plus a feedback signal from &. Thereupon v{¥’ samples the
pattern across & (". This "network can be modified so that learning is still
possible after the CS terminates.

To show what I have in mind, let me anticipate the argument a little by making
the following observation. In instrumental conditioning experiments, the learning
subject scans stimuli and emits behaviors before a reward or punishment occurs.
What keeps the internal representations of the stimuli and behavior active after
they terminate so that the later reinforcements can influence their interrelation-
ships ? In other words, at what stage of network processing does storage in short
term memory (STM) occur?

There is a simple answer in Fxgure 6d: let the stage v{?) reverberate in response
to a CS signal (Figure 7). Then v{? can send persistent signals to stage v{2), Both

2) (@)
Vi1 Vi2

e

a

Fig. 7. CS, can reverberate in STM at v{} as it emits sampling signals t> & without being able
to fire the polyvalent sampling celis v{Z’,
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stages ‘code’ their CS in the sense that they are selectively activated by it. However,
stage {2’ can only sample #® if it also receives arousal from . Stage v{¥
persistently samples &/, but cannot learn to activate & until a UCS occurs. Thus
STM reverberation can occur at (3! without erroneously eliciting sampling signals
from w2,

This is not possibie in the network of Figure 7¢. If a reverberatory loop is added
to ¥{3), then nothing is accomplished, since {3’ cannot activate v{3’ directly, and
can only activate v’ indirectly after learning has already occurred, which prevents
habit learning by vS§) after its CS terminates. If a reverberatory loop is added to

2, and if v{2) can fire this loop after the CS terminates and before learning occurs,
then {3 can fire without arousal from ., which is impossible. Hence Figure 64
is the only minimal anatomy that can solve the synchronization problem and can
also accommodate CS-activated STM. Consequently, this anatomy will be used
in the following discussion.

10. Secondary conditioning: a principle of equivalence for the anatomy of
CS and UCS

Given that a CS can acquire UCS properties due to practice, we can conclude
that important features of the anatomical representations of CS and UCS are
often the same. To see this, let & be exposed to a sequence E,, E,, . . . of classical
conditioning experiments. Denote the CS of E; by CS; and the UCS of E; by UCS,.
Let the CS of E, be the UCS of E;, ,; that is

) UCs;,, =CS§,, iz 1

In other words every CS can become a future UCS and every UCS can have been
a past CS except possibly UCS,, on whose arousal properties the entire sequence
of higher-order conditioning is built up.

The time scale of each conditioning experiment is short, on the order of minutes.
I assume that new intercellular pathways cannot be wholly created or destroyed
during the short time needed to go from any stage E, to the next stage E;,,. It
follows that there exists a common anatomical representation for CS and UCS
processing except possibly for UCS,. By Section 9 every CS, has a representation
with at least two successive stages (v{¥), v{¥) of processing. Thus every UCS,,
[ > 1, has the same representation. In other words, all CS and UCS inputs, except
possibly UCS,, are delivered to #?. Figure 8 illustrates the eq nivalence of these
representations.

I call the property of common representation for CS and UCS pathways CS-
UCS path equivalence. Path equivalence is the anatomical substrate that makes
secondary conditioning possible.

Let us now summarize how the network in Figure 8 works during a classical
conditioning experiment. Let the CS activate v{% and the UCS activate v$?. When
the CS occurs, v{? fires and sends signals to vm and to the arousal population &.
Nothing else happens until the UCS arrives at v{?. This is because v{% can only
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Fig. 8. Since each CS can rapidly acquire UCS properties, both CS’s and UCS3’s possess a common
anatomical substrate, except perhaps the primal, or pre-wired, UCS's.

fire if it receives an input from v{2 and from &, but the signal from v{? to o is
initially too small to fire &f. When the UCS perturbs v$%, v$% sends a signal to
v§? and to &. The v§? signals are large enough to fire o, because the cue firing

¥ is a UCS. When & fires, it releases nonspecific signals to all cells v{%, v{%,

v§?, ... in FP®. Now three things happen. First, since v{¥ and . are both active,
the LTM traces in the synaptic knobs of v{} axons get stronger. When these traces
get strong enough, the CS alone will be able to fire v{%. Second, the arousal signal
from & combines with the UCS derived signal from v{¥ at v{%, thereby firing
signals from v$3 to #1). These signals elicit the UCS pattern in' the populations
of #W), Third, because the arousal signal from & is nonspecific, it also combines
with the CS-derived signal from v{? at v{2, thereby firing signals from v{3 to #FV,
These signals sample the UCS-elicited pattern at %Y. Consequently, the CS
begins to acquire UCS properties, both by learning to control the arousal pathway
&, and by learning to elicit (a component of ) the UCS-induced pattern at #1.

Path equivalence also provides an elegant answer to the question: how does
the UCS arouse the CS with just the right time lag to sample UCS onset at #1?
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The same arousal which allows v{3' to read out the UCS pattern across #' also
allows v{% to emit sampling signals to read in this UCS pattern.

11. Are drives energizers or sources of information?

Path equivalence has an important intuitive meaning. Consider the stages E,
and E, of Section 8 for definiteness. What intuitive fac: has changed when the
equation

3) CS, = visual presentation of food
is replaced by
4) UCS, = visual presentation of foocl?

Visual presentation of food has taken on the significance of food by being con-
ditioned to the arousal cells &. The cue has acquired an internal meaning for &.
Arousal prepares & to be able to learn that the cue CS, signals forthcoming satis-
faction of the internal demand for food. In particular, arousal is not merely an
energizer, as Hull (1943) or Hebb (1955) suggested. It can kave a cue function also,
albeit a cue function concerning the internal state of & rather than the external
state of the world.

‘Equations (3) and (4) describe cues that are related to hunger. Similar equations
can also be written for cues that are related to thirst, sexual arousal, or fear,
among other internal organismic states. Moreover, the same cue could have served
as the CS for UCS’s that are relevant to any of these states, just as a bell associated
with shock can elicit autonomic signs of fear, whereas the same bell associated
instead with food can elicit salivation. This observation is summarized in the
postulate:

E. A given cue can be associated with any of several organismic states.

12. External facts versus internal demands

Postulate (E) implies that the arousal cells o are brokern into several function-
ally distinct, but not necessarily independent, populations. These populations will
be denoted individually by 2,, 2,, ..., 2,. and collectively by &, because they
play the role of drive representations in the network. To represent hunger and
thirst by different drive representations does not imply that the two representations
are built up from disjoint cells. If the two representations do share cells, then every
input to one representation will also deliver an input to the other representation
whose relative intensity depends on the overlap of cells between the two repre-
sentations. -

-Given the existence of several drive representations 2,,92,,..., 9,, the
previous discussion implies that each population v{?' in #'2 can sample several
drive representations &;, and that each 2; sends signals to several populations

v, In just the same sense that signals from 2 to #‘? are nonspecific, also signals
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Fig. 9. Each CS can sample the several drive representations D, D, ..., Dn Each drive
representation can, in turn, deliver nonspecific arousing signals to the CS's.

from FP to 2 are nonspecific (Figure 9). Nonetheless, there are quantitatively
more cells in # to which @ projects than conversely. Since each v{}’ can now
send signals to several 9;'s, it is the source of an outstar. Consequently, each
sensory representation can learn a spatial pattern of activity across the several
drive representations as it is paired through time with UCS inputs. At each time,
this spatial pattern summarizes the entire past history of drive state activations
that occurred while its source cell was active.

An important issue concerns the reciprocity of connections between sensory and
drive representations. If v{3’ projects to 9;, does 9; always project to v{3’? If not,
then {3’ can be conditioned to drive 9; without 2; being able to release sampling
signals from v3'. Henceforth we always assume reciprocity for definiteness,
although obvious modifications of our argument extend to the nonreciprocal case.
We do not, however, assume equipotentiality of connections; namely, it is not
necessary to our argument that each sensory representation projects to all drive
representations, or that it projects with the same path strength to any pair of drive
representations. Such asymmetries can influence if and - how long learning can take,
or even whether or not a particular learned behavior will be masked by a competing
and more salient behavior. However they do not influence the primary network
structure that our postulates imply. They are rather species-specific variations on
this primary structure (Bitterman and Mackintosh, 1969; Scligman and Hager,
1972).
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13. Internal facts versus external demands: existence of homeostatic, or drive,
inputs

Thus far if a sensory representation in & becomes associated with a drive
representation and a pattern across # 1), it will release the #(!) pattern whenever
the sensory representation is activated. For example, a visual cue of food could
always elicit eating behavior no matter how satiated the organism was. This
property could, of course, have disastrous consequences. Speaking intuitively,
the problem is clear: Some index of organismic need must exist to prevent un-
appropriate consummation. More generally, indices of “he organism’s internal
states must be introduced to modulate its reactions to available external cues.

At this point in the theory, it could have happened that no plausible modification
of the previously derived network dynamics could overcome this difficulty. Quite
to the contrary, however, there exists a discernible symmetry in the networks, but
a missing mechanism mars this symmetry, and its introduction will overcome our
difficulty.

The symmetry is based on the fact that the representations of external cues
project nonspecifically to the representations of internal drive states, and con-
versely. In a clear sense, the drive states are also representations of cues, albeit
cues that are internal to the organism, rather than cues in the external world. The
symmetry is marred by the fact that external cues representations can fire only if
a specific external cue signal summates with a nonspecific internal drive signal. By
contrast, the internal drive representations can fire whenever they receive a non-
specific external cue signal (Figure 10). To remove this asymmetry, a specific
internal drive signal should also be necessary to fire the internal drive representa-
tion. If an external cue representation could fire without an external cue being

v(z) v(:z)

/.___»‘ i2

N
7)) D,

Fig. 10. A sensory representation v{3’ can fire only if it receives a-specific external cue input plus

a nonspecific internal drive input. By contrast, a drive representation &, can fire whenever it
receives a nonspecific external cue input. This asymmetry has unpleasant. behavioral implications.
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present, we would say that a type of hallucinatory event had occurred. Letting drive
representations fire in the absence of specific internal drive signals is like permitting
drive hallucinations to occur. Introducing specific drive inputs eliminates this net-
work asymmetry and begins to overcome the satiety problem.

The above discussion can be organized around the following postulate.
F. Obscrvable behavior is influenced by an organism’s drives.

If this postulate were imposed in a theoretical vacuum, it would be just a vaguely
stated triviality. Given the mechanisms that we have already derived, its minimal
realization is to suppose, first, that there exist specific internal drive inputs to the
drive representations whose sizes provide a measure of internal organismic needs;
and second, that the drive representations can fire only if a sufficiently large
specific internal drive signal occurs simultaneously with a sufficiently large non-
specific external cue signal (Figure 11). The drive representations are therefore
also constructed from polyvalent celis.

ORIVE
INFUT

Fig. 11. The drive representations are also constructed from polyvalent cells whose firing requires
convergence of a specific internal drive input plus a nonspecific external cue input.

The network’s symmetry suggests the following question. Are both types of
polyvalent cclls anatomically homologous in vivo? | suggest that both cell types
be identified with pyramidal cells. In particular, the #'% polyvalent cells are sug-
gested to play the role of cortical pyramidal cells. whereas the & polyvalent cells
are associated with hippocampal pyramidal cells (Shepherd, 1974). The feedback
loop between #*' and 2 then becomes a rudimentary analog of the feedback
exchange that takes place between cortex and hippocampus to regulate motivated
behavior (Gabriel er al., 1980; Grossberg, 1975).
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14. Conditioned reinforcers, drives, incentive motivation, and habits

At this point, I can begin to psychologically interpret network mechanisms, use
the interpretation to sharpen and modify classical psychological theories, and
explain various data as manifestations of the adaptive designs that organisms have
evolved to solve the synchronization problem.

Consider Figure 12. This figure labels network mechanisms in suggestive psych-
logical jargon. Reinforcement acts by changing the spatial pattern that is coded in

/ ———

cs STM
INCENTIVE
MOTIVATION
REINFORCEMENT - A
(LTM)
HABIT
(LTM)
DRIVE

Fig. 12. The processing stages forced by the synchronization problern admit psychological labelg
which enable us to sharpen and modify classical psychological theories.

LTM when an active external cue representation samples the pattern of activity
playing across the internal drive representations. As an external cue representation
builds up large LTM traces in some of its pathways to the drive representations,
its cue acquires conditioned reinforcer properties. In particilar, its cue can be used
as a UCS in a classical conditioning experiment. An organism’s drive state is
represented by the spatial pattern of drive inputs across its drive representations
at a given time. Conditioned reinforcer and drive inputs merge at the drive repre-
sentations, so that the LTM patterns that are learned by the conditioned reinforcer
pathways are mixtures of reinforcement and drive information, rather than solely
of reinforcement information. =

When conditioned reinforcer and drive inputs combine with sufficient vigor at a
drive representation, nonspecific arousal can be released. Each drive representation
is a distinct source of arousal. Its arousal level is called the incentive motivation
associated with the drive. Thus drive, reinforcer, and incertive signals are concep-
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tually distinct. This distinction sharpens the familiar observation that motivation can
be absent even though drive is high if an appropriate cue is missing. Also motiva-
tion can be absent even though an appropriate cue is present if the drive is low.

Finally, the incentive motivation joins with an external cue input to learn or
read out an LTM pattern that represents habit strength. Read-out of such an LTM
pattern can activate a command that controls a behavioral act. LTM changes thus
occur at two loci in the network : they record the net pattern of reinforcer and drive
data at the internal drive representations, and they record the pattern of behavioral
commands at the habit representations.

15. Comparison with Hullian concepts

In Hull's theory, a drive energizes any and all behavior. As Bolles (1967, p. 183)
clearly summarizes, according to Hull, ‘only that behavior occurs which has the
strongest associative connections, and drive merely determines the strength of
the dominant response’. In the present theory, drive also has an energizing effect,
since without it, nonspecific incentive signals cannot be released. However, drive
also plays an informative and an associative role: informative because a drive
input energizes only certain incentive pathways at the expense of others; associ-
ative because drive data can change the LTM patterns that are encoded by con-
ditioned reinforcers.

Hull also suggests, at least formally, that drives and incentives play a symmetric
role in their influence on habits. The Hullian law

(5) SER=SHRXDXVXK

says that drive level D, stimulus intensity ¥, and incentive motivation KX all
multiply habit strength Hg to determine reaction potential ¢Ey. In some ways,
our networks support the Hullian formulation, since external cues, drives, and
incentives all collaborate to read out the LTM patterns that 2ncode network habits.
However, in the network, external cues (akin to V') are gated by reinforced LTM
patterns before they supply conditioned reinforcer inputs to the drive representa-
tions. Conditioned reinforcers and drive inputs (akin to D) determine incentive
motivation (akin to K). Then incentive motivation and external cue inputs (akin
to V') are gated by habits (akin to gHg). Let us adopt a Hullian type of notation
sCr for conditioned reinforcer LTM patterns that gate external cue signals on
their way to drive 1epresentations. Then a Hullian analog of the network equations
can be written as

and _
@) ' C sEg=sHy x V x K.

The most important features of (6) and (7) are that stimulus intensity ¥ influences
both K and gEy, that K is not independent of V and D, and that (Cy does not
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equal ¢Hg. However, even this refinement of the Hullian formalism omits most of
the network’s spatiotemporal structure. It is meant to celebrate Hull’s intuition
and to mark a path that leads beyond his formalism.

In the next few sections, | will use network mechanisms to analyze classical
data, concepts, and theories. These classical contributions need to be mechanistic-
ally classified before later contributions that build on their shoulders can be
differentiated into variations on old themes versus really new insights.

16. Data on conditioned reinforcers and drives

In the network, external stimuli become conditioned reinforcers when their
pathways to drive representations are classically conditioned. Kelleher (1966,
pp. 179-81) reviews cxperimental evidence that ‘stimuli become conditioned
reinforcers through respondent conditioning’.

In the network, a larger drive input can facilitate both performance and learning,
albeit on different time scales. Performance is rapidly facilitated because a larger
drive input can more vigorously activate its drive representation, which elicits
incentive motivational signals, which energizes the performance of motivationally
compatible habits. Learning is more slowly affected along both direct and indirect
pathways. A large drive input can more vigorously activate its drive representation,
which can then be directly sampled by the conditioned reinforcer LTM traces of
active external cue representations. An indirect effect on learning occurs when the
large incentive motivational signals elicited by the drive representation change the
habits that can be sampled by active external cue representations. In various
animals, weight loss is a good indicator of their motivation to learn a task leading
to food reward (Stolurow, 1951 ; Bolles, 1967, Chapter 7). These data suggest that
decrements in weight may cause proportional increments in the size of the drive
input to the hunger drive representation. Such a drive input increment can energize
both learning and performance in the manner suggested above.

Due to the interaction between performance and learning processes, the ener-
gizing effects of a drive input are not sufficient to explain network dynamics.
Associative factors modulate a drive’s efficacy, since the cues of an unfamiliar
situation must become conditioned reinforcers and conditioned habit strength
sources before they can efficiently control a learned behavior. In fact, when a
hungry animal is introduced into an unfamiliar situation, its initial feeding behavior
is often less vigorous than its feeding behavior later on, after it has already eaten
enough to partially reduce its hunger. Such data, controlled for various alternative
interpretations, have led to the conclusion that an animal’s familiarity with the
eating situation is a significant associative factor that influences the vigor of its
feeding behavior (Bolles, 1967, Chapter 8; Moll, 1964).

17. Data on reinforcement

In the network, reinforcing effects occur when a large conditioned reinforcer
input interacts with a large drive input to fire a drive representation, which is then
sampled by an active cue representation. Bindra (1968) provides experimental
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evidence that confirms this view of reinforcement. Bindra argues that there must
exist a common neural locus where sensory inputs arising from incentive objects
interact with the neural changes due to drive manipulation. These neural loci are
the drive representations in the network. Scott and Pfaf'man (1967) come to a
similar conclusion from their studies of the hypothalamus, and Valenstein (1969)
reviews more data of this type. Valenstein er al. (1970) report data in which ‘hypo-
thalamic stimulation . . . seems to create conditions which excite the neural substrate
underlying well-established response patterns. . . . Discherging this sensitized or
excited substrate is reinforcing and it can provide the motivation to engage in
instrumental behavior . . . rats which display stimulus-bound eating prefer the
combination of food and brain stimulation to brain stimulation. . . . The brain
stimulation does not fully activate all the neural circuits underlying reinforce-
ment . . . These data are explicable if we assume that network drive representations
include, or are activated by, these hypothalamic sites, anc that brain stimulation
acts like a drive input, albeit an artificial one. Then the network interpretation of
the Valenstein er al. data is that conditioned reinforcer inputs must be bolstered
by drive inputs in order to activate the drive representations, which thereupon
simultaneously release incentive signals and cause learned changes in the con-
ditioned reinforcer LTM patterns.

18. Data on self-stimulation

Does electrode current in the hypothalamus act like a drive input as the
Valenstein et al. data suggest? Olds (1955, 1958. 1977) reviews data on seif-
stimulation behavior that support this view. Olds showed that a rat will learn to
push a lever at high rates if it activates an electrode placed at suitable sites in its
lateral hypothalamus. Often the rat will turn away from food or a mate to press
the lever with great vigor until it becomes exhausted. Sites which elicit such con-
summatory self-stimulation behavior have been generically called the pleasure
center. More dctailed studies of self-stimulation suggest that the electrode input
acts like a specific drive input. An clectrode placed in an area associated with
hunger loses its reinforcing effect when the animal is satiated. and the rate of lever
pressing for self-stimulation increases when the animal is hungry. These data
suggest that the usual hunger drive input summates with the artificial electrode
input. In a similar fashion, an electrode placed at certain other hypothalamic sites
will elicit faster lever pressing after androgen is injected. Androgen normally has
the effect of motivating sexual behavior. At such loci. self-stimulation disappears
almost completely after castration. which presumably climinates the usual drive
input to these loci. Similarly, higher current levels are needed to achieve self-
stimulation as the androgen level subsides. indicating once again the energizing
effect of drive inputs. This latter effect can be reversed by irjections of testosteronc
propionate in oil. h

By contrast, if androgen is injected when the electrode is located at hunger-
related sites, then the lever-pressing rate decreases. If the animal is deprived of
food when the electrode is at sex-related sites. then the lever-pressing rate again
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decreases. Thus the various drive loci reciprocally inhibit, or compete with each
other, whereas electrode input at a given drive locus works synergistically with the
drive input at this locus. Section 28 discusses how drive competition is realized
by network mechanisms.

In the network. self-stimulation can be explained as follows. At the moment
when the exploring animal accidentally presses the lever, sensory cues of events
immediately preceding this act are active in sensory STM, and the motor com-
mands for pressing the lever are active in motor STM. The lever press releases a
large artificial drive input to its drive representation, large enough in fact to fire
the drive representation. The conditioned reinforcer pathways of the active cues
which abut the drive representation are hereby conditioned. Also incentive moti-
vation is released that enables the active cues to learn the motor commands
controlling lever-pressing behavior. As trials proceed, the sensory cues of the lever
gradually gain control over lever-pressing behavior, because their conditioned
reinforcer and conditioned habit pathways are progressively strengthened on each
trial by the electrode current that reliably foliows the lever press.

This description helps us to understand why self-stimulation behavior is labile.
In particular, self-stimulation shows poor resistance to extinction, poor carry-over
of performance between learning sessions, and is a poor source of secondary
reinforcement (Bolles, 1967, Chapter 9: Mogenson er al., 1965; Stein, 1958). A
basic difficulty is that, without electrode current available to continually reinforce
the drive and habit pathways, the shifting pattern of drive and conditioned re-
inforcer inputs can act to remove adequate input for firing the drive representation
or to competitively inhibit the drive representation that had received electrode
input. Other sources of lability are disconfirmation of expectancies after continu-
ously rewarded trials and the lack of experimental contingencies between the
animal’s expectancies and the onset of current (Grossberg, 1982a.5).

19. Reinforcement without drive reduction

Self-stimulation data were a major embarassment for Hull's central thesis that
an event is reinforcing if it reduces a drive. Hull's idea seems to be supported by
commonsensical experiences such as: you will learn a task to eat, and thereby
reduce your hunger drive: or you will learn a task to escape shock, and thereby
reduce your pain and fear. However. what drive is reduced when an animal pushes
a lever to pump as much electric current as it can into its lateral hypothalamus? In
a clear intuitive sense, the animal is working to increase, not to decrease, electric
current. Moreover. why does an animal self-stimulate more if its hunger drive is
increased and the electrode is placed in a hunger-related locus?

One might argue that the self-stimulation paradigm is so abnormal that the
animal’s behavior is not really reinforced. but only seems to be reinforced. How-
ever. once the floodgates werc opened. many other behaviors could be cited that
seem to violate the drive reduction principle. As an early example, Sheffield (1951)
found that sexually naive male rats will learn an instrumental response if they are
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rewarded by being allowed to copulate with receptive females, but not allowed to
ejaculate. What drive is reduced in this situation?

We are now faced with an important dilemma. If drive reduction is not really
the mechanism of reinforcement, then why does common sense so strongly suggest
that it is? A deeper version of the dilemma is this. Is it correct to claim that shock
reduction and hunger reduction are both examples of a common drive reduction
mechanism? There is a clear sense in which shock is an aversive cue, so that
reducing it might well be positively rewarding. In other words, reducing a negative
cue can have a positively rewarding effect. But is hunger always aversive ? Is sexual
desire always aversive? What is aversive about anticipating a marvelous dinner
and eating it with gusto? It would be aversive, to be sure, if the dinner were
cancelled at the last minute. Is this aversive reaction due directly to hunger, or
is it due to the frustration that is triggered when we learn that the expected feast
has been called off? .

If we agree that hunger or sexual desire can be positive drives, not negative
drives like fear, then why should reducing them be reinforcing ? The commonsense
basis for believing in drive reduction hereby collapses. But then why do hunger
and sexual desire sometimes seem aversive? Here we must distinguish between
very high levels of these drives and normal levels. At normal levels, one can easily
confuse the frustration caused by delayed gratification of the drive with the drive
itself.

In the network, a positive drive input must be high before reinforcement can
occur, because otherwise its drive representation cannot fire and cause LTM
changes in abutting conditioned reinforcer pathways. The drive reduction that
follows consummatory behavior is not, however, reinforcing. Instead, it prevents
consummation after satiety occurs. This type of drive reduction occurs slowly in
time. The sudden reduction of a reinforcing cue or the sudden nonoccurrence of
an expected reinforcer can also have reinforcing effects, but these rapid events
do not reduce a drive input, although they do modify the activity of the drive
representations (Grossberg, 1982a.,b).

20. Go mechanism, amplifiers, now print

Several authors have proposed alternatives to the drive reduction hypothesis to
explain data about reinforcement. Each author developed his own vocabulary to
describe his concepts, but all of them seem to have been building towards similar
mechanisms. I will provide a comparative analysis to clarify some advantages of
a network theory.

Miller (1963) introduced ‘go’ mechanisms that ‘act to intensify ongoing responses
to cues’, that ‘are subject to conditioning with contiguity being sufficient’, such
that ‘the strength of the CR is determined to a great degree by the strength of the
UCS’, and ‘when a chain of cues leads to a UCS for the ‘“‘go- mechanism”, it is
most strongly conditioned to those nearer to the UCS’.

Miller’s mechanism is analogous to an incentive motivational signal. Incentive
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motivation acts to ‘intensify ongoing responses to cues’ by controlling the size of
signals in the habit strength pathways, and can be ‘conditioned with contiguity
being sufficient’ in the conditioned reinforcer pathways. Moreover, CS strength is
‘determined to a great degree by the strength of the UCS’ due to two factors acting
together. The UCS input at the drive representations directly enhances perfor-
mance in response to the CS by eliciting incentive motivational signals that
amplify the CS-activated signals in the habit strength pathways. The UCS input
also indirectly strengthens the CS by enhancing conditioning of the CS-activated
conditioned reinforcer pathways, and thereby enabling the CS to activate stronger
incentive motivational signals on later trials. These two effects can be experi-
mentally distinguished because the direct effect acts quickly whereas the indirect
effect builds up slowly. :

Miller’s pioneering concepts provide a useful intuitive description, but one that
is weakened by lumping together several mechanisms that are invisible without a
real-time theory. :

Estes (1969) develops analogous concepts within his framework of stimulus
sampling theory. He suggests that the occurrence of a response requires summation
of input from external stimulus and internal drive sources. Drives and rewards
serve as response amplifiers. On learning a trial, the organism & draws a sample
of available discriminative cues and scans these cues until an element is processed
which is connected with a permissible response. This response will be evoked only
if an amplifier element appropriate to the response is simultaneously scanned.
Stimuli can be conditioned to amplifier elements by contiguity, and the base rate
of amplifier elements associated with a given drive increases as &’s need increases.

The amplifier elements of Estes’ theory play the role of incentive motivational
signals in the network. Many of the intuitive distinctions described by Estes’
theory are also found in the network theory. The two theories nonetheless differ
in important ways that have limited further development of the Estes theory, but
not of the network theory. The concepts of the Estes theory are expressed in the
probabilistic language of stimulus sampling theory. External cues and amplifier
elements are said to be scanned, presumably by some probabilisitic serial mech-
anism, and conditioning of cues to amplifier elements changes the probability of a
successful joint scan of cues and amplifiers. By contrast, in the network theory,
the probabilities of scanning amplifier elements are replaced by activity patterns
that exist across all the drive representations at each time. Thus a serial scan is
replaced by a parallel pattern. The activities of drive representations are not
probabilities, nor are they scanned. It is hard to overemphasize the importance of
this distinction. A larger drive activity will, other things equal, cause a higher
probability of that drive influencing observable behavior. However, on each trial
the drive activity influences the computations that determine observable behavior.
It is not possible to fail to scan an active drive representation on a given trial.

Estes’ theory omits other distinctions that are important in the network theory.
For example, Estes suggests that internal drives set the base rate of amplifier
elements, and that external cues modulate this rate. The network analog of ampli-
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fier elements is incentive motivational signals, or alternatively the activities at
drive representations that induce these signals. However, internal drive inputs are
conceptually distinct from incentive motivational signals in the network. It is just
as inadmissible to let drive inputs fire incentive motivational signals—i.e., set the
base rate of amplifier elements in the absence of conditioned reinforcer signals—
as it is to let external cue signals sample habit strengths in the absence of incentive
motivational signals..

In the network theory, patterned LTM traces vary slowly through time and gate
rapidly fluctuating signals from the external cue representations to the drive
representations. In the sampling model, these two distinct processes are lumped
into the probability that a scanned cue will be associated with an amplifier element.
A conditioned reinforcer LTM trace can, however, be very large even if, due to
the momentary STM inactivity of the cue representation, there is a zero probability
of ‘scanning an amplifier element’ at that time. Thus, the network’s way of repre-
senting the effects of prior reinforcement do not neatly correspond to the
probabilistic concepts of the sampling theory.

More generally, the framework of stimulus sampling theory cannot easily
represent the internal geometry of specific and nonspecific pathways, or the several
time scales on which STM and LTM traces fluctuate. These deficiencies become
especially evident when the network theory incorporates antagonistic rebound
mechanisms (Grossberg, 1972¢, 1981a, 19824,b) and expectancy mechanisms
(Grossberg, 1976b, 1980a, 1982a,b) to understand various conditioning and
attentional phenomena. In a stimulus sampling context, these concepts are hard
to motivate or to represent, but in a network framework they arise in a natural
fashion. Thus despite its great heuristic value as a tool for classifying a variety of
learning experiments, the stimulus sampling theory becomes increasingly un-
wieldy and inaccurate as it attempts to represent the intervening variables that
govern complex learning behavior.

Logan (1969) claims that rewards ‘excite’ rather than ‘strengthen’ habits by
providing ‘incentive motivation’ that favors their execution. Though the distinction
between ‘exciting’ and ‘strengthening’ a habit might seem obscure, with the net-
work theory as a guide, a possible mechanistic interpretation is suggested. The
reward elicits incentive motivational signals that allow the habit to be released.
This is the ‘exciting’ effect of a reward. I claim, however, that the reward can also
‘strengthen’ the habit in two distinct ways, albeit indirectly and on a slower time
scale. One strengthening effect of reward is due to the conditioned reinforcer
learning that it can trigger. Such learning can strengthen the incentive motivational
signal which a reinforcing cue can elicit to ‘energize’ the habit on later performance
trials. A second ‘strengthening’ effect of reward is more direct. It is due to the fact
that a larger incentive motivational signal can cause a larger sampling signal to be
emitted from a cue’s polyvalent cells to the habit representation.’ A larger sampling
signal implies a faster rate of habit learning, which can ‘strengthen’ the habit
measured after a fixed number of learning trials.
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Livingston (1967) also has a similar mechanism in mind in his discussion of a
‘Now Print’ mechanism that can control the learning rate.

It is remarkable that so many languages have been used to describe the same
mechanisms. The rigorous explication of these mechanisms will hopefully unify
the languages used to discuss them.

21. Data on incentive motivation

A male animal left alone will busily do the many things characteristic of his
species, such as grooming, eating, exploring. He does not look sexually motivated.
However, if a female animal is presented to him, his behavior can dramatically
change (Beach, 1956; Bolles, 1967, Chapter 7). This example distinguishes between
sex drive and observable motivated sexual behavior in the presence of appropriate
external stimuli. Drive without external cues need not elicit motivated behavior.
In the network theory, drive inputs cannot fire drive representations unless they
are supplemented by an auxiliary input source such as reinforced signals from cue
representations.

Furthermore, external stimuli without drive need not elicit motivated behavior.
Seward and Proctor (1960) and Seward er al. (1958, 1960) found that if an animal
is not hungry, then no amount of food will be adequate to reinforce its behavior.
In the network theory, without drive inputs, no amount of conditioned reinforcer
input can fire the drive representations. These experiments support the hypothesis
that the polyvalent cells of drive representations need simultaneously converging
reinforcing and drive inputs to vigorously fire.

An analogous type of experiment shows that cues can be trained to elicit appro-
priate behavior even if two or more drives are simultaneously active. Kendler
(1946) trained rats who were simuitaneously. hungry and thirsty in a T maze. Food
was on one side of the T maze and water was on the other side. The animals were
forced alternately to the two sides, and rapidly learned the discrimination. When
they were just hungry or just thirsty on a test trial, the rats went to the correct side
with high probability. As Bolles (1967, Chapter 9) notes, this plausible result is
embarrassing to a simple stimulus-response theory of conditioning, since on
training trials, turning left and turning right should be associated to both the
hunger and the thirst cues, but then how is the discrimination learned ? In the net-
work theory, the explanation is simple. The drive inputs of hunger and thirst
cannot by themselves fire their drive representations. When food is eaten, its
reinforced path to the hunger drive representation combines with the hunger drive
input to selectively fire the hunger drive representation. The external cues asso-
ciated with the food thereupon become conditioned reinforcers with respect to
the hunger drive representation. A similar argument holds when water is drunk.
Variations on the original Kendler experiment supported a role for incentive
motivation (Kendler and Levine, 1951; Kendler et al., 1952), but provided no
mechanistic description of how incentive motivation differs from drive and re-
inforcement. Some recent theories of conditioning have fallen into difficulties
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analogous to those implied by the Kendler (1946) data, because they do not
include the notions of a drive representation and incentive motivation (Hall and
Pearce, 1980). Similar ideas to those described herein have been used to overcome
these difficulties (Grossberg, 19825).

In Hullian theory and its variations, incentive motivation is often denoted by
rg. Tracking the existence and properties of rg has led to many beautiful experi-
ments and ingenious, if sometimes tortured, conceptualizations. Bolles’ (1967)
book provides a stimulating account of many classical efforts. Often the mysterious
rc was invoked because some other concept, such as drive or reinforcement, was
inadequate, as in the above experiments. One did not know what rg itself was, but
one could often say what the other concepts were not. For example, many experi-
mentalists claimed that incentive motivation is mediated by an anticipatory goal
reaction. As Bolles (1967, p. 332) wrote: ‘Drives push and incentives pull’. Drives
are unlearned, whereas incentives are learned. Drives described the organism’s
momentary state, whereas incentives summarize the organism’s history. Incentivey
are thus used to explain many of the performance variations that are not directls
due to momentary drives or to associative properties of habits. For example,
Crespi (1942, 1944) emphasized the motivational properties of incentives by run-
ning different groups of rats in a straight alley to large or small quantities of food.
Not surprisingly, large-amount animals performed better than small-amount
animals. Then Crespi switched half of each group after twenty trials from high to
low or from low to high. Performance changed rapidly to new levels commensurate
with the new reward contingencies. The performance shifts were too fast to be
explained by changes in drive level or changes in associative habits. In the network,
changing the level of reinforcement rapidly changes the size of inputs due to the
food itself, and thus the ambient level of polyvalent cell activation, even without a
change in drive input level, or a change in conditioned reinforcer properties of
external cues.

The classical rg concept faces several fundamental difficulties. One difficulty is
summarized by Bolles’ (1967) phrase: ‘The anticipatory goal response is the only
serious proposal that has been made for a mechanism to account for incentive
motivation’ (p. 336). The Mackintosh (1974) view that was summarized in Section 1
is a more recent version of this idea. The problem is that this viewpoint lumps
together several distinct processes under the rg label. Truly anticipatory behavior
often involves a behavioral plan whose unfolding is regulated by expectations that
are matched against environmental feedback (Grossberg, 19785, 1980a). By
contrast, incentive motivation per se can seem to guide anticipatory behavior
without either plans or expectancies being operative. For example, suppose that
external cues excite a generalization gradient of related cue representations, and
that all of the excited cue representations sample the drive and habit representa-
tions with a strength that depends on how excited they get due to the external cue.
To test whether the animal ‘anticipated’ a certain cue or outcome, one might use.
related cues versus unrelated cues on test trials. Or one might use related versus
unrelated response measures. A differential effect on performance might suggest
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the action of anticipatory goal responses, but really no cognitive type of expectancy
or anticipation need be involved. There exist basic reasons for the operation of
expectancies even in simple conditioning paradigms (Grossberg, 1981a, 1982a,b),
but for now let us note that incentive motivation and expectancy matching are
wholly distinct mechanisms that tend to get badly obscured in the rg literature.

Some of the multiple roles ascribed to rg are legitimate, as when Bolles (1967,
p. 354) asks if incentives ‘reinforce instrumental behavior, motivate it, or simply
provide stimulus contiol for it? In the network, the answer is: all of the above,
but using different pathways that can operate on different time scales.

22. Secondary reinforcement and Hull’s paradox

Hull's use of drive reduction together with rg created a serious paradox (Bolles,
1967, p. 355). Hull claimed that a stimulus associated with drive reduction acquires
secondary reinforcing power. It can act the same way as drive reduction does in
later learning experiments. Hull supposed that the mechanism for this is 4. Thus
the occurrence of rg should act like drive reduction. However, the motivating
effects of a secondary reinforcer were also ascribed to an increase in incentive
motivation, or rs. How can rg both be drive reducing and drive increasing?
Given Hull's formulation, it seemed hard to argue that rg is both reinforcing and
motivating.

This problem is overcome in the network theory. Drive reduction is abandoned,
and path equivalence shows how a UCS can be reinforcing, via its effects on the
LTM of other active conditioned reinforcer pathways, and motivating, via its
effects on the firing of habit strength pathways.

23. Late nonspecific potential shifts

Some seemingly paradoxical data have been collected by doing discrimination
learning on animals with implanted electrodes. John and Morgades (1969) reported
that, in trained animals, discriminative stimuli elicit characteristic responses that
are distributed rather uniformly across extensive cellular regions, and that these
uniform reactions manifest themselves as an increase in the late components of
evoked brain potentials as training goes on. The paradox is as follows. Why should
an increase in the animal’s discriminative ability correspond to a more uniform
distribution across space of cell potentials? Why don’t the potentials get more
discriminative also?

Several authors have interpreted this result by claiming that, as discrimination
improves, the ‘information® about the discrimination is spread uniformly across
the network, akin to an equipotentiality or hologram type of concept. This idea
creates several problems when we ask how nerves can retrieve this uniformly scat-
tered information, since all discriminations will become uniformly distributed
across the same neural tissue. In a holographic theory, such decoding relies on the
existence of precisely calibrated periodic sampling probes. Within the active neuro-
pile, a much more chaotic temporal behavior prevails.
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In the network theory, this interpretation seems to be unnecessary at best. As
discrimination training proceeds, the external cues gain control over incentive
motivational pathways as they become conditioned reinforcers. Since the incentive
motivational pathways are nonspecific, the cues can deliver their signature quite
uniformly to all the sites that receive the incentive motivational signals. These
uniform signals are ‘late’, because it takes longer for them to feed through the drive
representations and then back via incentive motivational pathways than it does
for the cues to directly activate sensory STM. However, the ‘information’ in the
network is not carried by these signals. The information is carried in the polyvalent
properties that determine which cells will fire, and in the LTM patterns that will
subsequently be read out.

[t is somewhat surprising that John himself did not reach this conclusion, since
John (1966, 1967) has also reported that neocortical polyvalent cells require both
CS and UCS input in order to fire. Perhaps John’s oversight was due to the
theoretical property that after discrimination has taken place, this is no longer
true; then the CS alone is a sufficient external cue to fire its pathway. John’s data
thus contained a gap, and because he took the data at face value, he was led to a
paradoxical hypothesis.

The contingent negative variation (CNV) is a slowly varying cortical potential
shift that is a likely neural substrate of incentive motivational signals. Walter (1964)
hypothesized that the CNV shifts the average baseline of the cortex by depolarizing
the apical dendritical potentials of cortical pyramidal cells and thereby priming
the cortex for action. This is why the CNV has been associated with an animal's
expectancy, decision (Walter, 1964), motivation (Irwin et al., 1966), preparatory
set (Low ez al.,, 1966) and arousal (McAdam, 1969). The CNV has also been
described as a conditionable wave. Thus far in the network theory, the incentive
motivational pathway can be conditioned only indirectly when a cue acquires
conditioned reinforcer properties that are reflected by that cue’s growing ability to
elicit incentive motivational signals. We will return to the question of whether
incentives can be directly conditioned in Section 25.

24. An emergent neocortical analog

We have now amassed enough empirical evidence to suggest some anatomica
analogs of the wiring diagram in Figure 13 (Grossberg, 1978b). These analogs
are suggested tentatively for several reasons. Most importantly, when the syn-
chronization postulates are supplemented by new. postulates, more processing
stages will be imposed on the evolving network. Consequently, although anatomical
interpretations of some network processing stages can be identified with reasonable
assurance, the stages just before and after these stages have a more ambiguous
anatomical interpretation. Also species-specific variations on network themes must
be anticipated. Anatomical markers are nonetheless useful to facilitate comparison
with neural data, and also to indicate that the formal network stages have plausible
neural interpretations. Below two possible interpretations of Figure 13 will be
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Fig. 13. An interpretation of network dynamics in terms of nonspecific arousal afferents to the
apical dendrites of cortical pyramidal cells, and CS-stimulated reverberation of Golgi type-I1I
interneurons whose output stimulates the pyramidal cells.

suggested. Each interpretation leads to definite questions about cortical dynamics.
Both interpretations depend on identifying the second stages {v{?’} of sensory
processing with cortical pyramidal cells, which are the output cells of cerebral
neocortex (Shepherd, 1974; Sholl, 1956). The work of John (1966, 1967) on poly-
valent cortical cells and of Walter (1964) on the CNYV both suggest that we identify
these polyvalent cells with cortical pyramidal cells. Given this interpretation, what
are the cells subserving the other stages? The main difference between the two
interpretations concerns the issue: Do the first sensory stages {v{?’} occur in the
cortex or not? ’
Suppose ‘yes’. Then the cells which subserve STM storage at the first stage of
the sensory representation are cortical interneurons. These interneurons are excited
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by cortical inputs, mutually excite each other, and send excitatory signals to
pyramidal cells (Figure 14a). We identify these interneurons with Golgi Type I
cells (Crosby et al., 1962; Peters et al., 1979). The pyramidal cells cannot fire
urless they also receive arousal inputs that, following Walter (1964), are assumed
to prime their apical dendrites (Figure 145). The main source of ambiguity con-
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Fig. 14. (a) CS inputs excite Golgi-type II interneurons at »{2’ which reverberate and excite the

pyramidal cells v{3’; (b) The pyramidal cells also receive nonspecific arousal inputs from the drive

representations; (c) If the STM-reverberation is intracortical, the nonpolyvalent cortical output
cells exist which can sample the drive representations.
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cerns another class of cortical output cells that would also have to exist. These
are the output cells in the first stages of the sensory representations, which can
fire to the drive representations even without incentive motivational support
(Figure 14c). If all cortical output cells are pyramidal cells (Shepherd, 1974), then
these pyramidal cells would differ both in their firing rules and their output targets
from the pyramidal cells depicted in Figure 14a. Their output targets would be
drive representations that are in, or associated with, the hypothalamic and hippo-
campal sites at which drive inputs are evaluated, as the results of Scott and Pfaffman
(1967) and Valenstein et al. (1970), as well as numerous other investigators sug-
gest (Grossman, 1967; Haymaker er al.," 1969; Olds, 1977; Swaab and Schadé,
1974). These outputs could be triggered by cortical inputs, supplemented perhaps
by STM reverberation, but without the support of incentive motivational signals.
Perhaps these output cells are small pyramidal cells whose dendrites abut the
cortical input pathways and interneurons with close proximity. Since many
pyramidal cells have apical dendrites that rise to the upper layers of the cortex,
this anatomical interpretation will fail if all pyramidal cells can be shown to
require nonspecific incentive motivational input to their apical dendrites before
they can fire. :

Two main points in this interpretation are useful even if it does not survive the
test just described. First, the division of a sensory representation into two succes-
sive stages is not a mysterious anatomical notion. It can, for example, be realized
as the distinction between interneurons and output cells. Second, the polyvalent
rules for output cell firing suggest one reason why certain neural tissues, such as
neocortex and hippocampus, receive inputs which are segregated into distinct
lamina. By running the dendrites of output cells through these lamina, one can
control which combination of inputs is needed to fire the cells. This is especially
true if the output cells with larger cell bodies and axons also have larger dendritic
trees. Then the output cells that can fire most directly to spinal centers will require
convergence from more input sources, and thus a less ambiguous configuration of
input data, to fire their larger cell bodies (Grossberg, 19785).

The alternative anatomical interpretation is suggested by the possibility that
cortical pyramids cannot be fired without incentive inputs to their apical dendrites.
In species where this is true, the first stage of sensory representation would be
represented at an anatomical level prior to the cortex, such as within a specific
thalamic nucleus (Anderson and Eccles, 1953; Crosby et al., 1962; Gabriel et al.,
1980; Grossman, 1967; Macchi and Rinvik, 1976; Tsumoto et al., 1978). Then
the first sensory representation and its STM reverberation would exist in the
thalamus, from which ascending cortical projections and descending limbic
projections (Figure 154) would arise. The drive representations would again
deliver input to apical dendrites of pyramidal cells, but now the problem of firing
cortical outputs without simultaneous incentive motivational inputs is averted.
Also, cortical interneurons could reverberate among themselves and feed their
activity to pyramidal cells (Figure 15b), but these interneurons would no longer
fire the first sensory representations, which no longer exist in the cortex.
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Fig. 15. (a) CS input excites nonpolyvalent thalamic cells which send signals both to neocortex

and drive representations; (b) Intrathalamic and/or cortical reverberatory interneurons are now

distinct from the nonpolyvalent output cells vi2'.

These anatomical constraints can help students of thalamocortical dynamics to
correlate a given species variation with the corresponding network variation without
losing sight of the fact that the entire class of networks can compute qualitatively
similar functional transformations. An experimental framework wherein these
anatomical alternatives may be testable has been developed by Gabriel er al.
(1980), who have studied stimulus-reinforcement contingencies that are controlled
by hippocampal interactions with cingulate cortex and-anteroventral nucleus of
the thalamus. g

B
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25. Motivational set: is incentive motivation conditionable?

Postulates (C) and (D) contain the main content of the synchronization problem
and impose the basic network pathways with which we have been working. Once
this formal framework is before us, it takes on a life of its own in two senses. First,
it becomes clear that the network, as it stands, does not have certain important
properties, but it is also easy to modify the network so that it does have these
properties. Second, the overall structure of the network possesses a discernible
symmetry. Improving this symmetry modifies the network so that it possesses new
behavioral properties. The first and second procedures, moreover, both lead to the
same modifications. Why are these modifications necessary? The answer is that
there are other organizational principles than the synchronization problem at
work in vivo. The synchronization problem fortunately implies enough network
structure to force us into simple examples of these other principles, and in fact this
was one route whereby the principles were discovered. This route is followed
here because it is the most efficient way to derive mechanisms of reinforcement and
attention. In Grossberg (1980a), these properties are derived from principles con-
cerning the development of cognitive codes, which imply synchronization properties
as a special case. '

In Section 13, the symmetry properties of the network suggested that drive
inputs exist. Postulate (F) gave this formal observation behavioral meaning by
recognizing the need for a satiety mechanism. Now the symmetry properties
suggest another network addition. The nonspecific conditioned reinforcer path-
ways from external cue representations to internal drive representations are
conditionable. By contrast, the nonspecific incentive motivational pathways from
internal drive representations to external cue representations are not. Should they
be? Given the interpretation in Section 23 of the incentive motivational pathways
as a CNYV substrate, this question becomes: Can the CNV be directly conditioned ?
Are the apical dendrites of neocortical pyramidal cells the locus of this conditioning
process ?

If incentive motivation is conditionable, then we have at our disposal a mechan-
ism for establishing a subliminal motivational set. After conditioning occurs, a CS
could excite its drive representation via conditioned reinforcer signals. Then the
internal drive representation could deliver incentive motivational signals preferen-
tially to those external cue representations with which it was previously associated.
In this way, activating a given external cue representation could sensitize an
ensemble of motivationally related external cue representations via incentive
motivational feedback. The sensitized representations form the subliminal motiva-
tional set.

The conditionability of incentive motivation is a necessary condition for avoiding
some unpleasant behavioral properties. All of these properties are a result of the
fact that incentive motivation is nonspecific. How can bad properties arise from
this fact? We seemed to require that arousal be nonspecific to solve the syn-
chronization problem in the first place (Section 5). I am not denying this basic
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insight. It implies, and I reaffirm, that nonspecific arousal inputs are all initially
strong enough to fire polyvalent sensory cells when they converge with CS inputs.
In other words, the LTM traces across the nonspecific arousal pathways are all
strong enough to cause large gated signals in response to arousal inputs. Still
otherwise expressed, the pattern of LTM traces across the nonspecific arousal
pathways is initially quite uniform and each LTM pathway is viable. I now suggest
that conditioning can change this uniform LTM pattern by differentially strength-
ening the LTM traces that abut those polyvalent representations at which CS
signals and incentive signals simultaneously converge during learning trials.

The unpleasant properties include the following examples. Suppose that two
conditioned reinforcers, CS; and CS,, are turned on simultaneously. Let each
reinforcer preferentially project to a different drive representation D, and D,,
respectively. Let the drive input to D, be zero but the drive input to D, be large.
Also suppose that CS, has not been conditioned to a motor habit. Cue CS,, by
itself, could only activate thé first stage of its sensory representation, since the
drive input to D, is too small to release incentive motivation from D,. Cue CS,,
by itself, could only elicit an internal emotional reaction compatible with its drive
representation. By contrast, if both cues are presented and the incentive pathways
are not conditionable, then CS, can motivate performance of CS,’s habit, because
D, will deliver incentive signals nonspecifically to all polyvalent cells, including
those which represent CS;.

In another version of the same dilemma, CS, and CS, are both conditioned to
motor habits, the drive input to D, is again zero whereas the drive input to D, is
large, but the intensity of CS, is large whereas that of CS, is small. Since CS,
delivers equal incentives to the polyvalent cells of CS, and CS,, the habit corre-
sponding to CS, is favored because of CS,’s larger intensity despite the occurrence
of zero drive input to D,.

Another unpleasant consequence of unconditionable incentive is this. When we
consider language behavior, we will want to understand how an internal need,
such as hunger, can initiate an external language communication like ‘I am hungry.
What is there to eat? This cannot be done in the present framework if the drive
representations project uniformly to all cortical representations.

Consequently, 1 make the following postulate:

G. A given incentive can be associated with any of several external cue
representations.

The minimal realization of postulate (G) is to suppose that incentive motiva-
tional signals are conditionable, and thus that subliminal motivational sets can be
learned. This conclusion can be summarized in a fancier-language that takes on
important meaning when one studies the development of cognitive codes: con-
ditioned reinforcer pathways and conditioned incentive motivational pathways aré
dual pathways in a network feedback module.




STEPHEN GROSSBERG 324

26. Distinct cortical recurrent loops for STM and LTM

Each formal constraint on network design needs to be realized in a physically
plausible way. In the present instance, we need to ask: How can incentives be
conditioned in the cortical analogs of Figure 14? How can the arousal pathway to
the apical dendrites of pyramidal cells be conditioned at times when the pyramidal
cells fire? In particular, how do the synaptic contacts at the apical dendrites know
when the pyramidal cell body is firing ?

There exist two possible answers. One suggests that an intracellular conditioning
pathway exists, and the other that an intercellular conditioning pathway exists.
The intracellular answer posits that cell body firing activates antidromic action
potentials, or other signals, that invade the dendritic tree and condition whatever
apical dendrite synapses are active at the time (Figure 164). The intercellular

7

q

A

<

[a] (o]
Fig. 16. (a) Cell body spiking might trigger massive antidromic action potentials that drive post-
synaptic conditioning effects of simultaneously active synapses; (b) Cell body spiking might
activate feedback pathways which drive conditioning of simultaneously active synapses by a
presynaptic gating action.
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answer suggests that active pyramidal cell axons also excite recurrent axon
collaterals. These collaterals activate interneurons that terminate at the arousal
cell-apical dendrite synapses and cause a conditioned change via a shunting
mechanism at those apical dendrite synapses which are active (Figure 165).

Both of these mechanisms suggest that cortical conditioning is driven by the
suprathreshold activity of the pyramidal cells. Subthreshold activity is insufficient.
Moreover both mechanisms include the pyramidal cell in excitatory recurrent
interactions that are prerequisites for LTM storage, and that are distinct from the
excitatory recurrent interactions that subserve STM storage.

These observations lead to several experimental questions, Can the CNV be
conditioned if the pyramidal cells are prevented from firing? Under what circum-
stances in vivo do antidromic action potentials invade apical dendrites? Do
synapses of cortical interneurons terminate on the synaptic knobs or dendritic
spines of extracortical afferents to the apical dendrites? Do these interneurons
get activated by pyramidal cell axon collaterals?

27. Motivation-dependent responses to sensory cues: multiple sensory
representations or developmental competition for synaptic sites?

This section introduces a refinement of network design that satisfies another
behavioral postulate in a minimal way.

In the network as it stands, once a sensory representation gains control over an
incentive pathway and a habit, it cannot be used to learn another habit which is
motivated by a different incentive pathway. For example, a visual cue at a choice
point could elicit a left turn to get food, but it could not elicit a left turn to get food
when hungry and a right turn to get food when thirsty. Of course, cues to the left
or the right of the choice point could be preferentially associated with one or the
other drive representation. Here we consider how a single cue could be differentially
influenced by more than one drive. The issue of what cue combinations have
internal representations will not be considered here. In Grossberg (19786, Sections
25-47) 1 discuss how context-dependent internal representations, notably repre-
sentations which are sensitive to particular sequences of events, can be generated.
Herein 1 ask how any such representation can be differentially influenced by more
than one drive. This property may not exist in all species.

The property in question can be achieved by allowing every sensory cue to be
represented in several subregions each of which receives incentive pathways
preferentially from a different drive representation. One way to do this is to let
the sensory cues excite multiple sensory representations (Woolsey, 1958; Zeki,
1974) that are laid out in distinct network (e.g. cortical) regions. Another way is to
suppose that, at the time when incentive pathways from the drive representations
are developing, they compete with each other for synaptic space at each sensory
representation, much as ocular dominance columns’'develop in the visual system
{Hubel and Wiesel, 1977), or as corticostriatal terminals become fenestrated
(Goldman-Rakic, 1981). As a result of this competition, the cells in each sensory



STEPHEN GROSSBERG 326

representation will be parcelled out into cell groups which receive more incentive
pathways from one drive representation than any other. Here muitiple incentive
sensory representations do not exist, but within each sensory representation, the
incentive pathways from different drive representations are clustered into distin-
guishable bundles. Looking over the entire cellular tissue, one would discern a
patchwork quilt of overlapping sensory and drive sensitive areas. This configura-
tion, should it exist, might be an evolutionary precursor of networks in which
multiple sensory representations have been fully elaborated by a combination of
synaptic competition abetted by a cell sorting process that segregates cells that
become committed to particular drive representations into distinct sensory repre-
sentations (Steinberg, 1970).

The behavioral constraint that yields this network refinement, where it exists, is
summarized by the following postulate.

H. A discriminative cue can elicit distinct responses in different
motivational contexts.

Multiple visual and auditory sensory representations are known to exist in
vertebrate cerebral cortex (Woolsey, 1958; Zeki, 1974) but their relationship to
drive-dependent response elaboration seems not to have been investigated. An
effort should be made to study the patterns of axonal degeneration of drive repre-
sentations in sensory areas and to correlate these patterns with that species’ ability
to discriminate cues in different motivational contexts. For example, what is the
degeneration pattern of a drive region that supports enhanced self-stimulation
when the animal is hungry ? Sexually motivated?

28. Sensory-drive heterarchy: competitive decisions after drives and conditioned
reinforcers interact

Typically, several external cues and drive representations are simultaneously
active. How does the network decide which cues will be capable of eliciting
observable behavior? What are the rules for parallel processing of cues? These
general questions can be refined into a series of specialized issues which eventually
force us to study new principles of network design. One of these principles leads
to mechanisms whereby populations compete with each other (Grossber, 19705,
1973, 1980b). Sometimes the competition is organized in a feedforward anatomy
(Figure 17a), but if the results of the competition are also stored in STM, a feed-
back anatomy is used (Figure 17b), whose feedback loops can store the pattern
after its generating inputs terminate. :

What keeps the network from simultaneously releasing two or more motiva-
tionally incompatible behaviors, such as eating and copulation? ThlS questlon
phrased affirmatively, becomes our next postulate.

I. Motivationally incompatible behaviors compete.

Some form of competition between network channels is needed to sense the
momentary balance of drives and available cues, and to decide which behavior is

g
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Fig. 17. In (a), a feedforward on-center off-surround network allows inputs to compete before
generating outputs, In (b), a feedback competition allows the winning populations to have their
activities stored in STM.

most appropriate at any time. Below a simple example of feedforward competition
illustrates that this can be done. I will also indicate why feedforward competition
is insufficient. It will then be shown that the anatomical stage at which competition
acts must be carefully programmed in the network. If the competition occurs one
synapse too soon, the network could not possibly survive.

To fix ideas, consider the following example of competition. Let # cell popula-
tions vy, v,,. . ., v, be given and suppose that each population v; is excited by a
fluctuating input Ji(¢). Suppose that input I,(r) also inhibits all the populations
Vi, k # i, with the same strength that it excites v,. Let all the inputs, both excitatory
and inhibitory, summate at each v,, and let the activity x,(¢) of v; decay back to
equilibrium at rate 4 when no inputs occur. Then
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where J; is the net input

(9) Ji = [i Z [k
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to v;. To see how the competition works, define the total input / = ¥ [, and the
k=i

relative input sizes 6, = I,/™". Since each 1(1) can fluctuate wildly through time,
$0 too can I(t) and each 6(¢). However, each J; can be written as

which is the same as
(11) ) e .

Since the 6,’s sum up to 1, at most one 0, can exceed } at any time. By (11), at most
one J; can be positive at any time. By (8), the v; corresponding to this J; is excited,
whereas all other ; are inhibited. Thus no matter how wildly the inputs fluctuate,
the competition uses a majority rule to choose a definite winner at any time. The
mechanism in (8) and (9) is called an additive feedforward on-center (excite v))
off-surround (inhibit all v,, k # i) network.
Not all networks of this type will perform a simple majority rule computation.
For example, in the network
d

. n .
(12) Xy = —Ax; + I, — Y LB,
dt k=1
the net inhibition of v, by I is I, By;, where B,; measures the strength of the (k,i)th
inhibitory pathway. The B,; can easily be chosen so that more than one v; can be
excited at any time. Majority rule competition occurs if the inhibitory signals of
the off-surround are broadly distributed actoss the field of oppulations.

These details are not our main concern now. The reader can, however, readily
notice several basic deficiencies of majority rule competition, and more generally
of feedforward competitive laws. For example, what happens if no 0, exceeds 1?
Does the network simply do nothing? How can a network be designed that can
retune its own sensitivity until a winning channel is found? What happens if the
conditioned reinforcer inputs fluctuate very quickly ? Does the motivational base-
line also fluctuate because each J i does? How can fluctuating cue and drive inputs
be translated into a steady motivational baseline during the performance of each
motivated act? What if inputs fluctuate so fast that J; switches from positive to
negative before its act can be performed ? How can enough inertia be built into the
competition to permit an act to be performed before motivation switches to another
incentive channel ? These are the types of crucial questions that can only be answered
by mathematical analysis, because they all depend on surprising properties of
competition in feedback networks (Grossberg, 1973, 1975, 19815, 1982a,b,c).
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For now, we content ourselves with considering the following question. At what
stage of network processing does the competition act? There are two main alter-
natives, and one of them leads to disaster.

The first alternative allows the drives to compete among themselves before they
are acted upon by conditioned reinforcers (Figure 18a). The second alternative
lets drive inputs interact with conditioned. reinforcer inputs at the drive repre-

INCENTIVE
Vi(12’ MOTIVATION

Fig. 18. In (a), a drive hierarchy prevents incentive motivation from being released except by the
prepotent drive. In (b), a nonprepotent drive input can elicit incentive motivation if it is aug-
mented by sufficiently strong conditioned reinforcer inputs.

e = ]
i
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sentations before the drive representations compete among themselves (Figure
18b). The first alternative is called a drive hierarchy and the second alternative is
called a sensory-drive heterarchy for the following reason.

In a drive hierarchy, only the largest, or prepotent, drive can deliver a positive
input to its drive representation. If no external cue is present that is compatible
with this drive, then no incentive motivation can be released. The disaster is this.
Even if external cues are available that are compatible with large, but nonpre-
potent, drive inputs, none of these cues can trigger observable behavior.

The sensory-drive heterarchy overcomes this dilemma. Here any drive repre-
sentation can fire if it receives conditioned reinforcer and drive inputs. Then the
active drive representations compete among themselves to decide which one will
release incentive motivation. If no external cues compatiblé with the prepotent
drive are available, then its drive representation does not fire, so it does not prevent
a drive representation with a smaller drive input from winning the competition.
Moreover, if two drive representations 9, and 2, both receive positive drive
inputs D, and D, respectively, such that D, > D,, nonetheless 9, can win the
competition if its conditioned reinforcers are more active than those of 2,. In all,
the sensory-drive heterarchy computes which combination of available cues and
drives is dominant at any moment, not just which drive is dominant at any moment.

To illustrate the heterarchical concept, I will describe some rules that simplify
real-time computations which occur in competitive feedback networks. To start,
let us suppose that drive inputs D; and conditioned reinforcer inputs S; combine
multiplicatively at &,. This rule can be interpreted in several ways. It formally
says that both factors are needed to fire 2,. It can be physi_q’logiéally interpreted
by saying that drive inputs sensitize drive representations to conditioned reinforcer
inputs, or that drive inputs gate conditioned reinforcer inputs. Although we
formally write products like S;D; below, in a finer physiological description, cues
and drives do not play a symmetric role. A simple version of the heterarchical
idea is the rule: 2, fires only if

(13) 8§;D; > max(e,S,Dy: k # i)

where e is a threshold that must be attained before any drive representation can fire.
By (13), only one drive representation can fire at any time; namely, that 2; whose
gated cue inputs S;D, are maximal. This law builds some temporal stability into
the delivery of incentive motivation, since inequality (13) can pefsevere through-
out a time interval during which the individual cue signals SJ are fluctuating
wildly. The simplest law whereby a stable baseline of motivation is also achieved
follows readily from (13). Let x,(r) be the activity of 2, at time t. Suppose that all
the drive representations remain inactive, or at best subliminally active, until (13)
holds at some ;. Then x;, is rapidly amplified by feedback competitive interactions
until it attains the value B > 0, which is the suprathreshold motivational base-
line. All other x; are quickly driven to zero by the recurrent competition, and these
motivational values are then stored in STM while (13) holds. In mathematical
terms,
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B, if S;D; > max(,S;Dy: k # i),
(14) xi ==
: 0, otherwise.

The rule (14) is the simplest law that builds some temporal stability and a motiva-
tional baseline into the heterarchical computation. This rule also overcomes a
disadvantage of majority rule competition: Just so long as some S;D; exceeds
the threshold &, which can be a small parameter or even zero, a motivational
choice is made, and one drive representation achieves the baseline value B. Figure
19 schematizes an anatomy that can compute this competitive rule.

The performance of a competitive feedback network is more complex than
equation (14). For example, such networks can maintain any of a finite, or infinite,
set of operating levels even after their inputs are shut off (Grossberg, 1973, 1978c¢,
1980a,b). The inputs can determine, by their own size, which operating level will
be chosen. Moreover, inputs that are left on can modify the network’s possible

INCENTIVE

Cs

AROUSAL

DRIVE MOTIVATIONAL LOOP
I[STM, BASELINE, SWITCHING, HYSTERESIS|

Fig. 19. A feedback competitive network whose signals are modulated by slow transmitter gates
can maintain a steady motivational baseline, and can switch between motivational channels in
response to sufficiently large changes in conditioned reinforcer, drive, or arousal inputs.
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operating levels. These subtleties will not be needed to draw our main conclusions.

Even the rule (14) is deceptively simple, because 5; is the net effect of all con-
ditioned reinforcers on 9,. If I,b,,; is the output from the mth sensory representa-
tion v'% to 2,, and z,,; is the LTM trace in the pathway from v{Z to 9,, then

(15) Si = 2 LbymiZmi-
m=1
Substituting (15) into (14) yields

B, lf z I,,,D,-b,,,;zmi > maX(S, Z Ikabmkzmk: k # i),
m=1 m=1
x, = )

| 0, otherwise.

Moreover, z,; summarizes the entire reinforcement history between the mth
internal representation v} and 2, by correlating all past occurrences of I, and
x;. The simplest such law (Grossberg, 1964, 1968, 19715, 1972a) says that z,,;
computes a time-average, with constant decay rate ¢, of the product of signal I,
and postsynaptic potential x;. Then

d .
Zi_t Zpi = =CZpy + il X
which is the same as
t
(18) 2ai1) = ZniO)" + d, f eI (o) (V).
- 0

Equations (16) and (18) together summarize the simplest heterarchical computa-
tion. These equations illustrate how an animal’s present decisions, as in (16), can
reflect all of its past reinforcement, drive, and motivational history, as in (18). In
particular, z,,; in (18) correlates /,, with x,, where I, connotes the momentary
strength of a CS or UCS input, and x; connotes the momentary strength of a
motivational variable that is determined by all the present drives and cues, as well
as all the prior drives and cues that ever influenced the network. Thus the con-
ditioned reinforcer LTM traces feed upon themselves: They guide the present
motivational decision, which is thereupon sampled and alters their LTM values.
Perhaps the most important thing to keep in mind about (16) and (18) is not all
the subtleties of these feedback effects, but rather that the formalism summarizes
so much subtlety in just two equations.

The heterarchical concept elegantly explains how an animal’s observable
behavior can seem to be unrelated to a specific drive until an appropriate releasing
cue is presented (Bolles, 1967): A high drive D, can occur while x; = 0 if another
drive representation 2; wins the heterarchical competition. The heterarchical
concept also clarifies some differential effects of parametric changes in drive and
reinforcement on learning rate versus performance speed in the following way.
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29, Differential effects of drive and reinforcement on learning rate versus
performance speed

An increase in drive level can affect the probability that a rat will run down an
alley to be rewarded, its reaction time to run, and the vigor of the running response
(Estes, 1958; Mackintosh, 1974). In particular, increasing drive decreases the
likelihood that the rat will indulge in competing behaviors (Cotton, 1953). This
fact can induce a complex interaction between drives and learning, since an animal
who runs only a little before competing responses interfere can learn a different
response series than an animal who continues running down the alley (Bolles,
1967; Campbell and Kraeling, 1953). If these momentary effects of drive on per-
formance are synthesized into a behavioral plan, then different running responses
can be engendered on later trials, even if the drive level is changed.

To see how drive can alter probability and reaction time of running, consider
(16). In (16), an increase of D; increases the probability that, and decreases the
reaction time with which 2; will win the heterarchical competition. Once 9;
wins, x; = B no matter how large D, is. In other words, increasing D, can reduce
the reaction time and increase the probability of running, but not necessarily alter
the motivational baseline that supports the running response. To understand how
the motivational level, and the induced running speed, can depend on drive input
and conditioned reinforcer input size, one needs to study the operating levels B
of competitive feedback networks in some detail. This study will not be given here.
Instead, I will indicate how the simplest heterarchical rules help to explain various
other data to lend further support to the heterarchical concept.

The following paradoxical finding can, for example, be explained. Animals that
are trained on high drive can maintain their high drive performance characteristics
when they are switched to low drive (Capaldi, 1971; Mackintosh, 1974; Zaretsky,
1966), but not conversely (Bolles, 1967; Desse and Carperiter, 1951). The perse-
verative effect of high drive performance during low drive suggests that high drive
influences performance through a learned effect. Analogously, a large value of D,
in (16) on learning trials increases the probability that x; wins the competition.
By (18), those LTM traces z,,; with active cues I, will attain large values. These
cues thereupon enjoy powerful conditioned reinforcer properties which can
motivate the animal to run. On low drive trials, these cues are still available, their
inputs 7, are still large, and they are still gated by large z,,; values that were learned
under high drive. Consequently the gated inputs 7,,z,,; remain large after the switch
to low drive trials. Suppose that D, is decreased, but is large enough for 9,, with
the help of large terms I,z,,;, to still reliably win the heteratchical competition.
Then the high drive performance level will persist into the low drive situation
because it is bolstered by conditioned reinforcer inputs. If D; can regularly win
the competition in this way, then the LTM traces z,,; continue to be boosted on
low drive trials if they follow high drive trials. The converse transition, from low
drive to high drive, does not show persistence. For example, given low drive levels
at the outset, 9, cannot reliably win the competition, so little learning occurs. An
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increase of drive then rapidly causes a higher performance level to occur because
it directly changes the competitive balance.

Amount of reinforcement can influence rate of learning as well as asymptotic
learning speed (Mackintosh, 1974). Moreover, a change in reinforcement level
from high to low, or conversely, can quickly change the animal’s response rate
(Crespi, 1942; Mackintosh, 1974; Zeaman, 1949) by contrast with the effects of
changing drive level.

Why do parametric changes in drive and reinforcement level have different
effects on performance? Several factors can work together to produce these
properties. One such factor is the following. A large reinforcement on each trial
creates a large cue input I,,. The cue input directly excites the polyvalent sensory
cells, unlike drive inputs, as well as indirectly exciting the polyvalent sensory cells
via incentive feedback to these cells. The larger reinfoicer’s cue properties hereby
increase the readout of its habit on a moment-by-moment basis. Consequently, a
sudden change in reinforcer level can cause rapid performance changes, even if the
motivational feedback itself has only one suprathreshold level. This explanation of
reinforcer effects depends on the existence of variable I, values. Changes in re-
inforcement that do not change I,, do not have these properties. For example, an
increased concentration of sucrose or saccharin in a liquid reward reliably has
these effects. .

Reinforcer effects can also be influenced by the action of disconfirmed expec-
tancies. To illustrate this possibility, I will use properties that are discussed in
Sections 32-34, below. These remarks can be skipped on a first reading.

An animal who expects a high probability of reinforcement can experience a
negative incentive motivational rebound on a trial during which an expected
reward does not occur because the reinforcement probability has been reduced
(Grossberg, 1972¢, 1975). The rebound has the same effect as an increase in negative
drive input even though no change in internal drive has occurred. The rebound
can hereby rapidly reduce the net motivational support for the behavior and reduce
the animal’s response rate. In a similar fashion, when a low probability of re-
inforcement is expected, a positive incentive motivational rebound can supplement
direct consummatory inputs on a trial when the animal is unexpectedly rewarded
due to an increase in reinforcement probability. A rapid increase in motivational
support is hereby achieved. Transient overshoots in incentive motivational outputs
can hereby occur due to unexpected changes in reinforcing events. These transients
can reflect themselves in transient behavioral contrast effects (Mackintosh, 1974).
Sustained behavioral contrast effects can be produced after the transient effects are
encoded in LTM by the conditioned reinforcer and incentive motivational path-
ways. This analysis differs from the one that Hull (1952) and Spence (1956) gave to
explain these effects. These authors assumed that reinforcement decrement directly
influences incentive level. I claim that the direct effects are specific cue effects,
including a lower probability of winning the heterarchical competition if the
reinforcement decrement is suffciently large. Indirect effects include rebound
effects that are triggered by rapid changes in cue level or by unexpected events.
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30. Drives and reinforcers: multiplicative, additive, or neither?

Hull (1952) claimed that reinforcement and drive interact multiplicatively,
whereas Spence (1956) claimed that they are independent, or interact additively.
Experiments to test this distinction have tended to yield mixed results. Some
experiments suggest additivity (Reynolds and Pavlik, 1960; Pavlik and Reynolds,
1963). If either the drive level or the reinforcement level is assigned a very low value,
however, a significant multiplicative interaction is found (Seward ez al., 1958;
Seward ef al., 1960).

The rule (16) sheds some light on this controversy. In (16), drives D, and cues
S, do interact multiplicatively. However, the competitive law also contains additive
elements. For example, given a fixed S, level, the competition computes whether
D; > eS;', which is an additive effect. Similarly given a fixed D; level, the com-
petition computes whether S; > ¢D;?, which is again an additive effect. Moreover,
given fixed levels S; and §;, the competition computes the sign of §;D; — §;D;
which is a linear combination of D; and D;, again an additive effect. The same is
true if D; and D, are fixed while S; and §; vary. Both additive and multiplicative
elements enter the heterarchical computation. The multiplicative effects are rate-
limiting at very small values of S; and/or D,, since no matter how large §, is, if
D; =~ 0 it follows that S;D; > 0 < g, and no matter how large D, is, if S; ~ 0
it follows that S;D; ~ 0 <.

A final comment on the motivational baseline is in order. The existence of such
a baseline illustrates how a recurrent network can store an activity level in STM
despite the existence of sufficiently small temporal perturbations in its inputs.
This is not, however, all the recurrent networks can do. Their overall operating
levels can be influenced by the size of specific inputs as well as by nonspecific
shunting interactions, so that in vivo the motivational level need not be constant
through time. Our main point has been that these operating levels can defend
themselves against momentary fluctuations in cues or drives until a hysteresis
boundary is reached, after which a switch to a new level can be rapidly effected.

31. Suppression by punishment

The discussion has thus far focused on how an animal can learn consummatory
behavior. It has not considered how an animal can rapidly modify or terminate
consummatory behavior when changing environmental contingencies render the
behavior maladaptive. In particular, we have not considered how an aversive
cue can suppress behavior. Nor have we considered how the nonoccurrence of an
expected consummatory goal object can suppress behavior. Now the minimal
mechanisms of aversive conditioning, whether by. punishment or frustration, will
be reviewed. I will conclude that the mechanism whereby a punishing event
suppresses behavior, via classical conditioning, automatically possesses properties
which enable the unexpected nonoccurrence of a desired goal object to extinguish
behavior, via instrumental conditioning. This important fact, which sets my theory
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apart from other efforts to model reinforced behavior, follows from the gating
properties of chemical transmitters in competitive anatomies (Grossberg, 1972c,
1981a, 1982a,b,c).

Many experiments about punishment and avoidance are thoroughly reviewed
elsewhere (Bolles, 1969; Dunham, 1971; Estes, 1969; Grossberg, 19725, 1975;
Mackintosh, 1974; Pearce and Hall, 1980). A basic theme running through this
literature elaborates the fact that punishment can suppress goal-oriented behavior
without extinguishing knowledge of the goal. Here, I will only be interested in
showing how a punishment and avoidance mechanism easily flows from the ideas
which are already at our disposal. Various subtle conditioning properties—such as
self-punitive behavior, overshadowing, superconditioning, learned helplessness,
peak shift and behavioral contrast, partial reinforcement acquisition effect and
novelty as a reinforcer—have elsewhere been derived as properties of the mecha-
nisms in prescribed input environments (Grossberg, 1972b,c, 1975, 19814, 19824,b).

Our point of departure is the fact that CS-activated sampling cells are poly-
valent (Section 5). This fact is a double-edged sword. It prevents the sampling
cells from firing unless they simultaneously receive specific cue input and non-
specific arousal inputs. But it also forces the sampling cells to fire when these input
conditions are achieved. Without additional network structure, these polyvalent
cells must fire at disastrously unappropriate times as environmental contingencies
change.

In particular, suppose that a cue CS, has been conditioned to a positive incentive
motivational source and to a prescribed motor habit. Then whenever the drive
subserving the motivational source is high, presentation of the cue will elicit
the behavior because the polyvalent cells in its representation receive convergent
specific and nonspecific inputs. This behavior will continue to occur no matter how
unappropriate its consequences have become; e.g. if pressing a lever in response
to the cue lever now elicits shock instead of food.

Some mechanism is needed to stop behavior that prior contingencies have
started. In a theoretical vacuum, this factual triviality is not very constraining on
possible theories. It becomes highly constraining, however, when it is recast as a
formal design within the networks that have already been derived. We therefore
ask: How can the polyvalent cells be prevented from firing? Can this be done such
that the mechanisms for starting versus stopping behavior are symmetric?

A dual side of this issue exists. It is the following issue: Suppose that a mechanism
for stopping unappropriate behavior can be found. What prevents this mechanism
from stopping all future behavior ? How can more appropriate behavior be selected
despite the suppressive effects of this mechanism ? For example, while an aversive
cue is on, such as an intense shock, an animal might emit many erroneous escape
behaviors before a random act succeeds in terminating the aversive cue. How can
the correct escape act be learned despite the fact that the prior errors are not
learned ?

This observation can be rephrased as a postulate.
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J7. Onset of an aversive event can suppress new reinforced learning.
J*. Offset of an aversive event can trigger new reinforced learning.

We ask for the minimal change in network design that can realize postulate
(J7). First we note that a change of LTM habit strengths in the pathways from
sensory to motor representations cannot suffice for the following reasons:

(1) Passive extinction. If cell firing is prevented in these pathways for a long time,
then the LTM traces might slowly decay. However, this process takes too long to
prevent postulate (J7) from being violated. Also there exist variations of the LTM
law (17) in which no passive extinction occurs; for example, laws such as

(19) & ot = Ly~ 201 + x)
t

wherein offset of the sampling signal /,4,,; from population v, to v, shuts off the
rate of change dz,,;/dt of the LTM trace z,,;. Even where passive decay is possible,
it can be retarded or reversed if recall trials intermittently occur while the animal
is hungry. Then positive incentive motivational feedback can fire the sampling
cells and thereby refresh, or restore, suprathreshold LTM levels via post-tetanic
potentiation (Grossberg, 1969c¢).

(2) Interfering habit. Another possible way to disrupt the habit strength LTM
traces is to suppose that the aversive event (e.g., shock) directly generates a motor
command at the motor representations which interferes with the command read-
out via the habit strengths. As the cue representations sample this new command,
their habit strengths can encode it in LTM, rather than the previous consum-
matory command.

This mechanism also suffers from severe flaws. First, the network cannot learn
specific avoidance tasks, since the shock stimulus rather than a specific avoidance
response maintains the new motor command. Second, the network remains con-
ditioned to the old drive representation, say a hunger representation. It can thus
indulge in autonomic preparations for eating without being able to eat. Finally,
the network remains maladaptively fearless, since only positive consummatory
drives are conditional to external cues. The fearful meaning of the aversive event
is nowhere represented in the network.

A mechanism is needed which can rapidly react to an aversive cue; viz., an
STM mechanism. Since fast changes in motor commands do not suffice, we must
consider fast changes due to the cue and drive properties of aversive events. These
STM changes must be capable of driving slower LTM changes in conditioned
reinforcer and incentive motivational pathways that can encode adaptive behavioral
modifications. : '

The minimal drive property of an aversive -event will now be introduced
(Grossberg, 1972b,¢). Let shock create an input at its own drive representation
;. Let this input be a monotone increasing function of shock intensity. Suppose
that 9, can elicit signals which inhibit the positive incentive motivational outputs
of positive drive representations. Also suppose that cue representations send
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conditional pathways to 9@, as well as to the other drive representations (Figure
20). Six important conclusions follow from this simple construction. (i) An intense

Fig. 20. When a drive representation whose activation is associated with the emotion of fear is
included in the network and given negative incentive motivational properties, it helps to explain
many properties of conditioned emotional responses.

shock can rapidly suppress consummatory behavior by inhibiting the motivating
effects of positive reinforcers. The polyvalent sampling cells are hereby prevented
from firing even when the first stages of their internal representations are firing.
(ii) This suppression does not extinguish the LTM of the habits that are already
encoded in the motor commands. It merely prevents these habits from being read
out by polyvalent cell signals during unappropriate circumstances. (iii) This type
of suppression can occur much faster than passive extinction of LTM traces.
(iv) An intense shock can also prevent new habits from being learned by inhibiting
release of sampling signals from polyvalent cells. (v) If an external cue is present
only when the shock is on, its internal representation can learn a strong LTM
connection to the o/ drive representation even though its polyvalent cells cannot
fire. On later trials, onset of this cue can hereby elicit the suppressive (and emotional)
effects of shock in the absence of shock. The cue hereby becomes a CS* that
elicits a conditioned emotional response (Estes and Skinner, 1941). (vi) If a cue
which has previously been conditioned to a positive motivational source remains
on while shock is on, its LTM trace to the &/, drive representation can grow.
Eventually, the cue’s gated signals to the consummatory and &/, representations
can become approximately equal, or the signal to &/; might even be larger. After
the output from these drive representations compete, the cue’s net motivational
effect on polyvalent sampling cells approaches zero, or a negative value. The cue’s
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ability to motivate consummatory behavior has hereby been extinguished by
competing signals from the &, representation even if it continues to elicit a large
conditioned output from the consummatory drive representation.

32. Antagonistic rebound and learned avoidance

To deal with postulate (J¥), we must again face the rigid law which governs
polyvalent cell firing. When a shock input terminates, the input to &, terminates.
This event eliminates the direct source of suppression due to the shock. When
this happens, the motor command (e.g., the lever press) which terminated the
shock is active in STM, and the sensory feedback cues contingent upon this com-
mand (e.g., looking at the lever) have activated their internal representations. How
can associative links between these active sensory and motor representations be
learned? What motivational source enables the polyvalent cells of the sensory
feedback cues to release sampling signals ? What motivational source is sampled
by the sensory feedback cues to endow them with conditioned reinforcer
properties ?

Our main dilemma is that offset of shock removes a source of negative input
from the polyvalent cells’ motivation. We need more, however, to fire a polyvalent
cell. We need a source of positive motivation that is triggered by the offset of shock.
This positive motivational source must be on only transiently after shock turns off.
If it were on permanently, it could be used to motivate behaviorally irrelevant
sensory-motor associations.

We therefore conclude that another arousal source exists. Speaking heuristically,
this new arousal source supplies the motivational support for learning an avoidance
response. Its activity is correlated with the internally perceived relief that can
occur after offset of a fearful cue under appropriate experimental conditions
(Denny, 1971; Masterson, 1970; Reynierse and Rizley, 1970).

Let us introduce a symmetric notation to highlight the relationship between the
fear and relief representations. Denote by 2;~ the arousal cells that are excited
by termination of shock input at the cells 2;, which we henceforth denote by
2:*. The 2;* cells are ‘on’ cells. They are turned on by shock, and remain on
until shock is turned off. The cells 9, are ‘off’ cells. They are turned on tempo-
rarily by shock termination. On-cells and off-cells are familiar physiological
components (Thompson, 1967, pp. 253, 349). Our theoretical task is to under-
stand well enough how these components are designed to derive quantitative
predictions about them. : :

The on-cells and off-cells are assumed to reciprocally inhibit each other to
generate an incentive motivational output corresponding to fear, or to relief, but
not both simultaneously.

The operation whereby offset of shock can elicit transient relief is called
antagonistic rebound. The classical notion that instrumental reinforcement is due
to drive reduction when shock terminates is replaced by rebound from negative-
incentive motivational on-cells to positive-incentive motivational off-cells.
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Similarly, offset of a positive-incentive motivational on-cell can generate a negative-
incentive motivational off-rebound, as when a food source is suddenly withdrawn,
even if no reduction of hunger drive has occurred.

At this point, we are very close to understanding the gared dipole mechanism
on which all the more advanced properties of reinforcement, motivation, and
expectational processes of the theory depend. This and the next section will
sketch a few qualitative properties of the rebound concept which need no mathe-
matics to be understood, and will motivate the derivation of the gated dipole
theory.

The network must be expanded once again to aliow cues to become conditioned
to the new arousal source (Figure 21). Thus each sensory representation now sends

Fig. 21. A gated dipole in which fear and relief drive representations compete helps to explain
various data about the balance between positive and negative reinforcement and extinction.

pathways (axons) to 9;~ as well as 9," and other arousal sources, such as the
hunger representation Z,. At any time, the synaptic knobs of each cue representa-
tion encode in their LTM traces a spatial pattern which represents a weighted
average through time of all the motivational activities that the representation
sampled while it was active. The net motivational output to polyvalent cells is
determined by the inputs from all drive and cue representations. Even if half the
cues send large conditioned signals to &,~, no positive incentive will ge generated
if the other half of the cues send equally large conditioned cues to 9;*. The
competition between drive representations will annihilate these large inputs before
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an output can be elicited. Similarly, shock termination yields little relief via
antagonistic rebound if it is accompanied by onset of a conditioned aversive cue,
as in a two-way shuttle box. Even shock termination is not necessarily rewarding
in all environmental contexts. For the purpose of deriving the rebound mechanism,
the section considers the simple case wherein a single aversive cue is turned on and
off through time.

33. Slowly accumulating transmitter gates in tonically aroused competing
channels cause antagonistic rebound

The heuristic argument leading to the dipole theory can be divided into eight
steps.

(1) Existence of a tonic input. When shock terminates, the relief center D~
can emit a transient output. What input energizes this output? Offset of a shock
input merely removes input activity. Some other input source must energize the
relief rebound.

Since shock offset is the only change in external input, the input that energizes
relief must be internally generated. Terminating shock somehow unmasks the
effects of this internal input. The internal input to 9" is therefore not turned
on or off by shock offset. It is also not turned off by shock onset, since then it
would always be off. The internal input is therefore on throughout the learning
experiment. It is a fonic input. ’

(2) Existence of accumulation—depletion. Output from the relief center is always
transient. How is this accomplished? No externally driven input is available to
accomplish this. The relief output is somehow depleted by its own activity. In
other words, when shock is on, an accumulation process occurs in the relief
center. After shock is turned off, the relief output is an increasing function of the
amount accumulated at each time. This amount is gradually depleted until the
relief output shuts off.

(3) Competition between fear and relief. We suppose that at most one of the
outputs from 9, to P,” is nonzero at any time. In other words, either fear or
relief, but not both, can be experienced by the network at a given time. Thus the
final state of processing in @, and 9,~, before incentive motivational outputs
are generated, is due to competition, or mutual inhibition, of the 2" and 9,
signals.

(4) Existence of nonspecific accumulation—depletion in both channels. When shock
is off for a long time, outputs from both 2" and @,  are zero. Thus the
accumulation process at 9,~, driven by its tonic input, is balanced by a process
going on at 2,*. The simplest idea is that a parallel process of accumulation—
depletion, driven by its own tonic input that equals the 9,~ tonic input, takes
place in the fear channel. In particular, the tonic input is delivered nonspecifically
to both channels. It is therefore called a nonspecific arousal input. When shock is
turned on, the shock input summates with the tonic input in the fear channel.
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(5) The rebound is slow. It lasts at least seconds rather than milliseconds. It is a
slow process compared to the fluctuation rates of cell potentials in response to
input changes. After shock terminates, neither the fear nor the relief channel
receives an externally driven input. Without an additional mechanism at work,
their outputs would rapidly equalize, but they do not. Thus there exists a process
slower than potential fluctuations that can bias output from 2;* and 2;” in
favor of @, after shock terminates.

(6) Both fear and relief are increasing functions of shock duration and intensity.
Both increasing duration (Annau and Kamin, 1961; Boe, 1966; Borozci et al.,
1964; Church et al., 1967; Keehn, 1963; Strouthes, 1965) and intensity (Annau
and Kamin, 1961; Boren et al., 1959; D’Amato et al., 1967; Huff et al., 1967,
Johnson and Church, 1965; Kamin et al., 1963; Martin and Reiss, 1969; Reiss,
1970) can influence the strength of conditioned emotional responses and con-
ditioned avoidance responses. These results suggest that both channels contain
slowly varying processes which parametrically depend on shock intensity and
duration when shock is on, and which counterbalance each other when shock is
off for long intervals.

(7) The relative balance of accumulation is changed by shock. What causes the
relief rebound to shut itself off? Is complete depletion of the accumulated product
at 2, responsible for this property? Were this the case, then the tonic input
alone could deplete 2", since it is the only input to 2;~. By symmetry, during
shock, the shock input plus the tonic input could surely deplete 2,~. This does
not occur, however, since the fear reaction is maintained by a long shock. A
weaker conclusion is therefore necessary. Shock shifts the relative balance of
accumulation in the two channels by depleting the fear channel more than the
relief channel.

(8) Signal size is a joint function of input size and amount accumulated. This
observation is crucial. During a relief rebound, both 2;* and 2, receive equal
arousal inputs which ultimately balance the amounts accumulated at 2,* and
92", and thereby shut off incentive outputs. Before this can happen, 2, output
exceeds Z,* output because 2, accumulation exceeds 2;* accumulation. In
other words, given a fixed input size (the equal arousal inputs to 2;* and 9,7),
output is an increasing function of amount accumulated. This is true in each of the
two channels.

When shock is on, increasing shock intensity increases 2, output, since it
causes an increase in fear. Increasing shock intensity also decreases the amount
accumulated at 9,*; this is the basis of rebound at 2,~ when shock is turned
off. Thus output is not a function of accumulation level alone, since then increasing
shock intensity would have decreased 2, output by decreasing the amount
accumulated at 2,*. Output size is a joint function of input size (a fast variable)
and accumulation level (a slow variable). -

These arguments are sufficiently constraining to be capable of reducing our
theory to rubble. When they were first made in Grossberg (1972c), however, it
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was already apparent that the theory could quantitatively realize their demands
with no difficulty. This was because the necessary laws had already been derived
from associative learning postulates in Grossberg (1968, 1969¢). For completeness,
I review the simplest version of the transmitter gating rules that are needed to
understand gated dipole dynamics. More complete derivations and analyses of
these laws are found in Grossberg (1980q, 19814, 19824).

The simplest law whereby a chemical transmitter z gates an input signal S to
yield an output signal T is

(20) T=3Sz
where z(¢) obeys an accumulation-depletion law of the form

dz

—=AB —2)—-T.

& = AB —2)
That this law satisfies the basic requirement (8) is easily seen. Simply solve for the
steady-state output T, in response to a conmstant input S =S, by setting
dz[dt = 0 in (21). The steady-state transmitter level z, is

AB
22 =
(22) 2o = 7 TS,
and the output is
ABS,
(23) Ty = Sozo = it ;o.

As desired, z is a slow accumulation—depletion variable which, by (22), decreases
as S, increases; yet the output T increases as S, increases because T is a joint
function of the input S and the accumulation-depletion variable z. When slowly
accumulating transmitter gates that possess these properties are embedded in a
tonically aroused competitive anatomy (Figure 22), properties that rationalize a
large body of data can be derived. When LTM rules such as (17) are clearly
dsitinguished from accumulation-depletion rules such as (21), the theory is led
to a pharmacological interpretation of conditioned reinforcer and motivational
properties in terms of two distinct transmitter systems, whose most probable
interpretation in the light of available data seemed in 1972, and still seems now in
the light of a vastly expanded data base, to describe cholinergic~catecholaminergic
interactions (Butcher, 1978 ; Friedhoff, 1975a,b).

Perhaps the single most surprising dipole property is the fact that a nonspecific
arousal increment which occurs while the on-channel of a gated dipole is active can
cause an antagonistic rebound. This fact was soon realized to mean that a sur-
prising event, by triggering an arousal increment, can disconfirm and thereby
rapidly extinguish the motivational support of a conditioned reinforcer. The same
action of a surprising event can also enhance the rewarding effect of a reward which
occurs on a trial when nonreward is expected. Then the rebound due to the reward’s
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Fig. 22. Two examples of gated dipoles. In (a), the phasic input J and the arousal input I add in
the on-channel, thereby activating the STM trace x,. The arousal input [ also perturbs the STM
trace x; in the off-channel. Consequently, x, > x,. Then x, and x; elicit signals f(x,) and f(x,)
in their respective pathways. Since x; > x; also f(x;) > f(x;). Each signal is gated (multiplied)
by an excitatory transmitter z, or z, (in the square synapses) before the gated signals f(x,)z,
and f(x;)z, activate their target cells. The STM traces xs and x¢ then satisfy xs > x¢. Each
STM trace elicits an excitatory signal down its own pathway and an inhibitory signal to the other
pathway. The net effect after competition takes places is an output from the on-channel. The text
describes how a rapid offset of J triggers an antagonistic rebound that transiently excites the
off-channel. In (), another version of a gated dipole is depicted. Here each excitatory gating path-
way is replaced by a two-stage disinhibitory pathway that is constructed from two successive
inhibitery links. The cells which receive these transmitter signals are assumed to be tonic (intern-
ally and persistently activated). The net effect of an input to the two-stage disinhibitory pathway
is to release its output cell from tonic inhibition and to thereby excite it.

unexpectedness can summate with the unconditional action of the reward, as in
partial reward paradigms. In other words, the gated dipole machinery which
produces a rebound in reaction to offset of a specific cue in classical conditioning
can also produce a rebound in response to nonoccurrence of an expected event in
instrumental conditioning. This property necessitates a major break with drive
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reduction theory, since positive and negative rewards can hereby be manipulated
by changing expectancies and environmental contingencies, even if no change in
drive occurs.

34. Dipole fields in motivational processing by the hippocampal-hypothalamic
axis

Our derivation has led us from the synchronization problem of classical con-
ditioning to the notion of a gated dipole that regulates the balance between on-
cell and off-cell activation in each drive representation. With these facts in hand,
we can achieve a deeper understanding of how to marry the concept of a sensory-
drive heterarchy between several motivational channels (Section 28) with the
concept of a gated dipole within each motivational channel (Section 32). This
marriage leads to the concept of a dipole field, a concept which is also basic in the
design of cortical sensory processing areas (Grossberg, 19765, 1980a). To reach
this concept, I state postulate (J*) in somewhat more general terms as a distinct
postulate.

K. Offset of a conditioned reinforcer can have reinforcing properties of
opposite sign.

This postulate implies that the dipole geometry is recurrent, or a feedback
geometry. This is because the conditionable LTM pathways of conditioned
reinforcing cues end after each dipole’s transmitter gating stage, so they can
learn both the on-reactions and the off-reactions of the dipole. These LTM path-
ways also end before each dipole’s transmitter gating stage, so their offset can elicit
an antagonistic rebound, as postulate (K) requires. In order for these pathways to
end both before and after the transmitter gating stage, the dipole pathways must
close upon themselves in positive feedback loops. Moreover, since the on-cells and
off-cells in each dipole compete, these feedback loops are part of a recurrent on-
center off-surround network. Otherwise expressed, this feedback construction
endows offset of conditioned reinforcing cues with secondary conditioning pro-
perties.

The competitive feedback anatomy also enjoys several other important pro-
perties, such as its ability to defend its operating level against small input fluctu-
ations, thereby guaranteeing a stable motivational baseline, and to control sharp
motivational switching between incompatible motivational alternatives. From a
general information-processing point of view, these properties are at least as basic
as the secondary conditioning property of postulate (K). What is important for
our present purposes is to realize that a connection exists between secondary
conditioning and these other properties. Also postulate (K) was the concept which
originally forced my realization that feedback competitive networks play an impor-
tant role’ in motivational processing (Grossberg, 1972¢), and it is an accessible
property whereby to instruct students who are familiar with reinforcement but-
unfamiliar with cognitive processing or psychophysiology.

Several general properties of competitive feedback networks are so basic for
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our present needs that I will review them here (Grossberg, 1973, 1975, 1980a).
The feedback channels excite themselves and inhibit each other. Due to the
positive feedback loops, there exists the danger that the network will amplify
small noise levels into large activities and thereby flood itself with noise. Noise
amplification is prevented if the feedback signals are sigmoid, or S-shaped, func-
tions of cell activity; in particular, if spiking frequency is a sigmoid function of
cell potential. The faster-than-linear growth of the sigmoid signal at small activity
levels guarantees noise suppression; for example, a signal function f(w) that behaves
like a power aw" (@ > 0, n > 1) at small values of the activity w is faster-than-
linear at these activities.

The sigmoid signal also guarantees that the network behaves like a tunable
filter. In other words, there exists a quenching threshold (QT) that must be exceeded
by a cell’s activity before the positive feedback signals can effectively maintain
activity in its loop. If some combination of drive, arousal, and conditioned re-
inforcer input exceeds the QT and wins the motivational competition, then feed-
back signalling can amplify the activity in the winning drive representation as it
competitively suppresses other drive representations until a prescribed operating
level is attained and maintained through time. I identify this maintenance property
with short-term memory (STM) storage in the motivational processor. Mechanisms
which maintain a proper balance between the size of the QT and of arousal inputs,
drive inputs, and incentive inputs are clearly of the greatest importance for
achieving proper operating characteristics within a dipole field.

Figure 23 depicts a network that marries together these several processing
constraints. This is not the only possibility in vivo, but my discussion will attempt
to be sufficiently principled to abet recognition of thematic variation across species.
Figure 23 builds up a dipole field in which a sensory-drive heterarchy exists
between motivational channels, gated dipoles exist within motivational channels,
LTM conditioning of a conditioned reinforcer pathway is driven by positive feed-
back within its motivational channel, and the polyvalent cells are activated by a
two-stage disinhibitory reaction to drive and arousal inputs (Figure 22b). In
Figure 23, pathways 1 and 2 correspond to specific, but complementary, drive
inputs within a single dipole. Pathways labelled 3 carry the arousal signals to this
dipole. Cells 4 and 5 receive these inputs and thereupon inhibit the tonically
active cells 6 and 7. All tonically active cells have open symbols; phasically active
cells have closed symbols. The pathways 4 - 6 and 5 - 7 are assumed to contain
slow transmitter gates (square synapses; catecholaminergic?). If input 1 exceeds
input 2, then the transmitter in pathway 4 - 6 is depleted more than the trans-
mitter in pathway 5 — 7, thereby calibrating the dipole for a possible antagonistic
rebound later on. : :

The tonic cells 6 and 7 equally inhibit each other until input 1 exceeds input 2.
Then cell 6 is inhibited more than cell 7. This has the net effect of disinhibiting
polyvalent cell 8 and further inhibiting polyvalent cell 9. Due to the polyvalent
nature of cells 8 and 9, these events are insufficient to fire cell 8, but if the inhibition
from cell 7 to cell 9 is sufficiently large, then it can prevent cell 9 from firing at all.
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Fig. 23, A dipole field of drive representations whose conditioning, motivational, and anatomical
implications are summarized in the text.

We therefore resttict our next comments to cell 8 and its competitors. Apart from
the feedback between cells 6 and 7, all of our remarks to this point discuss feed-
forward mechanisms. The competition between 6 and 7 could also be made feed-
forward by adding some more interneurons to the network. Our next remarks are
concerned with feedback properties of the network.
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Cells 8 and 10 are the polyvalent cells of two different motivational channels
whose drive inputs constitute on-signals, or consummatory signals. These cells
receive input not only from their respective dipoles but also from conditioned
reinforcing cues along LTM pathways such as 11 and 12 (cholinergic?). These
conditioned reinforcer inputs combine with drive inputs at their respective poly-
valent cells, which thereupon begin to generate outputs if their thresholds are
exceeded. At this stage, the several polyvalent cells compete among themselves
via the ‘intrinsic’ feedback inhibitory pathways 13 (GABA ? See Siegel et al., 1976),
as they simultaneously try to excite themselves via positive feedback pathways.
For example, cell 8 excites itself along the positive feedback pathway 8 ~4—6—8.
The winner of this sensory-drive heterarchical competition has its activity stored
in STM. Suppose for definiteness that the winner is cell 8. Now several things
happen.

First, the positive feedback pathway 8 - 4 — 6 — 8 substantially depletes the
transmitter gate in pathway 4 - 6. Hence gfter a motivational decision has been
made, a fixed increment in arousal can cause a much larger rebound within a
dipole than before a motivational decision has been made. This formal property
can be used to experimentally test whether a transmitter gate occurs within a
particular network’s positive feedback loop. Second, the positive feedback ampli-
fies the activity of cell 8 to the point where active LTM pathways (e.g., [ 1) abutting
on cell 8 can be conditioned. This amplification of cell 8’s activity might manifest
itself in vivo as sustained bursting behavior of this polyvalent cell. Within this
network, only the outcome of sensory-drive heterarchical competition can drive
LTM changes. Subliminal shifts in the pattern of dipole inputs can have, at best,
a small effect on LTM.

35. Some pharmacological and physiological correlates of motivational dipole
fields '

Some of the circuitry of Figure 23 can be used to explain the following psycho-
pharmacological data, which are admirably reviewed by Olds (1977, pp. 59-75).
Chlorpromazine and reserpine deplete amine stores. This is analogous to depleting
the transmitter in the gating synapses of pathways 4 —~ 6 and 5 — 7. In vivo this
manipulation depresses behavior. In Figure 23, it disinhibits the tonic inhibition
of the polyvalent cells, and makes it harder for the polyvalent cells to fire. When
these drugs are combined with monoamine oxidase inhibitors (MAOI), then the
amines are released but they remain undegraded. This produces a lot of extra free
amines. This operation would inhibit the tonic inhibitory interneurons in Figure 23.
In vivo this manipulation abets self-stimulation, as it also would in Figure 23 by
making it easier for the polyvalent cells to fire and thus for conditioned reinforcer
pathways of lever press cues to get conditioned.

Amphetamines release amines and prevent their reuptake, so they act like
releasers and MAOI taken together. Amphetamine can also abet self-stimulation
behavior. More interestingly, amphetamines can augment slow behavior and
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depress fast behavior. In small doses, amphetamine can facilitate eating, but in
larger doses it can suppress eating. Such effects can be explained as an inverted U
in gated dipole responsiveness when its net arousal level is parametrically increased
(Grossberg, 1972¢, 19814, 1982a-—Appendix A).

Even the highly schematic dipole field in Figure 23 requires a considerable
amount of neural circuitry to carry out the competitive interactions within each
dipole and between subsets of dipoles, and to deliver positive feedback signals
back to the appropriate channels. A nice feature of these circuits is that simple
growth rules can be suggested whereby such circuits might develop. For example,
conditioned reinforcer pathways grow to polyvalent cells, dipole inhibitory inter-
neurons grow among tonic cells, drive and arousal pathways grow to gating cells,
and feedback inhibitory interneurons grow among polyvalent cells. In other words,
simple chemical labels and a certain degree of symmetry in the initial network
geometry can go a long way towards explaining the developmental feasibility of
these circuits.

Various data suggest. that these formal circuits are analogous to the neural
circuits joining the hypothalamus, septum, amygdala, and hippocampus (Bridge
and Hatton, 1973; De France, 1976; Haymaker et al., 1969; MacLean, 1970;
Olds, 1977). I have elsewhere suggested that the dipole computations are related
to reciprocal hypothalamic interactions, notably between lateral and ventro-
medial hypothalamus; that the polyvalent cells are analogous to hippocampal
pyramidal cells; and that the feedback pathways are analogous to the medial
forebrain bundle (Grossberg, 1972¢, 1975). This interpretation implies that certain
hippocampal pyramidal cells are influenced by both the conditioned reinforcing
properties of signals of cortical origin and the drive properties of signals of hypo-
thalamic origin; that these pyramidal cells compete via recurrent inhibitory inter-
neurons; that the bursting behavior of these pyramidal cells can drive conditioned
changes; and that the output of these pyramidal cells is important for the transfer
of STM into LTM not only directly by driving conditioned reinforcer changes but
also indirectly via the effects of incentive motivational signals on the firing of
cortical polyvalent cells. One might particularly note that self-stimulation is sup-
pressed by either upstream or downstream blockade of the medial forebrain bundle
(Stein, 1958). Of course the formal circuits to not presume to include all the cells
that are needed to conduct business between hypothalamus and hippocampus in
vivo. Nonetheless, the circuits help to explain a surprisingly large body of data,
they illustrate how simple environmental pressures can lead to circuits of the type
found in vivo, and they embody principles of network design which are robust
enough to illuminate significantly more complex circuits.

36. Competition, normalization, and STM among sensory representations

In fact, these same principles can be used to explain a variety of perceptual,
cognitive, and neocortical properties that are presently inexplicable without them.
To quickly show why this is true, I ask the reader to consider the following dilemma.
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Vigorous firing of polyvalent cells in Figure 23 should occur only if sufficiently
large conditioned reinforcer and drive inputs combine to exceed the polyvalent
thresholds. However, different sensory events can excite very different numbers of
cortical feature detectors. If conditioned reinforcer inputs from a simple tone are
enough to fire the polyvalent cell given a simultaneous drive input, what prevents
conditioned reinforcer inputs from billions more cells from firing the cell without
a simultaneous drive input? Even worse, if the latter input isn’t too big, then
won’t the tone input be too small? Clearly the fotal input from these internal
representations must be insensitive to the total number of active cells. Otherwise
expressed, the total suprathreshold activity of the sensory field must be normal-
ized, or conserved. A constraint on the decision rules whereby the sensory-drive
heterarchy maintains its sensitivity to drive and reinforcer inputs hereby leads to
the following postulate about the limited capacity of STM across cue representa-
tions.

L. The total activity across the internal representations of SENsory cues
is regulated.

Postulate (L), just like postulate (K), can be derived from more basic considera-
tions, in this case considerations about how a sensory field can accurately register
patterned data at all (Grossberg, 1980a, Appendices C and D). Postulate (L) has
the virtues of relating a property of sensory fields to a property of motivational
decisions, and of being immediately accessible.

The sensory inputs to the motivational polyvalent cells come from the first
stages {v{?’} at which STM reverberation takes place. Postulate (L) requires that
interactions occur among these representations to prevent their outputs from
increasing linearly with the number of excited sensory cells. These interactions
must be inhibitory to keep the total output from growing without bound. These
negative interactions must be feedback interactions to balance the positive feed-
back that maintains sensory STM. In all, the populations ¥{?’ are joined together
by recurrent on-center off-surround interactions. We are now faced with a question
on whose answer the life of the theory depends: Can competitive feedback inter-
actions regulate the total activity of their network ?

It is most gratifying that the answer is ‘yes’ if the interactions are of shunting

type (which is the type that the membrane equations of neurophysiology obey)
and if the feedback inhibition is of sufficiently long range across the fielc of popula-
tions (Grossberg, 1973, 1980a—Appendix D). This is, moreover, the same formal
property that maintains a steady motivational operating level in the feedback
competitive networks of the sensory-drive heterarchy. I call this formal property
normalization. The need for a normalization property of one sort or another has
long been recognized in psychology. Even Freud writes: ‘The nervous system
endeavors to keep constant something in its functional condition that may be
described as the “sum of excitation”’ (Freud and Breuer, 1959, p. 30). Maintaining
this sum in a competitive network whose shunting interactions approximate

multiplicative rules helps to explain the partial successes of probabilistic models

S
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in studies of coding and memory. However, the probabilistic axioms do not well
match the functional transformations of feedback competitive networks (Grossberg,
1978a). As often occurs in the history of science, an intuitively plausible property
must go through several stages of mathematical explication before it can be cast
in a mechanistic framework that reveals all of its implications.

One of these implications occurs in the competition among the network’s
externa! cue representations no less than in the network’s sensory-drive heterarchy.
A quenching threshold exists if the competitive feedback signals are chosen to be
sigmoid functions of their activity levels. This QT will shortly be seen to be of
major importance in attentional processing, since it helps to regulate which cues
are attended and which are suppressed.

The cells {v{¥} can now also be seen to be the on-cells of a dipole field. Just as
offset of conditioned reinforcer input to a drive representation can trigger an
antagonistic rebound in the complementary drive representation of its gated
dipole, offset of sensory cues must be able to transiently excite off-cells whose
output signals can be used to learn conditioned reactions to the offset event; for
example, to learn to push a lever in response to the offset of a light. Thus the
sensory processor is envisaged to be not merely a shunting competitive feedback
network, but rather a pair of such networks organized as a dipole field. To drive
antagonistic rebounds between the on-cells and off-cells of this field, there must
exist a nonspecific arousal system gated by a slowly varying transmitter (catechol-
aminergic?), as well as specific sensory on-inputs and off-inputs that play the role
in sensory representations which specific drive inputs play in drive representations.

The symmetry of the total network is hereby extended once again to include
dipole fields in both sensory and drive representations. I view the existence of
such dipole fields as a basic principle of cortical architecture, whether it be the
neocortical architecture of sensory representations or the paleocortical architecture
of the hippocampus and its attendant structures.

37. Attention and the persistence paradox of parallel processing

Because of this increased symmetry in the overall network geometry, another
asymmetry now becomes apparent. At the drive representations, both specific
internal inputs (drive inputs) and nonspecific external inputs (conditioned reinforcer
inputs) combine to control which representations will be stored in STM by the
feedback competition. At the sensory representations, this is not yet true. Only
the specific external inputs (external cue inputs) regulate the competitive feedback
at the first stages {v{}'}. The nonspecific internal inputs (incentive motivational
inputs) control only the polyvalent second stages {v{’}, which thus far have been
excluded from the STM competition. Are there pressing psychological reasons,
apart from symmetry considerations, which require us to include the polyvalent
cells in the STM competition? Can the polyvalent cells be included in the STM
feedback exchange without destroying the functional requirements that led us to
distinguish the stages {v{?'} from {»{3} in the first place?
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Fig. 24. Classical conditioning cannot be a passive feedforward process during real behavior.

In (a), S, acts as a CS for S2, whereas S, acts as a CS for S 1. In (b), parallel processing of S,

and S, each previously conditioned to responses R, and R,, would yield cross-conditioning
(dotted lines).

The answer to these questions is ‘yes’. The physiological requirements are
illustrated by the following thought experiment, which shows how disastrous our
associative links could become if classical conditioning were controlled by a feed-
foward network (Grossberg, 1975, 1980q). In Figure 24a two classical conditioning
experiments are depicted, one in which stimulus S, is the UCS for response R,
and S, is its CS, and one in which S, is the UCS for R, and S, is its CS. What
would happen if each cue S; and S, is conditioned to its own response R, or R,,
respectively, before a classical conditioning experiment occurs in which S ; and S,
are alternately scanned? This is the typical situation in real life, where we scan
many cues in parallel, or intermittently, and many of these cues already have their
own associations. If classical conditioning were a passive feedforward process,
then cross-conditioning from §; to R, and from S, to R, would rapidly occur, as
in Figure 245. By contrast, we know from daily experience that the persistence
of learned meanings can endure despite the fact that cues that are processed in
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parallei often control incompatible responses. What feedback mechanisms of our
attentional processor prevent rapid associative short-circuits from occurring?

Stated in a theoretical vacuum, this dilemma does not imply a particular
mechanism, which is one reason why, despite its accessibility to all of us, it is not
often even mentioned as a dilemma. At the present juncture of our theoretical
construction, by contrast, the dilemma leads us to include the polyvalent cells
{#2"} in the STM competition. Before showing why this is so, I summarize this
constraint as postulate (P*), where P* reminds us both of the alliterative aspects
of the section title and of the pathetic consequences of not imposing it.

P*. Persistence of learned meanings during parallel processing of
motivationally imcompatible cues is possible.

Our mechanistic task is to prevent S, from becoming a conditioned reinforcer
of R, and S, from becoming a conditioned reinforcer of R,. Even if §, and S,
are simultaneously scanned, we must prevent their first stages v and v{%,
raspectively, from sending sustained sampling signals to the wrong drive representa-
tion. To achieve this in the present theory, at least three stages of processing are

needed, two of which already exist in the network as it stands:

(1) Whe S, and S, are scanned, v{?’ and v{3' send conditioned reinforcer signals

to the drive representations in order to test which drive channels they control.
This step answers the question: Do S; and S, control incompatible drives?

(2) The sensory-drive heterarchy determines which drive representation is
stronger at each moment.

(3) Somehow {3’ - @ sampling signals are shut off in the weaker channel.

If property (3) can be achieved, then incentive motivational sampling will be
restricted to motivationally compatible cues at each time, and attentional switch-
ing can change the class of sampling cues. How do the first stages {3’} know
which drive representation is stronger at any time? Feedback from drive repre-
sentations to sensory representations is necessary to achieve .this property. By
Section 25 the incentive motivational feedback from the drive representations 2
to the second stages {v{3'} is conditionable. Hence only these second stages which
are compatible with the winning drive representation will receive strong feedback.
Postulate (P*) now suggests that when these polyvalent cells {v{3} fire, they send
positive feedback to their respective first stages {v{?'}. In all, the incentive motiva-
tional feedback from 2, will excite only ¥{?' (i =1,2). If 2, is the winner, the STM
activity of {3’ will hereby be amplified. How does this amplification rapidly
inhibit v$3’ to prevent it from sampling 2, in a sustained fashion?

The answer is obvious due to the fact that the total activity of the first stages is
normalized by the competition for STM activity which takes place among the
external cue representations (Section 36). Increasing the STM activity of v{¥
automatically decreases the STM activity of v4%' via the competitive feedback
between these representations. This competitive feedback can, moreover, totally

suppress v53' if it drives its activity below the quenching threshold.
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Fig. 25. Suppose that a set of nodes, or cells, in the dipole field is activated by an external scene.
A pattern of STM activity across the nodes represents the scene. Each such node sends an
excitatory signal to its polyvalent node, or cell. Signal size is an increasing function of STM
activity. These specific signals are insufficient to fire the polyvalent cells. Sufficiently large incentive
motivational signals from a drive representation must simultaneously converge upon the poly-
valent cells to fire them.
The incentive motivational pathways are conditionable. A drive representation will therefore
preferentially activate those polyvalent cells whose cues were paired with this drive representation
in the past. The drive representation can hereby fire a subset of the polyvalent cells which are
activated by the external scene, The relative rate of firing of each polyvalent cell will depend jointly
on the STM activity of its trigger cues in the scene and on the relative size of its LTM trace in the
conditioned reinforcer pathway. When a polyvalent cell fires, it delivers positive feedback signals
to the cue-activated cells which supply it with specific STM signals. This positive feedback from
polyvalent cells selectively augments the STM activities of certain cue-activated cells, which
thereupon can more strongly inhibit the STM of other representations in the dipole field using
the STM normalization property. The incentive motivational properties of certain cues hereby

alter the set of cues to which the network pays attention. The polyvalent cells which can maintain
their firing can also read out learned patterns (e.g., motor commands) to other parts of the network.
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The minimal solution to the dilemma imposed by postulate (P*) is depicted in
Figure 25. In Figure 25, the polyvalent cells are part of the STM competition, but
they do not fire unless they receive incentive motivational signals, so that we have
not destroyed the functional constraint that forced us to distinguish the cells
{v{2} from {v{3’} in the first place. This construction was used in Grossberg (1975)
to explain a variety of data about attention and discrimination learning. A more
recent body of data are discussed using these mechanisms in Grossberg (1982b).

38. Sensory incentive versus motor incentive: the hippocampus as
a cognitive map

To abet a fuller understanding of Figure 25, I should review a distinction from
the Grossberg (1975) article which has recently been partially confirmed by data
suggesting that the hippocampus is a cognitive map (O’Keefe and Nadel, 1978). In
its strongest form, the O’Keefe and Nadel hypothesis claims an absolute spatial
map of an animal’s world in which place unit cells code where an animal is located
within this map at any time. This view contrasts with data which describe the
occurrence of classical conditioning at hippocampal pyramid cells using the rabbit
nictitating membrane paradigm (Berger and Thompson, 1978). These latter data
can be interpreted as LTM changes within conditioned reinforcer pathways at the
polyvalent cells of the sensory-drive heterarchy. Various data summarized by
O’Keefe and Nadel (1978) can also be interpreted using the sensory-drive hete-
rarchy. These data probe the effects which unexpected events have on consum-
matory activity. Within the sensory-drive- heterarchy, an unexpected event can
rapidly terminate consummatory activity and release a complementary mode of
orienting activity by causing antagonistic rebound of the consummatory activity’s
motivational source. For example, hippocampectomized rats do not orient to a
novel stimulus while they are indulging in a consummatory activity, such as run-
ning towards a reward. They cannot ‘shift attention during the presentation of a
novel stimulus or in a mismatch situation’ (O’Keefe and Nadel, 1978, p. 250).
This type of effect can be qualitatively understood in the theory as it stands.

Various data concerning the manner in which animals explore an environment
until they learn its spatial relationships cannot be understood unless we advance
the theory further. This deficiency holds even though their notion of an absolute
spatial map can be severely criticized on philosophical, no less than scientific,
grounds. A weaker notion cannot, however, be so easily criticized; namely, that
of a bilaterally organized motor map of approach and avoidance gradients which
are built up from signal patterns that are biased by motivationally excitatory and
inhibitory conditioned pathways. I shall now indicate how such a view is sug-
gested by postulate (P*). o

The mechanism which solves postulate (P*) works if the feedback from drive
representations to sensory representations is positive. The case of drives, such as
fear and frustration, which have a negative motivational sign requires further
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argument. In other words, we have not yet exploited the dipole structure of the
sensory-drive heterarchy.

The problem is this. If the conditioned feedback from a negative drive represen-
tations to sensory representations were negative, then it would differentially
suppress activity in the corresponding sensory representations, rather than
enhance their activity, in violation of postulate (P*). Increasing the learned fear-
fulness of a given cue, in a fixed context of other cues, would hereby decrease the
attention paid to it. This would be a most maladaptive property. Moreover, fearful
cues could not overshadow or block learning in response to other cues, which is
false (Kamin, 1968, 1969).

Hence a distinction must be made between channels which regulate learned
persistence of negative meanings and channels which carry negative incentive
motivation (Figure 26). The former channels help to focus attention on meaningful
cues. Whether these cues have a positive or a negative meaning, the feedback which
they control is positive. As a consequence, sensory attention can be differentially
focused on these cues as they become more meaningful. The latter channels have
a motor significance. They help to control approach of positive cues and avoidance
of negative cues.

This distinction suggests that the output from the sensory-drive heterarchy
bifurcates. One pathway carries conditionable feedback signals to sensory cortical
representations. These feedback signals are analogous to the contingent negative
variation (Section 25). The other pathway carries motivational signs to a field of
sensory representations which lies further downstream in the network. The motiva-
tional signs differentially weight the activities of their respective cue representations,
with positive signs having an excitatory effect and negative signs an inhibitory
effect. These differentially weighted cue representations then project to a bilaterally
organized motor map, wherein the bilateral asymmetry of the map’s activity
pattern at any time controls the network’s approach and avoidance tendencies at
this time. I suggest that the O’Keefe and Nadel (1978) data on place learning are
probing properties of this latter pathway,

39. Expectancy matching and attentional reset: unblocking and dishabituation

The introduction of dipole field structure into the sensory representations
propels our motivational theory deeper into the realm of perceptual and cognitive
theory, and indeed no mature motivational theory can entirely avoid discussion of
cognitive influences. For the sake of completeness, I will briefly review how the
mismatch of feedback expectancies with feedforward data patterns can reset a
dipole field by triggering an increment in its nonspecific arousal level. I will also
indicate how the same arousal increment which causes antagonistic rebounds in
dipoles that have previously been very active can simultaneously enhance the on-
reactions of dipoles that have previously been only weakly active and of the novel
cues that caused the arousal increment. In other words, expectancy mismatch due
to an unexpected event can disconfirm previously active representations as it



357 A psychophysiological theory of reinforcement

STM
COMPETITION

la)

-+
ATTENTIONAL
FEEDBACK

+

MOTOR
INCENTIVE

1]

Fig. 26. In (a), positive feedback from v{3’ to v{}’ can be used to selectively enhance sensory

representations which are compatible with a- given incentive, and thereby to indirectly over-

shadow other sensory representations via the STM competition. In (), the positive attentional

feedback pathway is distinguished from the positive or negative pathway which assigns emotional
signs to a cue-modulated motor map.

enhances previously suppressed and newly activated representations. I will not
discuss how the internal representations which release the feedback expectancies
are encoded, and how once encoded they can learn the proper feedback expectancy.
For these discussions, the reader might consult Grossberg (1972a, 1976a,b, 19785,
1980a). )

The expectancy-matching mechanism is an automatic property of certain feed-
back competitive networks. When such a network is designed to suppress uniform
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Fig. 27. In (a), a uniform pattern of inputs /, is transformed into a zero pattern of activities X;.

In (b), two mismatched patterns add to generate an approximately uniform total input pattern,

which will be suppressed by the mechanism of (a). In (c), two matched patterns add to yield a

total input pattern that can elicit more vigorous activation than either input pattern taken
separately.

patterns (Figure 274), a sum of two mismatched input patterns will also be sup-
pressed, since the peaks and troughs of one pattern will tend to correspond to the
troughs and peaks of the other pattern, respectively (Figure 27b). By contrast,
such a network reacts to two matched patterns by amplifying its activities (Figure
27¢). These properties are due to automatic gain control by the inhibitory feed-
back signals. They are reviewed in Grossberg (19802, Appendix C). In the present
theory, these feedback competitive networks are in the on-cell subfield and off-cell
subfield of each dipole field.

The expectancy mismatch mechanism is illustrated in Figure 28. In Figure 28,
an afferent data pattern elicits activity across a competitive network #!) as it
also activates a nonspecific arousal source &#. The activity within #V) rapidly
inhibits the arousal source. The pattern across #!) then elicits signals to the next
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Fig. 28. In (a), afferent data elicit activity across % ‘!’ and an input to the arousal source & that

is inhibited by #*’. In (b), the pattern at & ) maintains inhibition of & as it is filtered and

activates @, In (c), the feedback expectancy from F‘® is matched against the pattern at

F N, In (d), mismatch attenuates activity across & " and thereby disinhibits =/ , which releases
a nonspecific arousal signal to F @,

stage #® of network processing. These signals act like an adaptive filter. The
patterned output of this filter is contrast enhanced and normalized as it is read
into STM at #», This STM pattern, in turn, reads out a learned feedback tem-
plate or expectancy to #(1), If the expectancy mismatches the afferent data pattern
at FW, then activity across £ is inhibited, whereupon the arousal source & is
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disinhibited. A pulse of arousal is hereby released and rapidly resets the filtered
chunks which were active in STM across &), The two successive stages F!
and F@ of pattern processing are part of the network’s artentional subsystem.
The arousal channel is part of the network’s orienting subsystem. The inhibitory
link between the two subsystems illustrates the complementary relationship
between attentional and orienting reactions (Grossberg, 1975, 19824,b).

Why the arousal pulse can rebound very active dipoles and enhance the on-
reactions of weakly active dipoles can only be understood by mathematically
analyzing gated dipole dynamics, as in Grossberg (19824, Appendix A). Such an
analysis indicates how a suitably chosen sigmoid signal function can determine
the minimal arousal increment g(/,J) which can rebound a dipole whose net
arousal level is 7 and whose specific input in its on-channel exceeds / by J. One
finds that

— I+ 0) + A+ )P4+ T+ TP
2+ J

Function g(Z,J) is a decreasing function of J. In other words, a fixed arousal
increment AZ can more easily rebound dipoles which have large prior on-reactions
J than dipoles with small prior on-reactions J. If Al > g(I,J), a rebound occurs.
If AI < g(I,J), an enhanced on-reaction occurs. By (24),

gJ) =

gl,0) = 4l™!
whereas
(26) g, o) = (4 + IH* — T
Consequently g(,00) can equal any fraction 1/n < % of g(1,0), viz.,
1
27 g(l,0) = - £(1,0),
if

A
(28) I = /;(;_—2).

In other words, g(/,J)) can decrease to an arbitrarily small fraction of its maximal
value g(1,0) as J increases. This means that the mechanism whereby a fixed AJ
can differentially trigger antagonistic rebound or an enhanced on-reaction is
robust. Interestingly, the size of / determines how big this effect can be, since (28)
shows that the relative effect increases as I decreases. One can also readily check
that the on-reaction of a dipole is also enhanced if a specific input J accompanies
an increment A/ in arousal just so long as the total input remains in the faster-
than-linear part of the signal function f(w). This property helps to explain the
enhanced STM storage of a novel event.

The remainder of this section indicates that the attentional and orienting
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mechanisms depicted in Figure 28 need not be housed in physically disjoint net-
works. They can be diffusely interspersed among one another, much as the visual
cortical projections of retinal X-cells and Y-cells mutually interpenetrate
{Breitmeyer, 1980: Robson, 1975). I offer this example not to exhaust the pos-
sibilities, but to stimulate further study of this question.

Figure 29 depicts one possible network realization of this type. The dotted
lines 1 described a nonspecific arousal pathway which terminates at the specific

v A

,/ON- OFF -
/” SUBFIELD SUBFIELD \

R N

Fig, 29. This figure depicts an anatomy in which selective reset of local groups of cells can be
achieved until the entire tissue can achieve resonance. The text describes the network’s operation
step by step.
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on-cell and off-cell of the depicted dipole. Pathway 2 is the specific on-cell input
to the on-cell 3. The remainder of the figure through cell 6 depicts a standard
dipole geometry. 1 have made the transmitter gate 4 excitatory to avoid making
the figure unnecessarily complicated. Stage 6 sends inputs into the feedback
anatomy of the network. The positive feedback loop 6 « 7 is the recurrent on-
center corresponding to the dipole's on-cell axis. Looking along the axis of the
on-subfield, one sees negative feedback pathways, such as 8, to the on-channels of
other dipoles, such as cell 9. This competitive feedback nework will compute
pattern matches.

The new additions to the network are the arousal cells, such as 10, which are
interspersed among the feedback interneurons. All of the interneurons such as
7,9, and 10 would be considered part of ‘intrinsic’ feedback circuits if they were
observed in cortical tissue. Cell 10 receives a positive input from cell 6 justascell 7
does. What is different is that cell 7 inhibits cell 10, as do all the continguous
dipole-related cells. The inhibitory link 7 — 10 prevents cell 10 from firing when
cell 7 is on, just as in Figure 23.

A pattern of feedback expectancy signals is also delivered to cells such as 7
and 9. If this feedback pattern matches the feedforward data pattern across the
dipole on-cells, then inhibition of cell 10 is maintained as the network resonates
the feedback template pattern. If a mismatch occurs, then cell 7 is inhibited, but
cell 6 is not. In other words, interneurons such as 7 and 9 form a matching inter-
face. Cell 10 is hereby disinhibited and elicits an arousal burst to the next processing
stage. An interesting feature of this construction is that the arousal can be dis-
tributed among local groups of cells. One need not reset the whole tissue due to a
mismatch in just one of its spatial channels. Local readjustments of templates
with data can occur until the entire tissue can achieve resonance. Otherwise
expressed, these local arousal sources can cause readjustments in system coding
and tuning on a channel-by-channel basis, and can thereby bias the processing in
contiguous channels until the entire tissue achieves resonance.

40. Concluding remarks

This article illustrates how a real-time analysis of an individual’s adaptive
moment-by-moment behavior in prescribed environments can disclose network
principles and mechanisms that admit a physiological and pharmacological
interpretation. Each of these principles leads to a class of mathematical design
problems, each of these problems can be solved, and in the light of the solutions,
an interdisciplinary restructuring and unification of the data is implied in terms of
design principles and mechanisms rather than the vicissitudes of experimental
methodology or historical accident. This article has focused on the designs which
are forced by the synchronization problem and the persistence paradox, and has
used these designs to explicate the ideas contained in various classical theories and
data. Related articles in this series (Grossberg, 1981a, 1982a,b) have used similar
ideas to explain a wide variety of recent interdisciplinary data and have suggested
interdisciplinary experiments to independently cross-check these ideas.
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