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Abstract

Benthic macroinvertebrate communities in stream ecosystems were assessed hierarchically through two-level
classification methods of unsupervised learning. Two artificial neural networks were implemented in combination.
Firstly, the self-organizing map(SOM) was used to reduce the dimension of community data, and secondly, the
adaptive resonance theory(ART) was subsequently applied to the SOM to further classify the groups in different
scales. Hierarchical grouping in community data efficiently reflected the impact of the environmental factors such as
topographic conditions, levels of pollution, and sampling location and time across different scales. New community
data not included in the training process were used to test the trained network model. The input data were appropriately
grouped at different hierarchical levels by the trained networks, and correspondingly revealed the impact of
environmental disturbances and temporal dynamics of communities. The hierarchical clusters based on a two-level
classification method could be useful for assessing ecosystem quality and community variations caused by
environmental disturbances.
� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Community patterning is useful for revealing
ecological states of ecosystems in response to
environmental disturbances. In aquatic ecosystems,
community compositions vary rapidly against
stressful sources of natural and anthropogenic ori-
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gins such as flooding, pollution, etc.(Hawkes,
1979; Hellawell, 1986; Spellerberg, 1991). Clas-
sification and ordination of communities have been
recently focused on water quality assessment.
Among different taxa, benthic macroinvertebrate
communities are effective in indicating water qual-
ity and could effectively reveal ecological states
of aquatic ecosystems(Hynes, 1960; Hawkes,
1979; Hellawell, 1986). They constitute a hetero-
geneous assemblage of animal phyla, and conse-
quently it is probable that some members will
always respond to stresses placed upon them.
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Community data, however, are non-linear and
complex: they consist of many species, being
highly variable in densities affected by various
biotic (e.g. physiological development, life cycle,
etc.) and abiotic factors(e.g. precipitation, pollu-
tion, etc.) (Jongman et al., 1995; Legendre and
Legendre, 1998). Recently, biological indicator
systems have been developed based on analyses
of community data. In aquatic ecosystem manage-
ment, for instance, the River Invertebrate Predic-
tion And Classification System(RIVPACS) has
been proposed for assessing the biological quality
of freshwater. The RIVPACS and its derivatives
have been the primary ecological assessment anal-
ysis techniques for Great Britain(Wright et al.,
1993) and Australia(Norris, 1995). Based on a
stepwise progression of multivariate and univariate
analyses, the models predict the aquatic macroin-
vertebrate fauna that would be expected to occur
at a site in the absence of environmental stress
(Barbour et al., 1999; Coysh et al., 2000). These
models are, in general, based on conventional
multivariate statistical methods(Ludwig and
Reynolds, 1988; Jongman et al., 1995; Legendre
and Legendre, 1998). Among them, ordination
techniques were used to obtain a way to display
statistical sample units, which are considered to be
drawn from a population whose variations are
continuous (Goodall, 1954; Giraudel and Lek,
2001). Diverse linear ordination methods have
been implemented for compressing data size, for
example, polar ordination, principal components
analysis (PCA), correspondence analysis(CA),
etc. (Pearson, 1901; Hill and Gauch, 1980; Beals,
1984; Jongman et al., 1995).
The limitations of the conventional methods,

however, are well known: strong distortions with
non-linear species abundance relations(Kenkel
and Orloci, 1986), horseshoe effect due to uni-
modal species response curves in PCA, disjointed
data matrix in CA, arch effect, outliers, missing
data, etc.(Giraudel and Lek, 2001). Recently, as
an alternative tool to deal with this problem of
complexity in ecological data, Kohonen’s self-
organizing map(SOM) (Kohonen, 1982, 2001)
has been used for patterning samples in diverse
ecosystems(i.e. aquatic, forest, agriculture, etc.)
(Lek and Guegan, 2000; Recknagel, 2002): for´

community classification(Chon et al., 1996, 2000;
Park et al., 2001, 2003a), water quality assess-
ments(Walley et al., 2000; Aguilera et al., 2001),
prediction of population and communities(Cer-´
eghino et al., 2001; Obach et al., 2001), and´
conservation strategies of endemic species(Park
et al., 2003b). Classification of communities by
the SOM, however, encounters a problem of objec-
tivity in finding similarities among the classified
samples(Chon et al., 1996). The SOM produces
a map of classification in a low dimensional lattice
(commonly two-dimensional) consisting of com-
putational output units. When the groups are locat-
ed far apart on the map, it is difficult to judge to
what extent they are similar. Furthermore, due to
randomness in iterative calculations and variability
in determining parameters in learning processes,
the grouping presents a slightly different confor-
mation after each training task. In this study, we
propose a combinational method of supervised
learning to alleviate the problem of objectivity in
grouping and to demonstrate the feasibility of
hierarchical classification for assessment of aquatic
ecosystems.

2. Materials and methods

2.1. Ecological data

The benthic macroinvertebrate community data
were provided by the Laboratory of Ecology and
Behavior Systems, Pusan National University,
Korea. The data were seasonal samples collected
at the sites across different levels of pollution in
the Suyong(SY), Cheolma(CM), Hoedong(HD),
and Soktae(ST) streams in the Suyong River in
Korea (Fig. 1a) in October, 1989, and in January,
May, and August, 1990. The Suyong River is a
fourth order river, 28.5 km in length with a
catchment area of 199.5 km , passing through the2

Pusan city area. Two tributaries Cheolma and
Suyong flow through agricultural areas to the
Hoedong reservoir. The Hoedong, which is located
in the lower area of the reservoir, is characterized
by abundant filamentous algae and low current
velocity, but with a great variation in discharge
rates due to the water drained from the reservoir.
The Soktae stream runs through the populated
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Fig. 1. Hydrological network of rivers studied and location of sampling sites(a) and their pollution states(b).

residential area, being heavily polluted by organic
matter in domestic sewage(Kwon and Chon, 1991,
1993).
Benthic macroinvertebrates were collected using

a Surber sampler(30=30 cm). The dataset con-
sisted of 76 samples from 19 sites in four seasons.
Eighty-four species were recorded in datasets in
total. Dominant taxa were Chironomidae, Tubifi-
cidae, Erpobdellidae, Hydropsychidae and Baeti-
dae. In Cheolma, 38 species includingOrdobrevia
sp. andParachauliodes continentalis were identi-
fied, in Suyong 34 species includingEnchytraeus

sp. andSynorthoccladius sp., in Hoedong 40 spe-
cies includingCardina dentriculata andHelobdel-
la sp., and in Soktae 17 species including
Chironomus sp. andLimnodrilus hoffmeisteri.
The Biological Monitoring Working Party

(BMWP) score(Walley and Hawkes, 1996, 1997;
Hawkes, 1997) was obtained from the sampled
data as a biological water quality index, showing
high variations at different sampling sites with
mean values of 57.7(range 36.1–88.6) in Cheol-
ma, 39.3 (range 12.7–73.1) in Suyong, 54.4
(range 20.6–99.1) in Hoedong, and 14.6(range
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7.2–41.4) in Soktae. A wide range in organic
pollution was observed in the study area(Fig. 1b),
showing from oligosaprobity to polysaprobity.
Community structure and ecological assessment on
the Suyong River have been reported in Kwon and
Chon(1993) and Chon et al.(2000).
The abundances of 84 species were provided as

input to the network(number of computation
nodes in the input layers84). The data were
transformed by natural logarithm in order to reduce
variations in abundance. To avoid problems of
logarithm zeros, the number one was added to the
density of each species. Subsequently the trans-
formed data were proportionally scaled between 0
and 1 in the range of the minimum and maximum
density for each species. Normalizing the density
data is necessary because if one variable has values
in the range of large differences, the biggest will
tend to dominate the organization of the SOM map
because of its greater impact on the distances
(Euclidean distance in this case) measured. The
standard way to achieve this is to linearly scale all
variables (Vesanto et al., 1999; McCune et al.,
2002). After the learning processes, a new dataset,
which was seasonally sampled at SY2(see map
in Fig. 1) from 1993 to 1995, was provided to the
network for validation.

2.2. Modeling process

The two-step classification processes with unsu-
pervised learning were applied to community data.
First, the densities of different taxa of benthic
macroinvertebrate communities were fed into the
SOM. After training, weight vectors(i.e. connec-
tion intensities) of the SOM, containing confor-
mational characteristics of grouping in communi-
ties, were subsequently provided to another self-
organizing network, the adaptive resonance theory
(ART; Carpenter and Grossberg, 1987), to find
clusters in the units of the SOM. Different levels
of dissimilarity threshold in the ART were provid-
ed for clustering in different scales. Both the SOM
and the ART are used for clustering datasets.
However, the main difference concerns topology
preservation of output units of networks: neigh-
boring topology is preserved in SOM, while it is
not preserved in ART. According to the topology

preservation of the SOM, the SOM is more pre-
ferred in the ordination of samples than the ART.

2.2.1. Self-organizing map (SOM)
In the SOM learning process, initially the weight

vectors are randomly assigned small values. When
the input vectorx is sent through the network, the
distance between the weight vectorw and the input
vectorx is calculated by Euclidean distanceNNxy
wNN. The output layer consisted ofN output nodes
(i.e. computational units) on a two-dimensional
hexagonal lattice(Kohonen, 2001). Among allN
output units, the best matching unit(BMU), which
has the minimum distance between weight and
input vectors, becomes the winner. The weight,w ,ij

of the network is updated as follows:

w z
x |w tq1 sw t qh t N t,r x yw t (1)Ž . Ž . Ž . Ž . Ž .ij ij j ijy ~

whereh(t) denotes the fractional increment of the
correction, andN(t, r) is a predefined neighbor-
hood function determining the radius from the
BMU in the map. The neighborhood radius was
usually set to a larger value early in the learning
process, and was gradually reduced on approaching
convergence. The detailed algorithm of the SOM
can be found in Kohonen(2001) for theoretical
considerations, and Chon et al.(1996), Park et al.
(2001, 2003a) and Lek and Guegan(2000) for´
ecological applications.
The map size(number of output units) of the

SOM is critical for accommodating hierarchical
levels in community classification. We trained the
SOM with different map sizes, and chose the
optimum map size based on the minimum values
of quantization and topographic errors. The quan-
tization error is the average distance between each
input vector and its BMU and is used to measure
map resolution(Kohonen, 2001). The topographic
error represents the accuracy of the map in pre-
serving topology; the error value is calculated from
the proportion of all data vectors for which first
and second BMUs are not adjacent for measuring
topology preservation(Kiviluoto, 1996).
During the learning process, nodes that are

topographically close in the array will activate
each other to establish coherence from the same
input vector. This results in a smoothing effect on
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the weight vectors of nodes(Kohonen, 2001). To
analyze the contribution of variables to cluster
structures of the SOM, each input variable(spe-
cies) calculated during the training process was
visualized in each node on the trained SOM in
gray scale. Based on the component planes, the
correlation coefficients were calculated between
component pairs in both observed and calculated
data. We used the functions implemented in the
SOM toolbox(Alhoniemi et al., 2000) for Matlab
(The Mathworks, 2001) developed by the Labor-
atory of Information and Computer Science in the
Helsinki University of Technology. We adopted
the initialization and training methods suggested
by Alhoniemi et al.(2000) that allow the algorithm
to be optimized. The software library is available
from the website http:yywww.cis.hut.fiyprojectsy
somtoolbox.

2.2.2. Adaptive resonance theory (ART)
The ART is capable of achieving stable self-

organization of datasets for an arbitrary number of
input vectors(Carpenter and Grossberg, 1987).
The fundamental characteristic of the ART lies in
its ability to dynamically self-adjust its output size
depending on the complexity of the network(Bar-
aldi and Alpaydin, 1998). The algorithm selects
the first input as the exemplar for the first cluster,
and new input is subsequently clustered with the
first if the distance to the first is less than a given
threshold. It plays the role of the exemplar for a
new cluster. A special parameter residing in the
ART is the threshold value for determining vigi-
lance(Lin and Lee, 1996). As the threshold value
increases, the group size increases accordingly.
This provides a basis for organizing the input data
in different hierarchical levels.
A modified algorithm in ART(Pao, 1989) was

used in this study. Bottom up weightsb (1)lk

between input nodel and output nodek are
initialized with some small numbers. After the
input valuey , which is the weight of each outputl

node of the SOM, has been fed into the network,
the distanced (t) is measured for the degree ofk

dissimilarity between input and weight values for
each output nodek, and used as a criterion for
grouping input data through training.

The weight vectors produced from the SOM
were fed into the ART. As each new input vector
is sent into the ART, the distance is calculated and
the output nodek which is closest to the new input
is selected ask*. If d (t) is smaller thanr, whichk*

is a threshold parameter for determining vigilance,
the input vector is assigned to output nodek*. The
weight of node k*, b (t), is then updated aslk*

follows:

c 1
b tq1 s b t q y (2)* *Ž . Ž .lk lk lcq1 cq1

where c is the number of sample units classified
to nodek*. If d (t) is larger thanr the input isk*

assigned to a new output node. This means that
the input vector entered is ‘patterned’(or classi-
fied) as a new pattern(or cluster), not belonging
to one of the patterns existing previously. Then,
its weightb (t) is newly assigned with the inputlk*

vector. For hierarchical clustering in this study,
initially the learning process was begun with whole
map sizes. When clusters were found, the input
vectors were replaced with their corresponding
weights from the ART. The ART program was
developed to run under the Matlab(The Math-
works, 2001) environment.

2.2.3. Unified-matrix algorithm (U-matrix)
To compare the clustering abilities of the ART

for the SOM units, U-matrix algorithm(Ultsch,
1993), a commonly-used quantification method for
finding associations between SOM units, was also
applied in this study. The U-matrix calculates the
distance of a weight vector(w) to its neighbors in
the SOM, and displays the cluster structure of the
map units. Supposing the map has a size ofm
columns andn rows, the following value(M ; U-x,y

matrix) is calculated for all positions:

xq1 yq11 ( (M s w yw (3)x,y x,y a,b8 8Hasxy1bsyy1

whereH is the number of neighbor units ranging
from 2 to 6, depending upon the location of the
map unit. The values were rescaled between 0 and
1 for the purpose of visual comparison. The matrix
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Table 1
Changes of quantization error and topographic errors at different SOM map sizes

Map size 10 20 30 40 54 63 70 80

Quantization error 1.561 1.476 1.382 1.355 1.290 1.256 1.242 1.234
Topographic error 0.000 0.013 0.000 0.000 0.000 0.000 0.001 0.000

was presented as a gray-scaled picture based on
the calculated values: bright areas with low values
depict short distances while dark areas with high
values represent long distances to the surrounding
neighbors. High values of the U-matrix indicate
groups’ boundaries, while low values reveal groups
themselves.

2.2.4. Principal component analysis (PCA)
The visualization method of the SOM could be

related to PCA. To compare the ordination per-
formance of SOM, PCA was carried out with the
same datasets used for SOM training using a
statistical package STATISTICA(Statsoft, 2000).

3. Results

3.1. Benthic community patterns

The number of output units of the SOM is
important to classify communities as stated previ-
ously. If the map size is too small, it might not
explain some important differences that should be
detected. Conversely, if the map is too big, the
differences are too small. After preliminary tests
with two different indices(quantization and topo-
graphic errors) with different map sizes, we chose
63 (9=7) output units of the SOM on the two-
dimensional hexagonal lattice(Table 1) in lower
errors in both indices. The errors for quantization
and topography were 1.256 and-0.001, respec-
tively. Quantization error, representing average dis-
tance between each input vector and its BMU,
decreased gradually according to the reduction of
the map size. One SOM unit has a higher possi-
bility of being occupied by only one input vector
in a larger map size than in a smaller one.
Therefore, the larger the map size, the lower the
errors observed between input vector and output
vector. The values of topographic error appeared
to be very low in all cases in this study, indicating

that the first and second BMUs of all input vectors
were adjacent hexagons and smooth training was
conducted in the SOM.
The trained SOM classified samples according

to variations and gradients observed in benthic
macroinvertebrate communities(Fig. 2). The acro-
nyms in each unit of the SOM map stand for the
samples. The first three letters in the acronyms
indicate the study sites(Fig. 1), while the last
three characters represent the sampling seasons:
SPR; spring, SUM, summer, AUT; autumn, and
WIN; winter (e.g. ST1SPR; samples at ST1 in
spring). The grouping was firstly arranged accord-
ing to the geographical distribution of the sample
sites, e.g. Soktae, Hoedong, Cheolma and Suyong.
The samples collected from Cheolma are mostly
located in the lower area of the SOM, while those
belonging to Hoedong are more concentrated in
the upper right area. Furthermore, temporal varia-
tions in different seasons were also observed local-
ly. For instance, the samples collected in summer
at SY1-5 were either grouped together in the same
unit or were located near each other(e.g. nodes
(5 (row), 3 (column)) and(6, 2)).
The grouping on the map also revealed the

impact of pollution, being comparable with pollu-
tion states of the sampling sites(Fig. 2). The
upper area of the trained map represented polluted
sampling sites, whereas the lower area showed
relatively clean sites. For example, sites ST2-4
were concentrated in the upper left corner of the
SOM (e.g. nodes(1,1), (2,1) and(3,1)). The sites
were heavily polluted from domestic sewage,
showing polysaprobity. Moreover, the samples
from the less polluted site, ST1, with oligosaprob-
ity, were not strongly grouped with sites ST2-4
and were more or less widely scattered in the
upper left area of the map. The sites HD4-5,
heavily affected by domestic and industrial wastes,
formed another strong group at the top of the map
near the area of ST2-4. The less polluted sites
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Fig. 2. Classification of sampling units by the trained SOM. Acronyms in units stand for samples: the first three letters represent
sampling sites(see Fig. 1), and the last three indicate the sampling season: SPR; spring, SUM, summer, AUT; autumn, and WIN;
winter.

HD1-2 were placed more loosely in the upper right
area of the map. Site HD3 was relatively clean but
occasionally disturbed by domestic waste. The
samples of HD3 fell on the boundary between the
areas of HD4-5 and HD1-2. The clean sites from
Cheolma with oligosaprobity(Fig. 1b) were most-

ly located in the lower area of the SOM. The
sampling sites of Suyong were relatively clean
ranging from oligosaprobity tob-mesosaprobity,
and communities from these sample sites were
diverse. Correspondingly, the samples occupied a
wide range in the middle area of the map.
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Fig. 3. Relationships between number of clusters in the SOM
units and dissimilarity thresholds in the ART. The network was
trained at different dissimilarity threshold levels to find clusters
of the SOM units.

3.2. Hierarchical classification using ART

Although the samples were grouped on the SOM
map, it is still difficult to recognize the differences
among the units of the SOM map. In this study
we produced additional clusters in different hier-
archical levels by implementing the ART. For this
purpose, the weights of the trained SOM were
provided to the ART as input, and the units of the
SOM map were further grouped in different scales
by adjusting dissimilarity threshold levels in the
ART. The number of input nodes was 84; each
node corresponds to one species used in the SOM.
As the dissimilarity threshold was increased, the

number of groups decreased correspondingly(Fig.
3) to reveal higher levels in the hierarchy. The
optimal number of clusters can be determined
based on the relationships between the number of
clusters (c) and the threshold values(r): the
number of clusters was stabilized(i.e. dcydrs0
andc/1) at various points as dissimilarity thresh-
old values were gradually increased. In this study
three stabilized levels of dissimilarity were mainly
observed in higher ranges(Fig. 3): 14 subclusters
in the range 0.79–0.87 of similarity threshold,
eight medium-sized clusters in the range 0.91–
0.95, and four large clusters in the highest level in
the range 0.99–1.11. Small groupings with 26 and
56 clusters were also observed at lower similarity

thresholds(Fig. 3), however, grouping at these
low levels was too detailed for differentiation, and
were not considered in the present study.
Fig. 4 shows the hierarchical clustering project-

ed on the SOM map. With the low number of
clusters at the higher dissimilarity level(Fig. 4a),
the samples fell into four clusters(I–IV): the
groups of Soktae–Hoedong–Suyong(cluster I),
Cheolma(cluster II), Hoedong(cluster III), and
Suyong (cluster IV) (Fig. 4a). The groupings
reflected the differences in sampling locations and
pollution levels. The group Soktae–Hoedong–
Suyong(cluster I) accommodated a wide range of
sample sites with pollution sites in the upper left
area and the intermediately polluted sites of
Suyong in the middle area of the SOM. The
communities in Suyong were diverse in particular,
and were divided into two different clusters with
different levels of pollution, Suyong(cluster IV)
and Soktae–Hoedong–Suyong(cluster I). The
sample sites in Hoedong also showed different
levels of pollution. Sites HD4-5 were located in
cluster I(Soktae–Hoedong–Suyong group), show-
ing a-mesosaprobity, while the less polluted sites
HD1-3 below the Hoedong reservoir joined cluster
III in b-mesosaprobity. The relatively clean sites
from Cheolma(cluster II) occupied the lower area
of the SOM map.
The eight medium-sized clusters(Ia–IV) in the

lower hierarchical level were also classified based
on the pollution states and the streams(Fig. 4b).
Large cluster I was divided into four subgroups Ia,
Ib, Ic and Id according to pollution levels. Cluster
Ia showed groups of the highly polluted sites,
including ST3-4 with polysaprobity. Cluster Ic
mostly accommodated HD4-5 witha-mesosaprob-
ity, while the remaining groups showed relatively
lower levels of saprobity. Unlike cluster I, the
communities collected from the same stream in
cluster II were separated based on the stream
gradient: upstream CM1-2(cluster IIb) and down-
stream CM4-5(cluster IIa). Clusters III and IV,
which occupied smaller areas in the SOM, were
not divided in the medium sized clustering(Fig.
4b).
At the lower hierarchical level with fourteen

clusters(Fig. 4c), the sample sites were further
divided depending upon the impact of various
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Fig. 4. Hierarchical clustering of the trained SOM map by the ART and clustering by the U-matrix. The different clusters are
displayed with characters. From four large clusters(a), the clusters were divided into subclusters based on the corresponding
similarity levels(b, c). The symbols represent the classification directions of each cluster. I–IV stand for the four large clusters(a),
the eight medium-sized clusters(b), and the 14 small clusters(c). The clusters determined by the U-matrix are indicated with white
dotted lines based on the gray scale of U-matrix distance(d).

environmental factors including location of sample
sites, season and other disturbances. For example,
communities in cluster Id in the middle area of
the map were further sub-subgrouped according to
the locations of SY1-2 and SY4, whereas some
communities in subcluster Ic were separated based
on season(e.g. Ic3). The sample sites in cluster
III were divided into two sub-subclusters III1 and
III2. The samples collected in spring and in HD3

were more selectively grouped on sub–subcluster
III1. The samples in cluster IV were not sub–
subgrouped at the lowest hierarchical level.

3.3. Comparison with U-matrix method

U-matrix was applied to the results of the SOM
to be compared with the performance of grouping
by the ART (Fig. 4d). High values of the U-
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Fig. 5. Evaluation of new communities not used in the learning process at different similarity levels. The data were seasonally
collected at SY2 of Suyong stream for 2 years from November 1993 to November 1995. The numbers stand for samples from
autumn 1993 to autumn 1995 sequentially.(a) four clusters,(b) eight clusters, and(c) 14 clusters.

matrix indicate cluster boundaries, while low val-
ues reveal clusters themselves, which can be
visualized in gray scales. The lighter the gray
scales between the map units is, the smaller is the
relative distance between them. On the U-matrix
the nodes of the SOM tended to be grouped
similarly to the clustering by the ART at the
highest hierarchical level(Fig. 4a). The boundary
at the lower area between cluster I and clusters
II–IV occurred on the U-matrix, and the boundary
between cluster I and cluster III at the upper right
area of the map was also observed on the U-
matrix. In the upper left area, however, some
differences were observed. For instance, the bor-
derline was additionally formed in the U-matrix
(Fig. 4d). In the corresponding areas in cluster I
on the ART (Fig. 4a), the border line was not
observed at the highest hierarchical level. At the
subcluster level(Fig. 4b), however, the boundary
of cluster Ic was matched to the borderline appear-
ing in the U-matrix. Clustering on the U-matrix,
in general, did not appear as sharply as on the
ART in general. For example, the sample sites of
Soktae were not clearly differentiated from the
sample sites of Suyong on the U-matrix(Fig. 4d).
Community compositions in actual data were dif-
ferent between Soktae and Suyong. The ART
showed more distinctive clusters between Sokae
and Suyong at the sub- and sub–sub-grouping
levels (Fig. 4b, c). This indicated that the bound-

aries defined by the ART could more efficiently
contribute to clustering of communities than the
boundaries on the U-matrix.

3.4. Validating new samples

Once the networks have been trained with input
data, new data sets not used for learning can be
tested on the SOM; they may be classified either
as one of the already determined patterns or as a
new pattern at the corresponding hierarchical lev-
els. Through validation, diagnostics of community
changes were possible on the hierarchical map.
Fig. 5 shows an example of detecting changes in
community development in different seasons. The
data were seasonally collected at SY2 for 2 years
from November 1993 to November 1995. The
numbers(1–9) in the nodes of the SOM map
stand for sampling seasons from autumn 1993 to
autumn 1995 sequentially(e.g. 1 for autumn in
1993, 2 for winter in 1993, etc.). The tracks of
the samples recognized represent development of
communities in different seasons. At the highest
hierarchical level, all the samples belonged to
cluster I (Fig. 5a). Consequently community
changes were not distinguished at the highest level.
However, cross-bordering was observed at sub-
cluster level (Fig. 5b). Changes in the clusters
were shown between ‘1 and 3–7’ and other sam-
ples. Communities in cluster Ib jumped to cluster
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Id1 in winter 1993 and returned to cluster Id1 in
summer 1995(Figs. 2 and 5b). The tracking on
the map efficiently elucidates changes across hier-
archical levels in community development as time
progresses. Cross-bordering in the clusters also
reflected differences in water quality. BMWP
scores were 30.6 in cluster Ib and 38.55 in cluster
Id. The changes in communities were in accord
with field observations. The motorway construc-
tion and the restoration project of the river had
been started since the early 1990s, and were
completed sometime early in 1995. Water quality
has correspondingly improved since the mid nine-
ties. The jump in the community development was
not further detected at the low level of 14 subclus-
ters(Fig. 5c).

3.5. Contribution of species in clustering

An evaluation of the contribution made by input
variables (species) to community grouping was
possible on the hierarchical map. The approximate
probability density function of input data was
calculated through an unsupervised learning algo-
rithm in the SOM. Visualization is an efficient
way to comprehensively understand the contribu-
tion of each species in clustering. Fig. 6 displays
component planes of typical distribution patterns
of species in the SOM units on a gray scale. Dark
represents high abundance of each species, and
light shows low abundance. Species showing sim-
ilar distribution patterns were grouped together
according to their distribution gradients. Distribu-
tion patterns of species were agreed well with the
level of eight clusters(Figs. 4 and 6). Species
Endochironomus sp. andPscycopda sp. were dom-
inant in cluster Ia on the SOM map, 8 species
including Paraleptophlebia chocorata were in
cluster Ib, 7 species includingL. hoffmeisteri and
Physa sp. were in cluster Ic, 12 species including
Cricotopus sp. andHydropsyche sp. in cluster Id,
10 species includingPsephenoides sp. in cluster
IIa, 15 species includingEcdyonurus sp. andSer-
ratella setigera in cluster IIb, 16 species including
Asellus higendorfi andC. entriculata in cluster III,
and finally 14 species such asArctopsyche sp. and
Batrachobdella sp. in cluster IV (Fig. 4). Most
species showed a clear abundance gradient in the

SOM map. Some species, however, did not display
clear gradient because they showed high abun-
dance in more than two clusters. For example,
Copera annulata displayed the highest contribu-
tion in cluster Ic, and also in clusters IIb and III.
Orthetrum albistylum showed the highest values
in cluster III and was also abundant in cluster Ic
and IIb. Species showing high contribution in more
than two clusters were assigned to the cluster
displaying the highest value of the SOM weights
in Fig. 6.

3.6. Comparison of ordinations between SOM and
PCA

In the PCA plot, as in the SOM map, benthic
communities were grouped according to degree of
association in species composition(Fig. 7). Ordi-
nation by the first factor mainly reflected pollution
states of sampling sites. The samples from heavily
polluted areas were collectively located in the
lower left area of the plot(ST3, 4, and HD4, 5).
These samples were separately matched to clusters
Ia, Ib, and Ic in the SOM map(Figs. 2 and 4),
and grouping appeared more clearly in the SOM.
In addition to pollution levels, geographical vari-
ation of the sampling sites was also observed in
the PCA plot along they-axis. The samples from
Cheolma(CM1-5) were densely located in lower
right area. In contrast, the samples from HD1, 2
and SY3, 5 were located close together in the
upper right area. The groups in the PCA corre-
spondingly appeared in the groups shown on the
SOM (Figs. 2 and 4). The group of Cheolma
(CM1-5) was observed on cluster II on SOM,
while the groups of HD1, 2 and SY3, 5 were
matched to clusters Id and III in the SOM. In
general, however, the samples were more distinc-
tively clustered in the SOM than in the PCA. For
instance, the samples classified in clusters in Id
and IV in the SOM were not grouped clearly, but
scattered over a wide area in the PCA(Fig. 7). In
the PCA, seasonal variations in the samples were
not clearly observed, although some local samples
(i.e. SY1 and SY4 in spring, SY2, 3, 5 in winter)
displayed seasonality(Fig. 7). Clusters defined by
the SOM, however, showed temporal variations
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Fig. 6. Typical distribution patterns of species in each cluster in the trained SOM. Dark indicates high abundance of species, and
light is low values. Some species made a high contribution to more than one cluster. They were assigned to the cluster displaying
the highest contribution.

more clearly, along with pollution states and with
spatial location of the streams.

4. Discussion and conclusion

The adaptive learning algorithms efficiently
extract information from complex, multivariate
community data, and provide a comprehensive
understanding of ecological states of ecosystems
in a reduced dimension(Chon et al., 1996; Lek

and Guegan, 2000; Recknagel, 2002; Park et al.,´
2003a,b). In this study we designed a type of
hybrid network that combines the SOM and the
ART. The main advantage of this approach is that
it enables samples to be clustered at different
similarity levels on the SOM and was able to
visualize the samples and species in a reduced
dimension in a hierarchy. Through the SOM, com-
munities were classified based on similarities of
community composition(Fig. 2). When the ART
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Fig. 7. Ordination of PCA with benthic macroinvertebrate communities. The ordination is compared to the visualization of the SOM
in Fig. 2. The first principal factor showed 16.12% of total variance(eigenvalue 12.09), whereas the second one was 13.16%
(eigenvalue 9.87).

was further applied to the groupings in the SOM,
hierarchical clusters were formed at different dis-
similarity levels(Fig. 4a–c).
The SOM approximates the probability density

function of input data through an unsupervised
learning algorithm, and is an effective method for
clustering, visualization and abstraction of com-
plex data(Kohonen, 2001). The main property of
the SOM is the dimension reduction achieved by
the learning process. Input information of high-
dimensional input patterns is mapped into low
dimensions(commonly a two-dimensional map),
with information on the relationships of input
signals preserved as much as possible. Through
this process, neighboring input values are mapped

onto neighboring(or the same) nodes according
to some metric defined in the output space and
neighborhood topology is preserved. Additionally,
the SOM averages the input dataset in weight
vectors through the learning process and thus
removes noise(Vesanto et al., 1998). The aver-
aging effect was implemented in the first step of
the combined model in this study. It is well known
that classical clustering techniques are sensitive to
the presence of outliers in the data. Therefore,
outliers must be detected before analyzing clusters.
However, the problem of outliers is minimized in
the SOM. Each outlier takes its place in one unit
of the map, and only the weights of that unit and
its nearest neighbors are affected. There is no
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effect on the other units. Likewise, scattered nodes
on the map in turn suggest the presence of an
outlier (Lek and Guegan, 2000).´
Meanwhile, the ART also clusters input data by

self-organizing. But the process of self-stabiliza-
tion is conducted through different pathways.
While differences in neighbor nodes are gradually
intensified through competitive learning in the
SOM, the large clusters were successively divided
into subclusters(Fig. 4). The ART takes a set of
input vectors and gives, as output, a set of clusters
that map each input vector to a cluster. Input
vectors are mapped to output vectors according to
their closeness, which is determined by a similarity
measure. The clusters can then be labeled to
indicate their semantic meaning and are represent-
ed internally by using prototype vectors. Both the
SOM and the ART are used for clustering datasets.
However, the main difference concerns the topol-
ogy preservation of the output units of networks:
neighboring topology is preserved in SOM, while
it is not preserved in ART. Owing to the topology
preservation of the SOM, the SOM is preferred in
the ordination of samples rather than the ART.
The ART, however, is superior in clustering the
groups in different scales according to the vigi-
lance residing in the network(Lin and Lee, 1996).
In this study the SOM was used to visualize the
topology of neighboring nodes for the first step,
and the ART was subsequently used to classify
the patterned nodes in the SOM topography in
different hierarchical levels.
Through hierarchical classifications, samples

can be efficiently assessed through different levels
of association. As mentioned before, the upstream
(HD1-2) and downstream(HD4-5) samples in
Hoedong were grouped differently in cluster III
and in cluster I, respectively, in the highest hier-
archical level(Figs. 2 and 4). This indicates that
the communities in these two areas were very
different although they were located close to each
other in the same stream(Fig. 1). The degree of
organic pollution showed a distinctive difference
between these two groups of the sample sites. Sites
HD4-5 were heavily polluted, being affected by
domestic sewage and waste from a junkyard locat-
ed near the sampling areas, whereas sites HD1-2
were relatively clean.

Community composition also confirmed the dif-
ferences between the two groups of the samples.
A. hilgendorfi andC. dentriculata were exclusively
collected at sites HD1-2(Figs. 2 and 6). Asellus
is an indicator species ofb-mesosaprobity and is
collected in a moderately enriched region with rich
algal growth(Wiederholm, 1984; Kwon and Chon,
1991). Furthermore, macrophytesHydrilla verti-
cillata and Potamagetum criptus and filamentous
algaeOedogonium were abundant at these sample
sites. These taxa serve as a major energy source
for the macroinvertebrates. At sites HD4-5, in
contrast, species richness was low and a few
selected species tolerant to pollution were domi-
nant, includingChironomus sp. andL. hoffmeisteri
(Figs. 2 and 6). In this case, domestic organic
waste was the main food supply for the tolerant
species.
In the SOM, samples in HD3 were mostly

located between HD1-2 and HD4-5 at boundary
areas(Fig. 2). The field data also confirmed that
community compositions were intermediate
between HD1-2 and HD4-5. The BOD values also
were in the middle range(Fig. 1b). The benthic
communities in two streams, Suyong and Cheolma,
were patterned differently in the hierarchical clas-
sification of the SOM. Although their BOD values
were similar(2.35 ppm and 2.06 ppm in Suyong
and Cheolma, respectively;t-test,P)0.05), com-
munity compositions were distinctly different
between these streams. Kwon and Chon(1991)
reported that the taxa were more diverse and a
selected taxon such as Chironomidae occurred
more abundantly in Suyong than in Cheolma.
These differences of community compositions in
the two Suyong and Cheolma streams were also
clearly addressed in the hierarchical patterning of
the SOM: the groups in Suyong and Cheolma were
separated across different hierarchical levels(Fig.
4a–c). These results demonstrate that communities
could be grouped in different scales, revealing an
extra degree of explanation of ecological states.
The univariate chemical assessment such as BOD
or biological index such as BMWP alone cannot
convey information residing in ecosystem data as
efficiently as community mapping.
Communities, in general, usually develop into

hierarchical organizations, and it is helpful to
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understand communities at different scales(Allen
and Starr, 1982; O’Neill et al., 1986; Urban et al.,
1987; Allen and Hoekstra, 1992). The study of
complex systems emphasizes the importance of
scale(O’Neill, 1989; Levin, 1992), and develop-
ments in hierarchy theory demonstrate how pro-
cesses and constraints change across different
scales(Allen and Starr, 1982; O’Neill et al., 1986).
Benthic macroinvertebrate communities in streams
usually have clear taxonomic and functional hier-
archies, and these are essential to verify the organ-
izational characteristics in communities(Cummins
et al., 1973; Cummins, 1974). Hierarchical group-
ing was demonstrated by combinational implemen-
tation of artificial neural networks in this study.
Although the hierarchical grouping was only con-
ducted on the community composition level, the
type of hierarchical model presented in this study
could be universally applied to revealing commu-
nity organization in various domains(e.g. food
web, trophic structure, etc.) if appropriate data are
available.
Hierarchical classification would be also useful

for diagnosing spatial and temporal variations of
communities. The present study demonstrated the
usefulness tracking ecological states of community
development on different hierarchical levels. As
shown in Fig. 5, new datasets were validated, and
changes in states of communities across different
hierarchical levels were demonstrated. In hierar-
chical grouping, there were nodes where no sam-
ples were clustered. In subclusters Ic2 and Id2
(Fig. 4c), for instance, no communities were
observed. Although no communities reside there,
these clusters are still useful and serve as reference
nodes for validation. For example, if data from a
new community belong to this node, ecological
states could be considered in terms of differences
in hierarchical clustering. With hierarchical group-
ing, disturbance can be diagnosed in spatial and
temporal domains on different scales.
To cluster the nodes of the SOM, the U-matrix

algorithm is conventionally used: the matrix gives
a picture of the topology of the unit-layer and
therefore also of the topology of the input space
(Ultsch, 1993). Sometimes, however, it is not an
easy task to detect clear boundaries on the map of

the U-matrix. The feasibility of grouping between
the U-matrix and hierarchical classification was
compared in this study(Fig. 4). It appeared that
grouping was more apparent in hierarchical cluster
analysis than in U-matrix, responding to environ-
mental effects(e.g. Figs. 4–6). However, the U-
matrix presented effectively overall similarities
between the units of the SOM map. This confirmed
the work of Vesanto and Alhoniemi(2000), report-
ing that the U-matrix did not present clusters in
their datasets, while an agglomerative clustering
method showed clear clusters. In ecological stud-
ies, several different cluster algorithms such as a
fuzzy c-means clustering method(FCM; Giraudel
et al., 2000), a k-means algorithm(Park et al.,
2003a) and an agglomerative clustering method
(Park et al., 2003b) have been used to cluster the
nodes of the trained SOM map. Different methods
to group the map have both strengths and weak-
nesses according to their clustering algorithms
(Jongman et al., 1995; Legendre and Legendre,
1998; Vesanto and Alhoniemi, 2000). However, it
is not easy to compare efficiency in grouping since
the data were basically trained in an unsupervised
manner so no reference(i.e. template or teacher)
is available for comparison. Further study is
required to improve the methods used for quanti-
tatively determining the feasibility of grouping.
Comparing the SOM and the PCA, grouping by

the SOM was more relevant to ecology, revealing
different effects of pollution states, and impacts of
spatial and temporal variations in environment
(Figs. 2, 6 and 7). The SOM, by explaining total
variance in the data, was able to describe more
directly the discriminatory power of input variables
in mapping, while PCA explained less than 30%
of the total variance in the data. Since the SOM
is efficient in non-linear classification, ordination
and visualization, the horseshoe effect observed in
PCA doest not exist in the SOM. In the SOM
map, however, the direction of the gradients cannot
be controlled quantitatively as in PCA, since it is
based on a heuristic and adaptive learning algo-
rithm. However, the SOM has an additional advan-
tage. It is superior in visualization of variables.
For example, species abundance and richness, and
environmental factors can be visualized in the
same SOM map, efficiently elucidating relation-
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ships between variables. In this study, as stated
above, the distances between the groups in the
SOM map were efficiently defined through hier-
archical levels by implementing two-level classi-
fications. It showed the degree of association
among the sample communities in a hierarchy
(Fig. 4), alleviating the problem of objectivity in
distance on the SOM nodes(Chon et al., 1996).
Similarly to correspondence analysis, the SOM

can display groupings of samples and species
simultaneously. Through this visualization, the
importance of each species can be evaluated(Fig.
6) and the affinity between species in the com-
munity assemblages can be described. Another
advantage of the SOM is that new samples can be
added(or tested) on the SOM map without affect-
ing the previously trained ordination. Through this
process, we evaluated new samples(collected
1993–1995) in the SOM, and effectively traced
seasonal changes in communities(Fig. 5).
In conclusion, the two-level classification

approach by combining the SOM and the ART
was efficient for a comprehensive understanding
of multivariate ecological data. It can be efficiently
utilized for diagnosing changes in ecological states
across different hierarchical levels in spatial and
temporal domains. The combined network of unsu-
pervised learning could be a useful tool for eco-
system managers in the monitoring and assessment
of disturbances in ecosystems.
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