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POPART: Partial Optical Implementation 
of Adaptive Resonance Theory 2 

Jonathan S. Kane and Marc J. Paquin, Member, IEEE 

Absfruct- Adaptive resonance architectures are neural nets 
that are capable of classifying arbitrary input patterns into stable 
category representations. In this paper, a hybrid optoelectronic 
implementation utilizing an optical joint transform correlator is 
proposed and demonstrated. The resultant optoelectronic system 
is able to reduce the number of calculations compared to a 
strictly computer-based approach. The result is that, for larger 
images, the optoelectronic system is faster than the computer- 
based approach. 

I. INTRODUCTION 

DAPTIVE resonance theory (ART) provides a neural A network architecture for self-organizing arbitrary input 
binary patterns into stable recognition codes [1]-[3]. One 
recent advance of these general architectures is adaptive reso- 
nance theory 2 (ART2), which is capable of categorizing either 
binary or analog patterns [2]. In this paper we utilize a model 
of ART2 known as ART2-A (algorithmic-ART) [4] assisted 
by a joint transform optical correlator (JTC) to produce an 
optoelectronic neural network. This hybrid system has the 
advantages of parallelism and translation invariance offered 
by the optics as well as the ability to process two-dimensional 
images directly without first partitioning the inputs into a 
one-dimensional vector space. 

There are a few related hardware implementations of ART. 
Caulfield and Armitage [5] proposed one implementation that 
is not strictly the ART model as described by Carpenter 
and Grossberg [1]-[3]. Rather, it is an adaption inspired by 
ART that utilizes a fixed page hologram. Our work is most 
closely related to that presented by Wunsch et al. [6]. In their 
work, they implemented ART1 by utilizing a four focal length 
correlator architecture. This type of architecture necessitated 
calculating the binarized Fourier transform each time a new 
input image was presented. Our work differs in that we utilize 
a JTC that does not require constructing a matched filter for 
each input. In addition, the model we use is based on ART2, 
which is capable of processing either binary or analog imagery. 
In this paper we present a brief overview of our variation of the 
ART2-A algorithm, which incorporates translation invariance, 
and discuss the operation of our proposed device. 
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11. OVERVIEW OF ART2-A 

Adaptive resonance theory first emerged from a study of 
feedforward adaptive coding structures by Grossberg [7], [8]. 
These theories were later refined and presented as a system of 
differential equations by Carpenter and Grossberg [ 11-[3]. 

ART2-A approximates and simplifies the dynamics of an 
ART2 system. The simplification arises because in many cases 
the result can be logically calculated from a steady state 
solution rather than from a numerically integrated dynamical 
equation. The payoff is that the ART2-A model is much 
simpler to implement and can be as much as 150 times faster 
than the full ART2 system of equations 141. 

A block diagram of ARE-A is shown in Fig. 1. Physically 
it consists of three layers, a “representation” layer, FO, a 
“matching” layer F1, and a “category” layer, F2. Inputs are re- 
ceived at the representation layer (FO) where they are contrast 
enhanced and normalized and passed to the matching layer 
(as the normalized vector, I ) .  The matching layer calculates 
the inner product between the bottom-up input and the top- 
down stored categorizations. The “best match,” or highest 
inner product is then compared against an external parameter, 
p*. If the value of the inner product is greater than or equal 
to p*,  then only those weights associated with the “best 
match” stored categorization are modified via the learning laws 
(discussed shortly). Otherwise, the input vector is placed into 
a “uncommitted” node, or a node whose associated weights 
Zij, have yet to be modified by the system. 

The operation of the algorithm below follows [4] closely. 

A. Znput 

First, an X-dimensional input vector, I” (we assume X = 
2 for image inputs) is presented to the FO layer where it 
undergoes normalization and contrast enhancement: 

I = NFeNI” (1) 

where N stands for a normalization operator, or 
2 N x = -  

11x1 I 
and 

The threshold 6 satisfies the inequalities [3] 
1 

0 < 6 < - -  m 
1045-9227/93$03.00 0 1993 IEEE 
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Fig. 2. Sketch of experimental setup. 

Fig. 1. Block diagram of ART2-A model. 

As mentioned earlier, the subscript n refers to the nth 
"node" or category. If more than one node is maximum, then 
we choose the lowest number maximum node. Once a node 
is chosen (after a given input is presented) then the node is 
said to become "committed." 

where M is the number of pixels in the image. The foregoing 
assumes that the input is nonzero [l]. In our case we set 8 
equal to the upper bound. 

B. Activation 

The F1 layer takes the FO output and gates it to the F2 layer 
through weighted connections, 2;. The input to the nth F2 
node is give by 

ax X I i j ;  if n is an uncommitted node 

T n = {  ~ I ~ . Z ~ ;  if n is a committed node ( 5 )  

i j  

where 

and the indices IC and 1 represent any possible shift in position 
of the input pattern relative to the stored pattern and are 
chosen such that T, is maximum. This incorporates translation 
invariance into the computer portion of the algorithm. For a 
given committed node, T, is the inner product of the stored 
pattern in node n and the input pattern positioned so that this 
inner product is largest. 

The parameter a is generally chosen to satisfy 

1 a s -  d= (7) 

Initially the 2; weights are set to a uniform value Q: [2 ] .  
As different patterns are categorized the 22 weights change 
according to the learning rules discussed as follows. 

C.  Choice Function 

For our network, only the weights associated with the best 
match are changed in learning a new pattern. Thus the winning 
node w has the inner product such that (after [4]): 

T, = max(T,). n (8) 

D. Resonance or RESET 
Each T, is the dot product between the input I* and each 

stored vector, 2". When the input precisely correlates with the 
given categorization, the value of T, is 1, since both I and 
2" are normalized. A completely orthogonal representation 
yields a value of 0 for T,. The resultant "best match" can be 
compared to a preset "vigilance" parameter, p* , chosen such 
that 

0 5 p* 5 1. (9) 

If T, 2 p* then the match passes the vigilance test and the 
input is incorporated into the winning node using the learning 
rule discussed shortly. If the best match fails vigilance, then 
the input is stored directly into the weights associated with a 
new node. 

E. Learning 

A given pattern is encoded by changing the weights as- 
sociated with the node of interest. If the input is to be 
incorporated into an uncommitted node, the input values are 
simply incorporated directly into the weights Zw. If the 
winning node has some previously learned information stored 
in it, the weights that are stored become an amalgamation of 
the input and the stored values. Mathematically, 

{ ;(@NQ + (1 - @)Zw(old); if w is a committed node 

"3 

Z"(n-4 = 

if w is an uncommitted node 

(10) 

where 
versus old information and Q is defined as 

is a constant between 0 and 1, which weights new 

I 
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Fig. 3. Binary letter set used in experiment. 

The importance of the 9 parameter is central to the ART2- 
A algorithm. Once a given value in a stored pattern decays 
enough that it falls below the threshold set by 19, then it 
can no longer grow again and will eventually decay to zero. 
This prevents supersets from recoding subsets [3]. For all 
simulations p = 0.3. 

111. JOINT TRANSFORM CORRELATOR 

The correlation described earlier is performed numerically 
via the translation-invariant dot product (see Section 11-B). 
Each computation requires at least M 2  multiplications due to 
the translational invariance of the algorithm. Correlation can 
also be performed in real-time through the use of an optical 
JTC. The JTC offers a method of two-dimensional translation- 
invariant real-time correlation, and can offer a time savings 
over the electronic method, as the setup time of the correlator 
is nearly independent of the size of the inputs. 

The details of the JTC have been covered extensively else- 
where [9]-[ll], however, a brief review follows. A schematic 
of the JTC can be found in Fig. 2. The coherent beam from 
the laser source is expanded and collimated to illuminate the 
spatial light modulator (SLM). Binarized versions of the input 
I and a stored pattern 2" are encoded side by side onto the 
SLM as an optical transmission function: 

t ( Q , Y l )  = f (Z1  - a l l y l  - bl) + h(Zl+ U l , Y l +  bl) (12) 

Fig. 4. Example of experimental operation of optoelectronic implementation. 
Letters A and C have been previously learned by the network (see text for 
details). (a) The correlation plane for the two letter A's (one stored vector and 
one input). (b) The cross-correlation between the second stored vector (letter 
'C') and the input (letter A). 

represent the Fourier transform of t(z1, yl), ~(zI, yl), and 
h(z1,yl) respectively. Since the camera is a square-law de- 
tector (not sensitive to phase), the magnitude squared of the 
Fourier plane is recorded: 

This image, refered to as the joint power spectrum (JPS), is 
sent to the liquid crystal television (LCTV) as a transmission 
function where another IT is calculated optically. The electric 

where f(z1, PI) represents the stored pattern and h ( q ,  y1) 
represents the input pattern. The Fourier transform (FT) of 
t(all yl) is created by lens L1 and magnified by lens L2y 

as the magnitude of light at the Fourier plane, and the FT 
phase arises from the relative phase differences of coherent 

appearing at '' The magnitude Of the FT is encoded field distribution (assuming 1 : 1 scaling) at camera 2 is given 
by 

light falling on this plane. This FT is given by E ( Z 3 ,  Y3) = f (Z3,  Y3) * f * ( Z 3 ,  Y3) 

where is a scaling factor dependent on the wavelength of 
laser light used and the focal length of the Fourier and magni- 
fying lenses. The symbols T ( z z ,  y2), F(Q,  yz), and H ( z 2 ,  yz) 
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TABLE I 
RESULTS WITH p* = 0.80 

TABLE I1 
RESULTS WITH p* 1 0.70 AND CONFIDENCE RATIO SET TO 0.70 

Letter Cateeon, 

Node # Trial 1 Trial 2 Trial 3 

0 
1 

2 
3 
4 

5 
6 
7 
8 
9 
10 
11 
12 

Letter Category 

Node # Trial 1 Trial 2 

0 
1 

TABLE 111 
RESULTS WITH p’ = 0 

The number of categories have decreased a factor of 2 from the p* = 1 
case. Note that the letter E switches categories in the second run, but 
then stabilizes into Node 2. All other nodes are stable after a single 
iteration. The confidence ratio for this example was set to 0.80. 

The first two terms are autocorrelations that appear in the 
center of the correlation plane and are not of interest. The third 
and fourth terms are the cross-correlations and are offset from 
the center in the correlation plane. In other words, if f(x, y) 
correlates with h(z,y) then there will be two bright spots 
representing the correlations, one that appears at coordinates 
2a1,2bl and the other at -2a1, -2bl. Since both locations 
contain the same information, either area can be monitored. 

There were several factors to consider in setting up the 
JTC with LCTV’s and SLM’s. The trade-off is that binary 
SLM’s have superior optical characteristics (such as flatness 
and contrast ratio) compared to LCTV’s. However, the binary 
SLM’s are only capable of displaying binary images. Thus 
the use of a SLM in the second leg (Fourier plane) would 
require binarizing the joint power spectrum before displaying 
it, which would add additional complexity. Our compromise 
was to encode the input information onto a SEMETEX Sight- 
Mod 128 x 128 binary spatial light modulator and display the 
resultant joint power spectrum using a CAS10 model TV- 
430 television set fed with the image signal directly from 
the camera. Note also that in this experiment we are limiting 
ourselves to displaying binarized versions of the images. This 
is a limitation imposed purely by the optics as the neural 
network is capable of processing either binary or analog 
imagery. 

IV. POPART 
The operation of the neural network can now be discussed. 

The experimental setup is shown in Fig. 2. As mentioned 
earlier, it consists simply of a Unisys 386 personal computer 
with an imaging board installed and a JTC. A new pattern is 
first presented to the system, and is preprocessed according to 

Letter Category 

Node # Trial 1 Trial 2 Trial 3 

0 A A A 

~ 

Note that this represents the coarsest categorization for this network. The 
letter H switches categories in the second trial, but then stabilizes in 
node 3. The rest of the network remains stable after a single iteration. 
The confidence ratio was set to 0.75 in this example. 

( 1 x 4 )  electronically. The resultant vector is binarized around 
the average value and the result is displayed on one side of the 
JTC. The stored categories are also binarized and displayed on 
the other side of SLMl either one at a time or several at once. 

The SLM is placed after the 60-cm focal length lT lens 
(Ll) to allow for variable scaling of the FT. A 5-cm focal 
length relay lens (L2) used in conjunction with this allows 
magnification of the joint power spectrum for adequate sam- 
pling. In addition, the variable scaling allows us to effectively 
aperture the unwanted replicated Fourier orders caused by the 
pixelation of the SLM. A DC block is used in order to block 
the lower Fourier orders that tend to saturate the camera [lo]. 
The joint power spectrum is then displayed on the second leg 
via the LCTV. Note that the contrast ratio of the LCTV is 
approximately 30 : 1 and is sufficient to represent the JPS 
accurately. The resultant correlation plane appears at camera 
2 where it is frame-grabbed and stored in the computer. This 
stored image is scanned in two predefined regions for the 
maximum intensity value. The maximum value is then used to 
calculate an optical measure of how well the images correlate. 

It should be noted that the resultant intensity values for 
each cross correlation are extremely sensitive to the input 
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Fig. 5. Results of time trials for different size images. The pluses represent 
the experimentally measured computer time for completion of two successive 
presentations of the input. The triangles represent the experimentally measured 
optoelectronic time. The line following the pluses is a theoretical curve fit to 
the data demonstrating that the number of calculations increases with the 
square of the image size (see text). The line connecting the triangles is 
provided for clarity. 

energy, especially given the original binarization of the input 
and stored patterns for display purposes. Thus in order to 
calculate the “best match,” or largest cross-correlation, the 
disparate energies between different stored patterns must be 
considered. In order to achieve this, we used a metric based 
on the well-known Schwartz inequality [ll] or, 

,which led us to choose, the metric 

I n  

optical metric = ~ Gm12 
where P,, is defined as the peak intensity value in the 
autocorrelation plane, E1 equals the energy of the binarized 
input pattern and E2 equals the energy of the binarized stored 
pattern. In our case the given energy for each pattern is 
calculated by counting the number of “on” pixels in a given 
binarized input image. 

Once each value has been processed via the metric calcu- 
lation, the pattern corresponding to the largest resultant value 
is chosen as the “best match.” 

At this point the computer value T, corresponding to the 
optical “best match” is calculated electronically and compared 
to the vigilance parameter (see (8)). Since the node with the 
“best match” has already been identified, (5H10) operate 
on a single node (or small subset) instead of on the entire 
set. The optical system, therefore, acts simply to filter out 
unnecessary calculations that would otherwise have to be 
calculated through CPU-intensive calculations electronically. 

For our experimental demonstration, in order to minimize 
crosstalk, we decided to present a single stored pattern against 
a single input on the JTC for each optical correlation test 

(as opposed to simultaneous multiple stored patterns against 
a single input). This was decided on after placing identical 
patterns in several positions of the SLM (see Fig. 2) and 
measuring the resultant correlation peaks. Ideally for multiple 
repetitions without any noise added to the original patterns, 
the correlation peak values should be identical for all patterns. 
However, we found that in the best case, when only a single 
target image and a single unknown image were simultaneously 
presented, the correlation peaks varied by approximately 8% 
over 100 trials. For this reason, we chose to serially present 
the stored images and store the resultant values in an output 
vector. This also led to the introduction of a “confidence ratio,” 
which indicated our confidence in the optical system. If a given 
optical metric was within the confidence ratio of the highest 
optical metric of all the stored patterns, then it was double 
checked via a computer calculated metric (see (5)). In this 
way we account for noise intrinsic to our optoelectronic setup. 

For all of our tests, a simple binary letter set shown in Fig. 
3 was chosen for simplicity. A typical example of operation 
is shown in Fig. 4. The letters A and C have already been 
learned by the network. The letter A is input into the system 
as the unknown. In Fig. 4(a), the input vector (the letter 
A) is compared against the vector stored in the first node 
(also the letter A). A picture of the correlation plane output 
is shown in the figure. The resultant correlation peaks are 
then framegrabbed and used to calculate the optical metric. A 
similar operation occurs for the input and the next stored vector 
(see Fig. 4(b)). In this case the letter C is correlated against the 
input letter A. When the values from each optical metric are 
compared, the correlation of the letter A as expected, is larger 
than the correlation against the letter C. The information that 
the first node had the best match out of all possible nodes is 
then used by the rest of the network, which is purely electronic. 
In this case, the system correctly categorizes the letter A as 
belonging to the first node. 
As discussed in [lo], the joint power spectrum consists of 

fringes with period dependent on image separation. In order for 
the fringes to be adequately sampled, the spatial frequency of 
the camera pixels must be at least twice the spatial frequency 
of the joint power spectrum fringes (the Nyquist criterion). If 
the separation of the JTC inputs is too large, the camera can 
not adequately resolve the joint power spectrum fringes. If on 
the other hand the spacing of the JTC inputs is too small, then 
there are fewer fringes resulting in a lower correlation peak 
output. In addition, for small spacing, the lower order noise 
in the joint power spectrum corrupts the potential correlation 
peaks. For our system, we discovered that the best performance 
occurred for our 20 x 28 pixel image when each image was 
separated by 30 pixels from the centerline of the input SLM. 

v. RESULTS AND ANALYSIS 

A. High-Vigilance Tests 

In the first series of tests, we set p* = 1. The result 
(not shown) was as expected: 26 separate classifications were 
formed, each corresponding to a different letter. It should be 
noted that two separate tests were performed, the “electronic” 

1 
. 
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TABLE IV 
COMPARISON OF NUMBER OF COMPUTER CORRELATION CALCULATIONS USING A PURELY COMPUTER BASED APPROACH VERSUS AN OFTIELECTRONIC APPROACH 

(a) Small Data Set (9 elements) 

Number of Computer Correlations 
P* Computer Optoelectronic Confidence Ratio Savings (%) 

1.00 81 16 0.90 80.25 
0.85 54 17 0.85 68.12 
0.70 36 13 0.90 63.89 

(b) Large Data Set (26 elements) 

Number of Computer Correlations 

P* Computer Optoelectronic Confidence Ratio Savings (%) 

1.00 676 
0.85 520 
0.70 234 

55 0.90 91.86 
134 0.80 74.22 
124 0.70 47.01 

com uter - o toelectronic 
Savings = computEr correlat4lon calculations 
A sample comparison of the number of computer-calculated metrics, with the computer alone versus with the 
optoelectronic system. The resultant savings in terms of number of calculations offered by the optics is shown in 
the column marked “Savings.” Clearly, the number of calculations is reduced when the optoelectronic system is 
used, a) Demonstration for a reduced data set (only 9 inputs) and b) large data set (26 letters). (see text for details). 

test with the computer working alone without the optics, and 
the “optoelectronic test” or with both computer and joint trans- 
form correlator working together as a system. The electronic 
and optoelectronic tests should produce identical results given 
the same operating parameters (identical a,  /3, p* ) .  In fact, we 
required that the optoelectronic system agree perfectly with 
the electronic system and that it be self-consistent. 

B. Lower Vigilance Test 

A typical lower vigilance test with p* = 0.80 is shown in 
Table I. The result as expected is that some of the categories 
have combined into an amalgamation of letters. This trend 
continues as shown for the case where p* = 0.70 (Table 
11). The limit occurs when p* = 0.0 where a minimum of 
six categories are formed (Table 111). This behavior is to be 
expected, since lower vigilance means less discrimination of 
inputs. 

C. Time Trials 

In addition to recording the categorization on each test, the 
amount of time it took for a given data set of 9 inputs to be 
processed when the 9 inputs are presented to the system twice, 
was compared for both the electronic and the optoelectronic 
cases. The results are shown graphically in Fig. 5. For small 
images (10 x 14 pixels), the electronic implementation is faster 
than the optoelectronic implementation. However as the size 
of the image increases (20 x 28 pixels) the optoelectronic 
implementation becomes faster. 

The behavior plotted in Fig. 5 can be understood by con- 
sidering the number of calculations that each implementation 
performs. The most time consuming of these calculations is 
that of the computer correlation between the input and each 

stored node. Thus if the optoelectronic system can yield a 
savings in number of computer calculated correlation metrics, 
it will fundamentally enhance the operation of the overall 
device. In the case shown in Fig. 5, the number of operations 
of the optoelectronic implementation remains approximately 
constant while the computer implementation increases with 
the square of the image size. Thus for larger images, the 
optoelectronic implementation is faster. Of course, the speed 
ultimately depends on the computer processor and the read- 
write capability of the optical portion of the system. 

The number of computer-calculated correlations the opto- 
electronic system will execute is highly dependent on several 
factors, such as the vigilance, the confidence ratio and the data 
set. The overall number of computer correlation calculations 
for two different data sets, one with nine elements and the other 
with 26 elements, is tabulated for several different values of 
p* in Table IV. Note that when p* = 1 the optoelectronic 
system saves as much as 80% in the number of computer 
correlations for the smaller data set and approximately 90% 
for the larger data set. In other words, the optical system 
eliminates unnecessary calculations leaving only those within 
the “confidence ratio.” As the input data sets gets larger, the 
overall savings will continue to increase. 

When the vigilance decreases however, the number of 
categories also decreases, which diminishes the advantage 
afforded by the optics. In addition, for low vigilance, each 
grouping becomes more of an amalgamation of different inputs 
and less representative of any single input. Therefore, a given 
input presented a second time to such a system is less likely to 
match the appropriate stored amalgamation. In many cases this 
necessitates lowering the confidence ratio in order to increase 
the error tolerance of the system. This in turn increases the 
number of overall calculations by requiring more frequent 
computer correlation doublechecks. As shown in Table IV, 
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TABLE VI 
TABULATION OF GENERAL CLASSIFICATION RESULTS 

Node Number Trial 1 Trial 2 

0 T1, T2  T1, T2 
1 R1 R1 
2 H3, H4 H3, H4 
3 R2 R2 
4 v1, v 2  v 1 ,  v 2  
5 H1, H2 H1, H2 
6 R3 R3 
7 R4 R4 

Tabulation of results after presentation with pattems 
shown in Fig. 7. All nodes were consistently 
categorized. Note the sensitivity to scale. Patterns H3 
and H4 are twice the thickness of H1 and H2 and are 
grouped together in a separate node. In addition, 
patterns R1 and R3 are grouped differently although 
they are identical except for a single 4 x 4 pixelated 
block. Fig. 6. Sketch of inputs to system for translation invariance tests. H1 and 

H2, which are four pixel-wide vertical lines, are categorized into the same 
node regardless of horizontal translation. Tests were also demonstrated for 
horizontal lines vertically translated (Vl, V2) and one horizontal-vertical 
combination (Tl, T2). See Table V for results. 

20 pixels Mi :pixels H3 TABLE V R1 
TRANSLATION INVARLWCE RESULTS 

- CI 
Trial 2 4 Dlxels 8 pixels Node Number Trial 1 

0 H1, H2 H1, H2 
1 v 1 ,  v 2  v 1 ,  v 2  
2 T1. T2  T1. T2 

Tabulation of results after pattems in Fig. 6 were 
presented to system (see text for details). 

R2 H4 I-1 
U 

R3 R4 

when p* = 0.70, the performance with the larger data set has 
fallen by 40% (as compared to the p* = 1 case). 

D. Translation Invariance 

Translation invariance is a desirable characteristic for clas- 
sifiers, since recognition should occur for a given object 
regardless of position. The translation invariance of our system 
is demonstrated as shown in Fig. 6 and Table V, by presenting 
the same object in different positions and then observing the 
resultant categorization. Specifically, a 4 pixel wide vertical 
bar is translated from the left of a 20 x 28 pixelated image 
to the right side and is consistently categorized into the same 
node. Similar results are obtained for a horizontal bar and for 
a combination of horizontal and vertical lines. 

It should be noted that although optical correlation is 
invariant to translation, the actual correlation spot shifts when 
a translation is introduced, thus the search regions where 
correlations can be located in the autocorrelation plane are 
large enough to encompass any potential peaks resulting from 
a spatial shift in the input. 

Fig. 7. Demonstration of generality of system. Sketched is several general 
figures presented to the system (not to scale). See Table VI for results. 

presented to the system with p* = 1 (see Fig. 7). As shown 
in Table VI, the system consistently categorizes all of these 
patterns. In addition, the high discrimination ability of the 
system is demonstrated by observing that the patterns stored in 
nodes 1 and node 6 only vary by a single 4 x 4 pixelated block. 

VI. CONCLUSIONS 
An optoelectronic implementation of ART2-A has been pro- 

posed and demonstrated. In order for optoelectronic systems 
to be useful they must offer the potential for increased per- 
formance over a completely electronic approach. The results 
presented in this paper indicate that for small images, an 
electronic system would most likely be preferable. However, 
as the data sets get larger, an optoelectronic implementation 
would potentially be preferable. The savings arise because 
the number of operations to calculate the correlation via a 
JTC is approximately constant, regardless of the size of the 

E. Generality of System 

As a final example of the generality of the system, several 
figures not contained in the letter set were constructed and 
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input image, while the number of operations required by 
a translation-invariant computer-based correlation is propor- 
tional to the size of the image (given in pixels) squared. 

The advantage of the proposed system is that it combines 
some of the useful properties of optics and electronics. The 
parallelism of optics reduces the number of operations and 
computation time while the computational power of the elec- 
tronics allows for fault tolerance and system integration. 
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