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Machine-part family formation with the adaptive resonance theory
paradigm

C. DAGLIt* and R. HUGGAHALLI}

The ART1 neural network paradigm employs a heuristic where new vectors are
compared with group representative vectors for classification. ART]1 is adapted
for the cell formation problem by reordering input vectors and by using a better
representative vector. This is validated with both test cases studied in literaure as
well as synthetic matrices. Algorithmns for effective use of ART1 are proposed.
This approach is observed to produce sufficiently accurate results and is therefore
promising in both speed and functionality. For the automatic generation of an
optimal family formation solution a decision support system can be integrated
with ARTI.

1. Introduction

Group technology (GT) seeks to identify and exploit similarities of product
design and manufacturing processes throughout the manufacturing cycle (Hyer
1984, Hyer and Wemmerlov 1989, Groover 1987). Implementation of GT requires
the recognition of resemblances between parts that are being manufactured. There
- are three general ways of identifying common design and manufacturing attributes
(Groover 1987). In ‘visual inspection’ (Banerjee and Redford 1982), physical design
attributes are compared manually and therefore it is the least accurate and most
strenuous way of identifying groups. Machine vision, a research area of current
interest, is focused towards making visual inspection more efficient. In ‘classification

and coding’, each part’s attributes are comprehensively coded, and a classification is
performed based on these codes. The main problems with this method are those of

finding an optimal coding scheme for the given situation and the time required for
code assignment and comparison. The ‘production flow analysis’ method simplifies
recognition by considering only the manufacturing attributes derived from route
sheets. A number of other analysis techniques called machine-part family/cell
formation techniques based on manufacturing attributes have been developed since
production flows analysis was proposed by Burbridge (1977). The subject of this
paper is a new and an efficient analysis method directed towards machine-part
family formation.

1.1. The machine-part family formation problem
The assignment of a similar group of parts to a cell of machines having common
processing characteristics results in ‘cellular manufacturing’. Machine-part family
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formation is necessary for the implementation of cellular manufacturing. The
machine-part matrix is a binary matrix representing the relations between machines
and parts. If the elements of the matrix are given by a;; where i is the machine
number and j is the part number, then g;;=1 indicates that part j is processed at
machine i or conversely that machine i processes part j. It is the starting point for the
development and implementation of most cell formation techniques. Hence, such a
matrix must be made available from process plans and routeing sheets. The objective
of most machine-part family formation algorithms is to rearrange rows and columns
of the machine-part matrix in such a way that the resultant matrix has all the ‘I’
elements in the matrix clustered in groups in a block diagonal fashion. Each cluster
in the rearranged form of the matrix would then indicate a part group and the
corresponding machine group. During this clustering process, ‘exceptional’ parts are
generated when a part has to be processed in more than one cluster or machine cell.
In order to reduce the inter-cellular movement of such parts, machines are
duplicated, thus in effect achieving a trade-off. Numerous small examples that
clearly demonstrate this concept have been presented in literature (Huggahalli 1991,
Dagli and Huggahalli 1991). In practical situations, very large matrices can be
encountered. Several alternative solutions must then be evaluated to obtain optimal
machine-part families. Also, there are several performance criteria such as total
material handling cost, average machine utilization, average-set-up time and manu-
facturing lead time for which a solution must be evaluated. Hence, the need for
techniques to obtain machine-part clusters as efficiently as possible and for a set of
heuristics to obtain at least close-to-optimal solutions.

1.2. Existing approaches

To obtain an optimal solution in terms of a minimum cost, it is necessary for
most algorithms to be iteratively implemented. Serial algorithms proposed in
literature take significant time for each iteration. Highly parallel systems such as
neural networks can be used, to be able to observe and compare different solutions
in a short time. In light of the computational deficiencies of existing algorithms, even
when implemented on hardware, the unmatched speed of neural networks must be
considered for machine-part family formation problems where large amounts of
information must be processed in a short time. A detailed review of the approaches
proposed thus far has been presented in King and Nakornchai (1982), Haggahalli
(1991) and Dagli and Huggahalli (1991).

Self-organizing or unsupervised neural networks have the significant advantage
of minimal computation times. Each pattern that represents a part or a machine
need only be applied once for classification. Hence, the time complexity is propor-
tional to the total number of patterns being classified. Besides time complexity,
connectivity (the numbr of network connections) is also important. Moon proposed
an interactive activation and competition model (Moon 1990) in which a neural
network is first established based on part similarities, machine similarities and the
machine-part relations as obtained from the machine-part matrix. Then parts and
machines are grouped using the neural network which activates uniquely for each
part group and machine group. Since this model requires the computation of
similarities between every pair of parts and machines and very little information is
known about the performance of the model, other methods of application of neural
networks to the cell formation problem must be explored to achieve better efficiency.
Connectivity of such a neural network can also be very high. Two other preliminary
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works on the application of neural networks to cellular manufacturing have also
been published recently (Kaparthi and Suresh 1992, Malave and Ramachandran
1991). The approaches are fundamentally similar to the one presented in this paper
and the classification improvements suggested in the following sections are very
much applicable.

1.3. Outline of the ARTI approach

The paper proposes the use of a neural network paradigm called the binary
Adaptive Resonance Theory paradigm (ART1) for machine-part family formation.
The essential function of an ART1 network is to classify a set of binary vectors into
groups based on a specified degree of similarity. Each group of similar patterns (or
vectors) is represented by a pattern. New patterns are compared with these
representative patterns before being classified into a certain group. Thus, ART1 may
be directly applied to classify parts characterized by the column vectors, and
machines characterized by the row vectors in the machine-part matrix.

In this paper, it is first shown that the ART1 paradigm in its original form does
not provide the expected results. The classification depends largely on the order in
which vectors are sequentially applied to the network. Also, a deficient learning
policy that gradually diminishes the effectiveness of the representative pattern leads
to a number of inappropriate classifications and a larger number of groups than
necessary. The problems encountered with the basic ARTI can be attributed to one
primary factor: the high sensitivity of the paradigm to the heuristically chosen degree
of similarity. This sensitivity can be reduced by applying the input vectors in the
order of decreasing density (measured simply by the number of ‘1’s in the vector)
and by retaining only the vector with the greater density as the representative
pattern. These modifications lead to a great improvement in the correctness of
classification. :

The method is then validated with test cases studied in literature, as well as with

synthetically generated matrices. A procedure for obtaining the optimal cell forma-
tion solution is also proposed.

2. A neural network solution

2.1. Neural networks

Neural networks are massively parallelized computer systems (Simpson 1990,
Wasserman 1989) that have the ability to learn from experience and adapt to new
situations besides being extremely fast—particularly when implemented in hardware.
Since their inception, numerous application have been introduced. Manufacturing is
one of the areas in which extensive use of neural networks has been proposed (Dagli
1994). A number of neural network paradigms can be used as classifiers. The most
important feature of a neural network for this application, is that it must be self-
organizing. No desired output exists for each input vector, hence paradigms such the
back propagation cannot be effectively used for this purpose. The counter-
propagation and the ART paradigms can be applied directly to this problem. It is
observed that the ART1 (binary ART) paradigm has a resemblance to the similarity
coefficient methods (King and Nakornchai 1982, Sahay and Seifoddini 1987,
Seifoddini 1989a, 1989b, Seifoddini and Wolfe 1986).

2.2. The ARTI1 approach—the difference
The ART1 approach (Simpson 1990, Wasserman 1989) can be thought of as a
direct mapping of the natural way of observing similarities. Most objects in the real
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world in the area of neural networks are represented as patterns. A pattern may be a
256 x 256 pixel image, or simply a binary vector. When humans encounter an object,
an attempt is made to associate the current encounter with previous encounters—the
effect is that of relating and classifying new experiences with old ones. Similarly, in
the ART] and several other neural networks, a new pattern is compared with a set
of distinct stored patterns. The new pattern is then associated (or classified) with the
stored pattern that is most similar to the new pattern.

First, part patterns can be classified by the ART]1 to obtain part groups and then
machine patterns can be classified to obtain machine groups. The machine-part
matrix can be arranged by placing parts within a part group adjacently and
repeating the same for machines. The resulting matrix can be inspected for
bottleneck machines and the number of exceptional cells be minimized.

Analoguous to the similarity coefficient in similarity coefficient methods, a
degree of similarity (or just similarity) between a new pattern and the stored pattern
is used. Similarity is defined as,

number of ‘I’s in the same position in both patterns
number of ‘1’s in the new pattern

Thus, the similarity in this case is a measure to ensure whether the new pattern is
properly classified or not. When an input pattern is applied to the network, stored
patterns (each stored pattern representing a group) compete for it. The stored
pattern closest to the input pattern is selected and the similarity between the two is
computed. Once computed, the similarity is compared with a pre-specified theshold.
A different threshold can be specified for the classification of parts and machines. A
different degree of clustering is obtained for each threshold (as in the similarity
coefficient method). If the similarity exceeds the threshold, a heuristic is used to
change the stored pattern that is representative of its group in order to reflect the
influence of the new pattern on the existing state. The performance of the ARTI
greatly depends on this heuristic.

In a hardware implementation of the ART1, the stored patterns compete for the
input pattern in parallel, resulting in major savings in time. Also, the parts and
machines are classified after just a single application of each vector. The ARTI
paradigm supports on-line learning, new parts and machines can be immediately
classified and scheduled on the shop floor. Thus, besides being significantly different,
the approach offers a greater efficiency of classification and can potentially form the
core of an intelligent manufacturing system. The integration of ART1 with an expert
system is proposed in §5.1.

2.3. Group Technology application

The ART! code at first classifies the column vectors (by our convention), based
on their similarity. In the intermediate matrix, the similar columns are placed next to
each other. This achieves a degree of clustering of the ‘1” elements of the matrix. In
the next step, the row vectors, are applied as inputs to the ART1 which likewise
classifies them. Re-ordering the rows, such that similar rows are adjacent, leads to a
final matrix which shows further clustering. Figure 1 depicts this process. As the two
groupings are independent, a significantly faster alternative is to group column
vectors and row vectors simultaneously. The disadvantage is that additional
processing power and memory will be required. Note that the intermediate matrix
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Figure 1. Cell formation with the ART1 paradigm.

serves only as an observation point and need not be the input to either column
grouping or row grouping.

3. The ART1 solution

3.1. ARTI1 Architecture

The ART]I architecture consists of two layers of neurons, the comparison layer
and the recognition layer as shown in Fig. 2 (Wasserman 1989). In the comparison
layer, each neuron has three inputs, a feedback signal from the recognitionl layer—
an element p of the vector P, the gain signal G and an element x of the input vector
X. The gain G is 0 if any element of the vector P is 1. The output of these neurons is
1, if any two of its three inputs is 1 (the two-thirds rule). Note that if G is 0, the
output is simply the AND of x and p. The output of the comparison layer thus
obtained is a vector C. '

The binary input vector X is applied at the comparison layer and initially passes
through the layer unchanged as the binary vector C. This is because, initially G is set .
to 1 and all elements of vector P are zero. The vector C is the input vector to the

v
If simil 'Iar,nplmeoldpamml}with
new Candgotostepl. .
else search for next similar stored pattern
Recognition Layer and go to step 1T
Neuron j: Weights Bj
Stored Pattern T,
Jlm
Feed)ackvecth=Tj
P_| (wherej is the
I winning neuron) Similarity
Initial C=X check:
N/D > Vigilance ?
P
m
New C=pPANDX
Comparison Layer
Input vector X

Figure 2. The ART1 model.
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recognition layer. The weights corresponding to these inputs form the vector B; at
the jth neuron. For each neuron in the recognition layer, the dot product,

NET;=(B;*C) M

is computed. The output of the neuron with the highest NET value becomes the
‘winning’ neuron and all the other outputs of the recogniton layer neurons are
suppressed to 0.

Each neuron in the recognition layer is associated with a stored pattern. These
patterns are stored in two forms, the weight vectors B; which are not binary and the
vector T}, a binary vector. The elements of B, are all typically initialized to the same
low value, while all elements of T; are initialized to 1. If the associated neuron wins,
and a similarity check is satisfied, the weights are adjusted to the normalized values
of the elements of the vector C as follows,

bij=(Lci)/(L"'1+2k:Ck) a)
(1 ifby>0
Ti= {2 otherwise} (25)

where ¢, is the ith component of the comparison layer output vector C, j is the
number of the winning recognition layer neuron, b;; is the weight corresponding to
the ith component of vector C and L is a constant that is typically set equal to 2. The
effect of doing so is that, the weights corresponding to the 1’s in C are increased,
while the other weights are forced to zero. This is done to increase the chance of a_
similar vector to be detected at this neuron, while decreasing the chance of accepting
a dissimilar vector.

With each neuron in the recognition layer, there also exists a vector, T;, the
elements of which are one’s for every non-zero value of the elements of B;. If j is the
winning neuron then the vector that is fed back to the comparison layer P equals T;.
Application of the two-thirds rule at this layer, G being forced to 0 if any element of
P is 1, gives us the AND of the elements of vector P and the elements of the vector
X, which is the new value of vector C. The number of ones in the resultant vector
(N) divided by the number of ones in the input vector X (D), gives us the similarity S,
between the input vector and the vector to be stored at neuron j in the form of B;
and T,. The value of S must exceed a pre-determined threshold value called the
vigilance parameter, for the input vector to be classified into a sepcific category. The
concept is similar to using thresholds in the similarity coefficient method. If the
condition is satisfied, then equation (2) is implemented, otherwise, the second layer
neuron with the next highest NET is tested in the same manner. When an input
vector is stored in conjunction with a recognition layer neuron for the first time, we
say that an ‘exemplar’ is created, also implying that a new category has been formed.
Later when similar vectors are applied, they are ‘recognized’ by comparison with this
exemplar. If a sufficient match is assessed by the similarity check, the two vectors are
‘AND’ed and the resulting vector X’ (new C) is stored in the form of the vector B;
and its binary version T;. :

3.2. Drawbacks of the basic ART1

The ARTI1 paradigm as described in the previous section does not provide
satisfactory results when applied in its basic form. The drawbacks of the basic ART1
are stated as follows:
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(1) The stored patterns grow sparser as more input vectors are applied. This
effect can be minimized by adjusting the vigilance for different runs of the
program to obtain a set of different solutions. However, the classifications
almost never result in the block diagonal form.

(2) The classification process and result are completely dependent on the order
in which the input vectors are applied.

(3) A basic difficulty is encountered in the determination of the vigilance
parameters. A higher vigilance parameter implies that the groups formed will
be smaller with vectors that are more similar. At the same time, there is also
an increase in the number of cells. This implies that the inter-cellular costs
will increase while the intra-cellular costs will decrease. If the vigilance is low,
larger groups are formed in fewer numbers and the costs are reversed. The
vigilance value thus plays a critical role. But no obvious method of
detemining this value for an optimal machine-part cell formation exists.
Other similarity coefficient methods had the same problem.

These shortcomings of the ART1 make it unsuitable for the direct application of
this paradigm to the classification problem. Also, the bottleneck machine problem is
not solved. Even if a block diagonal form is achieved, the paradigm does not
prescribe any method of dealing with exceptional elements.

3.3. Improving performance .

For an improved performance, a few modifications must be made. In this
section, we propose two schemes to counter the first two drawbacks mentioned in
§3.2. The remaining are dealt with in §4.

(1) In the first scheme, when a comparison between two vectors is successful,
instead of storing X', the result of ‘AND’ing vectors X and P, (when the
two-thirds rule is applied), the vector having the higher number of one’s
among X' and T; must be stored. This ensures that stored patterns become
denser, rather than sparser as the classification progresses. If both vectors
contain, the same number of one’s then, any of the vectors can be stored by
convention. The chances of improper classification due to the comparison
with sparse stored patterns which are not similar to any vectors applied until
then, are minimized.

(2) The second scheme involves the pre-processing of the machine-part matrix,
to compensate for the dependency of the ART1 on the sequence of
application of the vectors. The vectors are applied in a sequential manner,
and if sparser vectors are encountered first, those vectors that group well
with the later denser vectors will be classified improperly. This is the crux of
the second drawback mentioned in § 3.2. To avoid this, why not re-order the
vectors according to the number of 1’s in each vector, and apply them in
order of descending number of 1’s to the network? The effect of doing this is
the ‘absorption’ of the sparser vectors into the denser patterns that have
already been stored.

It is interesting to note the significance of the second scheme in light of the actual
process of grouping new machines with existing machines and new parts with
existing parts. Similarities between new machines and existing machines are more
casily seen if the characteristics of the existing machines are a superset of the
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characteristics of the new machines. The ‘superset’ is essentially a greater enu-
meration of possible characteristics of a class of machines. The same observation
applies to parts and in general, to objects.

4. Near-optimal algorithms and results

The results of application of the ART1 approach to some test cases are presented
in this section. The observations are used to propose heuristics for finding the
optimal machine-part family formation solution and to complement the capabilities
of the ART1 paradigm itself.

4.1. Formalizing the cell formation procedure

4.1.1. Determination of near-optimal vigilances

In order to determine optimum vigilance values, the objective of the classification
may be specified in another form. It is clear that the block diagonal form must be
achieved to obtain proper distinct clusters of parts and machines. But what
characterizes the block diagonal form from any other type of clustering, is the equal
number of machine groups and part groups that are formed. If we label the
vigilances for column vector and row vector classification as p; and p, respectively,
and if N is the number of part groups and M the number of machine groups, then N
and M generally increase with p, and p, respectively. However, their rates of
increase depend on the vector set. Also, there may be more than one set of p, and p,
for which N=M.

It is difficult to test the matrix for very small increments in the vigilance
parameter. In any case, classification is not sensitive to very small increments. That
is, satisfactory clusters can be obtained by varying vigilances in large discrete steps.
The results obtained in this way can be adjusted even manually, to obtain distinct
clustering.

4.1.2. Duplication of bottleneck machines
An algorithm for automatically duplicating bottleneck machines can now be
proposed in the following steps,

Step1 Separate all part groups and machine groups. Identify each block as,
bi,by,...byxm

where n is the number of part groups and m is the number of machine
groups. n is also the number of sub-matrices formed due to the part groups.

Step2 For each block, identify the vector with the highest density (representative
vector).

Step3 Compare all representative vectors with one another. (A degree of similarity
must be chosen).

Step4 Group similar representative vectors. Each grouping results in the duplica-
tion of a bottleneck machine. '

Step S Repeat Steps 2, 3, 4 for remaining members of each block.

Step 6 Repeat Steps 2, 3, 4, 5 for remaining smaller matrices.

The main advantage of this algorithm is that, the existing ART1 code itself can
be used for Steps 3 and 4. A low vigilance may be used to allow machines in different
groups to be classified in Step 4. However in this algorithm, duplications are not
justified by a cost/performance analysis. A pure block diagonal form can be easily
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achieved, but the number of duplications needed for the pure block diagonal form
can be extremely high. If the only criterion is performance then the number of
exceptional cells must be minimized at any cost. In such a case, a pure block
diagonal form is the optimal solution. In general, machine cost too is an important
factor which restricts the number of duplications if it exceeds the cost saving due to
lesser material handling. Other restrictions on the maximum allowable cell size and
scheduling difficulties are also imposed. The simple algorithm just presented will not
suffice. In the following section an algorithm for obtaining an optimal solution is
presented. The details of cost/performance analysis are beyond the scope of this
paper and were discussed in Gupta and Tomkins (1982), Kumar and Vannelli (1986),
Flynn (1987), Sahay and Scifoddini (1987) and Wei and Gaither (1990).

4.1.3. An algorithm for a near-optimal solution

The implementation of the following algorithm will complement the capabilities
of the ART1 program and leads to an integrated system for optimal machine-part
family formation solutions.

Step 1 Find optimal vigilance (as in §4.1.1.).
Step2 Obtain final matrix using the optimal vigilances.
Step3 Separate part groups and machine groups. Identify each block as,

bl’b29 nxm

where n is the number of part groups and m is the number of machine
groups. n is also the number of sub-matrices formed due to the part groups.

Step4 In each sub-matrix, find and mark blocks with the highest degree of
clustering, where ‘degree of clustering’ is defined as,

number of ‘1’s in a block
dimension of the block

This step can also be done manually as such blocks can be identified
visually.

Step 5 1In each block, except for the marked blocks in Step 4, identify machines
corresponding to the highest number of exceptional elements within the
block. Let the machines and the corresponding exceptional elements be,

M, 121
M, (4]
Mnxm enXm

It must be noted that by having exceptional elements in several part groups,
some of M, ...M,,, may be the same.

Step6 Check for cost/performance trade-offs through existing techniques (King
and Nakornchai 1982, Flynn 1987, Wei and Gaither 1990 and Huggahalli
1991). Production volume, scheduling techniques, processing times, set-up
times are some of the factors to be considered. Duplicate machine M,
corresponding to e, whose cost is Max{C(e,), ... C(e, )} where C is a cost
function, if justlﬁed by analysis.

Step7 Remove M, from the set (M,... M,,,,) and replace this machine by a
machine with the highest number of exceptional elements in block y.

Step8 Repeat 6 and 7 until duplication of any other machine cannot be justified.
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The algorithm facilitates the identification of bottleneck machines and the
exceptional elements in the matrix. Thus it acts as an interface between the ART1
program and a decision making system that performs the cost/performance analysis.
The algorithm has been implemented on a 43 x 16 matrix (King and Nakornchai
1986, Sahay and Seifoddini 1987, Huggahalli 1991, Dagli and Huggahalli 1991) as
well as a 90 x 36 matrix (King and Nakornchai 1986, Huggahalli 1991, Dagli and
Huggahalli 1991) discussed in the next section.

4.2. 4 90 x 36 matrix

A 90 part, 36 machine matrix adopted from King and Nakornchai (1982) was
used to further validate the functioning of ART1 and the algorithm just presented.
The initial matrix is shown in Table 1.

Using ART], several classifications were obtained by varying the column and
row vigilances. If we observe a graph showing the cluster variation, since the
sensitivity of ART1 now depends on the ‘representativeness’ of the most dense
vector, the sparsity of the matrix leads to a number of outliers. The number of part
groups and machine are inflated owing to such classifications. If we consider only
groups with at least three members, a different but more true cluster variation is
obtained as shown in Fig. 3. From the graph, the (column vigilance, row vigilance)
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Table 2. 90 x 36 matrix—final matrix (vigilances=0-3 and 0-3).

combinations that need to be considered for further inspection are (0-25, 0-25), (0-25,
0-3), (0-3, 0-25), and (0-3, 0-3), since the number of machine and part groups formed
are close at these vigilances. .

The combination (0-3, 0-3) results in the least number of inappropriate classifica-
tions and is therefore chosen. The final matrix obtained with these vigilances is
shown in Table 2. The part groups and machine groups are separated column-wise
giving 3 sub-matrices A, B and C (the inappropriate classifications are included in
sub-matrix C), and considering 4 machine groups, a total of 12 blocks. The blocks
may then be numbered (Step 3) as follows,

Sub-matrix A: by,b,,b5and b,
Sub-matrix B: bs,bg, b, and by
Sub-matrix C: bg,b10,b,, and b, ,.

The degree of clustering for each block is computed and the following three blocks
are marked (Step 4),

Marked blocks: by, bs and b, .

In Step 5, in all but the marked blocks, the machines with the highest number of
exceptional elements in a block are identified (32, 36, 35, 5, 25, 35, 31, 25, 35) and the
corresponding exceptional elements identified (7, 8, 2, 4, 3, 4, 3, 8, 2).

With the simple criterion that a machine must be duplicated if within a block it
introduces more than 2 exceptional elements, Step 6 is implemented by duplicating
machine 36 (having the highest number of exceptional elements—8). In Step 7,
machine 36 is then replaced in the set by machine 19 which has the next highest
number of exceptional elements—7, in the block. Steps 6 and 7 are repeated until no
other machine has more than 2 exceptional elements in the block. The final result is
shown in Table 3. This example is discussed in detail in Huggahalli (1991).

The modified ART1 performs extremely well, producing results that are very
much comparable to the ROC2 algorithm and similarity coefficient methods. The
ROC2 algorithm produced, for the 43 x 16 matrix, a solution that used 5 additional
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Table 3. 90 x 36 matrix—block diagonal form after duplication.

machines and had only one exceptional element (King and Nakornchai (1982). The
method employed by Sahay and Seifoddini (1987) produced 6 additional machines
and 8 exceptional elements. The result of applying the modified ART1 algorithm
showed S additional machines and 4 exceptional elements (ignoring part 36’s claim
to exclusiveness).

For the 90 x 36 matrix, ROC2’s solution had 18 duplications with 6 remaining
exceptional elements, while the solution shown in Table 3 has 21 duplications and 11
exceptional elements. Thus, speed apart, the ART1 shows classification accuracy
that is comparable to those of previous algorithms.

4.3. Validation with synthetic matrices

A synthetic matrix generation (SMG) program facilitates the validation and
refinement of the ARTI approach. Two main ways in which synthetic matrix
generation is beneficial are,

(1) large matrices can be automatically generated. Typing a matrix of size
200 x 100 into the computer can take days!

(2) special cases can be simulated easily. This advantage renders debugging and
refinement easier tasks to accomplish.

The program uses the standard UNIX random number generating function,
rand( ) extensively. The user is given control over the density of specific regions in
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Table 4. Initial matrix created by synthetic matrix generator—matrix without bottleneck
machines.

the matrix through a set of control parameters. The program is explained in detail in
Huggahalli (1991). The results of simulating some specific cases of a 200 x 100
matrix are now presented.

4.3.1. Matrix without bottleneck machines

The SMG was used to generate a 200 part, 100 machine input matrix for which
the final matrix is a pure block diagonal form. The input (initial) matrix shown in
Table 4 is obtained by ordering the rows and columns of the final matrix.

The classification obtained through the ART1 program for the vigilance combi-
nations of (0-2, 0-2) is shown in Table 5. The final matrix obtained show that if a
pure block diagonal form exists, it can be obtained with a higher probability with
lower vigilance values. The final matrix obtained using (0-2, 0-2) shows 10 distinct
clusters. The representative vector problem explained in §3.2 produces 5 inappro-
priate exceptional elements.

4.3.2. Matrix with two bottleneck machines

As a second special case, two bottleneck machines (16 and 26) were introduced
into the 200 x 100 matrix (Table 6 shows the initial matrix created by SMG). The
objective of this experiment was to use the ART1 to correctly identify the bottleneck
machines.

The bottleneck machines had a drastic effect on the classifications. Since the row
vectors corresponding to the bottleneck machines can be expected to have a greater
density the ART1 makes them the representative vectors. At low row vigilances,
many row vectors tend to group with these representative vectors leading to a
number of inappropriate classifications. However, especially if the bottleneck
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machines are few in number, they can be separated from the other machines at
higher vigilances as shown in Fig. 4. In the final matrix the bottleneck machines can
be expected to collect at the top of the rows as shown in Table 7 (Vigilance
combination of (0-2, 0-5)). The classification can be performed after removing the
bottleneck machines in order to distinctly identify machine cells.

4.3.3. Very large matrices

The modified ART1 paradigm has been further improved through ‘intermediate
learning’ by Dagli and Sen (1992) and, applied to very large matrices. Their paper
considers a 1200 x 200 case and a 2000 x 200 case. The results of this effort are
shown in Table 8 and Table 9 respectively.

4.4. Classification time

The performance of the simulation program is comparable to the performance of
other algorithms in terms of computational effort and time and therefore the
software itself can be used for cell formation. The time taken for processing matrices
of various sizes is shown in Fig. 5. Further reduction in computational time can be
achieved by performing part grouping and machine grouping in parallel at the cost
of extra memory. The program is user-interactive, and offers flexibility, in choosing
the vigilance parameters, accepting matrices of very large order, obtaining traces of
the classification process and in easy modification of the ART]1 to test new schemes.
Implementation of this program is thus straightforward.

At this stage, it must be emphasized that the ART]1 program is only a neural
network simulation. The software can be definitely used to obtain optimal machine-
part cell formation solutions, but true advantage of the method will be realized when
implemented in hardware.

Table 5. Final matrix from the ART1 program (vigilances=0-2 and 0-2).
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Table 6. Initial matrix created by synthetic matrix generator—matrix with two bottleneck
machines.

5. Future work

Several improvements to the ART1 paradigm and enhancements for building an
integrated group technology support system are possible as part of further research
work. The overall problem posed by cellular manufacturing is very large and
complex. The scope of this paper is restricted to a facility that encourages the formal
implementation of cellular manufacturing in real time. Some of the issues that must
be addressed before actual implementation are discussed in this section.

Machine 16
Miachine 26
v 2l u
S E:] .
¢ g”'
18
K 16
k Eu
£ 12
5E w0
Do
F g ey
2 4
2 - —
10 20 © “ [
Vigilance %

Figure 4. Separation of the bottleneck machines from other machines.
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Table 7. Final matrix from the ART1 program (vigilances=0-2 and 0-5).

5.1. An integrated group technology support system

The ARTI provides us an excellent classification methodology, particularly when
the schemes proposed in Section 3.3, 4.1 and 4.2 are used. However, the problem of
finding the minimum cost solution cannot be solved by the ARTI1. The ARTI
provides the flexibility of considering various options for cell formation, but leaves
the decision to a cost/performance analysis system. Integrating an expert system,
with the ART]1 can facilitate the automatic identification of at least close-to-optimal
solutions. The ART1 can perform clustering with low initial vigilance parameters
and provide part and machine groups formed, to an expert system. The groups thus
formed are evaluated in terms of cost by the expert system. Vigilances are changed
by suitable increments and a new classification is again obtained and evaluated. The
expert system then compares cost figures of various cell formations and recommends
a practically achievable global optimal solution. Sufficient range of the vigilance
parameters can be covered so that the global minimum is not missed. Trade-offs
needed between duplication of bottleneck machines and material handling costs are
made automatically by the expert system. The expert system itself must be integrated
with simulation software (since no known efficient analytic method for computing
optimal solutions exist) for assessment of a cell formation and the scheduling
involved. The expert system together with the simulation software forms a decision
support system to be integrated with the ART1 program. The integrated system is
depicted in Fig. 6.

5.2. Improvements to the ARTI paradigm

The only significant weakness of the ART1 paradigm is that of the ‘representa-
tive vector’. The original paradigm used a heuristic that results in the gradual decay
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Table 8. A 1200 x 20 case (Dagli and Sen 1992). () Initial Matrix. (b) Result obtained from

basic (original) ARTI. (c¢) Result obtained using intermediate learning. (d) Result
obtained using intermediate learning, pre-processing and modified ARTI.

of the density of the representative vector. The poor classification accuracy was
corrected by retaining the highest density vector as the representative vector at each
comparison. The new heuristic though relatively very accurate, has the effect of
introducing a few additional exceptional parts typically having one or two excep-
tional elements. Such parts may be eliminated very easily (by proper classification),
particularly as they tend to collect towards the extreme right corner of the final
matrix. Improvements that are planned are discussed in the following two sections.

5.2.1. Fast learning vs slow learning

The type of learning employed in this implementation of the ART1 is called fast
learning. In fast learning, the application of an input pattern has an immediate effect
on the weight vector particularly in the original heuristic. More specifically, the
weights are changed according to equation (2), where for unmatched positions, the
weights become zero. As a contrast, in slow learning, when there is a pattern match,
the weights are incremented and decremented by small amounts to make the stored
pattern slightly more similar to the input pattern. Slow learning if properly
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implemented can eliminate the representative vector problem since the representative
vector has a resemblance to all input patterns experienced until the time of concern.
Slow learning has a stability problem because the classification will be extremely
sensitive to the initial weight values, the increment and decrement values used. As
noted by Dagli and Sen (1992), the drawback of fast learning is that the category
structure is too dependent on input presentation order. Intermediate learning was
then suggested to partly alleviate this dependency. The results of their work on very
large matrices are shown in Tables 8 and 9.

Most of the other binary, unsupervised, feedback recall paradigms employ
learning schemes similar to slow learning and have varying stability characteristics.
The efficiency of other neural network paradigms for this classification problem
must therefore be determined.

5.2.2. Improving the software

An important issue when building the integrated group technology support
system is that of ‘visualization’. Efficient visualization techniques are extremely
important not only for user-interactiveness but also for easy manipulation of large
matrices. The program was originally implemented on a HP-Apollo workstation’s
Domain environment wherein the windows allow both vertical (row-wise) as well as
horizontal (column-wise) scrolling. Few windows allow both vertical (row-wise) as
well as horizontal (column-wise) scrolling. Few window systems provide for column-
wise scrolling, resulting in the wrap around of the row vectors. In any case,
inspection and manipulation of large matrices is extremely tedious. Even if the entire
procedure is automated, it is necessary to provide for manual intervention through a
good graphical user interface.

To improve the speed of the ART1 software implementation, column and row
classifications can be made simultaneously. Distributed computing wherein greater
processing power and storage space can be leveraged is the key to such an
implementation.

5.3. Hardware implementation of ARTI _
A hardware implementation of the ARTI can be used as co-processor in
computers dedicated in group technology. The classification process then depends

S

TEHSH
1

(@) )
Table 9. A 2000 x 200 case (Dagli and Sen 1992). (a) Initial matrix. (b) Final matrix.
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Figure 5.  Execution time of the ART1 program.

Optimal Solution

Figure 6. An integrated group technology support system.

essentially only on the time needed to sequentially apply all the input vectors. The
neural network itself will be extremely fast and its time delay is negligible compared
to other delays. The possibility of integrating other neural networks such as the
Hopfield net for obtaining the global minimum of the total cost, must be explored.
This would alleviate the intensive need for an expert system, whose interaction with
the neural network will be much slower.

5.4. Use in real time

In batch manufacturing systems, when new parts are to be manufactured, or
when the manufacture of some parts is to be stopped, the optimal cell formation
solution can be quite different and inefficient for the current situation compared to
the original solution. Provided we have a fairly flexible manufacturing system, it may
be possible to regularly re-adjust the shop floor to suit our current needs without
incurring excessive overhead expenses. In such a case, a neural network system can
greatly facilitate the identification and evaluation of the numerous options that
must be considered to obtain optimal layouts for the manufacturing system. Even if
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the plant layout cannot be immediately changed, the new parts can be correctly
classified and various scheduling possibilities can be analysed through simulation. If
not optimal, the best possible schedule under the restrictions can be employed.

6. Conclusions

The ART]1 neural network paradigm has been successfully implemented for cell
formation problems. The results compare favourably with popular existing algor-
ithms such as King’s ROC2 and similarity coefficient-based algorithms. Modifica-
tion of the original paradigm and preprocessing of input vectors obtained from the
machine-part matrix, were necessary to obtain drastic improvements in clustering.
The paradigm and associated processing modules were simulated with a program
and tested with several test cases. The ART1 can be used to obtain several part and
machine classifications by varying the threshold parameters called column vigilance
and row vigilance respectively. Vigilances that lead to approximately equal number
of part groups and machine groups are used to obtain the final matrix. An algorithm
for identifying bottleneck machines from the final matrix has been proposed and
tested using matrices studied earlier in literature. A synthetic matrix generator has
also been developed to facilitate further validation and refinement of the existing
ART!] system. The work presented in this paper is expected to lead to an integrated
group technology support system.
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