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Abstract-A set of nonlinear differential equations that describe 
the dynamics of the ARTl model are presented, along with the 
motivation for their use. These equations are extensions of those 
developed by Carpenter and Grossberg [l]. It is shown how these 
differential equations allow the ARTl model to be realized as a 
collective nonlinear dynamical system. Specifically, we present an 
ART1-based neural network model whose description requires 
no external control features. That is, the dynamics of the model 
are completely determined by the set of coupled differential 
equations that comprise the model. It is shown analytically 
how the parameters of this model can be selected so as to 
guarantee a behavior equivalent to that of ARTl in both fast 
and slow learning scenarios. Simulations are performed in which 
the trajectories of node and weight activities are determined using 
numerical approximation techniques. 

I. IN~ODUCTION 

HE ARTl neural network model is a self-organizing T architecture capable of learning recognition categories 
of complex binary input pattems. The behavior of the ARTl 
network is effectively described in [ l ,  sections 3-61. Further- 
more, many of the features of the ARTl model are specified 
via a set of nonlinear differential equations [ l ,  section 121. It 
should be noted that a number of mechanisms in the original 
ARTl model-such as the reset mechanism, and the resetting 
of node activities to zero prior to a pattem presentation-are 
only qualitatively described in [ 11. The focus of our work is to 
provide a nonlinear dynamical system model that completely 
captures all aspects of the behavior of the ARTl network. 
For the sake of convenience we will refer to the dynamical 
system model presented here as the augmented ARTl network 
(AART1-NN), as opposed to the ARTl network (ART1-NN) 
presented in [l].' 

There are a number of advantages offered by the dynamical 
system model described here. First, it is intuitively pleasing 
to provide a complete mathematical description of the ARTl 
model. After all, this model is more than just a pattem 
clustering technique-it is a neural network architecture, with 
appropriate interconnections and describing equations, which 
as a whole exhibits pattem clustering capabilities. Second, the 
analysis of dynamical systems is a well understood and rich 
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'In Hirsch's classification scheme [2], the AART1-NN is classified as a 

dynamical system in the Cartesian product of the weight space and the node 
activation space. This is due to the fact that the weights in this network are 
adapted concurrently with the activation dynamics of the nodes. 

area as witnessed by the recent growth in the sciences of chaos 
and nonlinear physics [3], [4]. A dynamical system setting, 
where a neural network is allowed to follow a trajectory set 
by the initial conditions and the external inputs, is a natural 
medium for studying the stability, structure, and capabilities 
of a network [5]. Moreover, such a setting allows us to 
generalize a particular network structure (e.g., the ARTl 
model) in order to obtain those generic properties satisfied by 
the network. For example, using a dynamical system setting, 
Kosko was able to prove the general BAM theorems [5], and 
we were able to use the concept of gradient systems 161 in 
order to generalize the structure and update rules of an on- 
center-off-surround network that is a simplified version of 
the dynamical system presented here [7]. Finally, a complete 
dynamical system description of the ARTl model facilitates 
its implementation in hardware. A circuit that implements the 
system of equations describing the ARTl model presented here 
utilizing analog electronic components has been successfully 
designed and verified using the PSpice circuit simulator [8], 

To put this dynamical system model of ART1 into per- 
spective, it is useful to consider some related work. There 
has been much interest in reformulating the popular back- 
propagation algorithm using the dynamical system framework 
discussed above. For example, Pineda presented a backprop- 
agation technique for exploiting the dynamics of a general 
class of neurodynamical systems [lo], Williams proposed a 
leaming algorithm for a continually running fully recurrent 
network [ 111, and Narendra and Parthasarathy discussed dy- 
namic back-propagation as applied to recurrent networks [ 121. 
In the area of adaptive resonance networks, the ART2 network 
[ 131-which is used to classify analog input patterns-has 
been extended so as to allow a complete description of the 
model as a dynamical system [14]. 

The organization of the paper is as follows. In Section I1 de- 
scriptions of the architecture, network equations, and operation 
of the ARTl neural network (ARTl-NN) are provided. This 
review leads to a presentation in Section I11 of the augmented 
ARTl neural network (AART1-NN). Section IV demonstrates 
that the AART1-NN equations exhibit a behavior identical to 
the ART1-NN behavior described in [1, sections 3-61. This 
identical behavior is established under the assumption that 
the AARTl -NN parameter values satisfy certain constraints. 
These constraints are also derived in Section IV. In Section 
V AART1-NN parameter values are chosen for an example 
network so as to satisfy the parameter constraints developed 
in Section IV. In Section VI we present computer simulation 
results that demonstrate the behavior of the AART1-NN for 
a number of different scenarios. Section VI1 summarizes our 
results and presents some concluding remarks. 

[91. 
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Fig. 1. The architecture of the ARTl neural network model. 

11. THE ARTl NEURAL NETWORK 

In the following sections we briefly summarize the ART1- 
NN architecture, operation, and equations that describe the 
network dynamics. A more complete description of the ARTl 
model is given in [l], and a number of useful results and 
theorems regarding the capabilities of this model are given in 
111, [151, [161. 

A .  Architecture 

The major components of the ARTl model are depicted 
in Fig. 1. These components can be grouped into two subsys- 
tems-the attentional and orienting subsystems. The F1 and F2 
fields in the attentional subsystem each consist of a single layer 
of nodes. These nodes are used to encode pattems of short 
term memory (STM) activity, while the weighted connections 
between the nodes in the F1 and F2 fields are used to store 
long term memory (LTM) traces. Each node in the F1 field 
is connected via bottom-up connections to all nodes in the F2 
field, and each node in the F2 field is connected via top-down 
connections to each of the F1 field nodes. In addition, the set 
of nodes comprising the F2 field are completely connected. 

The orienting subsystem, A, receives input from the F1 
field nodes, as well as from the input pattem. The orienting 
subsystem will generate a reset wave to the F2 field whenever 
the input pattern is not matched close enough to the pattem 
of STM activity across the F1 field. 

B. Operation 

The operation of the ART1-NN can be described as follows. 
STM activity is induced in the F1 field by the introduction of 
an input pattem. The components of the input pattem comprise 
the bottom-up input to the F1 field. A node with activity 
below or above its threshold is said to be subliminally or 
supraliminally active, respectively. The threshold is typically 
a small positive constant. A node is said to be activated if 
its activity increases from a level below its threshold to a 
level above its quenching threshold. In addition, a node is 
said to be deactivated if its activity drops from a level above 
its threshold to a level below its threshold. The orienting 

I 

I 

subsystem, A ,  is nonspecifically activated by the input pattem. 
The STM activity across the F1 field generates an output from 
the F1 field that inhibits A. This output activity is multiplied 
by the bottom-up LTM traces, and the result is a bottom- 
up input which is supplied to the F2 field. Next, a contrast 
enhancement process (competition cycle) occurs among the 

1 

F2 field nodes, generating a STM activity across the F2 field. 
A special case of this contrast enhancement mechanism is one 
in which only one node is chosen to remain supraliminally 
active in the F2 field. This form of contrast enhancement, 
often referred to as a gated dipole field, is assumed throughout 
this paper. The output activity of the F2 field is transformed 
through a multiplication process with the top-down LTM traces 
to generate a top-down input to the F1 field. At this point, 
new STM activity is generated across the F1 field. If there is 
significant mismatch between bottom-up and top-down inputs 
at the Fl field, this new STM activity results in a new output 
activity from the F1 field which causes a decrease in the total 
inhibition impinging upon A from the F1 field. As a result, 
the input-driven activation of A may release a nonspecific 
reset wave which inhibits the STM activity at the F2 field. 
This inhibition leads to the elimination of the top-down input 
affecting the activity of the Fl field nodes. Hence, the initial 
STM activity is reinstated across the F1 field. Once again, 
this STM activity across the F1 field generates an output from 
the Fl field which produces the same bottom-up input at the 
F2 field as before. Since the node initially chosen in the F2 
field remains inhibited, a new node in the F2 field can now 
be chosen. If once more the new top-down input significantly 
mismatches the bottom-up input at the F1 field, then the search 
for an appropriate F2 field node continues until a node is found 
that does not lead to a reset, or until all nodes in the F2 field 
are found inappropriate to code (i.e., leam) the input pattem. 
If a reset wave is not generated by the orienting system after 
the activation of an F2 field node, then this node is said to 
code the input pattern. 

C. Nemork Equations 

The operation of the ARTl network discussed above can be 
represented by a set of nonlinear differential equations. The 
activity of the network nodes is described by the following 
differential equation: 

d 
dt  t-z = -X + (1 - A z ) J +  - ( B  + G z ) J -  (1) 

where z is the nodal activity; while J+ and J - ,  which 
represent the total excitatory and inhibitory input to the node, 
respectively, are functions of X. Equation (1) is called a 
shunting differential equation because J+ and J -  multiply the 
node activity z. Note that if A > 0 and C > 0, then the activity 
of the node remains in the bounded range [ -BCP1  ! A-'] no 
matter how large J f  and J -  become, assuming the node 
activity is initially in this range. Also notice that the activity 
of the node decays to a resting level of 0 when J+ = J -  = 0. 

We denote nodes in the F1 field by vi and nodes in the F2 
field by v j .  The index of the nodes in the Fl field ranges from 
1 to M ,  while the index of the nodes in the F2 field ranges 
from M + 1 to N .  We also denote the activity of a node U ;  

by zi, and the activity of a node vj by zj. In particular, the 
activity of a node vi in the Fl field satisfies the following 
differential equation 

d 
dt  

t 1 - 2 i  = -2; + (1 - 41z;)J,+ - (B1 + clz i )J , - .  ( 2 )  
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The total excitatory input to node vi is given by 

(3) 
j 

where 0 1  is a constant, I; is the component of the binary 
input pattern I that is received by node w;, f 2 ( x j )  is the 
output activity generated by node vj with activity xj, and 
zj;  is the value of the top-down LTM trace corresponding to 
the connection between node vj in the FZ field and node vi in 
the F1 field. In (3), and throughout this paper, we will assume 
that the output activity generated by a node wj with activity 
xj is the threshold function 

1, if xj > 62; 
0, otherwise (4) 

The value of the top-down LTM trace, zj; ,  associated with 
an arc connecting node wj in the Fz field to node w, in the F1 
field is determined by the following differential equation: 

d 
E , - z . .  dt 3% - - -K Z E j i f z ( X j ) z j i  + K z f i ( z i ) f i ( z j ) .  (14) 

The present model assumes that 

Kz = Ej; = 1. (15) 

The parameters E ~ , E Z ,  and E, that appear in the previous 
equations are referred to as learning rates. These values 
determine the rate of change of the variables (STM activity 
in the F1 field, STM activity in the F2 field, and bottom-up 
or top-down LTM traces between pairs of nodes in the F1 
and FZ fields) that are characterized by the above equations. 
A smaller value for the parameter E results in a faster rate of 
change of the variable described by the differential equation 

where 6 2  is the threshold of every node wj in the FZ field. The 
total inhibitory input to node v; is given by - 

JC = CfdZj). 
j 

following differential equation 

(5) 

ne activity of a node vj in the Fz field satisfies the 

under consideration. For example, if E ~ , Q  << E , ,  then the 
rate of change of the STM activity in the F1 and F2 fields 
is much faster than the rate of change of the bottom-up and 
top-down LTM traces between pairs of nodes in the F1 and 
F2 fields. 

The total excitatory input to node vj is calculated as 

with 

where 0 2  is a constant. In (8), and throughout this paper, we 
will assume that the output activity generated by a node wi 

with activity x ;  is the threshold function 

1, if x ;  > 61; 

= { 0, otherwise (9) 

where 61 is the threshold of every node vi in the F1 field. 
Finally, the total inhibitory input to a node vj in the F2 field 
is given by 

111. THE AUGMENTED ARTl NEURAL NETWORK 

A number of implementation issues that are not directly 
addressed in the ARTl model [l] are considered here. These 
include: 

i) The manner in which the mismatch-mediated reset wave 
can be generated. 

ii) The approach taken to ensure that an FZ field node 
remains inactive, once it is reset, until a new input 
pattern is presented. 

iii) A way of automatically driving the activity of every 
node in the network to its resting value of zero when- 
ever an input pattem is removed from the network. 

Below we address each of these issues separately. The ap- 
proach taken to resolve the aforementioned issues is directed 
towards a solution that will facilitate a dynamical system 
realization of the ART1-NN. The resolution of these issues 
will involve the addition of nodes in the ART1-NN archi- 
tecture, and minor modifications to the original ARTl neural 

ne value of the bottom-up LTM trace, z i j ,  associated with network equations presented in Section 11-C. The resulting 

an arc connecting node vi in the Fl field to node vj in the Fz 
field is determined by the following differential equation 

is termed the AART1-NN- The major components 
Of the AART1-NN are shown in Fig. 2. It is instructive to 
compare the ARTl-NN architecture of Fig. 2 to the AART1- 

In the present model, K1 is a constant and Eij is given by 

where L is a constant > 1. Combining (1 1) and (12) yields 

NN architecture depicted in Fig. 1. One immediate observation 
is that the Fz field nodes in the ART1-NN correspond to 
the first layer of nodes in the F2 field of the AART1-NN 
architecture. That is, the first layer of nodes in the Fz field of 
the AART1-NN is used for category representation, as is the 
F2 field in the ART1-NN. 

Resolution of Issue i: Let 111 denote the number of input 
pathways which receive positive input when the input pattem 
I is presented. Also, let 1x1 denote the number of nodes in the 
F1 field that are supraliminally active during the presentation 
of the input pattern I. In the ARTl model, each of the 111 
input pathways sends an excitatory signal of fixed size P to 
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Fig. 2. The architecture of the augmented ARTl neural network model. 

the orienting subsystem A,  and each of the 1x1 supraliminally 
active nodes in the F1 field generates an inhibitory signal of 
fixed size Q that also impinges on the orienting subsystem. 
Furthermore, the orienting subsystem in the ARTl model 
generates a nonspecific reset wave whenever 

or equivalently, whenever 

where p, the vigilance parameter, is chosen in the interval 

The generation of the reset wave by the orienting subsystem 
can be accomplished within the framework of a dynamical 
system model through the introduction of a reset node, U,, 
whose activity satisfies the following differential equation: 

(0: 11. 

where U is the unit step function 

1, i f z > O ;  
0 otherwise. U(x) = 

Note that the activity of the reset node becomes positive 
whenever < p, and decays exponentially to zero whenever 

> p. The output activity of the reset node, fT (xT ) ,  which I I I  - 
corresponds to the nonspecific reset wave, satisfies 

111 

1, if x, > 6,; 
0, otherwise. f r (x , )  = 

The introduction of a reset node whose activity satisfies (1 S), 
and whose output activity is determined by (20), provides a 
mechanism for the generation of the reset wave by the ori- 
enting subsystem, as required by the ARTl model, whenever 
there is a sufficient mismatch between the input pattern 1 and 
the activity pattern X across the Fl field. 

Resolution of Issue ii: An important property of the ARTl 
model is that the reset wave selectively and enduringly inhibits 
active F2 field nodes until the input pattern is removed. This 
can be accomplished within the framework of a dynamical 
system realization of ARTl by augmenting the F2 field with a 
set of inhibitory nodes (second layer of the F2 field in Fig. 2), 
whose sole purpose is to implement the selective and enduring 
inhibition of the reset mechanism. In this case, every node v3 
in the F2 field is assigned an inhibitory node GJ whose activity, 
iJ, satisfies the following differential equation 

d 
d t  t 2 - i j  = -[1 - g ( r ) p J  + g(1) f r (z , ) f2 ( . . c , )  (21) 

where 
.U 

i=l 
1, if Ii # 0:  

0, otherwise. 
Y ( I )  = 

As can be seen from the above equations, the activity of an 
F2 field inhibitory node can only become positive when the 
following actions are satisfied simultaneously: a nonzero input 
pattern is being presented to the network, a reset wave is being 
emitted by the reset node, and the corresponding node in the 
Fz field is supraliminally active. Once the activity of an F2 
field inhibitory node has become positive, its activity decays 
exponentially to zero only when the input pattern is removed. 
In conjunction with a modification to the differential equation 
characterizing the activity of the first layer of F2 field nodes, 
this mechanism will allow the implementation of the selective 
and enduring inhibition required after a reset event, and as long 
as the input pattern is present. Specifically, the total inhibitory 
input to node vJ in the Fz field, (lo), is modified as 

#J 

where f 2 ( i ? j )  is the output of the F2 field inhibitory node 6,. 
This modification causes the total inhibitory input to vJ to 
remain positive as long as f 2 ( 2 3 )  is positive. The output of an 
F2 field inhibitory node obeys the equation: 

1, if :ij > 6 2 ;  
f 2 ( Q  = { 0 ,  otherwise. 

These modifications and additions to the original ARTl -NN 
equations allow the F2 field of the AART1-NN to behave as 
a gated dipole field within the dynamical systems framework. 

Resolution of Issue iii: A modification to the equation de- 
scribing the total excitatory input to an F2 field node must 
also be made to allow the ARTl implementation to operate 
as a true dynamical system. The aforementioned modification 
will allow the activity of the F1 and F2 field nodes, as well 
as the activity of the reset node to be reset to zero whenever 
an input pattern is removed from the network. This can be 
accomplished in the following manner. When an input pattern 
is removed from the network, it should be followed by the 
presentation of the zero pattern. This will rapidly drive the 
activity of nodes in the F1 and F2 field to zero if we modify 
(7) as 

J3’ = f 2 ( J J ) . Y ( J )  + 0 2  f l ( - C L ) Z L , .  (25) 
1. 
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TABLE I 
TIME INSTANCES PERTAINING TO THE OPERATION OF THE ARTl-NN. THE 

SUPERSCRIFT ASSOCIATED WITH A SPECIFIC TIME INSTANCE REPRESENTS THE 
NUMBER OF NODES IN THE F2 FIELD THAT HAVE BEEN SEQUENTIALLY 

ACTIVATED DURING THE PRESENTATION OF THE CURRENT INPUT PA” 

T i m e  Instance Interpretation 
All nodes are subliminally active, and a nonzero pattern 
I is presented at the F, field. 

A single node, WM+,, in the F, field becomes supralimi- 
nally active. 
The orienting subsystem generates a reset wave. 
Node UM+, in the FI field becomes subliminally active. 
The input pattern I is withdrawn from the Fl field. 

Conceptually, this presents no problems as it represents an 
absence of stimuli at the network inputs. That is, instead of 
a constant bombardment of stimuli, the learning system is 
allowed a brief “rest period” between each stimulus presenta- 
tion. During this period, the activity of the network nodes are 
allowed to return to their resting values. 

IV. ANALYSIS OF THE ARTl NEURAL NETWORK 

In the previous equations defining the AARTl -NN model, 
the quantities xi, xj, ? j ,  J:, Jt:, J T ,  and JJ- are functions 
of time; while the quantities Ai ,  B1, C1, € 1 ,  Si, A,, E r ,  Sr, 
A2, B 2 ,  D 2 ,  €2 ,  62, 62, K, L, and cz are constants which we 
will refer to as the “parameters” of the AART1-NN. In this 
section we show that, under certain AARTl -NN parameter 
constraints, the operation of the AART1-NN is identical to that 
of the ART1-NN. It is important to realize that the AART1- 
NN parameter constraints developed below are sufficient, but 
not necessary conditions for the successful operation of the 
AART1-NN. 

A. Preliminaries 

We begin by defining a number of important time instances 
that can be identified during the operation of the ART1- 
NN. These time instances, along with their corresponding 
definitions, are given in Table I. The use of these time instances 
allows us to concisely describe the behavior of the ART1- 
NN during the presentation of a nonzero input pattern. Note 
that the superscript of a specific time instance identifies the 
number of nodes in the F 2  field of the ART1-NN that have 
been sequentially activated during the presentation of the input 
pattem. It should also be noted that the time instances in Table 
I correspond to the points on the time axis at which the state of 
at least one node in the ART1-NN changes from a subliminally 
active mode to a supraliminally active mode, or vice versa. The 
only exceptions are the time instances {s:}, which correspond 
to the points on the time axis at which the orienting subsystem 
generates a reset wave. These time instances are also important 
because a reset wave in the ART1-NN forces a supraliminally 
active node in the F2 field to become subliminally active. 

Assume that a nonzero input pattem I is presented to the 
Fl field of the ART1-NN, and consider the time instance s: 
at which the output activity across the F1 field is equal to I. 
At this time instance, O M + I ,  0 M + 2 , .  . . , ON-I, and O N ,  are 
defined to be the bottom-up inputs that affect the F 2  field nodes 
u M + 1 , u M + 2 , .  . . , U N - 1 ,  and U N ,  respectively. Without loss of 
generality‘ we assume that O M + I  > 0 M + 2  > . . . > ON--l > 

ON. We also assume that each one of these bottom-up inputs 
is large enough to activate an F2 field node, if it is the only 
input affecting this node. We now distinguish two cases: 

Case 1: During the presentation of the input pattem I at 
the F1 field of the ART1-NN, r - 1 reset events occur, where 
1 5 r 5 N - M. That is, the r-th activated node in the F2 
field codes I .  

Case 2: During the presentation of the input pattem I at 
the Fl field of the ART1-NN, r = N - M reset events occur. 
In this case, no node in the F2 field is able to code I. 

Let us now consider a nonzero input pattem I belonging to 
the class of pattems described as Case 1 or Case 2 above. If I 
is presented to the F1 field of the ART1-NN, then the behavior 
of the network can be described by the following statement: 

Statement 1: During the presentation of the nonzero input 
pattem I to the F1 field of the ART1-NN, the following 
time instances can be identified in order of occurrence: 
Case 1: so, s:,si,si,si, si,si,sz,si ,..., S;-~,S;-~, 
~ - 2  ~ - 2  p 2  , s;-i,s;-i, s;-i, sr-i 1 

Case 2: so, s!,si,s;,si, s:,sf,sz,si ,..., S Y - ~ , ~ ; - ~ ,  
s;-2, s ~ - 2 ,  J - 2  sr-i r-1 , sqr-i, sr-l 1 , S 2 , S 3 , S 4 r  r r r s5- 

1 7 2 733 

A competition cycle in the ART1-NN is defined as the time 
period during which the nodes in the F2 field, that have not 
yet been reset, compete in order to choose the node that most 
accurately represents the input pattem. In the implementation 
of the ARTl -NN under consideration, the node which receives 
the largest bottom-up input, and has not been previously 
reset during the current pattem presentation, is chosen as the 
“winner.” The first competition cycle starts at time sy and 
ends at time sa, while the y-th competition cycle (y 2 2) 
starts at time si-’ and ends at time si. Note thatfast learning 
corresponds to the case where the input pattem is presented 
long enough for the network to choose the node in the F2 

field that codes the input pattem, and furthermore, this pattem 
is held at the network inputs long enough for the bottom- 
up and top-down LTM traces of this node to reach their 
limiting values. In contrast, slow learning corresponds to the 
case where the input pattem is presented long enough for the 
network to choose the node in the F2 field that codes the input 
pattem, but not necessarily long enough for the bottom-up 
and top-down LTM traces of this node to reach their limiting 
values. 

In terms of the behavior of the ART1-NN, we can define an 
equivalent set of time instances corresponding to the operation 
of AART1-NN. Specifically, the important time instances that 
can be identified during the operation of the AART1-NN 
are given in Table 11. These time instances are equivalent to 
those given in Table I, except that they take into account the 
new elements incorporated into the AARTl -NN. For example, 
instead of the time instances {si} of Table I which represent 
the times at which reset waves are generated in the ARTl- 
NN, Table I1 contains corresponding time instances {t:} 
which represent the times at which the reset node U ,  becomes 
supraliminally active in the AARTl -NN. Furthermore, since 
the F2 field of the AART1-NN consists of two layers of nodes, 
any references in the terminology of the ART1-NN to nodes 
in the F 2  field are replaced with references to nodes in the first 

, s 2 , s 5 .  r 3 7 4  7 1  
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Time Instance  I] Interpretation 

TABLE I1 
TIME INSTANCES PERTAINING TO THE OPERATION OF THE 

A A R T l - N N .  THE SUPERSCRIPT ASSOCIATED WITH A SPECIFIC TIME 
INSTANCE REPRESENTS THE NUMBER OF NODES IN THE FIRST LAYER 

OF THE Fz FIELD THAT HAVE BEEN SEQUENTIALLY ACTIVATED 
DURING THE PRESENTATION OF THE CURRENT INPUT PATTERN 

t;-’ 

t: 

t: 
1: 

The output pattern at the F, field is equal to I .  
A single node, VM+,, in the first layer of the  F2 field 
becomes supraliminally active. 
The reset node v, becomes supraliminally active. 
Node YH+, in the firat layer of the Fa field becomes sub- 

! 11 Dattern I is Dresented at the F, field. I 

j j  liminally active. 
11 The input pattern I in withdrawn from the F, field. 1 5  

layer of the F2 field. Thus, the superscript of a time instance 
defined in Table I1 corresponds to the number of nodes in the 
first layer of the F2 field of the AARTl-NN that have been 
sequentially activated during the presentation of input pattern 
I .  

Because the time instances defined in Table I1 are equivalent 
to those defined in Table I, it follows that the behavior of the 
AARTl-NN will be identical to that of the ARTl-NN if it can 
be shown that the AART1-NN operates in a manner similar to 
Statement 1. Specifically, consider a nonzero input pattem I 
belonging to the class of patterns described as Case 1 or Case 
2 above. If I is presented to the F1 field of an AART1-NN, 
then the behavior of this network will be equivalent to that of 
an ART1-NN if the following statement holds: 

Statement 2: During the presentation of the nonzero input 
pattem I to the F1 field of the AART1-NN, the following 
time instances can be identified in order of occurrence: 

Case 2: t o ,  t y , t i , t ; , t i ,  t i , t ~ , t $ , t ~ , . . . ,  tF-3,ti-2, ti-’, ti-z7 t ~ - 2 1  g-i l t;- i ,  t;-i, r r r 

In this case, the first competition cycle starts at time t? and 
ends at time t i ,  while the y-th competition cycle (y 2 2) starts 
at time tz-’ and ends at time t;. The fast and slow learning 
operations of the AARTl-NN are defined in the same manner 
as they were for the ART1-NN. 

In the next section we prove that under certain AARTl- 
NN parameter constraints, the AARTl-NN behaves according 
to Statement 2. Consequently, we prove that under these 
parameter constraints, the behavior of the AART1-NN is 
identical to that of the ART1-NN. In the proof of Statement 
2 we will assume, without loss of generality, that a nonzero 
input pattem I belonging to the class of pattems described 
as Case 1 above is presented to the AART1-NN. We will 
then prove that during the presentation of this pattem, the 
time instances included in Statement 2 under Case 1 can 
be identified. The proof of Statement 2 is accomplished by 
demonstrating that with the appropriate parameter values, each 
time instance occurs in the order given. That is, we will show 
that if we start with time instance to, the next identifiable time 
instance is ty, and if we start with time instance t? the next 
identifiable time instance is t i ,  etc., until time instance t5 is 
reached. 

1 l t 2 r t 3 : t 4 , t 5 .  

It should be emphasized that Statement 2 describes the 
behavior of the AARTl -NN only when a nonzero input pattem 
is presented at its F1 field. The operation of the AARTl-NN 
during the presentation of the zero pattem is easily determined 
from the AART1-NN equations. It can be shown that the 
presentation of the zero pattem to the F1 field of the AARTl- 
NN drives the activities of all the nodes in the network 
to zero. Since the zero pattem is always presented between 
the prciwntation of any two nonzero pattems, it follows that 
the AART1-NN equations satisfy a key ART1-NN design 
constraint, namely: 

ARTl design constraint #1: The activities of all the 
network nodes in the ARTl-NN should be reset to zero 
prior to the presentation of any nonzero input pattern at 
its F1 field. 

During the proof of Statement 2,  the AARTl -NN parameter 
values will be chosen so as to satisfy a number of additional 
ARTl design constraints given below: 

ARTl design constraint #2: The input pattem 1 must be 
able to instate itself across the F1 field without triggering 
a reset event, at least until an FZ field node becomes 
active and sends top-down signals to the F1 field. 
ARTl design constraint #3: The order of the 0,’s (i.e., 
the bottom-up inputs to the F2 field) determine the order 
of search in the F2 field, no matter how many times the 
F2 field is reset. 
ARTl design constraint #4: During the presentation of 
the input pattem I at the F1 field, a node in the F2 field 
that wins a competition cycle can only be reset if there 
is sufficient mismatch between bottom-up and top-down 
inputs. 

ARTl design constraint #1 is explicitly stated in [l] ,  while 
ARTl design constraint #2 is explicitly stated in [17] as one 
of the fundamental ART design constraints. Finally, ARTl 
design constraints #3 and #4 are stated in [ I ]  as Theorem 3 
and Corollary 1, respectively. 

B .  Proof of Statement 2 
In this section we prove Statement 2. To facilitate this proof 

we present in Appendix A a set of key AART1-NN equations. 
Before we proceed with the proof, let us first refer to a number 
of constraints that are important for the successful operation of 
the ARTl-NN, and as a result for the successful operation of 
the AARTl -NN. These are constraints CON 1-CON7 included 
in Table 111. 

CONl requires the STM values in the AARTI-NN to 
change at a much faster rate than the LTM values. Furthermore, 
the requirement er << implies that the reset node in the 
AART1-NN responds very quickly (compared to the LTM 
changes in the network) to mismatches between bottom-up 
and top-down inputs at the F1 field of the AART1-NN. CONl 
guarantees that no significant LTM leaming occurs in the 
AARTl-NN unless the node picked in the F2 field of the 
AARTl-NN is the node that codes the input pattem. An 
immediate implication of CONl is that it allows us to assume 
that the LTM traces in the AARTl-NN stay constant from 
the time that the input pattem is presented, until the time that 
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TABLE I11 and satisfies equation (A.3) after time instance ty. In (A.3), t ,  
corresDonds to t? and T; corresponds to Oi. Since every node CONSTRAINTS FOR SUCCESSFUL OPERATION OF THE AARTl-NN 

the node in the first layer of its F2 field that codes the input 
pattem is chosen. CON2 guarantees that the activity x; will 
be constrained in the interval [-B1CF1, AT1], and that the 
activity xj will be constrained in the interval [-BzC;', A;']. 
CON3, and the fact that the zij's and zjz's are nonnegative 
(see constraints CON5, CON6, CON7, and (13) and (14)), 
ensures that J: and JT are indeed excitatory signals, and 
that Jz: and Jj: are indeed inhibitory signals. CON4 is 
required for the successful operation of the reset mechanism. 
CON5 is important for the satisfaction of the direct access 
inequality-for more details see [l]. CON6 and CON7 are 
necessary for the validity of the $ rule (see equation (A.2) in 
Appendix A). 

We now proceed with the proof of Statement 2. Consider a 
nonzero input pattem I which is presented to the F1 field of the 
AARTl-NN, and assume without loss of generality that this 
pattem belongs to the class of pattems previously described 
as Case 1. We will prove that under certain AART1-NN 
parameter constraints, the time instances included in Statement 
2 under Case 1 can be identified. This validates Statement 2 
for Case 1, and obviously for Case 2 as well. 

The Time Interval After to: We begin by assuming that a 
nonzero input pattem I is presented to the F1 field of the 
AART1-NN at time instance to. The activities of all the nodes 
in the F1 field are equal to zero at to. It is easy to see that we 
can identify a time, after t o ,  at which the output pattem at the 
F1 field is equal to I. We have already denoted the earliest such 
time instance as t!. During the time interval (to, t?] the activity 
of every node at the F2 field is equal to zero. Furthermore, 
during the time interval (to,ty), there is mismatch at the F1 
field. This is due to the fact that the pattern I has not yet been 
instated across the F1 field. The parameters of the AART1- 
NN must be chosen so as to satisfy ARTl design constraint 
#2. To satisfy this constraint it suffices to choose the AART1- 
NN parameters so that the reset node is subliminally active at 
time instance ty. In Appendix B we show that by choosing 
the AART1-NN parameters according to CON8 in Table 111, 
we ensure that the reset node U, is subliminally active at time 
instance t?. 

The Time Interval After ty: At time instance ty a node uj 
in the F2 field receives bottom-up input Oj  from the Fl field, 

in the first layer of the FZ field has an activity of zero at ty, 
and Tj = Oj, we can identify a time, after i$, at which the 
only node in the first layer of the F2 field that is supraliminally 
active is uM+l-we have already denoted this time instance 
as ti. As a result, ARTl design constraint #3 is satisfied in the 
first competition cycle (i.e., in the interval (ty, ti]). In the time 
interval (ty, ti] the reset node satisfies equation (A.7) with 
t, = ty. Note that by choosing the AART1-NN parameters 
according to CON8 we guarantee that x,.(ty) < 6,. Hence, at 
ti the reset node U, is still subliminally active. Thus, ARTl 
design constraint #4 is also valid in the first competition cycle. 
Note that at time ti there is no mismatch between bottom-up 
and top-down inputs at the F1 field. 

The Time Interval After ti: After time instance ti every 
node uj (j # M + 1) satisfies equation (A.4) with t, = ti .  
Note that x j ( t i )  < 6 2  for j # M + 1. Let us choose the 
parameter B2 according to CON9 of Table 111, where Om,, 
is an upper bound on the Oj's for any input pattem presented 
to the AART1-NN. Choosing Bz according to constraint 
CON9 guarantees that no other node in the first layer of 
the Fz field becomes supraliminally active as long as U M + ~  

is supraliminally active. In the time interval after ti ,  certain 
nodes in the F1 field receive bottom-up, as well as top-down 
input. An arbitrary node U; in the F1 field that receives bottom- 
up and weak top-down input will become subliminally active 
some time after ti. Let us assume, without loss of generality, 
that enough nodes in the F1 field receive bottom-up and weak 
top-down input so as to cause a positive input to the reset node. 
Once these nodes become subliminally active, the activity 
of the reset node will satisfy (A.6), and the reset node will 
generate a reset wave at some time after ti. We have previously 
denoted this time instance as ti. 

The Time Interval After ti: The reset wave initiated at time 
instance ti will cause an excitatory input to be supplied to the 
inhibitory node 6 ~ + 1 .  This results in the activation of 6 ~ + 1 ,  

which in tum produces an inhibitory input to node W M + ~ .  From 
this time instance, node U M + ~  in the F2 field will satisfy (AS). 
Let us choose parameter B2 according to CON10 of Table 111. 
The satisfaction of CON 10 guarantees that the supraliminally 
active node U M + ~  will become subliminally active at some 
time after ti. We have previously denoted this time instance 
as ti. 

The Time Interval After ti: At time instance ti, the previ- 
ously supraliminally active node U M + ~  is subliminally active, 
and it will stay subliminally active as long as the input 
pattem is present. The deactivation of node W M + ~  signals 
the beginning of the second competition cycle. Once W M + ~  

becomes subliminally active, the activities of all subliminally 
active nodes in the F1 field that receive bottom-up input will 
start to increase. The output activity at the F1 field is now 
changing from X c I to X = I. The satisfaction of ARTl 
design constraint #3 during the second competition cycle is not 
a trivial matter-as it was when we were examining the first 
competition cycle. This is because the competition cycle starts 
at time instance ti, and from ti until the time that the output 
activity across the F1 field becomes equal to I, the bottom-up 
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inputs T M + ~  and Tj (j # M +  1, M +  2) can be different from 
the bottom-up inputs  OM+^ and 0, G # M + 1, M + 2) that 
should determine the order of search in the AART1-NN. To 
make this point clearer, we present in Appendix C an extreme 
case where T M + ~  = 0 and T M + ~  =  OM+^. To ensure that the 
AART 1 -NN does not perform the search in an emoneous order 
(e.g., a search of node v ~ + 3  prior to the search of node Y M + ~  
for the example in Appendix C) we require that the output ac- 
tivity across the F1 field be restored to I long before the second 
competition cycle ends. Thus, the AART1-NN will have suf- 
ficient time to overcome the detrimental effects of a situation 
where T M + ~  < Tj (j # M + 1, M + 2) at the beginning 
of the second competition cycle. We denote this requirement 
as Requirement A. Below we develop a set of AART1-NN 
parameter constraints for satisfying Requirement A. 

Let us assume that Requirement A is true. We will now 
prove that this assumption is valid under certain AART1- 
NN parameter constraints. Consider a node wi that receives a 
bottom-up input from the input pattern I, and is subliminally 
active at time instance ti. After ti  the activity of this node 
satisfies (A.l) with t ,  = ti and $;(ti) < 61. If we assume that 
among the nodes in the F1 field that are subliminally active at 
ti, node w1 becomes supraliminally active last, we can write 

In (26), ti denotes the time that the output activity across 
the F1 field is equal to I. Consider now a node v j  (j # M +  1) 
at time instance ti. Let us denote by xcj”(t) an upper bound for 
the activity of node vj, for t in the time interval (ti,  ti]. Note 
that xcj”(t) satisfies (A.3) with t ,  = t i ,  x.j”(ti) = zj ( t i )  < S Z ,  
and Tj = Oj . The reason that xy (t) is an upper bound on xj (t) 
for t E (t:, t i]  is because in this time interval, the bottom-up 
input Tj to node wj increases towards its maximum value of 
Oj, and Oj is attained at time instance t i .  It is obvious that 
our assumption regarding the validity of Requirement A will 
be true if the quantity 62 - xy ( t i )  0’ # M + 1) is positive, 
and in fact as large as possible. The quantity xy( t i )  is given 
by (see (26) and (A.3)): 

with 

One way of making the quantity 62 - xy( t i )  as large 
as possible is to force xju(t:) to be as small as possible. 
Thus, we choose the AART1-NN parameters so that the value 
of x . ( t l )  is approximately equal to its minimum value of 
-E&>. In Appendix D we show that this can be achieved 
by choosing the AART1-NN parameter values according to 
CONl 1 in Table 111. Since CONl 1 guarantees that x j ( t i )  is 
negative, we can now choose the AART1-NN parameters as 
in CON12 and CON13. CON12 guarantees that the value of 

91 is close to one (note that q( t : )  is lower bounded by p4 
and upper bounded by Si), while CON13 guarantees that the 
exponent of is small. Constraint CONl1, which implies 
x l ( t i )  M -B2CF1 = -Om,, (this is proven in Appendix D), 
in conjunction with Cod12 and CON13 prove the validity of 
Requirement A. 

At time instance ti. the output activity across the F1 field 
is equal to I. The AART1-NN must satisfy ARTl design 
constraint #3 in the second competition cycle that started at 
time instance ti. The implication of ARTl design constraint 
#3 in this competition cycle is that node V M + ~  will be the 
first node activated after time instance ti. In Appendix E we 
show that under constraint CON14 of Table 111, ARTl design 
constraint #3 is satisfied in the second competition cycle. 
The time of activation of node W M + ~  was previously denoted 
by time instance ti. The index n in CON14 corresponds 
to the index of the competition cycle under consideration. 
For example, since we are now interested in the second 
competition cycle, n = 2. It is worth noting from Table I11 
that p5 M 1 (due to CON12 and CON13), and as a result 
p7 % 1. This implies that CON14 does not actually impose 
hard constraints on the 0, values. It is also worth noting that 
we do not have complete control over the Oj values-they 
depend, among other things, on the set of input patterns. The 
reason that ARTl design constraint #3 is satisfied under the 
mild conditions on the Oj’s imposed by CON14 is because 
we previously guaranteed the satisfaction of Requirement A. 

We must also satisfy ARTl design constraint #4 during 
the second competition cycle. The satisfaction of this design 
constraint in the second competition cycle requires that the 
reset node be subliminally active at time ti. This is due to 
the fact that at time t;, there is no mismatch between bottom- 
up and top-down inputs at the F1 field. We know that the 
reset node in the AART1-NN is supraliminally active at time 
instance ti. We also know that it might be subliminally active 
at time instance ti .  If the reset node is subliminally active at 
time ti, then we immediately satisfy ARTl design constraint 
#4 in the second competition cycle, because we know that 
the reset node will be subliminally active at time t; as well. 
If on the contrary, the reset node is supraliminally active at 
time instance t i ,  we need to guarantee that it will become 
subliminally active by time ti .  In Appendix F we show that 
this is indeed true under constraint CON15 of Table 111. Hence, 
we can state that ARTl design constraint #4 is valid in the 
second competition cycle provided that CON15 is satisfied. 

The Time Intervals After t i ,  2 5 y 5 r - 1: For every y 
such that 2 5 y 5 I? - 1 we can show that t i  is the next 
identifiable time instance after time instance t;. The approach 
is similar to the one followed after time interval ti .  

The Time Intervals After t i ,  2 5 y 5 I? - 1: For every y 
such that 2 5 y 5 I? - 1 we can show that t i  is the next 
identifiable time instance after time instance t i .  The approach 
is similar to the one followed after time interval ti. 

The Time Intervals After tz ,  2 5 y 5 I? - 1: For every y 
such that 2 5 y 5 I? - 1 we can show that t: is the next 
identifiable time instance after time instance tz, and we can 
also show that t:+’ is the next identifiable time instance after 
time instance t:. The approach is similar to the one followed 
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after time interval ti. The only difference now is that we 
are dealing with different competition cycles (i.e., competition 
cycles 3 ,4 , .  . . ,I?). 

Thus, after time t;, time instances occur in the order 
prescribed by Statement 2 under Case 1, and no additional 
AARTl -NN parameter constraints are necessary beyond those 
already developed (i.e., CONl-CONlS). It is worth pointing 
out that CON14 depends on the index n of the competition 
cycle under consideration. For Case 1, which is under investi- 
gation, the range of n is over the set {2,3, . + . , r}. For Case 2 
though, the range of n is over the set {2,3, .  . . , N - M - 1). 
Since our objective is to guarantee the validity of Statement 
2 under both cases, we take the range of n to be the set 

The Time Interval After t:: At time instance t: the r-th 
node in the first layer of the F2 field has been activated, and 
this node codes the input pattem I (Case 1). LTM learning 
takes place after time instance ti .  It is obvious that t 5  is 
the next identifiable instance after time instance t:. This time 
instance is designated as the time at which the input pattern 
I is withdrawn from the F1 field of the AART1-NN. If the 
interval [t;,t5] is long enough, then we are dealing with the 
fast learning case; otherwise we are dealing with the slow 
learning case. 

It should be mentioned that additional AARTl -NN pa- 
rameter constraints were implied throughout the proof of 
Statement 2. Specifically, constraints CON16 and CON17 of 
Table 111. These constraints impose a lower bound on the 
forcing terms affecting (A.l) and (A.6). If the forcing terms 
in these equations do not exceed the lower bound, then the 
activities of the F1 field and reset nodes will never exceed 
their quenching thresholds. 

Concluding, we can state that we have derived constraints 
CONl-CON17 of Table I11 under which we proved the 
validity of Statement 2. The validity of Statement 2 proves that 
the AART1-NN is capable of behaving in a manner identical 
to that of the ART1-NN. 

{ 2 , 3 , . . . , N  - M - 1). 

V. PARAMETER CHOICES 

Now that we have developed the AARTl-NN parameter 
constraints listed in Table 111, it is instructive to demonstrate 
how parameter values can be chosen for an example network. 
But first we mention some estimates of the quantities Om,, 
and Omin that appear in CONl-CON17 of Table 111. Om,, is 
an upper bound on the Oj’s for any pattern I that is presented 
at the F1 field of the AART1-NN. A loose estimate of Om,, 
is D2M. A better estimate of Om,, is desirable; otherwise, 
CONllb of Table I11 will require unreasonably large values 
for the parameters BZ and C2. In the fast learning case it can 
be shown that a better estimate of Om,, is LD_’1L+Mh.r. In the slow 
learning case, and under the assumption that L = 1 + c with 
c << 1, it can be shown that a better estimate of Om, is D2. 
Omin is a lower bound on the Oj’s for any input pattem I that 
is presented at the F1 field of the AART1-NN. Unless we have 
a better estimate for Omin, based on some prior knowledge of 
the set of input patterns considered, it is always safe to take 
Omin = 0 in CONl-CON17. 

The sample network considered here contains four nodes in 
the FI field (nodes 211 through w4), a reset node (node w,), and 
eight nodes in the F2 field (nodes 215 through 218 in the first 
layer, and inhibitory nodes $5 through ij8 in the second layer). 
Consequently for the sample network M = 4 and N - M = 4. 
We initially choose L = 1.01. This yields the estimate Om,, = 
D2. Subsequently, we choose A1 = 1, D1 = 1, € 1  = 0.001, 
61 = 0.01, E ,  = 0.001, D2 = 1, = 0.01, 62 = 0.01, and 

= 1. These parameters can be thought of as being the “free 
parameters” in the network, despite the fact that they have to 
satisfy constraints CONl-CON17. We refer to them as “free 
parameters” due to the fact that they are picked first. 

Now we choose the remaining AART1-NN parameter val- 
ues so as to satisfy CON1-CON17. We first choose B1 and 
C1 values to satisfy CON2, CON3, CON7 and CON12; the 
reader can verify that B1 = 0.5 and C1 = 100 satisfy these 
constraints. We then choose A2 = 0.3, having in mind CON2, 
CON13 and CON14. Furthermore, we choose B2 and C2 in a 
way that satisfies constraints CON2, CON3, CON9, CON10, 
and CON11. In our example, we chose B2 = 10000 and 
C2 = 10000; it is easy for the reader to verify that CON2, 
CON3, CON9, CON10, and CON1 1 are satisfied. Finally, we 
pick 6, = 0.02 and A,  = 2 so as to satisfy CON8, CON15, and 
CON17. Based on the aforementioned AART1-NN parameter 
values, we chose the initial bottom-up traces, the z;, (0)’s, 
in the interval (0,0.251) and the initial top-down traces, the 
zJ2(0)’s, in the interval (0.526,1] (see CON5 and CON6). As 
a rule of thumb, in order to satisfy AART1-NN parameter 
constraints CON1-CON17, we choose the parameter values 
to make p3 and e6 as small as possible; pa,  e2, and e3 as large 
as possible: p 5 ,  p6 ,  and p7 as close to one as possible; p4 as 
close to 61 as possible; and finally, p z  as much larger than 
SI as possible. 

The AART1-NN parameter values chosen for this example 
are listed in Table IV. Some of the parameter values did not 
have any effect on the successful operation of the network, and 
as a result were chosen arbitrarily (e.g., 6 2  = 0.0001, K = 1). 
Furthermore the vigilance parameter p was selected to be equal 
to 1. Note that the AART1-NN should operate successfully for 
all the values of the vigilance parameter designated in CON4. 
Once more, the AART1-NN parameter values listed in Table 
IV satisfy all the constraints of Table 111. Note though that the 
test for the validity of CON14 is computationally intensive 
for the fast learning case and almost impossible for the slow 
learning case. But it is worth observing that for the parameters 
chosen (i.e., A2 = 0.3, and Om, = 1) CON14 is satisfied if 
 OM+^+^ < 0.999790~+,  for n = 2, . . . , N - M - 1. Thus, 
in this case, the AART1-NN will satisfy CON14 for most 0, 
values of interest. Observe also that the ART1-NN, as defined 
in [ 11, operates successfully only when the 0,’s are distinct. 

VI. COMPUTER SIMULATION 

In this section we demonstrate the behavior of the AARTl 
model for both the fast and slow learning cases. As mentioned 
in Section V, the sample network considered here contains 
four nodes in the F1 field (nodes 211 through q), a reset 
node (node U,), and eight nodes in the F2 field (nodes w5 
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AI = 1 BI = O S  C1 = 100 DI = 1 
& = 0.01 A, = 2 f. = 0.001 6, = 0.02 
A? = 0.3 BE = lw00 Cy = 10000 DE = 1 
61 = 0.01 $2 = 0.0001 K = 1 = 1.01 

TABLE IV 
AART1-NN PARAMETER VALUES FOR THE EXAMPLE NETWORK 

interest because it is the only node receiving bottom-up input. 
After the input pattem is presented, the activity of w1 increases 

fi =0.001 
p = 1 ' 
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fz = 1 

0.25 - 

h 
c, 
1 
3 -  
1 
4 
0 
4 

0 ) -  
a 
0 
z 

from zero to a positive value above the threshold 61. Once 
w1 becomes supraliminally active, nodes in the first layer of 
the Fz field begin to receive bottom-up input. Because v5 
receives the largest bottom-up input, it becomes supraliminally 
active before any other node in the first layer of the F2 
field. At this point, w1 is receiving both bottom-up input, and 
strong top-down input from 215. This causes the activity of w1 
to decrease and subsequently reach a limiting value that is 
above the threshold bl. Thus, node w1 remains supraliminally 
active. Furthermore, the activity of w5 continues to increase 
over the time interval depicted in Fig. 3. Recall that once 7 ~ 5  

becomes supraliminally active, it will inhibit the other nodes 
in the first layer of the F2 field, forcing them to remain 
subliminally active as long as it remains supraliminally active. 
The activity of the reset node .up in Fig. 3 should also be 
noted. Immediately after the presentation of I' , the activity 

T i m e  

Fig. 3 .  Node activities during the presentation of pattem 1'. The sudden 
drop in activity 2 1  is a manifestation of the 2/3 rule in ARTl. 

through w g  in the first layer, and inhibitory nodes 65 through 
$8 in the second layer). The node differential equations were 
numerically approximated using the fourth order Runge-Kutta 
method with a step size of Three pattems were presented 
to the network: I' = 1000, 1' = 0000, and I 3  = 1100. Note 
that I 2  is the zero pattem used between presentation of other 
"interesting" pattems. That is, the presentation of pattem I 2  
can be interpreted as the absence of an input pattem. The 
parameters chosen for the simulation of the sample network 
in both the fast and slow learning cases are shown in Table 
IV. The LTM traces for these simulations were selected so 
that zj ; (O)  = 1, and 0 < z;j(O) < & for all i , j .  In 
addition, the bottom-up LTM traces were chosen so that when 
pattem I' is initially presented, 215 receives the largest bottom- 
up input. Furthermore, when pattem I 3  is initially presented, 
215 receives the largest bottom-up input, and 116 receives the 
next largest bottom-up input. 

The behavior of the AARTl-NN during the presentation of 
patterns I ' ,  12, and I3  is described with reference to Figs. 3-7, 
which depict node activities versus time. Although time is 
a continuous parameter, it also has a meaning in terms of 
the number of steps elapsed during the approximation of the 
network differential equations. For the network simulations 
described in this section, time t corresponds to 106 . t steps. 

The fast learning case is examined first. Pattem I1 = 1000 
is presented to the network at time t = 0. The behavior of 
the network immediately following the presentation of 1' is 
depicted in Fig. 3. Among the F1 field nodes, only w1 is of 

2, increases due to the mismatch between the output activity 
across the F1 field, which equals zero, and the input pattem 
I'.. Notice that the output activity across the F1 field becomes 
equal to I' before the activity of the reset node exceeds its 
threshold 6,. From this point on, the activity of the reset node 
decays towards its limiting value of zero. That is, even after 
the activation of w5, the activity xp continues to decrease, due 
to the fact that there is no mismatch between bottom-up and 
top-down inputs across the F1 field. Pattem I' is presented 
until time t = 3.0. This allows the bottom-up and top-down 
LTM traces to approximately reach their limiting values. 

At time t = 3.0 pattern I 2  = 0000 is presented to the 
network. The behavior of the network after the appearance of 
pattern 1' is shown in Fig. 4. Initially w1 is at an activity level 
above the threshold 61, but its activity drops to a level below 
61 almost instantaneously. This results from w1 receiving only 
top-down input (prior to time t = 3.0 it was receiving bottom- 
up and strong top-down input). After the deactivation of w1, the 
activity levels of nodes w1 and 712 stay at a constant level until 
715 is deactivated. The activity 21 is larger than the activity 22 
because node w1 receives stronger top-down input than v2. In 
the meantime, the activity of w5 drops from a positive value to 
zero. Once 215 becomes subliminally active, the activities of wl 
and 112 decrease to zero because they are no longer receiving 
top-down input. The activity of v6 starts increasing from a 
negative value towards zero immediately after 05 becomes 
subliminally active. The behavior of 116 is not fully depicted 
in Fig. 4 because its activity is significantly negative (= -1.0) 
when u5 becomes subliminally active. Pattem I 2  is held at the 
network input until time t = 3.2. 

At time t = 3.2 pattem I 3  = 1100 is presented. The 
behavior of the network after the presentation of I 3  is depicted 
in Figs. 5 and 6. In Fig. 5, after the presentation of 13, 215 
becomes supraliminally active before any other node in the 
first layer of the F2 field because it receives the largest bottom- 
up input from the F1 field. Once w5 becomes supraliminally 
active, the activities of nodes 211 and 'u2 begin to decrease. 
The activity of q remains above the threshold 61, while 
the activity of w2 decreases to a level below 61. This is a 
consequence of u1 receiving strong top-down input, while w2 
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T i  m e  
. .~ 

T i  m e  

Fig. 4. Node activities during the presentation of pattem I*. Fig. 5. Node activities leading to a reset during the presentation of pattem 
13. The sudden drop in activities 21 and 2 2  is again a manifestation of the 
2 / 3  rule in ART1. Note that the activitv of node wi remains supraliminally 

receives top-down input-both nodes receive 
input. when 212 becomes subliminally active, the activity Of the 

active, while node v2 becomes subliminally active. Because of the choice 
of the p parameter, this causes the activity of the reset node w,. to become 
supraliminally active, and leads to a reset of node us. 

reset node starts increasing due to the mismatch between the 
bottom-up and top-down inputs that is now occurring at the F1 

field. When 21, becomes supraliminally active (i.e., its activity 
exceeds 6,) it generates a reset wave that deactivates 215 almost 
instantaneously. After 215 becomes subliminally active, w1 and 
212 receive only bottom-up input, and their activities increase 
towards the limiting value of 0.5 (see Fig. 6). Now that w5 is 
deactivated, 06 will become supraliminally active next since 
it is the node in the first layer of the Fz field that receives 
the next largest bottom-up input from the F1 field. That is, 216 

will be activated before any other eligible node (217 or vg) in 
the first layer of the F2 field. The activation of 216 is shown in 
Fig. 6. When 216 becomes supraliminally active, the activities 
of nodes 211 and 212 begin to decrease from the value 0.5; 
but they remain above the quenching threshold 61. This is a 
consequence of both 211 and v2 receiving bottom-up input and 
strong top-down input. Notice also that the activity of the reset 
node starts decreasing some time after the deactivation of 215 

(see Fig. 5), and that it continues to do so after the activation of 
216 (see Fig. 6) because there is no mismatch between bottom- 
up and top-down inputs at the F1 field. Hence, when pattem 
I 3  is held at the network inputs long enough, the bottom-up 
and top-down LTM traces reach their limiting values. 

We now consider the slow learning case. First, pattem I' is 
presented at time t = 0, and the network exhibits the behavior 
depicted in Fig. 3. However, in this case, soon after 215 wins 
the competition in the first layer of the F2 field, pattem I' 
is removed from the network inputs. Thus, the bottom-up and 
top-down LTM traces are not allowed to converge to their 
limiting values. Pattem I' is presented until time t = 0.1, 
and then pattem I 2  = 0000 is presented. By time t = 0.3, 
all node activities have converged to their resting values of 
zero. The behavior of the network during the presentation of 

I! 
-- 

T i m e  

Fig. 6. Node activities after the reset during the presentation of pattem 13. 

pattem I' is similar to that shown in Fig. 4, with the time 
instances 3.0 and 3.2 now corresponding to time instances 
0.1 and 0.3. The major difference between the fast and slow 
learning cases demonstrated in these simulations occurs when 
pattem I3  is presented to the network at time t = 0.3. The 
behavior of the network after the presentation of pattem I 3  
is depicted in Fig. 7. It is instructive to compare Figs. 5 and 
6, the network behavior in the fast learning case after pattem 
I 3  is presented, with Fig. 7. As in the fast learning case, 215 
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I 
dynamical systems to be applied (see the discussion in Section 
I). Finally, the method applied to analyze the STM and LTM 
dynamics of the AART1-NN can be extended to other neural 
network models where the network dynamics are described 
via a set of nonlinear differential equations. 

APPENDIX A 

In this appendix we present a number of AART1-NN 
equations that are instrumental to the proof of Statement 2. 
The activity of a node U; that receives bottom-up input, and no 
top-down input, satisfies the following equation for t E (t,, t b ] :  

zc;(t) = z;(t,)exp[-(1 + A1)er1(t - ta)] 

Fig. 7. Node activities after the presentation of pattern 13, when pattem I' 
has not been coded by v5 on a previous pattem presentation. 

receives the largest bottom-up input. Hence, v5 is activated 
prior to any other node in the first layer of the F2 field. This 
activation forces the activities of nodes v1 and 712 to decrease 
to limiting values that remain above the threshold value 61. In 
the slow learning case, the fact that z 2  remains above 61 while 
pattem I 3  is presented is a consequence of not allowing the 
top-down traces leading to 215 to approach their equilibrium 
values during the presentation of pattem 1'. As a result, when 
v5 becomes supraliminally active, nodes 212 and v1 receive 
bottom-up input and strong top-down input. Thus, since both 
VI and 212 stay supraliminally active, v5 is not reset. That is, 
the reset node remains subliminally active throughout the time 
that pattem I 3  is presented. Therefore, if pattern I 3  is held at 
the network inputs long enough, the LTM traces of node v5 

will approach their limiting values. 

VII. CONCLUSIONS 
The contribution of our work is twofold. First, we extended 

the ART1-NN model by both introducing new, and modifying 
already existing ARTl differential equations. This dynamical 
system model was denoted the AART1-NN. The distinguishing 
feature of the AART1-NN is that it incorporates all of the 
ARTl mechanisms into a set of coupled nonlinear differential 
equations. Second, we rigorously analyzed the AART1-NN 
equations and showed that they exhibit an ART1-NN behavior, 
as it is documented in [ 1, sections 3-61. Although it is implied 
in [ l ]  that the ARTl model can be implemented in this 
fashion, a thorough justification is not provided. This work 

The above equation is obtained by solving equation (2) in the 
main text with J,' = 1 and J8- = 0. 

The activity of a node U, that receives bottom-up input, as 
well as top-down input from a node v3 satisfies the following 
equation for t E ( ta ,  t b ] :  

z,(t) = z,(t ,)exp[-(1+ AI + DlAlz,, + Cl)r;l(t - t,)] 
1 + D ~ z , ,  - Bi 

+ 1 + AI + D1AlzJz + C1 
x [l - exp[-(1 + A1 + DlAlz,, + C1)ell(t  - t,)]]. 

('4.2) 

The above equation is derived by solving (2) with J;' = 
and J,- = 1. In the above equation, the case where 

l+A1+Dlilz ,+cl > 61 can be distinguished from the case 
where l+A1+Dl~ lr , ,+C1  5 61. In the former case, we say that 
node v, receives bottom-up input and strong top-down input 
from node U,. In the latter case, we say that node v, receives 
bottom-up input and weak top-down input from node v3. 

The activity of a node U, that receives a bottom-up input 
T3 from the F1 field over a time interval in which no node in 
the first layer of the F2 field is supraliminally active, satisfies 
the following equation for t E ( t , , t b ] :  

+Eh?; ,-E31 

l + b l Z  .-B1 

x j ( t )  =x, ( t , )exp[- ( l+  A2T')€F1(t - L)]  
m 

64.3) 

The above equation is obtained by solving (6) with J i  = Tj 
and J3: = 0. 

The activity of a node v j  that receives a bottom-up input Tj 
from the F1 field over a time interval in which another node in 
the first layer of the Fz field is supraliminally active, satisfies 
the following equation for t E ( t , , t b ] :  

demonstrates how the ARTl model can be cast into the form 
of a nonlinear dynamical system, and supplies a method for 
proving that this dynamical system will exhibit the behavior of 
the ARTl model. Furthermore, the capability of implementing 
the ARTl model in this fashion is of practical importance 
because it allows the tools used in the analysis of nonlinear 

%-(t) = z j ( t , ) e ~ p [ - ( i  + AzTj + C2)cy1(t - t,)] 
Tj - Bz 

+ l + A z T j + C 2  
x [l - exp[-(1 + AzTj + C2)cg1(t - ta l ]] .  

(A.4) 
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The above equation is derived by solving (6) with JT = Tj 
and JJ: = 1. 

The activity of the only supraliminally active node wj that 
receives a bottom-up input Tj from the F1 field satisfies, after 
the initiation of a reset wave by the reset node w,, the following 
equation: 

d 
d t  
- ~ j  = -(1+ A2 + AzTj + C2)~;'zj + (1 + Tj - 

(A.5) 

The above equation is derived from (6) by substituting JT 
with 1 + Tj and JJT with 1. 

The activity of the reset node w,, if there is a mismatch 
between the input pattem I and the output activity across the 
F1 field, satisfies the following equation for t E (t,, tb]: 

~ ( t )  =z,(t,)exp[-A,E;'(t - t,)] 

The above equation is obtained by solving (18) with 

If there is no mismatch between I and the output activity 
across the F1 field over this interval, then the activity of the 
reset node satisfies 

z,(t) = z,(t,)exp[-A,e;'(t - t a ) ] .  (A.7) 

The above equation is obtained by solving (18) with 

r M  M 1 

APPENDIX B 
In this appendix we show that by choosing the AART1- 

NN parameter values according to CON8 we can guarantee 
that the reset node is subliminally active at time instance ty. 
The activity of a node wi that receives bottom-up inputs in 
the interval (toit:] satisfies (A.l)  with t ,  = t o  and zi(ta) = 
zi(t0) = 0. At time instance t = ty, zi(t) = zi(ty) = 61. 
Thus, 

- In (1 - 61(1+ AI)}EI t: - t o  = 
1 + Ai 

Since the activity of the reset node w, in the time interval 
(to,  ty] satisfies (A.6) with t ,  = to  and zr( ta)  = z,(to) = 0, 
the activity of the reset node at time instance t = ty is given by 

Therefore, by choosing the AART 1 -NN parameter values as 
in CON8 we can guarantee that the reset node is subliminally 
active at time instance ty. 

APPENDIX C 

In this appendix we provide an example where in the second 
competition cycle, corresponding to the presentation of an 
input pattem I at the F1 field of the AARTl-NN, T M + ~  = 0 
and T M + ~  = OM+3. The network under consideration consists 
of eight nodes in the F1 field (i.e., nodes w1 through U S ) ,  

and four nodes in the first and second layer of the F 2  field 
(i.e., nodes 09 through 2112 in the first layer, and nodes 89 
through 612 in the second layer). Consequently, in this sample 
network M = 8 and N - M = 4. The vigilance parameter 
p is chosen to be 1. Let us assume that the input pattems 
are presented long enough at the F1 field of the AART1-NN 
so that fast LTM learning occurs. Let us also assume that 
prior to the presentation of the input pattem I, the network 
has already learned the input pattems I1 = 00001111, 1 2  = 
01110000, and I3 = 00001100. In particular, the LTM bottom- 
up and top-down traces of node w9 are equal to OOOOaaaa 
and 00001111, respectively, where a = L{L - 1 + 4}-l. 
Furthermore, the LTM bottom-up and top-down traces of node 
wlo  are equal to ObbbOOOO and 01110000, respectively, where 
b = L{L - 1 + 3}-l. Finally, the LTM bottom-up and top- 
down traces of node w11 are equal to OOOOccOO and 00001100, 
where c = L{L - 1 + 2}-l. In short, node w g  has learned the 
input pattem 11, node 2110 has learned the input pattem 1 2 ,  and 
node 2111 has leamed the input pattem 13. 

We now present pattem I = 01111111 at the F1 field of 
the AARTl-NN. We assume that the network parameters are 
chosen so that 0 9  > Ol0 > 011 > O12. As a result, node w g  
in the first layer of the Fz field will be activated first, and it 
will be reset since p = 1. Time instance ti has been designated 
as the time at which node 219 is deactivated; at this time the 
second competition cycle starts. In the time interval (t i , t i) ,  
it is easy to see that the output activity across the F1 field is 
equal to 00001111. Consequently, in the time interval ( t i ,  t i )  
the bottom-up input T10 (i.e., T M + ~ )  is equal to zero, while 
the bottom-up input T11 (i.e., T M + ~ )  is equal to OM+?,. This 
demonstrates our point. 

APPENDIX D 

Appendix D.1 

In this appendix we prove that by choosing the AARTl- 
NN parameter values according to CON11 we can guarantee 
that zj(t i)  in (27) is approximately equal to its minimum 
value of -B2CF1. Let us examine the interval (ti,  ti]. Within 
this interval there is at least one node in the F1 field that 
receives bottom-up and weak top-down signals. We assume, 
without loss of generality, that node w1 is the first node 
in the F1 field that becomes subliminally active after time 
instance ti. Let us denote by ti + At1 the time at which 
node w1 becomes subliminally active. In the time interval 
( t i ,  ti + At,), the activity of the node wj; ( j  # M + 1) 
satisfies (A.4) with t ,  = ti and Tj = Oj. If we show that 
at time ti + At, the activity of a node wj; ( j  # A4 + 1) is, 
by appropriately choosing the AARTl -NN parameters, upper- 
bounded by EO + (-&C;')(l- 0) for E and 0 small positive 
constants, and E small compared to B2CF1, then we have 



886 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 6 ,  NOVEMBER 1994 

shown that x j ( t i )  is approximately equal to its minimum 
value of -BzCT1. This is true because the activity of a node 
w j ( j  # M + 1) continues to decrease after time ti + At1 and 
until time t i ,  and because the activities of all the nodes in the 
first layer of the FZ field are lower bounded by -B2CT1. 

Let us first determine Atl. In the time interval (ti,  t f + A t l )  
the activity of the node w1 satisfies (A.2) with t ,  = ti ,  
and zji = z ~ + l , l .  The quantity At1 is found by setting 
z l ( t i  + At,) equal to 61 in (A.2). This yields 

ln(Q2)El 

1 + A1 + D1A1a4+1,1+ C1' 
At1 = 

with 

9 2  = 

Furthermore, the activity of node wj (j # M + 1) at time 
ti + At1 will be given by (A.4) if we substitute zj(t,) with 
zj(t?j), t - t ,  with At1 from above, and Tj with Oj. This 
yields 

( l + A z o  +Cz)c i  
z j ( t i  + At,) = x j ( t i ) Q 3  ( l + A i + D i A i : , + i , i + c i ) € z  

Oj - Bz 
+ 1 + AZOj + C2 

(D.1) 

where 9 3  = Q2-l. Since Q3 is greater than zero and 
zcj(ti) < S z ; ( j  # M + l), an upper bound for the right 
hand side of (D.l) is found if x j ( t i )  is substituted with its 
upper bound 62. Furthermore, let us choose the AART1-NN 
parameters in a way that allows us to approximate the term 
(Oj - Bz)(l  + A2Oj + C2)-' with the term -B2CF1. It 
is not difficult to see that we can accomplish this goal by 
choosing the AART 1 -NN parameters according to CONl 1 a 
and CONllb in Table 111. Consequently, we can now state 
that 

In Appendix D.2 we show that XP3 decreases as z ~ + l , l  
increases. Furthermore, in Appendix D.3 we demonstrate that 
zl ( t i )  is lower bounded by p a ,  where pz  is given in Table V. 
These two facts allow us to state that Q3 is upper bounded by 
p3 which is also defined in Table V. Finally, it is easy to see 
that the exponent of 9 3  in (D.2) is lower bounded by the value 
for e3 given in Table V. Combining all of the aforementioned 
facts we have from (D.2) that 

z j ( t i  + At,) < 62pT + (-B2CT1)(1 - p ? ) .  (D.3) 

The upper bound on z3(ti + At,) in (D.3) is in the desired 
form, provided that CONllc and CONlld are satisfied. In 

TABLE V 
DEFINITION OF PARAMETERS APPEARING IN CONl -CON17 

review, we have demonstrated in this appendix that under 
CON11 we can state that zj(ti) M -BzCT1 = -Om=; ( j  # 
M + 1). 

Appendix 0.2: 
In this appendix we show that 9 3 ,  defined in Appendix D.l, 

decreases as z ~ + ~ , ~  increases. The quantity 9 3  was defined 
in Appendix D.l as 

9 3  = 

- ( 1 +  DIZM+I,I - BI) + 61(1+  AI + DIAIZM+I,I + CI) 
-(I+ DIZM+I,I - B1) + ~1(t:)(1+ A1 + D l A l z ~ + l , l  + C1). 

Let us evaluate the derivative of @ 3  with respect to z ~ + l , l .  
The derivative of Q 3  with respect to z ~ + l , l  is a ratio. The 
denominator of this ratio is a positive number. If the numerator 
of this ratio is negative then we have proven that q 3  decreases 
as z ~ + l , l  increases. Let us examine the numerator of dz:l,l : 

( - 0 1  + hDiA1)[-(1+ DIZM+I,I - B1) 
+xi( t i ) ( l+  Ai + D I A I ~ M + I , I  + Cl)] 
+ ( 0 1  - xi(tg)DlAl)[-(l+ D I ~ M + ~ , I  - B1) 
+61(1+ A1 + DIAIZM+~,I  + Cl)] 
= [xl(ti) - &]{-D1(1+ A1 + D I A ~ Z M + I , I  + C1) 

+ D l A l ( l +  DlZM+1,1 - B1)) 
< [xl(ti) - &]{-D1(1+ A1 + DIAIZM+~, I  + C1) 

+ SiDiAi ( l+  A1 + D I A I ~ M + I , I  + G)} 
= Dl[xl(tk) - 61](61A1 - 1)(1+ A1 + D I A ~ Z M + ~ , ~  + Cl). 

In the last expression derived above, D1 > 0, zl(ti) - 61 > 
o (because node w1 is supraliminally active at time ti), 
SlAl - 1 < 0 (AT1 is the maximum activation value of a 
node in the F1 field, and 61 is the threshold of the node), 
and 1 + Al + D I A 1 z ~ + l , l  > 0. Consequently, the numerator 
of the derivative dz:l,l is negative, which proves that Q3 

decreases as z ~ + l , l  increases. The inequality utilized in the 
above derivations is justified because node w l  is by assumption 
a node that receives bottom-up and weak top-down inputs, and 
as a result 1 + D ~ z M + ~ J  - B1 < (1 + A1 + D I A ~ Z M + ~ J  + 
Cl)&. 

Appendix 0 . 3 :  
In this appendix we prove that xl( t i )  L pa,  where p2 

is defined in Table V. Consider the interval (ty, ti]. In this 
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interval, the activity of every node vi that receives bottom-up 
input, and hence the activity of node VI, satisfies (A.1) with 
t ,  = ty. Furthermore, in this interval, the activity of every 
node uj satisfies (A.3) with t, = ty and Tj = Oj. Since node 
uM+1 wins this competition cycle, we can write 

with 

Due to the above equations, the activity of node u1 at time 
instance ti is given by (A.l) if we substitute t ,  with ty, and 
t - t ,  with ti - ty from above. This yields 

where '$5 = q 4 - l .  We are now ready to derive a lower 
bound for zl(t i)  of equation (D.4). Because z:l(ty) > 61 
and '$5 > 0, a lower bound on the right hand side of (D.4) 
can be found if we substitute zl(t?) with 61. The resulting 
lower bound can be lower bounded once more if we substitute 
'$5 with one of its upper bounds, and the exponent of '$5 

with one of its lower bounds. This is due to the fact that 
& > 61 (see CON16 in Table 111), and '$5 < 1. Note 
that '$5 < 1 - &A2 - 620;ix, since z ~ + l ( t y )  = 0. Also, 
note that (1 + A1)~2[(1 + A z ~ M + ~ ) E I ] - ~  > (1 + A 1 ) ~ [ ( 1  + 
A2Omax)el]-l. The above discussion proves that p2 of Table 
V is indeed a lower bound of .,(ti). 

APPENDIX E 

In this appendix we prove the validity of ARTl design 
constraint #3 in the second competition cycle. In other words, 
we prove that node U M + ~  is the first node to be activated after 
time instance ti. Consider the activity of node UM+2 and the 
activity of a node u j  (j' # M + 1 , M + 2) after time instance ti. 
The activity of both nodes, after time instance t i ,  is described 
by equation (A.3) with t ,  = ti and Tj = Oj. If 2 M + 2 ( t i )  2 
z j ( t : ) ,  then node uM+2 will become supraliminally active 
before node uj (note that OM+Z > Oj for j # M +  1, M+2). 
Let us concentrate therefore on the more interesting case where 
Z M + Z ( t i )  < zj(t i) ,  and in particular on the extreme case 
where sj(ti) - ~ ~ + 2 ( t i )  is substituted by one of its upper 
bounds. This extreme case is derived below. 

Assume that node U M + ~  receives a bottom-up input TM+~= 
0 in the time interval (ti, t i ) .  Hence, the activity of node U M + ~  

in this interval satisfies (A.3) with zj(t,) = z ~ + ~ ( t i )  x 
-Omax, Tj = T M + ~  = 0, and t - t ,  = ti - t i ,  where ti - ti  
is given by (26). AS a result, 2M+2(ti) = -o,,Q~ ( 1 + 2 1 ) E Z ,  

where 9 1  was defined in (28). We also assume that node wj 
(j # M + 1, M + 2) receives a bottom-up input Tj = Oj in 
the intervals (ti,  ti).  Hence, the activity of u j  satisfies (A.3) 

with z j ( ta)  M -Omax, Tj = Oj, and t - t ,  = ti - ti, where 
ti - ti is given by (26). Consequently, 

An upper bound on z j ( t i )  can be found if the Oj's in 
(E.l) are substituted with Om,, and '$1 is substituted with 
its lower bound of p6 given in Table V. Note that p4 in 
Table V is a lower bound on zl ( t i ) .  Also, -Omax is a 
lower bound on ~ ~ + 2 ( t i ) .  As a result, we can write that 
z j ( t i )  < -P50maxr and Z M + Z ( ~ : )  > -Omax, where p5 is 
defined in Table V. Based on these inequalities, an upper 
bound Onzj(ti)-zM+2(ti) is given by the term (l-ps)Omax, 
and this upper bound corresponds to the extreme case that 
we plan to consider. For this extreme case we will now 
determine conditions on the values of the bottom-up inputs 
Oj (j # M + 1) so that node U M + ~  will be activated before 
any other node uj  (j # M +  1, M +  2). Suppose first that node 
U M + ~  becomes supraliminally active before any other node uj 
(j # M + 2) in the first layer of the F2 field. This event will 
happen at time ti + A t ~ + 2 ,  where A t ~ + 2  is given by the 
following equation: 

o M + 2  - zM+2(t:)(1 + AZOM+Z)] 
o M + 2  - 62(1 + A20M+2) 

(E.2) 

Suppose now that node u j  (j' # M + 1, M + 2) becomes 
supraliminally active before any other node in the first layer 
of the FZ field. This event will happen at time ti + At,, where 
Atj is given by the following equation: 

€2 

1 + A20M+2 ' 

[ &M+2 = In 

X 

Atj = In Oj - z j ( t i ) ( l +  A2Oj) €2 . (E.3) [ Oj - & ( l +  A2Oj) ] 1 + AzOj 

The equations for A t ~ + 2  and Atj were derived using equa- 
tion (A.3). In order to prove the validity of ARTl design 
constraint #3 during the second competition cycle, we have 
to show that under certain AART1-NN parameter constraints, 
AtM+z < At,. After substituting Z M + Z ( t i )  with -omax, 
and z j ( t i )  with -p50max in (E.2) and (E.3), respectively, we 
arrive at 

and 

where Y M + ~  = l + A Z G M + Z  OM and yj = . Based on the 
above equations, it is easy to see that a sufficient condition 
for AtM+z to be smaller than At,, for j # M + 1 , M  + 2, 
is the following: 

YM+Z + Omax < ~j + ~ 5 0 m a x  

YM+2 - 62 Yj - 62 ' 
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Multiplying both sides of the above inequality with (YM+Z - 
6 2 )  (yj - SZ), yields an equivalent inequality: 

- &!/M+2 + YjOmax - &omax  

< -6Zyj + p5?/M+ZOmax - p5620max. 

To satisfy this inequality it suffices to guarantee that yj  < 
p5YM+2. This is because - 6 2 ~ ~ ~ 2  - &Omax < -6zyj - 
p5&Omax. Substituting yj and YM+Z with their equals of 
Oj(1 + AzOj)-l, and of 0 ~ + 2 ( 1 +  A 2 0 ~ + 2 ) - 1 ,  we arrive 
at the condition 

p50;’ - O&:2 > (1 -p5)A2. 

A sufficient condition for the satisfaction of this inequality 
is constraint CON14 of Table 111. Consequently, we have 
proven that ARTl design constraint #3 is valid in the second 
competition cycle, provided that CON14 is satisfied. 

APPENDIX F 
In this appendix we will prove that under certain AART1- 

NN design constraints, the reset node becomes subliminally 
active by time instance ti ,  and as a result ARTl design 
constraint #4 is satisfied in the second competition cycle. 
Note that at time instance ti ,  there is no mismatch between 
bottom-up and top-down inputs at the F’1 field. 

Assume we are at time instance t i ,  and that the reset node 
is deactivated at some point prior to time instance ti. We 
will develop appropriate AART 1 -NN constraints that prove 
the correctness of the latter assumption. After time instance 
t: the activity of the reset node satisfies (A.7) with t ,  = t:. 
Based on (A.7) we can show that the reset node is deactivated 
at time ti + At,,, where At,, = 111[x~(t;)6,-~]A;~~,. If 
we can demonstrate that under certain AART1-NN parameter 
constraints, the activity of every node v j  (j # M + 1) at time 
t: + At,, is below 62, then we have proven ARTl design 
constraint #4. The activity of a node wj ( j  # M + 1) after 
t: satisfies (A.3) with t ,  = t! and TJ = Oj. Hence, at time 
ti + At,, we can state that 

where q 6  = -&. We have already established that an upper 
bound for the term xj(ti) in expression (F.l) is equal to 
-p50max (see Appendix E). Hence, we can write 

( 1 + A z O 3  
A r f Z  xi(t:  + At,,) < -p5Omaxq6 

An upper bound for the right hand side of inequality (F.2) can 
be found if we substitute *6 with one of its lower bounds, 
and the Oj’s with Omax. A lower bound on q 6  is equal 
to 6,. AS a result, xj(t: + At,,) < - ~ 5 0 m a x p ~  + (1 - 
ps)Omax(1 + A2Omax)-l, where p5 and pg are defined in 
Table V. Obviously, ARTl design constraint #4 is satisfied in 
the second competition cycle if the AART1-NN parameters 
are chosen according to CON15 in Table 111. 
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