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Intelligent design retrieval and packaging system: application of neural
networks in design and manufacturing

A. BAHRAMI{§, M. LYNCH} and C. H. DAGLI*

We describe a hybrid intelligent design retrieval and packaging system by
utilizing techniques such as fuzzy associative memory, backpropagation neural
networks, and adaptive resonance theory. As an illustrative example, a prototype
of the proposed system has been developed to intelligently retrieve a design from
a standard set of chair designs that can satisfy the required needs. The system
then automatically passes the design to an intelligent packaging system which
locates the parts needed from a designated area and packages the parts in the
packaging area. This novel application of neural networks could establish the
basic foundation of a true intelligent manufacturing system.

1. Introduction

The quest for building systems that can function automatically has attracted a lot
of attention over the centuries and created continuous research activities. As users of
these systems we have never been satisfied, and dermand more from the artifacts that
are designed and manufactured. The current trend is to build autonomous systems
that can adapt to changes in their environment. While there is lot to be done before
we reach this point it is not possible to separate manufacturing systems from this
trend. The desire to achieve fully automated manufacturing systems is here to stay.

Decision complexity is and will be an issue in manufacturing systems. This is due
to the fact that excessive design and operation alternatives exist in the products to be
produced and the choice among appropriate combinations is not an easy task.
Recent changes in the global economy, and intense international communication
capability, has created the global market which necessitates flexibility in manufactur-
ing systems to be able to compete effectively with companies emerging around the
globe. There is a definite trend to move into customized products with short life
cycles and response to market changes pretty much instantaneously. The flexibility
that we are searching for requires integration among basic functions of manufactur-
ing, namely; product and part design, process planning, programming for machines,
robots, automated guided vehicles, production planning, manufacturing, receiving,
storage and shipping. Manufacturing flexibility demands customized high quality
and low cost products with inexpensive components. This translates into autono-
mous machine setup procedures, automation of design and process planning, and
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well integrated manufacturing information systems to get the first part right the first
time. Hence, flexibility requires intelligence, and this needs to be integrated with real
time control to adapt to changes both in the market and the manufacturing
environment on the shop floor.

Utilization of artificial neural networks in the classification and coding of parts
for group technology applications have attracted the attention of many researchers
(Dagli and Huggahalli 1991). In this paper, however, the application of artificial
neural networks in design retrieval and manufacturing is discussed. In order to test
the concept, a system is prototyped for designing and packaging a set of standard
chairs. The design phase has been automated by retrieving designs from a database
of design solutions that can satisfy the marketing demands. Once the appropriate
design is retrieved from the database, the system locates the required parts for the
selected design within an inventory area and moves the parts to a packaging area.

The intelligent design retrieval and packaging system composed of four IBM PCs
networked through IBM token-ring. Figure 1 show the various nodes making up the
intelligent design retrieval and packaging system.

1.1. Automatic design retrieval system (ADRS)

The ADRS evaluates and maps the marketing characteristics into a set of
physical structures based on the pre-designed substructures and the knowledge of
existing designs for automating the design process.

1.2. Intelligent packaging system (IPS)

The IPS consist of two subsystems, the machine vision and robot controller. The
machine vision subsystem adds intelligence to the packaging of the design parts. The
use of machine vision allows for the random placement of standard parts within the

£ Design Automation Node

Figure 1. System network.
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inventory area. The machine vision subsystem identifies and locates parts, as well as
monitors the assembly area to check the packaging of the required parts. The robot
controller is responsible for the proper packaging of all the required standard parts
in the package. It controls the robotics arm which moves the specified parts from the
inventory area to the packaging area.

The rest of the paper is organized into six sections. Section 2 provides some
background in fuzzy associative memory (FAM), backpropagation neural networks
(BP), and adaptive resonance theory (ARTI); §3 describes the design retrieval
module; §4 explains the machine vision subsystem and §5 the robot controller
subsystem; §6 reports the experimentation and implementation of the proposed
system and §7 presents the summary and conclusion.

2. Artificial neural networks—backgrounds

Artificial neural networks (ANNS) are a new information processing technique,
they simulate biological neurons using computers. Although most of the physiologi-
cal details are eliminated by this hardware/software model, artificial neural networks
retain enough structure to work like a biological neural processing unit. They are
mathematical models of theorized mind and brain activity. ANNs provide a greater
degree of robustness or fault tolerance due to the massive parallelism in their design.
Neural networks are used in the situations where only a few decisions are required
from massive amount of data, or a complex nonlinear mapping needs to be learned.

Here three ANN paradigms that have been incorporated in the proposed system
will be examined. These are FAM, BP, and ARTI.

2.1. Fuzzy associative memory (FAM )

Fuzzy associative memories FAMs (Kosko 1987) are knowledge-based informa-
tion processing systems. FAM is a two layer ‘feedforward’ network—where signals
allow only information to flow among nodes or Processing Elements (PEs) in one
direction (Fig. 2). FAM is ‘hetroassociative’ since it stores a pattern pair (Ci.. S)).
Therefore it operates as a fuzzy classifier that stores an arbitrary fuzzy spatial
pattern pair (C,,S,) using fuzzy Hebbian learning, where the kth pattern pair is
represented by the fuzzy sets Cy={cf,...,c¥} and §, = {s¥,....s%}. Fuzzy composi-
tion is defined as:
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M=C"-S (1)
or, in pointwise notation as [9]:

mij= min (uc(c!()s .us(s}( )), (2)
k

where p,(c¥) is the degree of membership of the ith member of the fuzzy set C (with
the range of 0 to 1), m;; is a fuzzy connection strength from the ith to the jth neuron
of the max-min composition between the two layers of the network.

2.2. Backpropagation neural networks ( BP)

The backpropagation paradigm is a multi-layer network consisting of only
feedforward connections (no network feedback). The network can learn both
nonlinear functions and hetroassociative pattern classifications through a supervised
training sequence. The knowledge about the learned relationships are stored as
weights on the interconnections between the network’s processing elements. The
network learns the input to output relationships through a training processing
elements. The network learns the input to output relationships through a training
process. In this training process, the network is exposed to a training set consisting
of possible inputs and a desired output for each input. The backpropagation
algorithm performs the input to output mapping by minimizing a cost function
using the squared error. The squared error is the squared difference between the
computed output value and the desired output value of each neuron (processing
element) in the network. Errors are minimized through making adjustments to the
weights on the processing elements’ interconnections. So the backpropagation
algorithm is a multi-layer, gradient descent, error correction encoding algorithm. It
is said these errors are propagated back into the network in order for the network to
learn the relationships or patterns more accurately. For details of this process,
Simpson (1990) provides an excellent description.

The backpropagation network paradigm has been the most widely used para-
digm, primarily for its ability to learn both nonlinear relationships and pattern
classifications, its simplicity in coding, and its generalization capabilities. The
backpropagation algorithm was developed by Werbos (1974), but the paradigm
achieved its popularity after Rummelhart et al. (1986) demonstrated its power and
showed its great potential. The elementary backpropagation network is a three-layer
feedforward network and is illustrated in Fig. 3. It is possible, as will be shown
below, to have more than three layers in the network.

2.3. Adaptive resonance theory ( ARTI)

Binary adaptive resonance theory neural networks (ART1) are pattern classify-
ing networks capable of storing an arbitrary number of binary spatial patterns. The
ART! paradigm was originally proposed by Carpenter and Grossberg (1986). The
network compares incoming binary patterns to patterns already stored in its long
term memory (LTM). If the pattern is sufficiently close to a pattern already stored,
the pattern is recognized as the previously stored pattern. If the pattern does not
sufficiently match a pattern stored in memory, the network stores the pattern as a
new pattern class. This network differs from the backpropagation paradigm in
several interesting aspects, which are discussed below.

The ARTI paradigm is a feedback type network having recurrent connections
between layers. Figure 4 illustrates an ART]1 neural network architecture showing
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Figure 3. An elementary backpropogation topology.
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Figure 4. Basic features of ART neural network.

that the network is a two-layer network with both feedforward and feedback
connections between the layers. The layers (or fields) are indicated as F1 and F2.
The input layer F1 handles the feature representation, while the second layer F2 is
for pattern class representation. The feedforward and feedback connections are
indicated as the upward pointing LTM trace and downward pointing LTM trace,
respectively. The LTM designation represents the long term memory of the network,
where the STM represents the short term memory of the network. The long term
memory is used for the distributed storing of the pattern information. The short
term memories are an integral part of the control and stabilization mechanism that
allows for the search of the pattern stored in LTM and then saving of any new
patterns in LTM.

The network also utilizes unsupervised learning where there is no training phase.
As previously described, input patterns are compared to stored patterns; if the
patterns do not match they are stored as a new pattern class. The network performs
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this function on its own, thus allowing the creation of a self-organizing pattern
matcher.

The coarseness of the matching process is controlled by a parameter called the
vigilance factor. The setting of the vigilance factor determines how close the input
pattern must be to the stored pattern before a match is determined. The higher the
vigilance factor is set the closer the input pattern must be to a stored pattern before a
match is found. The vigilance factor is implemented into the architecture by using it
as the level to perform a STM reset signal. The STM reset signal indicates that a
match has not occurred and the search should proceed to the next stored pattern.

3. Automatic design retrieval system (ADRS)—motivations

The main objective of ADRS is to automate design receival by retrieving a design
based on how well a design solution satisfies the marketing demands and users’
specifications (Bahrami 1993). Design involves continuous interplay between what
we want to achieve and how we want to achieve it (Suh 1990). A designer usually
associates sets of fuzzy functional requirements with sets of physical structures. Then
during the design process, design solutions are retrieved from memory to solve the
design problem.

Customers and the design-build team usually communicate through a natural
and somehow ambiguous language that cannot be modelled by conventional two-
valued logic. Fuzzy sets can exploit the complexity and ambiguity that may result
from communication gaps between users and designers, and turn them into
manageable problem domains without ignoring the important factors involved.
Fuzzy sets give us the building blocks for dealing with imprecise and overwhelming
complex representation problems of input requirements. For instance the class of
comfortable chairs can be viewed as a fuzzy set. An executive chair is definitely a
member of this fuzzy set with a high degree of membership (close to 1) and a
classroom chair is more out of the set than it is in it.

FAM rules, unlike the bivalent rules as symbols in Al systems, consist of
numerical entities. These rules are not single value propositions but they are an
embodiment of multi-valued sets. These numerical entities of associated ‘rules’ relax
or de-emphasize the articulated, expertly precise nature of the stored knowledge. In
the real-world application of a knowledge base, a knowledge engineer can hardly
capture the articulated rules; he can only incorporate these rules inexactly and
imprecisely.

FAM Paradigm has been selected for the ADRS module because of its capability
of mapping a fuzzy spatial pattern pair and ability to reason about fuzzy functional
requirements. The one-pair-storage capability of the FAM provides us with a rich
knowledge representation mechanism that is modular and at the same time avoids
interference between stored patterns.

3.1. The design problem

Given sets of fuzzy functional requirements (FRs) and design constraints (Cs)
generate the design solution(s) that can satisfy the input requirements. For instance,
input requirement for designing a chair may stated as:

Design a very comfortable chair that can be used more or less in public.
FR, =chair must be very comfortable.
C, =use more or less in public.
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Having defined FRs and Cs, how do we generate design solution(s), namely a
very comfortable chair that can be used more or less in public. Design constraints
have been differentiated from functional requirements since they are basically
concerned with the boundary of the design such as size, weight and cost (the input
constraints), or capacity, geometric shape and usage (the system constraints) (Suh
1990). In this paper the utilization of FAM in automatic design retrieval is
illustrated.

3.2. Fuzzy knowledge representations

To experiment with the concept, six generic functional requirements and 11
design constraints have been generated for designing various classes of chairs.
Functional requirements are defined as: Ability to adjust the chair (F R,), ability to
move the chair (FR,), ability to fold the chair (FRy), stability (FR,), ability to stack
the chair (FRy), and comfortability (FRg). Design constraints are defined as: Cost
(Cy), size (C,), weight (C,), use for dining (C,), use for office (Cs) use for relaxation
(Ce), use for home (C,), use for classroom (Csg), use for public (Cy), use for typing
(Cy0). aesthetic look (C,,). The crisp universal sets FRs of the functional require-
ments and Cs of design constraints are defined as follows:

FRs={FR,, FR,, FRy, FR,, FR,, FR,)
Cs={C,, C,, C4, C,, Cs, C, G, Cg, C, Cyp, Cyy }

A database of 11 different design solutions has been created (Fig. 5). Associated
with each design solution is a list of required parts along with their positions in the
final packaging configurations. Each design solution (chair) satisfies a certain set of
functional requirements and design constraints. For instance an executive chair may
be defined as follows:

Jr (chair2y={1-0/FR,, 1-0/FR,, 1-0/FR,)
cs (ChairZ) = {IO/Cs, 0'7/C6, 03/C7 5 ].O/Cll }

= L b

1- Operational Chair 2- Executive Chair 3- Contiact Chair 4- Office Chatr

Yok s

S- Office Chair & Stacking Chair 7 - Folding “hair B- long Chair
9- Clasaroom Chair 10 Armless Chaiy 11- side Chaix

Figure 5. Design solutions.
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The above fuzzy sets may be interpreted in English as follows: An executive chair
is a chair that is very comfortable with a high degree of adjustability and
moveability, furthermore it is used more in the office than home, it also can be used
for relaxation; finally the appearance is very important.

3.3. Triggering and conflict-resolution strategy

Fuzzy associative memory is used to retrieve a design solution based on how well
a design satisfies the user’s specifications. The primary disadvantage of FAM is in
one-pair-storage capacity. Therefore, for each pattern pair (a design), we must create
a separate network. The main problem in implementing the multi-FAM model is the
selection of a network based on an incoming pattern.

An algorithm has been formulated to associate an incoming vector to the most
applicable network (a design solution). The proposed algorithm consists of two
components, these are triggering, and conflict-resolution procedures. During trigger-
ing the incoming vector is fed forward and backward through all the networks and
triggers each network to generate a vector. Conflict-resolution procedure resolves
the conflict by selecting the network that has stored the closest vector to the
incoming vector.

3.3.1. Trigger procedure
Assume that there are n networks, one for each design solution or associations as
follow:

M,;=CJ-S;, ieN, 3)

Where C; and §; are the antecedent and consequent of the FAM rule i, and N,
contains the indices to the stored designs.
For instance if we have fuzzy vectors C; and §; as:

C,=[10 03 07 00]
S,=[09 00 00 04]

Then M, is computer as a max-min (o) of CT and S;:

Mi=CiT°Si
[1-0
03

M;= 07 o[09 00 00 0-4]
| 0:0

09 00 00 04
03 00 00 03
07 00 00 04
|00 00 00 00

Max-min composition (¢) resembles vector-matrix multiplications, where multi-
plication is replaced by pair minima and summation is replaced by pair maxima.

Now suppose that an I-dimensional input fuzzy vector R is the fuzzy input
requirement to the system. The vector R is fed through the first layer of each
network and fires every FAM rules in parallel but to a different degree. Each FAM
rule generates an m-dimensional output fuzzy vector P;, where ieN,.
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Pi=Ri-M] ieN, 4)
Next, pattern P, is fed back through the second layer (output layer) of each
network. Each FAM generates pattern Q.

Qi=PM], ieN, (5

3.3.2. Conflict-resolution procedure

The conflict-resolution modeule compares patiern Q; with the incoming pattern
R. Equation 6 is used for measuring the similarity of patterns R and Q; (Bahrami
etal. 1991):

S(R,Qi)= E Qinj‘“
j=1

n 1/2
(£ w-0)" ©
\J=1 / i

The network with the maximum value of S is the winner and it will be selected to
do the mapping.

3.4, Nerwork topology and data ser

The input, as we discussed earlier, consists of two fuzzy sets, namely FRs and Cs.
For the purpose of simplicity, these two sets have been represented as a list. Further,
the symbolic representation has been replaced by the positional importance of the
degrees of memberships in the list. The input layer is designed to have 17 neurons.
One neuron for every functional requirement and design constraint. For example,
the functional requirements and design constraints for an executive chair (chair 2)
are represented as follow:

Co=(10 10 0 0 0 10 0 0 0 1007 03 0 0 0 0 1-0)

The first value corresponds to FR1 (Ability to Adjust the Chair), second to FR2
{Ability to Move the Chair) and so on. Each degree of membership is assigned to a
separate neuron.

The output (second) layer of FAM is designed to have 11 neurons, one for every
class of chair. For instance Chair 2 is represented as follows:

Szz(Ol-OOOOOO()OOO)

3.5. ADRS performance

The main issue here is the performance of the ADRS when the number of stored
designs are increased. This may raise the question should the growth of the search
space be of major concern (in terms of the computational complexity as well as the
storage capacity)? The answer is no, for two reason. First, the expert articulation
and fuzzy engineering estimation produce only a small fraction of the total possible
fuzzy system (Kosko 1987). Second, the fuzzy systems admit degrees. Therefore,
FAMs can generalize elegantly based on a single fuzzy association and are able to
encode many possibilities. Fuzzy systems map a region of the input space to a region
of the output space (A;, B)) by utilizing fuzzy-set samples (Fig. 6). Fuzzy systems do
not use a numerical-point sample (x;,y;) that neural systems use. FAM is not
concerned with each point in the input-output product space and it exploits few
fuzzy subsets of the input-output product space. Thus, as the actual number of
‘needed’ (non redundant) FAM rules or the search space grows in a range of (log%)
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Figure 6. Fuzzy systems map a region of the input space to a region of the output space
(Kosko 1992).

to (klogs). This claim is only an estimate without any mathematical proof and
remains a research issue.

To test the system, 20 design scenarios with known solutions have been created.
ADRS was capable of successfully generating 18 correct solutions, (Fig. 7). In
scenario number 11, ADRS could not generate any solution. Overall ADRS error

rate was < 10%.

4. Intelligent packaging system aPs)

The intelligent packaging system (IPS) provides three functions. The first
function is the identification, location, and orientation of the standard chair parts
located in the inventory area. The second function is packaging of the required

Chair Design Alternatives
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Figure 7. Experimental results.
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parts. This function entails moving the designated parts from the inventory area to
the packaging area. The third function is the inspection of the packaging area to
ensure that the proper parts are included in the package. The IPS is composed of
two subsystems. These subsystems are the machine vision and robot controller.

The machine vision subsystem provides the image acquisition, image processing,
and part recognition functions needed to locate parts in both the inventory and
packaging areas. The subsystem utilizes both conventional and neural network
technology in performing the processing needed to locate and package the parts.

The robot controller subsystem accepts the parts’ location and orientation
information from the machine vision subsystem and the packaging information
from the automatic design retrieval system to create a control program for the
robotics arm. The control program is downloaded to the robotics arm controller and
executed in order to move the desired parts from the inventory to the packaging
areas.

4.1. Machine vision and object identification subsystem

The function of this subsystem is to identify parts, their locations, and their
orientations in both the inventory and packaging areas. It is possible to perform this
function using well established, conventional algorithmic approaches, but a goal in
this development was to investigate how neural networks could be utilized in system
operations.

The processing performed by this subsystem can be broken down into two
operations. The first operation is to acquire and process video images in order to
determine relevant properties and attributes about objects shown in the images. The
attributes would be the objects location (centre of mass) and orientation (angle of
the principal axis). The second operation is to use some of the property information
to classify each object found in the image into a part category, essentially identifying
all the objects found in the image. Figure 8 shows a raw video image acquired of the
inventory area.

In determining the subsystem’s functions for implementation with neural
networks several factors were considered. These factors included:

(1) appropriateness of neural network implementation

Figure 8. Raw video image of the inventory area.
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(2) size of network required for implementation
(3) utility of a neural network implementation

A good area for neural network implementation would have been in the image
processing itself; but creating networks large enough to process an entire image was
not practical with the current technology. Because of this, all of the image processing
was done with conventional algorithmic approaches.

After considering the above factors, two areas were chosen for neural network
implementation. One area was that of classifying the objects found in the image into
part categories (identifying each object). The second area was the calibration needed
to convert the image points found, through the image processing, to the robotics
arm coordinates needed to pick up and move the parts.

Most of the neural network applications in vision have been for object classifica-
tion and recognition (Barnard 1989). In these applications the images are processed
in order to classify the objects into classes for proper identification. Neural network
classifiers are capable of piece-wise linear or piece-wise quadric decision boundaries
(Barnard 1989). Gonzalez and Woods (1992) provide a good description of using
neural network classifiers for pattern classification. While the most popular neural
network classifiers are those using the backpropagation paradigm, many other
paradigms are available to choose from, each with varying capabilities and capaci-
ties. However, since ART1 provides on-line learning capability and is able to
distinguish small differences in the input patterns, it was selected for the vision
subsystem object classification.

Vision system/robotics arm calibration has typically been done by deriving a
mathematical model of the systems and then estimating the transformation par-
ameters from the machine vision coordinate system to the robotics arm coordinate
system. A neural network implementation for calibration offers a novel approach to
solving this problem.

The next several § discuss the specific processing occurring in this subsystem.
Figure 9 summarizes the operations by expressing the knowledge transformations
that occur during the processing. As shown in the figure, the processing is broken

Figure 9. Knowledge transformations in image processing module.
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down into two modules, the image pre-processing module and object classification
module. In the image pre-processing module, the objects found in the video images
are separated from the background and then the objects are separated from each
other. With each object found in the image the object’s location, orientation and
other features are calculated. Each object’s features are used by the object classifica-
tion module to identify what part each object found in the image represents.

4.1.1. Image pre-processing

In order to process the scenes as seen from the cameras, digital representations
must be obtained. Images are acquired from the cameras, digitized, and stored as
two-dimensional arrays for processing. The images are of size 480 rows by 512 pixels
in each row. Each pixel is represented by one byte (8 bits) of information indicating
the intensity level of the pixel. A value of 0 represents the darkest intensity, while a
value of 255 represents the brightest pixel intensity. The following is the algorithm
used for the pre-processing.

hegin
while (there is an object) do
begin
Threshold the image to form a binary image of parts. The thresholding
operation will separate the objects from the background.

Process the binary image to separate and label the different objects.
Identify each object and calculate its position and orientation.

end
end

The outcome of the pre-processing operation is the creation of a feature vector to
be fed to an ARTI network for classifications. The classification process results in
the creation of a database of parts in inventory along with each part’s location and
orientation. The next sections discuss the pre-processing operations in more detail.

4.1.2. Thresholding
The purpose of thresholding is to separate the objects from the background. The
result of thresholding is to create a two level image, called a binary image, in which

The following formula illustrates the operation.

1 ifE,>T

f(x,y)={0 )

otherwise
where f'(x, y) is the resulting binary image, ¢y 18 the original grey level image, and T
is the thresholding level.

4.1.3. Object separation

With the objects separated from the background the next step is to differentiate
objects in the image. Two approaches are commonly used to separate and label
different objects. These approaches are the recursive and the sequential labelling
algorithm (Horn 1986).
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The sequential algorithm was selected for labelling since it avoids recursive calls,
thus requiring less system memory, and provided a straightforward procedure for
object labelling. The sequential algorithm scans the image sequentially and labels the
components in one pass. In this algorithm, a pixel is analysed along with the pixel’s
immediate neighbours located directly to the left, top and upper left (diagonal).

begin
¥, = value of the pixel under consideration for labelling;
¥, = value of the pixel on top of A pixel;
V.= value of the pixel to the left of A pixel;
¥, =value of the pixel to upper left corner of the A pixel;

while (there is a pixel) do
begin
if Va=0 then continue
if Va=1and Vp is labelled then Vy:=Vp
if Vg is labelled then Vy:= Va
if Ve is labelled then Vy:=Vc
if Vy=Vc and both are labelled then V,:= Vg (or V¢)
if VB#VC and both are labelled then VA:=VB or VA:=VC
(note the two labels are equivalent and correspond to same object)
end

end

The above algorithm was successful in labelling the objects regardless of their
position and orientation.

4.1.4. Position and orientation calculations

With all of separate components labelled in the image, calculations are per-
formed to compute the area, the centre of mass, the angle of the principal axis, and
the length along the principal axis. The following formula, taken from Gonzalez
(1992), illustrates the moment calculations being performed on each object.

+00 +00

M= j j xiy*f(x,y) dx dy (8)
—-00 - 00

where j and k take on all non-zero values, and f(x, ) is the binary image. There are
two first order moments M and M,,. The moments along with the area are used to
calculate the centre of gravity (centroid) for each object. The centre of gravity
(X cog> Yeog) 18 calculated with the following formulas.

MlO MOl

Xcog = Mg Ycog =3q (9)

The centre of gravity is used as the location of each object in camera coordinates.

The central moments are used to compute the orientation of each object. The

following formula, again taken from Gonzalez (1992), is used to perform this
computation.
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+00 +00

luijz f f (x_xcog)j(.y_ycog)kf(x’y)dxdy (]O)
—-00 -00

In designating orientation, the angle of the principal axis is calculated with the
following formula.

tan29=——~2~ rrrrrr - 1

Once the angle of orientation is computed, the length along the principal axis can
be calculated. The length is calculated by starting at the centroid and moving along
the principal axis in one direction until the edge of the object is found. Then we start
again at the object’s centroid and move in the other direction along the principal axis
until the edge of the object is detected. The distance between these two end points is
the length along the principal axis.

In creating the feature vector, the length and area are broken up into several
ranges. Each range is represented by a couple of bits in the feature vector. When the
area and length along the principal axis are calculated, the bits corresponding to the
range the length and area fall into are set to 1, with the rest of the bits set to zero.
Since all of the standard parts are rectangular in shape, these two features will allow
for the recognition of al parts. The features can be quickly calculated for each
object, since most of the calculations have been performed by the preprocessor. The
feature vector is then passed to the neural network classifier so each object is
recognized as a certain part.

4.1.5. Object classification through ART!

With a feature vector calculated, the parts are classified with an ARTI neural
network classifier. The network performs a nearest-neighbour classification of the
feature vector. When an object’s feature vector is presented to the network, the
network compares this feature vector to the patterns stored in the network. If the
input is sufficiently close to a stored pattern, a match is made and the part
recognized from the previous exposure. If no pattern is found which closely matches
the input pattern, a new pattern class is created and the pattern stored as the new
class.

When a new pattern class is created, the system consults the operator to provide
the name of the new part. If the object is classified as a previously seen part the
system will add the part to the current inventory list and display it in that class
colour with its name. Figure 10 shows an image where the objects have been
classified into part categories. Each object is labelled with the part it was identified
as.

The coarseness of the classification process is controlled by the setting of the
vigilance factor. The higher the setting, the finer the classification process. The
tradeoffs to consider in setting the vigilance factor is to set it high enough so that
different parts will be classified into different categories, but low enough such that
noisy representations of objects will be correctly classified. In testing the system, a
vigilance factor setting of 0-85 provided an adequate level of part discrimination and
handling of system noise.
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Figure 10. Objects have been recognized and labelled by utilizing ART] neural network.

The ARTI neural network classifier allows for on-line part recognition, without
the requirement of a training phase. The capability of a self-organizing part
recognition system is a significant impact for manufacturing. New parts can be
added to the system without having to modify existing software or stopping
production for a training phase. As long as the capacity of the neural network is not

exceeded, the system can classify new parts from the initial exposure of the part.

4.2. ANN based system calibration

The second area utilizing neural network technology is that of system calib-
ration. System calibration is an important step in any machine vision application.
Before obtaining accurate location information, the cameras of the vision system
must be calibrated to a global coordinate system. Since the objects are going to be
moved by a robotics arm, it is convenient to use the robotics arm’s coordinate
system as the global coordinate system. The calibration procedure establishes the
transformation of points from image coordinates to robotics’ arm coordinates.

The purpose of developing the ANN based calibration system was to investigate
whether the calibration network could be trained with sufficient accuracy to
transform points from camera to robotics arm coordinates. The setup was to be very
straightforward and easily automated and any fixturing or test objects needed in the
calibration were to be easily produced.

The main advantage of the neural network calibration over conventional
techniques is it does not require an elaborate model of the imaging system. Another
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advantage, that the proposed method offers, is that no a priori knowledge of camera
placement, the effective focal length of the camera lens, or the pixel spacing of the
camera’s pixel array is required. Other techniques estimate these parameters in order
to establish the relationship between the camera and robot coordinates. While the
neural network does not estimate these parameters explicitly, the parameters are
learned as the network trains on how to transform image coordinates into robot
coordinates.

A possible disadvantage the ANN based calibration has, is its moderate accuracy
of calibration. While the network was accurate enough for this application, it does
not obtain the accuracy of less than a millimetre claimed by the other calibration
techniques. A second disadvantage with the neural network approach is that it
cannot provide the real-time calibration that can be performed by other approaches.
The training of the neural network needs to be performed off-line. This disadvantage
is not an important limitation, since the camera remains fixed in a single position,
requiring calibration only if the camera is moved relative to the robotics arm.

4.2.1. Machine vision/robotics arm calibration

The cameras to be calibrated are located approximately 70 inches above the
work table of the robotics arm. The ANN based calibration procedure is designed to
learn the relationship between the camera coordinate system and the robotics arm
coordinate system. The field of view of the system’s two cameras are approximately
2x1-51t.

The first step in the calibration procedure was to place objects in known
locations within the field of view of the camera. In this setup, twenty white plexiglass
blocks, 0-5 inch square, were picked up by the robotics arm and placed evenly
throughout the field of view of the camera. Points that were within the field of view
of the camera, but outside the robotics arm work area were ignored. Figure 11
illustrates the setup from a top view looking down on the robotics arm work space.
From this setup a training set is obtained. The training set consists of vectors created
of from each calibration object’s coordinates. The vector is composed of an object’s
robot coordinates (obtained from where the objects were placed) and image
coordinates (obtained from the centroid calculations).

The next step in the calibration procedure is to Lrain the neural network to learn
the transformation between image (camera) coordinates and robot coordinates. The
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Figure 11. Robot arm area and camera field of view,
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network is a four layer network consisting of one input layer, two hidden layers, and
one output layer. The input layer has two input neurons (processing elements)
corresponding to the normalized x and y object’s centroid from the camera. There
are also two neurons in the output layer corresponding to the object’s centroid robot
coordinates. Each of the hidden layers contain twenty neurons. Initial testing of the
network indicated that a quicker convergence could be obtained with two hidden
layers rather than with a single hidden layer.

During the training sequence, each vector pair (image coordinate/robot coordi-
nate) was presented to the network and the network weights were modified
appropriately. Training continued until an acceptable accuracy was obtained.
During each pass a network error was calculated for the entire training set. The
network error was the accumulated sum of the difference between the desired and
actual output. The following formula illustrates the error calculation:

i=20
Net error= 3. | OUtPULgesirea — OUIPUINctwork | (12)
i=1

The network was trained until the accumulated error for the entire twenty vector
training set was 0-0049. The initial training of the network took place over several
days in order to obtain the accuracy mentioned above. But after the initial training
session, if the camera was moved slightly (<1-:00 inch) the system could be
recalibrated to this accuracy with only an additional hour of training. So once the
initial calibration network has been trained, any recalibration can be done relatively
quickly.

While the training time might seem excessive it is possible to use more
sophisticated training procedures which could substantially decrease the training
time. It is also important to note that during operation, the only time required to
perform the conversion between machine vision coordinates to robotics arm
coordinates is the propagation delay through the neural network.

In evaluating the ANN approach, the calibration was substantially easier to
setup and perform compared to a conventional approach where a sophisticated
mathematical model of the imaging system must be created, coded, and validated.
Then parameter estimation must be done through images acquired of calibration
objects. The overall calibration process was much quicker with the ANN implemen-
tation even with the long training time.

In testing the ANN based calibration, the calibration objects were set in
locations between the training set locations. Images were taken and the centroids of
the calibration objects calculated. These centroids were then converted using the
ANN calibration network to produce robotics arm coordinates. These coordinates
were then compared to the actual points at which the calibration objects were
placed. The results of the ANN based calibration were encouraging and the average
error (neural network output to actual location) was less than 0-04 inch with the
maximum error being 0-056 inch.

5. Robot controller subsystem

The robot controller subsystem constitutes the last part of the IPS. It is
composed of two components, an IBM 7335 robot used for packaging and a host
computer to control it. The inputs to the subsystem are the pick and place
coordinates of each of a chair’s parts needed for packaging. The pick coordinates are
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obtained from the vision system after the image processing and object classification,
as described in the previous sections. The place coordinates are determined by the
design module. Figure 12 illustrates the functionality of the robot controller

subsystem.

The sequence-generator portion of the subsystem reads the information supplied
by the vision subsystem, and the design system, i.e. the pick and place coordinates,
and determines a valid sequence of pick and place motions. The second step involves
on-line programming of the robotics arm in AML (A Manufacturing Language).
AML is a high level robot programming language. The on-line program generator,

which is an object oriented software written in C+

+, generates the AML code with

correct syntax in ASCII format. Thus the output of the second step is an AML code
consisting of a sequence of pick and place function calls with unique pick and place
coordinates in each call. The third step involves compiling the AML code into the

machine language of the robot. This is perfo
function which invokes the AML compiler and p
The result is another file with the machine instru

robot controller.

rmed by another C+ + member
rovides as input the AML program.
ctions ready to be transmitted to the

The fourth step is executed by a robot interface program. This program is
responsible for sending the file consisting of a series of machine instructions to the
robot controller by using an RS-232 communication protocol. This is essentially a
serial communication and involves a good amount of handshaking for ensuring

error-free transmission.

PICK COORDINATES  PLACE COORDINATES
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PART DIMENSIONS
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H GENERATOR ‘ONSTRAINTS {

DYNAMIC PROGRAM
GENERATOR

AML PROGRAM |

MACHINE
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AML COMPILER

RS 232
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Figure 12. Functional description of robot controller module.
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At the beginning of the fifth step, the robot controller has in its memory a
sequence of machine instructions to control the robotics arm. The controller reads
these instructions sequentially and decodes them into the necessary electrical signals
to make the robotics arm move and perform an operation. After the packaging is
complete, the robotics arm moves back to its home position and is ready for the next
operation. The result of this step is a packaged product which is ready to ship.

5.1. ANN based robot velocity control

A backpropagation neural network has been used to control the velocity
constraints for each part based on the part’s length and width. The network
architecture consist of three layers (one input, one hidden and one output layer). The
input layer consists of eight neurons, the hidden layer consists of 15 neurons, and
two neurons are used in the output layer.

The training set is composed of dimensions of sample parts and the recom-
mended speeds for each. Table 1 shows a list of dimensions (inch) and the
recommended speeds. The length and width parameters together form the eight-bit
input vector to the network and the two-bit speed parameter represents the desired
output of the network. The speed is classified into four classes, namely, very slow (0),
slow (1), moderate (2) and fast 3).

Similar to calibration procedure, training of the network continued until an
acceptable accuracy was obtained.

6. Implementation

The system has been implemented based on the ideas discussed here. The
intelligent design retrieval and packaging system composed of four IBM PCs
networked through IBM token-ring (Fig. 1). Table 2 shows the list of the computers
used in the system.

The ADRS is divided into two separate sections, front-end and back-end. The
front-end provides the user interface, and the back end consists of fuzzy associative
memory. The front end itself is divided into two sections, pre-processor and post-
processor. The pre-processor communicates with the designer and assists them in
setting up the functional requirements and design constraints. The post-processor on
the other hand converts the recall vector of the FAM to a design solution. The back-
end does the actual mapping of input requirements to the design solutions.

As previous described, the TIPS is divided into two subsystems, the machine vision
and robot arm control subsystems. These subsystems were run separately on the
vision node and packaging node, respectively. The operations were coordinated
through the monitor program which is briefly described below.

Feature Desired

vector (input output

Length Width vector) Speed vector
6=(0 110 2=(0010) 01100010 Very slow 00
8=(1000) 6=(0 110 10000110 Slow 01
4=(0100) 2=0010) 01000010 Moderate 10
4=(0100) 4=(0100) 01000100 Fast 11

Table 1. The representative of component dimensions and their recommended speeds.




Retrieval and packaging system 425

Function Computer type

Automatic design retrieval system (ADRS)

PS/2 model 80

Machine vision PS/2 model 30
Network server IBM 7552
Robot controller IBM AT

Table 2. List of the computers.

The network server provides the shared resources for the system. The server is set
up to share a hard disk as well as a virtual disk. The system monitor program runs
on this system. The monitor checks the status of the system and facilitates
communications between the different processes running concurrently. Table 3
shows the various modules of the system and the programming language used for
their implementation.

7. Summary and conclusion

In this paper the application of neural networks in design and manufacturing has
been examined. The system has incorporated three neural network paradigms such
as fuzzy associative memory (FAM), Backpropagation (BP), and adaptive resonance
theory (ART1) to achieve its task. FAM is utilized to automate the design retrieval
or map the marketing characteristics to pre-designed structures. ART! has been
utilized for object identification in the machine vision subsystem. A backpropaga-
tion neural network has been used for camera calibration, another backpropagation
neural network is used to control the speed of the robot arm based on the size of a
given part. This unique application of neural networks in design and manufacturing
can be extended to more sophisticated tools for concurrent engineering and a future
automated factory.
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Module Computer language
ADRS pre-processor LISP
ADRS post-processor LISP
Fuzzy associative memory C++
Vision pre-processing C++
Backpropagation neural network C++
Image classification ARTI C++
Robot controller C+ +
Monitor C+ +

Table 3. System modules and implementation languages.
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