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[57] ABSTRACT

The invention provides a machine fault diagnostic system to
help ensure effective equipment maintenance. The major
technique used for fault diagnostics is a fault diagnostic
network (FDN) which is based on a modified ARTMAP
neural network architecture. A hypothesis and test procedure
based on fuzzy logic and physical bearing models is dis-
closed to operate with the FDN for detecting faults that
cannot be recognized by the FDN and for analyzing complex
machine conditions. The procedure described herein is able
to provide accurate fault diagnosis for both one and mul-
tiple-fault conditions. Furthermore, a transputer-based par-
allel processing technique is used in which the FDN is
implemented on a network of four T800-25 transputers.

25 Claims, 19 Drawing Sheets
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MACHINE FAULT DIAGNOSTICS SYSTEM
AND METHOD

Cross-Reference to Co-Pending Applications

The following applications are assigned to the assignee of
the present application:

U.S. Patent Application entitled “Supervised Training of
a Neural Network,” Ser. No. 08/176,458, naming as inven-
tors Hsin-Hoa Huang, Shui-Shun Lin, Gerald M. Knapp, and
Hsu-Pin Wang, filed concurrently herewith, pending the
disclosure of which is hereby incorporated by reference in
its entirety.

U.S. Patent Application entitled “Machine Performance
Monitoring and Fault Classification Using an Exponential
Weighted Moving Average Scheme,” Ser: No. 08/176,456,
naming as inventors Juliec M. Spoerre, Chang-Ching Lin,
and Hsu-Pin Wang, filed concurrently herewith, pending the
disclosure of which is hereby incorporated by reference in
its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to the field of
machine fault diagnostics and, more particularly, to a system
and method that uses predictive maintenance for on-line,
real time monitoring of mechanical components for possible
failures.

2. Related Art

Over the past few decades industry has taken a variety of
steps to improve productivity and quality. However, little
attention has been given to the area of maintenance. Main-
tenance in a broad definition is concerned with controlling
the condition of equipment. Although maintenance exists in
virtually every manufacturing company, it is often consid-
ered to be a support function of a manufacturing process.
Only in recent years has maintenance been recognized as an
integral part of the manufacturing process, able to increase
productivity and quality.

With the increased use of robots, automation, and more
sophisticated machines in manufacturing processes, it might
be more appropriate to say that productivity and quality
depend on machines rather than the person who operates the
machine. Robots, for example, have replaced human opera-
tors in tasks, such as assembly, loading and unloading, spot
welding, and inspection. Keeping this sophisticated equip-
ment in a satisfactory condition increases both the amount
and complexity of maintenance. Hence, more repair time
and more highly trained, high-priced maintenance techni-
cians and engineers are needed. This, of course, translates to
higher maintenance costs.

When the degree of automation increases, maintenance
cost also increases. In many companies, maintenance costs
represent one of the larger parts of total operating costs -
often more than direct labor cost. Therefore, a maintenance
stratcgy that effectively reduces maintenance cost is impor-
tant for a modern industry to remain competitive.

The three most common maintenance strategies are break-
down or corrective maintenance (i.e., fix the machine when
it fails), preventive or time-based maintenance (i.e., main-
tain machine based on scheduled time), and predictive or
condition-based maintenance (i.e., maintain machine before
it fails).
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For many years, most manufacturing companies used
either breakdown or preventive maintenance. In such a case,
the machinery is either allowed to breakdown or routine
maintenance is performed to reduce the risk of machine
failures. Nevertheless, breakdown maintenance is suitable
only when a machine is not important, and is inexpensive to
replace. If the cost of lost production, potential secondary
damage to machinery, and potential safety risks are high,
then this strategy is unacceptable. An apparent improvement
to this strategy is to use preventive maintenance.

Although preventive maintenance can reduce the occur-
rence of machine breakdown, it also has some problems.
First, the period between overhauls is very difficult to
determine because machines and their components do not
necessarily fail at regular intervals. Second, precious pro-
duction time is lost because it is prudent to examine as many
components as possible during the overhaul period. Third,
parts in reasonable condition are often replaced unnecessar-
ily.

Therefore, the best strategy appears to be to adopt a
predictive maintenance strategy which predicts the condi-
tion, performance, and reliability of machinery, so that
maintenance can be planned in advance. Recently, due to the
increasing requirement of product quality and manufactur-
ing automation, more and more manufacturing companies
have adopted predictive maintenance as part of their main-
tenance program. They are doing so in order to increase
reliability, productivity, and availability while minimizing
costs of maintenance and overall plant operation.

Machine monitoring and diagnostics can be seen as a
decision-support tool which is capable of identifying the
cause of failure in a machine component or system, as well
as predicting its occurrence from a symptom. Without accu-
rate direction and identification of the machine fault, main-
tenance and production scheduling cannot be effectively.
planned and the necessary repair task cannot be carried out
in time. Therefore, machine monitoring and diagnostics is
essential for an effective predictive maintenance program.

The ultimate goal of using machine monitoring and
diagnostics is to increase equipment availability, and in
addition, reduce maintenance and unexpected machine
breakdown costs. In order to maximize availability, one has
to increase reliability by maximizing the mean time between
failures and, at the same time, increase maintainability by
minimizing the mean time to repair. As a result of constant
monitoring and diagnostics, the frequency of unexpected
machine breakdown is significantly reduced, and machine
failure can be pinpointed immediately. As a result, reliability
and maintainability are increased.

Machine monitoring and diagnostics can be done by
simply listening to the sound generated during machine
operation or visually examining the quality of machined
parts to determine machine condition. In such a situation,
however, the identification of a machine fault is totally
dependent on the experience of the operator or engineer.
Besides, many machine faults are not accurately assessed by
relying only on visual or aural observations, especially
during operation (e.g., wear and crack in bearings and
gearboxes). Therefore, more sophisticated signal processing
techniques, such as vibration analysis, oil analysis, acoustic
emission, infrared, and ultrasound, have been developed to
help the maintenance technician and engineer detect and
diagnose machine failures.

The type of signal processing technique to be used for
machine monitoring and diagnostics depends on the type of
machine parameter to be monitored, as well as the type of
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fault to be tackled. There are a number of machine param-
eters which can be monitored, such as vibration, sound,
temperature, force, pressure, motor current, lubricant oil,
etc. Many studies have been conducted to determine which
are most effective. Unfortunately, no parameter is able to
indicate the full range of machine faults.

It is well-known that using a number of machine param-
eters in combination can produce a more accurate and
reliable indication of machine condition. In such a case,
maintenance personnel must be familiar with a number of
different signal processing techniques, as well as their ability
to detect certain types of faults. In addition, a large amount
of data must be collected, analyzed, and understood. This
means more time and knowledge are required for mainte-
nance personnel to make a correct diagnosis.

Over the last two decades, most of the machine monitor-
ing and diagnostic systems have been performed off-line
using signal processing techniques. The success of these
systems is not due to any one signal processing technique,
but to the large amount of redundancy associated with
multiple signal processing.

However, those signal processing techniques are very
complicated to use; in addition, they must be performed by
a highly trained and experienced human analyzer in order to
make an accurate diagnosis. Accurate fault diagnostics is
essential, especially in reducing product cycle time. As a
result of correct and rapid fault diagnostics, equipment
maintainability and availability can be improved signifi-
cantly, thereby reducing the product cycle time. Although
many new technologies, such as expert system, fuzzy sets,
pattern recognition, and artificial neural networks, have been
proposed to help achieve this goal, there is still no universal
method available since each method has various capabilities
and limitations.

Given below is a discussion of the four most prevalent

techniques for machine monitoring and diagnostics—signal-

processing (e.g., vibration analysis and parametric model-
ing), artificial intelligence, artificial neural network, and
sensor fusion.

Over the years, most machine monitoring and diagnostic
systems have been performed by gathering the sensory data
from the process, then analyzing the data off-line through a
signal processing technique. One of the most widely used
signal processing techniques is vibration analysis. This is
because no other parameter can reveal as wide a range of
machine fault types as vibration.

Vibration analysis deals with the extraction of information
from measured vibration signals. It is well recognized that
vibration characteristics will change as a machine condition
changes. Wear or damage to rotating elements, imbalance,
and resonance can generate excessive vibration.

Generally, vibration data can be analyzed in two different
domains: time and frequency (J. Tranter, “The Fundamentals
of, and The Application of Computer to, Condition Moni-
toring and Predictive Maintenance,”, Proceedings of the Ist
International Machinery Monitoring and Diagnostics Con-
Jerence and Exhibit, Las Vegas, Nev., September 1989, pp.
394-401, and C.J. Li and S. M. Wu, “On-Line Detection of
Localized Defects in Bearings by Pattern Recognition
Analysis,” Journal of Engineering of Industry, Vol. 111,
November 1989, pp. 331-336). Time-domain analysis
involves designing indices that are sensitive to the amount of
impulsive vibrations observed. This technique includes
overall level (RMS) measurements, peak level detection,
crest factor, shock pulse, spike energy, kurtosis analysis,
time waveform, and orbits. Frequency-domain analysis
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4

involves transforming the vibration waveform to show a
train of impulses at different frequencies. This technique
includes spectrum analysis, waterfall plot, cepstrum analy-
sis, difference spectra, RMS of spectral difference, envelope
analysis, high frequency resonance analysis (HFRT), and
matched filter.

One of the most powerful vibration analysis techniques is
spectrum analysis, which estimates the spectrum or power
spectral density (PSD) from a vibration signal by performing
a Fast Fourier Transform (FFT). The reason for the popu-
larity of this FFT-based technique is because of its high
computational speed. In addition, analysis of a machine
vibration spectrum can yield important information regard-
ing the condition of machine components because each
rotating component in a machine generates identifiable
frequencies; thus, changes at a given frequency range can be
related directly to a specific component failure. However,
there are some problems with this FFT-based technique,
including low frequency resolution, implicit windowing of
the data, and no significant data reduction.

In addition to spectrum analysis, the parametric modeling
technique has been used for estimating the vibration spec-
trum. It is used in an attempt to alleviate the inherent
limitations of the FFT approach mentioned above. Two
major advantages of using a parametric modeling technique
are: improvement of frequency resolution over FFT by
suppressing the noise from the real signal, and reduction of
data by using few parameters to describe the signal globally.

A number of parametric modeling techniques have been
reported to estimate the vibration spectrum, for example, the
autoregressive (AR) method, the autoregressive and moving
average (ARMA) method, Prony’s method, the minimum
variance method, and the covariance method. A detailed
review of these techniques can be found in (S. M. Kay and
S. L. Marple, “Spectrum Analysis—A Modern Perspective,”
Proceedings of the IEEE, Vol. 69, No. 11, November 1981,
pp. 1380-1419, and S. Braun, Mechanical Signature Analy-
sis: Theory and Applications, Academic Press, London,
1986).

The parametric methods described above have been
applied in the area of fault detection (see, e.g., Matsushima
et al., “In-Process Detection of Took Breakage by Monitor-
ing the Spindle Current of a Machine Tool,” Proceedings of
ASME Winter Annual Meeting, Phoenix, Ariz., 1982, pp.
145-154; M. Sidahmed, “Contribution of Parametric Signai
Processing Techniques to Machinery Condition Monitor-
ing,” Proceedings of the 1st International Machinery Moni-
toring and Diagnostics Conference and Fxhibit, Las Vegas,
Nev., September 1989, pp. 190-195, S. Y. Liang and D. A.
Dornfeld; “Tool Wear Detection Using Time Series Analysis
of Acoustic Emission,” Journal of Engineering for Industry,
Vol. 111, August 1989, pp 199-205; Wu et al., “Signature
Analysis for Mechanical Systems via Dynamic Data System
(DDS) Monitoring Technique,” Journal of Mechanical
Design, Vol. 102, April 1980, pp. 217-221).

The disadvantage of parametric modeling is that it is not
easy to find an optimal order for the model. The general
guideline in the selection of the model order is based on the
minimization of the sum of square errors. H. Akaike, “Power
Spectrum Estimation through Autoregression Model Fitting,
”: Ann. Inst. Stat. Math., Vol. 21, 1969, pp. 407419 and “A
New Look at the Statistical Model Identification,” IEEE
Trans. Autom. Control, Vol. AC-19, December 1974, pp.
716-723, proposed two criteria, final prediction error (FPE)
and Akaike information criteron (AIC), which can be used
as the objective functions for order selection. In the recent
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work of C.C. Lin, “Classification of Autoregressive Spectral
Estimated Signal Patterns Using an Adaptive Resonance
Theory (ART),” Master’s Thesis, Department of Industrial
Engineering, The University of Iowa, Iowa City, August
1992, the order with the highest FPE and AIC level was
selected as the optimal order.

Both parametric models mentioned above performed well
in the early detection of machine failure. However, they are
unable to identify the cause of the failure. This fault recog-
nition task is usually done by the analyzer who identifies the
cause of the fault by visual inspection of the spectrum. This
is not an easy task because it requires experience and
knowledge in order to make a correct diagnosis.

Although vibration analysis and parametric modeling
techniques have been proven to be useful for machine
monitoring and diagnostics, they are also knowledge-inten-
sive techniques. In other words, they need to be performed
by a highly trained and experienced engineer in order to
identify the source of the machine fault correctly. To over-
come this problem, an artificial intelligence approach has
been proposed. In the past few years, the application of
artificial intelligence to fault diagnostics has received much
attention. Two of the most popular artificial intelligence
approaches are expert systems and model-based reasoning.

One of the biggest successes in the field of artificial
intelligence is expert systems. An expert system is a com-
puter system which is programmed to exhibit expert knowl-
edge in solving a particular domain problem. A typical
expert system consists of the following components:

knowledge base (which contains knowledge about the

problem, i.e., rules and facts),

inference engine (which is the method for combining

rules and facts

to reach conclusions),

explanation component (which explains why and how the

conclusions are reached),

user interface (which includes knowledge and data acqui-

sition).

Generally, the knowledge is represented in the form of an
“if-then” rule. This rule is based on problem-solving heu-
ristics generated by the expert. The inference engine controls
the use of the knowledge base. Its control strategy can
initiate from the facts or symptoms to reach a conclusion
(forward chaining), or from a possible conclusion and search
through the facts to verify the conclusion (backward chain-
ing).

Many expert systems have been developed during the past
several years for machine diagnostics. A detailed survey of
fault diagnostic expert systems can be found in (S. G.
Tzafestas, “System Fault Diagnosis Using the Knowledge-
Based Methodology,” Fault Diagnostics in Dynamic Sys-
tems: Theory and Applications, edited by R. Patton, P.
Frank, and R. Clark, Prentice-Hall, New York, 1989).

Although expert systems are easy to use and able to
provide expert knowledge to solve a specific domain prob-
lem, there are many difficulties in using this approach (J. M.
David and J. P. Krivine, “Three Artificial Intelligence Issues
in Fault Diagnosis: Declarative Programming, Expert Sys-
tems, and Model-Based Reasoning,” Proceedings of the
Second European Workshop on Fault Diagnostics, Reliabil-
ity and Related Knowledge Based Approaches, UMIST,
Manchester, Apr. 6-8, 1987, pp. 19-196), such as: difficulty
in formalizing the problem, difficulty in obtaining knowl-
edge, and difficulty in validating the system. In addition,
there are many drawbacks with building an expert system
for machine monitoring and diagnostics. One of the major
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drawbacks is its long execution time. This is particularly true
when complex relations and a large knowledge base are
involved in the reasoning process. Because expert systems
must work through complex chains of reasoning in order to
reach a conclusion, more processing time is required. Hence,
the short response time required to perform on-line machine
monitoring and diagnostics makes the application of expert
systems in this area difficult and impractical.

As an alternate approach to expert systems, model-based
reasoning has been proposed to solve diagnostic reasoning
problems. One of the most promising techniques of model-
based reasoning is “reasoning from structure and behavior”
(R. Davis, “Diagnostic Reasoning Based on Structure and
Behavior,” Artificial Intelligence, Vol. 24, 1984, pp.
347-410). This technique begins with a description of the
system, together with the observation(s) of the system
behavior. If the observation conflicts with the way the
system is meant to behave, then one concludes that a system
failure has occurred. Given symptoms of misbehavior, pos-
sible fault candidates are identified using the structural
model by following a dependency chain back from a vio-
lated prediction to each component that contributed to that
prediction.

Many of the notable applications of model-based reason-
ing to diagnostic problems have been in the digital electron-
ics field. This is because the structure of digital circuits can
be represented in a fairly obvious way, and the intended
behavior of the circuit is strongly implied by its structure.

Compared to the expert system approach, knowledge
acquisition for the model-based system is easier. In addition,
the model-based system is more robust and maintainable. It
is able to diagnose multiple faults, avoiding exponential
growth in the model size. However, it still poses problems
for real-time diagnosis because the system has to look for all
possible fault candidates and then has to classify them one
by one according to likelihood, which means more reason-
ing time is needed.

The identification of a machine or component fault is
actually a pattern recognition problem. In the past, a number
of pattern recognition techniques, such as linear discrimi-
nant function and fuzzy sets, have been applied to solve this
type of problem. Normally, these techniques classify
machine or component condition into a two-state situation,
i.e., normal or abnormal. Recently, artificial neural networks
have been applied successfully in the area of machine
monitoring and diagnostics. See for example, Dietz et al.,
“Jet and Rocket Engine Fault Diagnosis in Real Time,”
Journal of Neural Network Computing, 1989, pp. 5-18,
Marko et al., “Automotive Control System Diagnostics
Using Neural Nets for Rapid Pattern Classification of Large
Data Sets,”:, Processing of International Joint Conference
on Neural Networks (ICJNN), Vol. 11, 1989, pp-13-15, Sunil
et al.,, “Machining Condition Monitoring for Automation
Using Neural Networks,” Monitoring and Control for
Manufacturing Processes: Presented at the Winter Annual
Meeting of the ASME, Dallas, Tex., Nov. 25-30, 1990, pp.
85-100, Hoskins et al., “Incipient Fault Detection and
Diagnosis Using Neural Networks,” Proceedings of the
International Joint Conference on Neural Networks
(IICNN), Vol. 1, 1990, pp. 81-86, T. I. Liu and E. J. Ko,
“On-Line Recognition of Drill Wear via Artificial Neural
Networks,” Monitoring and Control for Manufacturing Pro-
cesses: Presented at the Winter Annual Meeting of the
ASME, Dallas, Tex., Nov. 25-30, 1990, pp. 101-110, Y. Guo
and K. J. Dooley, “The Application of Neural Networks to
a Diagnostic Problem in Quality Control,” Monitoring and
Control for Manufacturing Processes: Presented at the Win-
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ter Annual Meeting of the ASME, Dallas, Tex., Nov. 25-30,
1990, pp. 111-119, T. 1. Liu and J. M. Mengel, “Detection
of Ball Bearing Conditions by an A.I. Approach,” Proceed-
ings of the Winter annual Meeting of the ASME, Atlanta,
Ga, Dec. 1-6, 1991, pp. 13-21, and G. M. Knapp and H. P.
Wang, “Machine Fault Classification: A Neural Network
Approach,” International Journal of Production Research,
Vol. 30, No. 4, 1992, pp. 811-823.

One of the greatest problems with artificial neural net-
works is that neural networks never explain themselves. In
order to eliminate this so-called “black box” approach to
neural network applications, it is necessary to build an
explanation capability into a neural network system. An
apparent approach is to combine expert systems and neural
networks into a hybrid system. Examples of combining
expert systems and neural networks can be found in M.
Caudill, “Using Neural Nets: Hybrid Expert Networks,” AL
Expert, November 1990, pp. 49-54, D. V. Hillman, “Inte-
grating Neural Nets and Expert Systems,” Al Expert, June
1990, pp. 5459, Kraft et al., “Hybrid Neural Net and Rule
Based System for Boiler Monitoring and Diagnosis,” Pro-
ceedings of the 53rd Annual Meeting of the American Power
Conference, Chicago, Ill., Apr. 29-May 1, 1991, pp.
952-957 and Rabelo et at., “Synergy of Artificial Neural
Networks and Knowledge-Based Expert Systems for Intel-
ligent FMS Scheduling,” Proceedings of the International
Joint Conference on Neural Networks (IICNN), Vol. 1,
1990, pp. 359-366.

Sensor fusion, sometimes referred to as multisensor inte-
gration, is a process of integrating the information obtained
from a variety of sensors. It is utilized with the hope of
achieving human-like performance (i.e., the ability to effec-
tively combine information from his or her senses) in
decision-making, especially in applications of image or
signal processing where the information from individual
sensors are generally noisy, uncertain, and insufficient.

There are four key advantages of using sensor fusion.
First, fusion of redundant information obtained from a group
of sensors (or a single sensor over time) concerning the same
feature can increase accuracy as well as enhance reliability
in the case of sensor error or failure. Second, the comple-
mentary information can be yielded by using multiple sen-
sors to measure different aspects of the feature if the required
information could not be obtained by individual sensors
acting alone. Third, multiple sensors can provide more
timely information, as compared to the speed at which it
could be provided by a single sensor, particularly when
parallelism is involved in the integration process. Fourth,
multiple sensors can provide required information at a lower
cost when compared to the equivalent information obtained
from individual sensors. (See J. M. Fildes, “Sensor Fusion
for Manufacturing,” Sensors, January 1992, pp. 11-15, and
R. C. Luo and M. G. Kay, “Multisensor Integration and
Fusion: Issues and Approaches,” Sensor Fusion: Proceed-
ings of the SPIE, Vol. 931, 1988, pp. 42-49).

The objective of sensor fusion is to combine individual
information into a representative pattern that provides a
higher level of information than the sum of the information
from individual sensors. The information from individual
sensors can be raw data or processed data. The processed
data is normally generated by a preprocessing procedure
which performs pattern recognition, noise filtering, or data
reduction. It can be in the form of either estimates of
parameters (such as parameters of autoregressive model), or
evidence supporting certain propositions, or decisions favor-
ing certain hypotheses.

Determining a method to integrate different types of
sensors in order to provide reliable and consistent informa-
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tion is the most challenging task in sensor fusion. However,
a large number of methods are available to achieve this task.
These methods extend from low-level probability distribu-
tions for statistical inference to high-level production rules
for logical inference. See R. C. Luo and M. G. Kay,
“Multisensor Integration and Fusion: Issues and
Approaches,” Sensor Fusion: Proceedings of the SPIE, Vol.
931, 1988, pp. 4249, for a review of six general methods
for sensor fusion. Additionally, G. Chryssolouris and M.
Domroese, “Sensor Integration for Tool Wear Estimation in
Machining,” Sensors and Controls for Manufacturing: pre-
sented at the Winter Annual Meeting of the ASME, Chicago,
111., Nov. 27-Dec. 2, 1988, pp. 115-123, and “An Experi-
mental Study of Strategies for Integrating Sensor Informa-
tion in Machining,” Annals of the CIRP, Vol. 3§, No. 1,
1989, pp. 425-428, provide a review and comparison of four
different methods for sensor fusion, and conclude that a
neural network approach is more effective in leaming a
relationship for providing parameter estimates, particularly
when the relationship between the sensor-based information
and the actual parameter is nonlinear; and a neural network
approach is less sensitive to deterministic errors in the
sensor-based information than the other three approaches.

Several popular approaches in the area of machine moni-
toring and diagnostics have been discussed above. Each
approach has its strengths and weaknesses. A significant
amount of research has been conducted in the development
and application of each individual approach. However, little
has been done in incorporating these different approaches
into an intelligent system.

SUMMARY OF THE INVENTION

The present invention provides on-line, real-time moni-
toring of machine components for possible failures. A
machine diagnostic system is disclosed that integrates sev-
eral different technologies to detect possible failure condi-
tions in a physical machine or process, and alert mainte-
nance personnel. The machine diagnostic system includes
the integration of neural networks, expert systems, physical
models, and fuzzy logic.

The major technique used for fault diagnostics is a fault
diagnostic network (FDN) which is based on a modified
ARTMAP neural network architecture. The modified ART-
MAP network is an efficient and robust paradigm which has
the unique property of incremental learning. Unlike other
popular neural networks, such as back propagation, the
modified ARTMAP network does not have to be trained with
all the patterns, old and new, every time a new pattern is
discovered.

The modified ARTMAP network includes an ART module
that accepts an input pattern. An ART 2 neural petwork is
used as the underlying ART module. The ART module is
connected to a map field that accepts as an input a target
output pattern. The map field performs a mapping between
a recognition category supplied by the ART module and the
target output pattern. The map field also triggers a vigilance
test that determines the closeness between the recognition
category and the target output pattern. During the training of
the modified ARTMAP network, both the input pattern and
the desired output pattern are presented to the modified
ARTMAP network. During the network testing phase, only
the input pattern is provided.

Additionally, this invention incorporates a hypothesis and
test procedure that utilizes physical models and fuzzy logic
to provide further diagnostic capabilities. The hypothesis
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and test procedure complements the FDN. Physical models
and fuzzy logic greatly enhance the diagnostic capability of
the diagnostic system since the FDN does not contain the
deep knowledge nor reasoning capability necessary for
analyzing and pinpointing all unknown fault situations. As
such, the physical models and fuzzy logic is used in two
ways: 1) as a means to provide preliminary training of the
diagnostic network for common faults, based on theoretical
predictions, and 2) to provide a sophisticated off-line diag-
nostic capability for infrequently encountered and complex
fault conditions.

In a preferred embodiment, the machine diagnostics sys-
tem is implemented with a Fault Reasoning Expert System
(FRES). Any data sample with a suspected abnormal con-
dition not detected with full confidence by the modified
ARTMAP network is sent to the FRES for analysis. Simi-
larly, if the modified ARTMAP suspects more than one type
of fault (e.g., out of alignment and contamination) then the
data sample is sent to the FRES. The FRES checks the
identifiable fault(s) against it rules in its knowledge base,
damage or repair history, and machine usage information to
determine likely faults.

The requirement of rapid processing in an on-line system
motivated the inclusion of parallel processing. As such, a
transputer-based parallel processing technique is disclosed.
The FDN is implemented on a network of four T800-25
transputers.

BRIEF DESCRIPTION OF THE FIGURES

The above and further advantages of this invention may
be better understood by referring to the following descrip-
tion taken in conjunction with the accompanying drawings,
in which:

FIG. 1 illustrates a neural network architecture called
Predictive Adaptive Resonance Theory (ART) or ARTMAP.

FIG. 2 illustrates a modified ARTMAP network adopted
to perform supervised learning.

FIG. 3 shows a framework that illustrates the three phases
of the present invention.

FIG. 4 shows a high level block diagram of an integrated
machine monitoring diagnostic system.

FIGS. 5a and 5b shows a flowchart of a training procedure
for the modified ARTMAP network.

FIG. 6 illustrates a network diagnosis procedure.

FIG. 7 illustrates three levels of fault diagnostics that are
used by the present invention.

FIG. 8 is a more detailed illustration of the F, layer of the
modified. ARTMAP network.

FIG. 9 illustrates a fuzzy logic based hypothesis and test
procedure implemented according to the preferred embodi-
ment of the present invention.

FIG. 10 illustrates the physical connections of four trans-
puters on a Quadputer board.

FIG. 11 illustrates a transputer implementation of the fault
diagnostic network training procedure.

FIG. 12 illustrates a transputer implementation of the
hypothesis and test procedure using one transputer and three
transputers.

FIG. 13 shows the architectural diagram of the transputer
based approach that includes the software package Express.

FIG. 14 shows a transputer implementation of a fault
diagnostics procedure.
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FIGS. 15A and 15B show a flowchart for a fault diag-
nostic procedure for an integrated system designed in accor-
dance with the present invention.

FIG. 16 shows an ART2 network with an example input
vector.

FIG. 17 illustrates a parametric modeling schematic that
operates on incoming data or autocorrelation estimates.

FIG. 18 illustrates a plot of the anticipated random
distribution of residuals representing a normal machine
condition.

FIG. 19 is a detailed flowchart of the methodology used
to calculate an EWMA in accordance with the present
invention.

FIG. 20 displays the sensitivity response (amplitude) of
an accelerometer versus frequencies.

FIG. 21 is a flowchart of a diagnosis and monitoring
procedure that utilizes an exponentially weighted moving
average.

FIG. 22 is an EWMA chart that illustrates three abnormal
conditions.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

1. Overview

The present invention provides on-line, real-time moni-
toring of machine components for possible failures. A
machine diagnostic system is disclosed that uses neural
networks, expert systems, physical models, and fuzzy logic
to detect possible failure conditions and alert maintenance
personnel.

FIG. 4 shows a high level block diagram of an integrated
machine monitoring diagnostic system 400. The diagnostic
system 400 is comprised of six modules: a dam acquisition
module 410, a diagnostic technologies module 420, a
machine model module 430, a database module 440, a user
interface 450, and a system control module 460.

The dam acquisition module 410 collects sensory signals,
such as vibration, pressure, and temperature, from the
machine. It consists of a number of sensors (e.g., acceler-
ometers, acoustic emission sensors, pressure transducer,
thermal couples, etc.) and data acquisition hardware and
software programs for real-time dam collection. The diag-
nostic technology module 420 performs on-line fault detec-
tion, fault diagnostics and provides expert recommendations
by employing a number of different technologies, such as
parametric modeling, a neural network, fuzzy logic, and an
expert system. The machine model module 430, including
physical models for bearings and gears, provides data for
preliminary training of the peural network on common
bearing and gear faults. In addition, the machine model
module 430 provide a deep fault reasoning mechanism to
identify complex or multiple fault conditions.

The database module 440 contains important system
information including damage or repair history, neural net-
work training logs, operating conditions, and machine
usage. The user interface model 450 provides a friendly
environment for the user to interact with the system. Its
function includes displaying machine status and informa-
tion, accepting user’s input, etc. The system control module
460 controls and coordinates the activities among modules.
It also controls the database management activity.

Diagnostic system 400 preprocesses sensory inputs, such
as vibration and sound, using an autoregressive (AR) model.
Once the data is processed, the fault diagnostics can be
carried out in three different levels, as shown in FIG. 7. At
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the fault detection level 710, indices based on an overall root
mean square (RMS) measurement and a covariance statistic
of an exponentially weighted moving average (EWMA)
method are used to detect an abnormal machine condition
on-line. A control limit is set for each RMS or EWMA index.
An abnormal condition is detected whenever the RMS or
EWMA measurement of new sensory data exceeds a respec-
tive control limit. The sensory dam are then transferred to
the fault identification level 720 for further analysis. EWMA
is described below in more detail and in Spoerre, J. K.,
“Machine Performance Monitoring and Fault Classification
Using an Exponentially Moving Average Scheme,” Masters
Thesis, The University of Iowa, May 1993. RMS is well
known in the art and for the sake of brevity will not be
described in detail herein.

At the fault identification level 720, a fault diagnostic
network (FDN) is employed to identify machine faults from
the sensory data. Additional sensory data may be acquired in
order to improve diagnostic accuracy. If the fault diagnostic
network is not able to generate any hypothesis, a model-
based reasoning approach will be applied to reason through
the machine models to find possible faults. The fault rea-
soning of the machine models is accomplished by using the
fuzzy logic (FL) methodology. The output of this reasoning
process is identifiable faults and their possibilities.

At the level of verification and recommendations 730, all
the identifiable faults are verified through the fault reasoning
expert system (FRES). FRES checks the faults against its
rules in the knowledge base, the damage or repair history,
and machine usage information to determine the most likely
faults. Finally, recommendations for correcting the identi-
fied machine faults are provided by the FRES to the user.
The user then can examine the machine according to the
system’s recommendations and store the diagnostic infor-
mation in the database 440. The fault diagnostic procedure
for this integrated system is shown in detail in a flowchart
illustrated in FIGS. 15A and 15B; FIGS. 15A and 15B are
described in detail in Section 4.5.

Referring to FIG. 1, the present invention employs a
neural network architecture 100 called Predictive Adaptive
Resonance Theory (ART) or ARTMAP, that autonomously
learns to classify arbitrarily ordered vectors into recognition
categories based on predictive success. See Carpenter, G. A.,
Grossberg, S., and Reynolds, J., “ARTMAP: Supervised
Real-time Learning and Classification of Nonstationary
Data by a Self-Organizing Neural Network,” Neural Net-
works, Vol 4, 1991, pp. 569-588. This supervised learning
system 100 is built from a pair of ART modules (ART, 110
and ART, 120) that are capable of self-organizing stable
recognition categories in response to arbitrary sequences of
input patterns.

Two classes of ART modules have been developed by
Carpenter and Grossberg (Carpenter, B. A. and Grossberg, S.
“A Massively Parallel Architecture for a Self-Organizing
Neural Pattern Recognition Machine,” Computer Vision,
Graphics, and Image Processing, Vol. 37, 1987, pp. 54-115
and Carpenter G. A. and Grossberg, S., “ART 2: Self
Organization of Stable Category Recognition Codes for
Analog Input Patterns,” Applied Optics, Vol 26, No. 23,
1987, pp. 4919-4930; ART 1 is capable of processing
arbitrary sequences of binary input patterns, while ART 2 is
capable of handling either binary or analog input patterns.
These ART modules are linked by a Map Field 130 and an
internal controller (not shown) that ensures autonomous
system operation in real time. The Map Field 130 controls
the learning of an associative map from ART, recognition
categories to ART,, recognition categories, as well as match-
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ing tracking of the ART, vigilance parameter 140 (p’). The
vigilance parameter 140 determines the closeness between
the ART, recognition category and the ART,, recognition
category.

A neural network architecture and training method is
disclosed that is a modification of an ARTMAP architecture.
FIG. 2 illustrates a modified ARTMAP network 200. The
modified ARTMAP network 200 is an efficient and robust
paradigm which has the unique property of incremental
learning. Unlike other popular neural networks, such as back
propagation, the modified ARTMAP network 2060 does not
have to be trained with all the patterns, old and new, every
time a new pattern is discovered.

The modified ARTMAP network 200 includes an ART
module 225 that accepts an input pattern 210 (also referred
to as input vector 210). An ART 2 neural network is used as
the underlying ART module 225. The ART module 225 is
connected to a map field 230 that accepts as an input a target
output pattern 220 (also referred to as a target output vector
220). The map field 230 performs a mapping between a
recognition category supplied by the ART module 225 and
the target output pattern 220. The map field 230 also triggers
a vigilance test 240 that determines the closeness between
the recognition category and the target output pattern 220.

During the training of the modified ARTMAP network
200, both an input pattern 210 and a desired output pattern
220 are presented to the network 200. In a preferred embodi-
ment, an input pattern 210 consists of two hundred (200)
data points. The desired output pattern 220 is a binary vector,
with each node of the vector corresponding to a particular
machine condition. During the network testing phase, only
the input pattern 210 is provided to the modified ARTMAP
network 200.

2. Exponentially Weighted Moving Average
A. Theoretical Background and Modeling

(a) Parametric Modeling Method

Parametric modeling methods operate on incoming data
or autocorrelation estimates to compute a set of parameters
which correspond to an a priori model of the data statistic.
This concept can be shown in FIG. 17, where the linear
prediction of Y, is

JFa YAyt . apYip (1)

and p is the number of autoregressive parameters in the
model.

(b) Autoregressive Process

An autoregressive process is represented by a difference
equation of the form:

P (2)
X(n)= 21 §; X(n—1) + e(n)
i=

where X(n) is the real random sequence, ¢;, i=1, . . ., p are
parameters, and e(n) is a sequence of indeépendent and
identically distributed zero-mean Gaussian random vari-
ables with constant variance, that is,

E{e(m)} =0 3)

4
62N, forn=j @

Efetme(} = { 0 forn#j

(5)

eny (1) = 1 €x] { -2 }
f( )( ) \J——Z;l:_ (79 ? 26"’2
The sequence e(n) is called white Gaussian noise. Thus,
an autoregressive process is a linear difference equation
model when the input or forcing function is white Gaussian
noise (see Jangi, S., et al., “Embedding spectral analysis in
equipment,” IEEE Spectrum, February 1991, p. 42).



5,566,092

13

Thus, for a machine operating under normal conditions,
the vibration condition of the machine can be described by
an AR process where the values of e(n) are white Gaussian
noise.

(c) Model Validation

If the model is suitable, the vibration signal will be
defined to a large degree by the model and the deviations, or
residuals, of the predicted signal from the actual signal for
each point in time are distributed as whim Gaussian noise
and, therefore, randomly distributed about the mean value
zero. If the stochastic component is white noise and the trend
in the vibration signal is adequately modeled, a plot of the
residuals over time is expected to exhibit a rectangular
scatter plot with no discernible pattern, meaning the vari-
ance is constant. This anticipated random distribution of the
residuals is apparent in the plot of the residuals over time for
a set of dam representing a normal machine condition, as
shown in FIG. 18.

Gross nonnormality can be evaluated by plotting a his-
togram of the residuals. Since the errors are expected to be
normally distributed, the histogram should closely resemble
a normal distribution.

A final check for normality was conducted by calculating
the normal scores of the residuals. The t,, normal score is
defined to be the (t—34)/(n+%4) percentage point of the
standard normal distribution. With normally distributed
data, a plot of the t,;, ordered data value (residual) versus the
corresponding normal score should fall approximately on a
straight line. This phenomenon occurs in the normal plot of
anormal data set (see FIG. 3-4). Likewise, each of the other
data sets showed an approximate straight line in the plot of
the standardized residuals vs normal scores.

(d) Selecting AR Parameters

Determination of the AR parameters can be achieved by
one of several techniques: Yule-walker method, Burg
method, Covariance method, Modified Covariance method,
etc. (see Marple, S., Digital Spectral Analysis with Appli-
cations, Prentice-Hall, Inc., 1987, pp. 224-231, 251). In a
preferred embodiment, the modified covariance method is
used since it eliminates problems encountered by using the
other methods—frequency resolution, spectral line splitting,
and bias of the frequency estimate (see Jangi, S., et at.,
“Embedding spectral analysis in equipment,” IEEE Spec-
trum, February 1991, p. 42).

(e) Selecting AR Order

Criteria used for the selection of the AR model order were
final prediction error (FPE), Akaike information criteria
(AIC), and criterion autoregressive transfer (CAT) function.

FPE selects the order of the AR process so that the
average error variance for a onestep prediction is minimized,
where the error variance is the sum of the power in the
unpredictable part of the process and a quantity representing
the inaccuracies in estimating the AR parameters. The FPE
for an AR process is defined as follows:

_ & N+@p+] ©®
FPEIp) = PP(W:QH%)

where N is the number of data samples, p is the order, and

6 is the estimated white noise variance.

The AIC determines the model order by minimizing an
information theoretic function. Assuming the process has
Gaussian statistics, the AIC for an AR process has the
following form:

AIC[pI=N 1n B+2p n

A final criterion, CAT, selects the order p as that which
minimizes the estimate of e difference between mean square
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errors of the true prediction error filter and the estimated
filter, This difference is calculated from the following equa-
tion:

®

omm=(% EF)—p—pl

1
where p;=[N/(N-j) ® and p is chosen to minimize CAT[p).
() Modified Covariance Method
The pth-order forward and backward linear prediction
errors for the modified covariance method may be repre-
sented as the vector inner products

e;/ln)=x,"(nla[n]

®

e,2[nl=x,"nlJa",

10

where the data vector x,[n] and linear prediction coefficient
vector a,/” are defined as follows:

an

x[n] 1
x[n—1] ap(1]

xpln] = s a{)” = :
x(n —.p] ﬂpip]

and J is a (p+1)x(p+1) reflection matrix. Based on measured
data samples x[1], . . . , x[N], the modified covariance
method minimizes the average of the forward and backward
linear prediction squared errors.

) N a2
pfb:T [ n:p§—1 [leTn]? + le(n]i2] ]

(g) Exponentially Weighted Moving Average

(1) Control Statistic

The exponentially weighted moving average (EWMA)
contro} statistic is defined as follows:

EWMAFmax{(1-MEWMA 1AL RID pomatized 10} 13)

where EWMA =0 e
EWMA =predicted EWMA value at time t (new EWMA)

EWMA, ,=predicted EWMA value at time t-1 (old
EWMA)

100, 0rmatized "] 18 the sample variance of observed values
at time t

A is a smoothing constant satisfying 0<A=1 that deter-
mines the depth of memory of the EWMA

(ii) Weighting Constant

The EWMA can be written as:

t 14
V1= i:% Wiyi 4
where the w, are weights and w=A(1-A)"1.

The sum of the weights

The constant A determines the “memory” of the EWMA
statistic. That is, A determines the rate of decay of the
weights and in turn, the amount of information recollected
from the past data. As A approaches 1, w, approaches 1 and
¥..1 is nearly equivalent to the most recent observation Y,.
On the other hand, as A approaches 0, the most recent
observation has small weight and previous observations
nearly equal weights.
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(iii) Upper Control Limit
The upper control limit for the EWMA statistic is
UCL=py e+ (15)
where

(16)

an
cﬂ’J sl ST

and n= number of data sets initially collected under a normal
machine condition.

(iv) EWMA Characteristics

The EWMA is a statistic with the characteristic that it
gives less and less weight to data as it becomes older and
older.

The EWMA chart was chosen since it has been proven
superior to the range chart or s? in terms of its ability to
quickly detect small percent increases in the process stan-
dard deviation (see Crowder, S., et at., Journal of Quality
Technology 24(1):12-21 (1992)). In addition, the EWMA is
easy to plot, easy to interpret, and its control limits are easy
to obtain. A major advantage of employing EWMA is that it
provides a mechanism for dynamic process control.

To control a process it is convenient to forecast where the
process will be in the next instance of time. Then, if the
forecast shows a future deviation from target that is too
large, some electromechanical control system or process
operator can take remedial action to compel the forecast to
equal the target. In manufacturing, a forecast based on the
unfolding historical record can be used to initiate a feedback
control loop to adjust the process (see Box, G., et al.,
Statistic for Experimenters, John Wiley & Sons, New York,
N.Y,, 1978).

Lambda (A) determines the “memory” of the EWMA
statistic; that is, A determines the rate of decay of the weight
and hence, the amount of information secured from the
historical dam. The choice of 1 is somewhat arbitrary and
was experimentally chosen to provide the smallest predicted
variance (error) with a value of 0.7.

From Equation (13), it can be seen that the logarithmic
scale is used. The meaningful presentation of vibration data
is essential in order to enable a diagnostician to accurately
determine the true condition of a machine. The use of a
logarithmic scale provides a representation closer to the
vibrational behavior of machines (see Archambault, R.,
“Getting More Out of Vibration Signals: using the Iogarith-
mic scale,” Proceedings of the 1st International Machinery
Monitoring and Diagnostics Conference, Las Vegas, Nev.,
1989, pp. 567-571). It has been recommended that the log
of the sample variances should be used when making
inferences about variances of normally distributed data (see
Box, G, et al,, Statistic for Experimenters, John Wiley &
Sons, New York, N.Y., 1978). One reason is that the logs of
the sample variances will be much more normally distrib-
uted than the sample variances themselves. Also, the vari-
ance of In(p®) is independent of s* and depends only on the
sample size n.

An increase in s* corresponds to an increase in the
location parameter of the log-gamma distribution (the dis-
tribution of In (p®). Thus, an increase in the underlying
process standard deviation should cause an increase in the
mean level of the plotted EWMA values. Because of its
simplicity and the properties listed above, the log transfor-
mation is considered to be an appropriate transformation.
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Since vibration signals collected on rotating machinery can
be very complex, as the vibration signal measured at a given
point on the machine is the sum of all the internal forces
applied to the machine modified by their respective trans-
mission paths, the logarithmic scale provides a large range
on which to display all the relevant data (see Archambault,
R., “Getting More Out of Vibration Signals: using the
logarithmic scale,” Proceedings of the Ist International
Machinery Monitoring and Diagnostics Conference, Las
Vegas, Nev., 1989, pp. 567-571].

B. Detailed Operational Description

FIG. 19 is a detailed flowchart of the methodology used
to calculate the EWMA in accordance with the present
invention. That is, it outlines a methodology for monitoring
and diagnosing a machine condition. Initially, time series
data (e.g., vibration signals) is collected from a physical
machine (in a lab setup) under normal machine conditions,
as shown in block 1910. In a preferred embodiment, each of
the data sets consists of 1000 data points. Note that the
present invention is not limited to machine conditions, and
can be extended to processes as well as would be apparent
to a person skilled in the relevant art.

Data collection is conducted using the following setup: a
DC motor connected to a shaft by a drive belt, two cylin-
drical pillow block bearings mounted on each end of the
shaft and secured to a steel plate, an oscilloscope to display
the raw vibration signal collected, an amplifier to magnify
the signal, and a DT2821-G-8DI data acquisition board.
Vibration signals were collected from the bearing using
328C04 PCB accelerometers mounted on the bearing hous-
ing.

Accelerometers are transducers whose voltage output is
proportional to acceleration or, as a more useful description,
the internal forces in the machine. If the acceleration level
is high, then the internal forces are high. Forces are the cause
of oscillation, in addition to excessive wear and premature
failure. The sensitivity response (amplitude) of an acceler-
ometer versus frequencies is displayed in FIG. 20.

Accelerometers are the preferred transducers in machine
condition monitoring due to the following reasons: extreme
ruggedness, large frequency response, large dynamic
range—accelerometers can detect very small vibrations
without being damaged by large vibrations, output is pro-
portional to forces which are the cause of internal damage,
and high-frequency sensitivity for detecting bearing faults.

Next, an appropriate AR model (i.e., one that adequately
describes the vibration data being collected) is selected
using the criteria defined in Equations (6), (7), and (8). As
shown in block 1920, a suitable AR order is then chosen.
After choosing a suitable AR order for the normal condition,
an AR model is generated for each of the data sets collected
under the normal machine condition, i.e., first order param-
eters (9;;), second order parameters (¢;,), up to p order
parameters (¢,,) for i=1, 2, . .., n data sets, as shown in
blocks 1930 and 1935.

As shown in blocks 1950 and 1955, an average value is
calculated for the first order AR parameter through the pth
order AR parameter from the AR models generated in blocks
1930 and 1935. This calculation is performed in order to
define a model that would be representative of a normal
machine condition under the conditions defined in the lab
setup.

Once the model is established for the normal machine
condition, new data is collected for an abnormal machine
condition. Then the abnormal vibration signals are fit to the
“normal” model found in block 1950 and 1955 as an
indicator of how closely the normal model fits the data set
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collected under the current condition. This step is repre-
sented in block 1960.

In order to measure the fit of the data to the normal model,
forward and backward prediction errors are calculated to
determine the P,,p,manzed” value of the data, as shown in
blocks 1970 and 1975. This process is described above in
Section 2(A)(f) (i.c., modified covariance method). The
normalization is based on the normal machine condition
since the purpose of the present invention is to be able to
detect any deviations from the normal machine condition.
Normalization is utilized to uncover all possible collections
or sets containing the same data and allows current and
previous data for a machine to be superimposed, regardless
of the operating speed. In addition, normalization allows the
creation of an average data file for each specific machine
type.

Vibration signatures for many identical machines taken at
different times at slightly different operating speeds can be
accumulated statistically and represented by a single set of
averaged narrow band spectra (see Watts, W., et al., “A
Portable, Automated Machine Condition Diagnostics Pro-
gram Using Order Normalized Vibration Data,” Proceedings
of the 1st International Machinery Monitoring and Diag-
nostics Conference, Las Vegas, Nev., 1989, pp. 637-643). To
determine whether the vibration signature of a machine is
significant, the current condition is compared to the normal
condition through the p” values. .

Given the p” value found in blocks 1970 and 1975, an
exponentially weighted moving average (EWMA) statistic
is calculated, with A=0.7, as shown in block 1980. The
calculated EWMA statistic is an indicator of the overall
machine condition and is compared to the upper control
limit (UCL) (describe above in section 2(G)(iii)) to deter-
mine if the machine is in a state of control or if it is
out-of-control. This step is shown in blocks 1990 and 1995.
If the EWMA value exceeds the UCL, this is a signal that an
abnormal machine condition exists and action should be
taken.

C. Data Analysis :

The following description is the result of applying the
above described invention to an actual machine in a lab
setting. Although different dam sets will result in a slightly
different outcome, the principles and methodology described
herein remain the same. After collecting data from the
machine, the modified covariance method and the three
methods described above are used to determine the appro-
priaie AR model to adequately describe the normal machine
condition. In a preferred embodiment, the most suitable
order for the AR model is 33, resulting in a ratio of AR order
to sequence length (1000) of 0,033. The value is preferably
small since frequency bias and line splitting increase with an
increasing ratio of AR order to sequence length.

In a preferred embodiment, once the normal model is
established for the normal condition, vibration data is col-
lected under three abnormal operating conditions, namely
misaligned shaft, loose bearing, and contaminated bearing.

For each data set collected under one of the four condi-
tions, the minimum and maximum variances were deter-
mined, as shown in Table 1. These variances were normal-
ized by dividing the variance by the average variance under
a normal condition (0.0000048582) and taking the natural
log of the variance for both the minimum and maximum
variances for each machine condition. The variance values
were used to determine the upper and lower bounds of the
EWMA, as shown in Table 2.

The numbers in the upper portion of each cell in Table 2
represent the minimum and maximum observed EWMA
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statistic based on actual dam collected in the lab. The
numbers in the lower portion of the cell are based on
statistics of the collected data and were calculated using
Ho—40, for the lower bound and 4G for the upper
bound, where n s is the average value for the EWMA
statistic for each machine condition, i.c.,

]

where n is the number of samples collected.

The standard deviation, as well as Ho®, Was determined for
each bearing condition. Standard deviations are calculated
by the following formula:

n
zpf

i=1

-t

18)
a2 [ fo-47]

In Table 2, the upper and lower bound of EWMA values
for the abnormal conditions (misalignment, contamination,
and looseness) are calculated based on the minimum and
maximum EWMA statistic calculated for the normal con-
dition and the variances of the abnormal conditions in Table
1. For example, under the normal condition, the minimum
and maximum EWMA values for all eight data sets collected
was 0.000000 and 0.126535, consecutively. Referring to
Equation (13), the EWMA statistic is calculated by

EWMA 7max{ (1-NEWMA, y+M 0, omaiizea” 0}

TABLE 1

Calculated “Normalized” Variances for a Normal
Machine Condition and Three Abnormal Machine Conditions

Statistic

Average value Standard deviation

N [
Condition p® p®

normal 0.100081 0.124959
misalignment 2.561171 0.116305
contamination 5.002439 0.302079
looseness 3.449739 0.125359

Under a misalignment condition, for example, the mini-
mum EWMA statistic that could occur is calculated using
the minimum variance found under a misalignment condi-
tion and the minimum EWMA statistic for the normal
condition. Similarly, the maximum EWMA statistic that
could occur is calculated using the maximum variance found
under a misalignment condition and the maximum EWMA
statistic for the normal condition.

TABLE 2

Calculated EWMA Statistics for a Normal Machine
Condition and Three Abnormal Machine Conditions

EWMA Statistic:
Condition Lower Bound Upper Bound
normal 0.000000 0.134323
(0.000000) (0.496657)
misalignment 1.165905 1315764
(1.072859) (1.501256)
contamination 2.283083 2.487441
(2.201966) (2.709934)
looseness 1.835429 1.975226
(1.740603) (2.162600)
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TABLE 3

Calculated Statistics of EWMA Values for a Normal
Machine Condition and Three Abnormal Machine

Conditions
Statistic
Condition Minimum EWMA Maximum EWMA
Normal 0.0000 0.4967
Misalignment 1.0729 1.5013
Contamination 2.2020 2.7099
Looseness 1.7406 2.1626

Specific calculation that were performed to derive the
numbers in Tables 1-3 can be found in Spoerre, J. K.,
“Machine Performance Monitoring and Fault Classification
Using an Exponentially Moving Average Scheme,” Masters
Thesis, The University of Iowa, May 1993.

The range of values for each of the operating conditions
given above were well-defined with no overlap among
different machine conditions. FIG. 21 illustrates a diagnosis
and monitoring procedure that uses the EWMA technology.
Initially, the EWMA statistic is set to 0.0, as shown in block
2105. Then, using the procedure outlined above, the EWMA
statistic is calculated, as shown in block 2110. Next, the
EWMA statistic is checked against a “normal condition”
upper limit, which in the example given above is 0.4967.

If the EWMA statistic falls below this upper limit then the
machine is operating normally, as shown in block 2120. In
this scenario the procedure flows back to block 2110.
However, if the EWMA statistic falls above the upper limit
then a potential abnormal condition exists, as shown in block
2130. Based on table 2, blocks 2140, 2150, and 2160, each
indicate a different abnormal condition. Namely, if the
EWMA statistic falls between 1.1 and 1.5 then the abnormal
condition is misalignment; if the EWMA statistic falls
between 1.7 and 2.2 then the abnormal condition is loose
bearings; and if the EWMA statistic falls between 2.2 and
2.7 then the abnormal condition is contamination. Of course
other abnormal conditions can be detected by following the
above procedure and determining the appropriate EWMA
statistic.

Once the abnormal condition is detected, the procedure
2100 prints via the user interface 150 the detected fault, as
shown in blocks 2170, 2180, and 2190. At this time, an
operator corrects the problem with the machine, as shown in
block 2195, and the EWMA statistic reset to 0.0 (i.e., normal
condition).

FIG. 22 illustrates an EWMA chart. The EWMA chart can
be divided into bands 2210-2240 that represent the location
of specific machine conditions. A normal condition is shown
in band 2240, while the abnormal machine conditions are
shown in bands 2210-2230.

By developing an AR paramatric mode] to characterize
the normal machine condition, the EWMA control statistic
is able to identify whether the machine is in a normal state
(“in control”) or in an abnormal state (“out of control”). As
an abnormal bearing condition begins and worsens, the plot
on the EWMA control chart is near the control limit and
shows a trend towards the limit; eventually the EWMA
control statistic extends well beyond the control limit if the
abnormal condition is not corrected.

It has also been determined that there is a positive
correlation between the average amplitude of the signal and
the average EWMA statistic for a given machine condition.
As the average amplitude increases, the EWMA value
increases. This implies that the EWMA statistic is sensitive
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to changes in amplitude. Since an increase in amplitude
occurs when a bearing or other machine component under-
goes the initial stages of failure, the EWMA technique has
the ability to detect small changes in amplitude once a defect
occurs.

Furthermore, it has been shown that the deviation of the
variance at time t from the variance established under a
normal condition is an indicator of current bearing condi-
tion. If this deviation is nearly zero, the bearing is operating
in a normal condition; however, if this value is significantly
different from zero, an out of coil state exists and corrective
action is necessary.

3. Parametric Modeling and ART 2 Approach

FIG. 3 shows the framework of the present invention. It
comprises three modules: a parametric model 310, a nor-
malization process 320, and an ART 2 neural network 225.
In a preferred embodiment, an autoregressive (AR) para-
metric model is used in combination with the ART 2 neural
network 225. However, an autoregressive moving average
(ARMA) model can also be used. Both AR models and
ARMA models are known in the art.

The parametric model 310 is used to fit (i.e., mathemati-
cally describe) a raw vibration signal collected from a
physical machine or process under review. After fitting the
parametric model 310 to the vibration signal, a set of
parameters 315 can be obtained. At this point, however, the
parameters 315 cannot be fed into the ART 2 network 225
without pre-processing because they contain meaningful
negative values which the ART 2 network 225 is not able to
recognize. Therefore, a normalization process 320 has to be
applied in order to ensure that the ART 2 network 225 can
perform correctly with proper inputs.

The normalization process 320 requires two steps. First,
each parameter 315 is divided into two parts: positive and
negative. If a parameter 315 has a positive value, then the
negative part will be assigned to zero, and vice versa.
Secondly, scaling of the parameters 315 occurs by dividing
each parameter 315 by the maximum parameter value. The
residuals variance will only contain the positive part because
its value is always positive. However, the variance needs to
be divided by the maximum residuals variance. As such, an
ARMA or AR model with n parameters will require 2n+1
input nodes in the ART 2 input layer. For example, an ART
2 network 225 for an ARMA (3, 2) model (n=5) will require
11 input nodes. The input vector to the ART 2 network 225
for the ARMA (3, 2) model with the following parameters
and residual variance is shown in FIG. 16.

@,=1.7592

@,=1.7289

@,=0.8364

8,=-1.0300

0,=-0.7562

0=0.3838

Suppose the maximum parameter value for both the
positive and negative part is equal to 2 and the maximum
residuals variance is equal to 1. Take ®, for example, the
negative part is set to 0 because its value is positive. The
positive part is divided by the maximum parameter value, 2,
and a value of 0.8796 is obtained. For the residual variance,
the value remains the same because the maximum residual
variance is 1.

During training of the network, the ART 2 network 225 is
presented with an input pattern, i.e., the normalized param-
eters 325. As a result, the network self-organizes fault
classifications until it runs out of input patterns. At last, the
final top-down weights (T,;) and bottom-up weights (B;)
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will be saved for later diagnostic use. During diagnosis of a
fault, each input pattern is presented to the ART 2 network
225. Each node in the F, layer 240 represents a particular
fault classification. The node in the F, layer 240 which
passes the vigilance test 250 will be the output 335 of the
ART 2 network 225,

As mentioned earlier, during the training of the modified
ARTMAP network 200, both the input pattern 210 and the
desired output pattern 220 have to be presented to the
modified ARTMAP network 200. Each set of input patterns
210 and desired output patterns 220 is used to train the
modified ARTMAP network 200 independently, which
means that the modified ARTMAP network 200 can be
trained incrementally. In a preferred embodiment, an input
pattern 210 consisted of 200 data points of the vibration
spectrum. The desired output pattern 220 is a binary vector,
with each node of the vector corresponding to a particular
machine condition.

4. Fault Diagnostics: Methodology and Implementation

This section describes the fault diagnostic system 400
developed in accordance with the present invention. The
methodologies used in this system are covered throughout
this section. Section 4.1 introduces the application of the
autoregressive modeling technique for data preprocessing.
Section 4.2 discusses the development of the fault diagnostic
network. In Section 4.3, physical bearing models and a fuzzy
logic-based hypothesis and test procedure for unknown
patierns are presented.

4.1. Autoregressive (AR) Model

An autoregressive (AR) technique is a method of trans-
ferring signals from a time domain, the way they were
captured through a set of sensors connected to a physical
machine or process, to a frequency domain. Traditionally
this is done with Fourier Transforms.

The benefit of using a parametric model for signal pro-
cessing is that it can dramatically reduce the amount of data
and still preserve the important characteristics of the signal.
As a result of data reduction, the diagnosis and training time
of a neural network will be greatly reduced. Since the
training time increases about 10 times and the diagnosis time
increases about 6 times when the number of input data
increases from 200 to 2400, data reduction is critical,
especially when multiple sensors are used in a real-time
mode since the amount of data involved is increased. The
present invention implements an AR model for on line signal
processing. The mathematical form of an AR model is given
in Equation 19.

X=X, + DX ot . +D X, HE, (19)
where X =time series, ®=the AR parameters, p=the order of
AR model, E=residuals with NID (0, 5°).

The order of the AR model is to be determined with an
approach described in Lin, C.C., “Classification of Autore-
gressive Spectral Estimated Signal Patterns Using an Adap-
tive Resonance Theory (ART),” Master’s Thesis, Depart-
ment of Industrial Engineering, The University of lowa,
Towa City, Towa, 1992. It selects the order with the highest
final prediction error (FPE) and Akaike information criterion
(AIC) level. The equations of FPE and AIC are given by the
following:

(20

_n N+@p+1)
FPE(p) - Opz ( N%h— )
AIC(p) = NIn(3,2) + pln(N) @

where N is the number of data samples, p is the AR order,
and 62p is the estimated linear prediction error variance at

10

15

20

25

30

35

40

45

50

55

60

65

22

order p. Once the AR order is determined, it is fixed and then
the AR model can be fitted to the sensory data to generate an
AR parameter 315. Once normalized (as described above),
the AR parameter 315 can be used as an input to the modified
ARTMAP network 200.

4.2. Fault Diagnostic Network

The objective of using a fault diagnostic network (i.e., a
modified ARTMAP network) is to provide rapid and accu-
rate diagnosis of machine faults. The modified ARTMAP
network 200 is an efficient and robust paradigm which has
the unique property of incremental learning. Unlike other
popular neural networks, such as back propagation, the
modified ARTMAP network 200 does not have to be trained
with all the patterns, old and new, every time a new pattern
is discovered. The mechanics of the modified ARTMAP 200
is described in the following section.

4.2.1. Modified ARTMAP Network

The modified ARTMAP neural network 200 is an exten-
sion of the ART (Adaptive Resonance Theory) network
which autonomously learns to classify arbitrarily ordered
vectors into recognition categories based on predictive suc-
cess. As described above with reference to FIG. 1, the
ARTMAP neural network 100 is an unsupervised learning
system built from a pair of ART modules 110, 120 that each
produce a recognition category, and a Map Field 130 which
controls the mapping between the pair of recognition cat-
egories.

In a preferred embodiment, the ARTMAP neural network
only uses one input pattern (i.e., AR parameters). As such,
a modification to the ARTMAP network shown in FIG. 1 is
made in order to perform supervised learning. FIG. 2 shows
a modified ARTMAP network 200, in which the second ART
module is replaced by a target output 220. The target output
220 is provided by a user. An ART 2 neural network
architecture 225 is chosen as the underlying ART module to
handle analog input patterns (e.g., AR parameters).

Specifically, the ART 2 neural network architecture is
used in a preferred embodiment since vibration or sound
signals are used as an input to the modified ARTMAP neural
network 200 and the energy level in a vibration or sound
signal is a continuous analog signal. However, as would be
apparent to those skilled in the art, signals other than sound
signals can be applied to the modified ARTMAP neural
network 200. Furthermore, the present invention can also be
used with an ART 1 neural network architecture if arbitrary
sequences of binary input patterns are used as an input to the
modified ARTMAP neural network 200.

In the modified ARTMAP network 200, the ART2 net-
work 120 has two layers: F; 230 and F, 240. Referring to
FIG. 4, the F, layer 230 of the ART 2 network includes three
processing levels and several gain control systems which
enable the network to separate signal from noise and
enhance the contrast of activation signals. Generally, each
level performs two computations: integration of intrafield
and interfield inputs to that level which produces an inte-
grated activation signal and normalization of the integrated
activation signal. The filled circles are the gain control
systems which normalize the integrated activation signals.

Training of the modified network is described below with
reference to FIG. 4 and FIG. 5. FIG. 5 illustrates a flowchart
of the procedure used to train the modified ARTMAP
network 200.

As shown in block 505, before initiating training of the
modified ARTMAP neural network 200, the following
parameters are initialized:
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T,=0

Ji

22

1 (23)

02:\'v

0=i=N-1, where N is the dimension of the input vector
210;

0=j=M-1, where M is the number of F, nodes;

w=x~=v=u=q~=p~0; and

Set a, b, c, d, e, 6, and p.

As shown in block 510, an input pattern to be learned is
presented to the modified ARTMAP network 200. Next, the
activation signals between the different nodes of the F1 layer
230 are generated, as shown in block 5 15. At the lower level
of the F, layer 230, vector w; is the integration of an
intrafield input vector I; and the interfield feedback signal
au,, i.e.,

B;=

w=l+au; @4
where i is the ith node at the F, layer 230 and a is a constant.
Once the vector w; is obtained, then it can be normalized to
yield x; by the following equation:

(25)

wi
e +[wll
where e is a constant close to zero and |w|| denotes the L,
norm of a vector w.

The rest of activities in the F, layer 230 can be calculated

Xi=

according to the following equations:
v; = flix) + bfig;) (26)
_w 27
M
I (28)
4T
(29)

pi=ui+Z g(Tji
J

where b is a constant, g(j) is the activation of the jth node in
the F, layer 240, and T}; is the top-down weight between the
jth node in the F, layer 240 and the ith node in the F, layer
230. The linear signal function f in Equation (26) is

0 if0OSx<® G0

x ifxz0
where 6 is a threshold value.

As shown in block 520, once the nodes in the F, layer 240
receive an input signal from the F, layer 230 (via bottom-up
weight B), the matching score for the nodes in the F, layer
240 is then computed according to the following:

fx)=

W= piBy - G
i
where B; are the bottom-up weights.
Then, as shown in block 530, the node in the F, layer 240
with the largest matching score is activated. The activation
of the F, layer 240 is given below:

d if the jth 3 node is active 32)

0= 0 otherwise
where d is a constant between 0 and 1.

At this point, the F, layer 240 activation is propagated
back to the F, layer 230. Next, as shown in block 535, the
vigilance test 250 is carried out to determine whether the
top-down signal matches the input pattern 210. The vigi-
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lance test 250 is given as follows:
B u; + cp; (33)
T Tl Tepl
>17? G4

e+1rl

where c is a constant and O<p<1. If the match fails to pass
the vigilance test 250, then a reset 260 is sent to F, 240
which forces F, 240 to deactivate the selected node in the F,
layer and search for the next best match, as shown in block
545. Otherwise, the bottom-up (B,;) and top-down weights
(T};) are adapted from the following equations:

By(t+1)=d[p~B,+(1)] (35)

Tjnit 1)=d(p~T» (] (36)
where j* is the selected node in the F, layer 240. The step
of updating the bottom-up weights and the top-down
weights if the vigilance test passes is shown in block 550.

Once the ART module 120 is presented with an input
vector 210, it selects a node in the F, layer 240 which passes
the vigilance test 250. Then, the F, layer 240 activations are
propagated to the Map Field 130 through the weighted
comnections (w;) between the F, layer 240 and the Map
Field 130, as shown in block 555. The signals received from
the F, layer 240 are calculated by the following equation:

X=;n 37

At the map field 130, a second vigilance test 140 is
performed to determine the level of match between the
predicted output from the F, layer 240 (X) and the target
output pattern 220 (Y), as shown in block 560. A mismatch
between X and Y will trigger a map field reset 270 to the
underlying ART module 120. This occurs whenever the

following condition holds:

X (38)

N

where p' denotes the associative memory vigilance param-
eter 240. If the map field reset 270 occurs, the vigilance 250
of the underlying ART module 120 is raised to prevent the
system 200 from making repeated errors, as shown in block
570. At this point, a reset 260 is sent to the F, layer 240 and
forces the F, layer 240 to find the next best match, as shown
in block 545. This process will continue until the second
vigilance test 140 succeeds. Once the second vigilance test
140 is passed, the top-down weights (T;) and bottom-up
weights (B;) between the F; layer 230 and the F, layer 240
are adapted according to Equations (35) and (36), and the
weights between the F, layer 240 and the Map Field 130 are
updated by the following equation:

W= (39)
The step of updating the top-down weights (T;) and the
bottom-up weights (B;) is shown in block 580.

For the bottom-up and top-down weights, the weight
adaption process is done iteratively for each training pattern.
This is because the normalized input vector 210, represented
by p, is also updated after each update iteration is made.
Then, the new vector p in the F; layer 230 is used for the
next weight update iteration (see Equations (35) and (36)).

During the training phase, both input vector 210 (i.e., AR
parameters) and target output vector 220 (i.e., fault class) are
presented to the network. Then the network starts to learn the
association between the input vector 210 and the target
output vector 220 according to the procedure described
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above. During the diagnosis phase, only an input vector 210
is provided to the network. The node in the F, layer 240
which passes the F, vigilance test 250 represents the net-
work’s output (i.e., predicted fault class).

Another unique function of the modified ARTMAP net-
work 200 is its “unlearn” capability. In contrast to the
network learning capability, the “unlearn” procedure
removes “undesired” knowledge that has previously been
learned by the network. This is very useful when a previ-
ously learned pattern is found to be a wrong pattern. In such
a situation, one way to correct this mistake is to retrain all
the patterns except the undesired one, which is not very
feasible. A more efficient way to unlearn a pattern is to reset
the network weights disregarding the incorrect pattern.

Generally, the “unlearn” procedure is the same as the
training procedure describe above. Once an F, node passes
both vigilance tests 240, 140, the network weights are
adapted according to the following equations:

By (40)

1
a-ad\n

Tjoe=0 (41)

where N is the number of nodes in the F, layer 230 and d is
a constant between 0 and 1.

The map field 230 weights are updated from the following

equation:
Wm0 (42)

4.2.2. Diagnosis by the Modified ARTMAP Network

The network diagnosis procedure is illustrated in FIG. 6.
Diagnosis takes place after the modified ARTMAP network
200 has been trained using the procedure described above.
As shown in block 610, the modified ARTMAP network 200
initially acquires input data from a user or directly from a
physical machine or process. After receiving an input, the
ART 2 network 225 hypothesizes a diagnosis, as shown in
block 620. If the hypothetical diagnosis passes the first
vigilance test 250, the diagnosis result is reported to the user,
as shown in block 630. In block 640, the user is asked to
confirm the network diagnosis. If the diagnosis is correct,
the user can either select to train the network with the
present input patiern, i.e., ask the network to adapt its
weights, or quit the diagnosis process, as shown in blocks
and 680 respectively. If the diagnosis is found incorrect, two
options are available. The user may specify, as shown in
block 660, the correct fault classification and train the
network if he/she knows the correct fault classification, or
the user may request the network to make another diagnosis
(i.e., return to block 620).

In order to test the system, a total of 48 data sets and three
different machine conditions (i.e., normal, bearing failure,
and misalignment) were used and divided into two parts: 15
data sets for training and the rest of the data sets for testing.
The effects of the vigilance value and the training set size
were also investigated. The performance of the network
remained the same when the vigilance was set to 0.3, 0.5,
0.7, 0.8, or 0.9. However, when the training set size was set
to 3 (one for each category), the network achieved about
97% accuracy. Once the training set size was increased to 6
(two for each category), the network was able to correctly
identify all the test data. '

4.3. Hypothesis and Test for Unknown Patterns

As discussed above, the primary technique used for
machine fault diagnostics is the modified ARTMAP network
200 (or FDN). As mentioned previously, a network is first
trained with examples so that the network is able to recog-
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nize a pattern when it has characteristics similar to one of the
examples. However, there are times when a totally new
pattern develops and the modified ARTMAP network 200
has not “experienced” such a pattern previously. Under such
circumstances, the modified ARTMAP network 200 will be
forced to diagnose an “unknown pattern.” In order to over-
come this problem, physical bearing models and fuzzy logic
are melded in a preferred embodiment to perform a hypoth-
esis and test procedure for analyzing and pinpointing the
unknown fault situations.

Physical bearing models can be used as a means to
provide preliminary training data of common bearing
defects for the fault diagnostic network when the machine is
brand-new or no historical sensory data is available. The
theoretical equations for calculating bearing defect vibration
signal frequencies are listed in Appendix A. It should be
noted that physical bearing models are used as an illustration
only. Other physical models may be used in accordance with
the teachings of the present invention as would be apparent
to a person skilled in the relevant art.

Physical bearing models can also be used as a hypothesis
and test mechanism for complex or multiple faults condi-
tions. Normally, the fault reasoning process in a complex
problem involves uncertainties and ambiguities. One of
most effective tools for taking fuzziness into consideration is
the fuzzy logic methodology (Li, J. et al., “Fuzzy Cluster
Analysis and Fuzzy Pattern Recognition Methods for For-
mation of Part Families (NAMRC),” Society of Manufac-
turing Engineers, 1988, pp. 558-300). As a consequence,
the hypothesis and test mechanism of the present invention
is implemented based on the fuzzy logic methodology.

FIG. 9 illustrates the fuzzy logic-based hypothesis and
test procedure implemented according to the preferred
embodiment of the present invention. This procedure is
invoked when the modified ARTMAP network 200 encoun-
ters an unknown signal. It starts with retrieving bearing
geometry parameters, as well as the shaft speed, for calcu-
lating the corresponding bearing defect frequencies using
the equations in Appendix A, as shown in block 910. Each
defect signal is combined with normal vibration signals to
generate a set of fault signatures, as shown in block 920.
These signatures are then fitted by an AR model to create a
set of AR parameters, as shown in block 930. A reference
(virtual) pattern for each bearing defect is generated by
averaging a set of AR parameters for that defect, as shown
in block 940.

Hypothesis and test is then carried out, as shown in block
950, with the following fuzzy logic methodology. It first
assigns a fuzzy membership function to the parameters for
each reference pattern. A linear membership function, as
shown below, is used, where a and b are appropriate ranges
of the parameter value.

1.0 b<x “3
ux) = %%))—— a<xsh
0.0 xZa

Then, the fuzzy logic unit 950 hypothesizes possible defects .
and tests the hypotheses by comparing the similarity
between the reference patterns and the unknown vibration
signal. The similarity between pattern X, and X, is defined
as follows: :
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g mlpe(Xie) — (Xl @0

XX =1L
8 (w6 + mx)
=

where p is the number of AR parameters in the pattern and
m is a weighting factor for increasing the distance between
sample reference patterns. A similarity score close to 1
means that the two patterns are very similar, and vice versa.
The hypothesis and test procedure described above is pro-
grammed to list all identifiable possible faults and their
similarity are presented to the user for further confirmation,
as shown in block 960.

4.4. Fault Reasoning Expert System

In a preferred embodiment, the diagnostics system 400 is
implemented with a Fault Reasoning Expert System
(FRES). Any data sample with a suspected abnormal con-
dition not detected with full confidence by the modified
ARTMAP network 200 is sent to the FRES for analysis.
Similarly, if the modified ARTMAP 200 suspects more than
one type of fault (e.g., out of alignment and contamination)
then the data sample is sent to the FRES.

The FRES checks the identifiable possible faults against
it rules in its knowledge base, the damage or repair history,
and machine usage information to determine likely faults.
The result of this check is displayed via the user interface
450 along with recommendations.

Given below is a list of expert rules for general machine
failures used by the FRES.

IF a series of frequencies are generated AND integer
fraction subharmonies of running speed exist (V2, ¥4, Y4,
..., Y4) AND high frequencies are excited AND the
waveform is truncated and flattened THEN the machine
condition is ROTOR RUB.

IF vibration frequencies are significant at 0.42-0.48x
RPM AND the vibration exists in the RADIAL direc-
tion THEN the machine condition is OIL WHIRL
INSTABILITY.

IF 1XRPM in the RADIAL direction dominates the vibra-
tion spectrum AND the signal is in-phase and steady
AND the amplitude due to unbalance increases by the
SQUARE OF SPEED (3xspeed increase=9xhigher
vibration) THEN the machine condition is FORCE
UNBALANCE.

IF 1XRPM is dominant AND amplitude increases with the
SQUARE OF SPEED AND the signal tends toward
180° out-of-phase AND high AXIAL and RADIAL
vibrations occur THEN the machine condition is
COUPLE UNBALANCE.

IF high 1XRPM occurs in both AXIAL and RADIAL
directions AND AXIAL readings are in phase AND
RADIAL readings are unsteady AND RADIAL read-
ings are lower than AXIAL readings THEN the
machine condition is OVERHUNG ROTOR BAL-
ANCE.

IF high AXTAL vibration with AXIAL phase differences
near 180° AND the dominant vibration is 1XRPM or
2xRPM THEN the machine condition is BENT
SHAFT*.

IF the largest vibration occurs at 1XRPM AND compara-
tive horizontal and vertical PHASE readings differ by
0° or 180°. AND balancing attempt results in reducing
VIBRATION in one direction, but increasing it in the
other RADIAL direction THEN the machine condition
is ECCENTRIC ROTOR.

IF high AXTAL vibration exists AND the vibration is 180°
out-of-phase across the coupling AND the AXIAL
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vibration is high at both IXRPM and 2xRPM but
neither 1x. 2%, or 3xXdominates the others THEN the
machine condition is ANGULAR MISALIGNMENT.

IF dominate vibration is at 2xRPM AND subharmonic
multiples of exactly Y2 or 4xRPM (0.5, 1.5%, 2.% X,
etc.) occur AND if the vibration occurs in the RADIAL
direction THEN the machine condition is LOOSE-
NESS.

IF the vibration spectrum is a SINGLE FREQUENCY
(indicating sinusoidal motion) AND the AMPLITUDE
of the vibration varies PROPORTIONALLY to the
SQUARE of the speed THEN the machine condition is
IMBALANCE®**,

IF the vibration signatures in the RADIAL direction are
GREATER THAN OR EQUAL to 1% times the vibra-
tion signatures in the AXIAL direction THEN the
machine condition is MISALIGNMENT.

* Bent shaft is only recognizable by studying phase

** Imbalance is only recognizable in the radial direction.

The expert rules for bearing failures are given below.

IF a series of running speed harmonies (up to 10 or 20)
occur in the RADIAL direction AND vertical ampli-
tudes are high relative to horizontal amplitudes AND
the amplitude tends to decrease at high harmonies
THEN the bearing condition is SLEEVE BEARING
WEAR.

IF the amplitude at 2XxRPM is GREATER THAN OR
EQUAL TO 4 the amplitude at 1XRPM THEN the
bearing condition is LOOSENESS.

IF considerable axial vibration exists AND twisting
motion results with approximately 180° phase shift to
bottom and/or side to side measured in the AXIAL
direction AND vibration occurs at 1XRPM and 2xRPM
AND 2xRPM dominates 1XRPM THEN the bearing
condition is MISALIGNED BEARING.

IF a sharp pulse occurs at the BALL PASS FREQUENCY,
obvious in the time series signal AND the frequency
spectrum displays extremely low amplitudes THEN the
machine condition is SINGLE SPALL on bearing race.

IF there is NO change in the VIBRATION FREQUEN-
CIES with a change in SHAFT SPEED THEN the
machine condition is RUB or RESONANCE.

IF the FFT transforms the vibration signal into a
SQUARE WAVE THEN the bearing condition is
SEVERE LOOSENESS.

The expert rules for gear failures are given below.

IF the pattern of gear mesh is a SINE wave or MODIFIED
SINE wave at the GEAR MESH FREQUENCY AND
the vibration frequency occurs at 1xand 2xRPM AND
the gear mesh frequency exists with SIDEBANDS
AND all peaks are of low amplitudes THEN the gear
condition is NORMAL.

IF a high amplitude exists at IXRPM AND gear natural
frequency is sidebanded at running speed AND the time
waveform shows a pronounced spike when the tooth
meshes with the teeth on the mating gear THEN the
gear condition is a BROKEN TOOTH.

IF a vibration frequency exists at 1XRPM AND vibration
sum and difference frequencies exist at IXRPM
THEN the gear condition is GEAR RUNOUT.

IF sidebands are at the same AMPLITUDE as the FUN-
DAMENTAL FREQUENCY THEN the GEAR needs
REPLACING.

IF the GEAR NATURAL FREQUENCY is excited along
with sidebands spaced at the running speed of the bad
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gear AND high amplitude sidebands surrounding the
GEAR MESH FREQUENCY occur THEN the gear
condition is TOOTH WEAR.

IF high amplitude sidebands occur around the GEAR
MESH FREQUENCY AND the GEAR MESH FRE-
QUENCY is excited AND the GEAR NATURAL FRE-
QUENCY is excited AND the GMF and GNF are
sidebanded at 1XRPM THEN the gear condition is
GEAR ECCENTRICITY AND BACKLASH.

IF SECOND or HIGHER harmonies of the GEAR MESH
FREQUENCY are excited AND the harmonies are
sidebanded at RUNNING SPEED AND a small ampli-
tude exist at IXGMF AND higher amplitudes exist at
2xor 3xGMF THEN the gear condition is GEAR
MISALIGNMENT.

IF a spike is displayed at 1XRPM THEN the gear condi-

tion is GEAR OUT OF BALANCE or MISSING TOOTH.

* gear mesh frequency=number of teethxgear speed

Of course, as should be apparent to one skilled in the
relevant art, other expert rules can be implemented. That is,
the expert rules given above should not be considered an
exhaustive list, but rather illustrative of the expert rules used
in a preferred embodiment of the present invention.

4.5. Fault Diagnostics

Referring to FIG. 154, a physical machine or process is
operated and the diagnostic procedure can begin. Initially,
data (e.g., vibration, temperature, pressure) is acquired from
the physical machine or process, as shown in block 1505.
This data is preprocessed using an AR model, as shown in
block 1510.

Next, the parameter produced by the AR model is used to
detect abnormal conditions in the physical machine or
process. This detection is done on-line using indices based
on a RMS measurement and a covariance statistic of EWMA
method, as shown in block 1515. This step can be considered
a filter for the fault diagnostic network 200. If block 15 15
does not detect a fault, fault diagnostics does not begin. This
feature of the present invention is shown in block 1520,
Block 1520 monitors the output of block 1515 and deter-
mines from this output whether the machine or process is
operating in a normal manner (green condition), a poten-
tially problematic manner (yellow condition), or a danger-
ous manner (red condition). Each of these conditions are
implementation specific, and can be adjusted as required by
the particular system or process being operated as should be
apparent to a person skilled in the relevant art.

If the machine or process is operating in a green condi-
tion, the user interface 450 connected to the diagnostic
system 400 displays an indication that the machine or
process is operating normally, as shown in block 1525. The
machine or process is stopped if it is operating in a red
manner, as shown in block 1530. After stopping the machine
or process, diagnostics are performed. Similarly, if the RMS
and EWMA indicate that a yellow condition exists then
diagnostics are performed.

Referring to FIG. 15b, if a yellow or red condition exists
diagnostics are performed, as shown in block 1535. In a
preferred embodiment, additional sensory data is acquired
from the machine or process under review, as shown in
block 1540. Note that this is an additional step that is not
required. The data originally used by block 1515 to detect a
fault can be used for diagnostics.

Next, the data is presented to the FDN 200 (modified
ARTMAP network 200), as shown in block 1545. Of course,
the FDN 200 has previously been trained using the proce-
dure outlined above. Decisional block 1550 determines
whether the FDN 200 has provided a diagnosis (i.e., iden-
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tified a fault with the machine or process). If the FDN 200
is not able to provide a diagnosis, physical machine (or
process) models are applied, as shown in block 1555. As
discussed above, the physical models are generated from
defect frequencies generated from known theoretical equa-
tions that are combined with normal signals taken from the
machine or process under normal operating conditions. This
combination results in a set of fault signatures.

Next, the fuzzy logic methodology is applied to the fault
signatures, as shown in block 1560. Note that even if the
FDN 200 provides a diagnosis fuzzy logic is still applied to
the diagnosis as a secondary check. The fuzzy logic first
hypothesizes possible faults and tests the hypotheses by
comparing the similarity between the fault signatures and
the unknown signals from the machine and process. Subse-
quently, the diagnostic system 400 displays all identifiable
possible faults, as shown in block 1565.

These identifiable possible faults are provided to a FRES,
as shown in block 1570. As described above, the FRES
checks the identifiable possible faults against the rules in its
knowledge base, the damage or repair history, and machine
usage information to determine likely faults. The result of
this check is displayed via the user interface 450 along with
recommendations, as shown in block 1575.

At this time, an operator can intervene, as shown in block
1585. Finally, the database 440 is updated with the final
results from the diagnostic procedure outlined above.

5. Transputer Network

In a preferred embodiment, the present invention imple-
ments the modified ARTMAP network 200 (or FDN) diag-
nosis and training, as well as the fuzzy logic-based hypoth-
esis and test procedures, on a transputer network. The
demand for higher performance computers has increased
significantly because of the advances in technology which
enable sensors to produce more data and make systems more
sophisticated. Almost all the computers that are on the
market today are so-called sequential or von Neumann
computers where each instruction is individually interpreted
and executed before the next one may begin. Therefore, the
speed of this class of computer system is ultimately deter-
mined by the CPU power of the system.

Recent studies have shown that parallel computing based
on PC-class microprocessors outperforms vector machines
in performance and cost. Parallel computing utilizes a num-
ber of CPUs to perform multiple tasks simultaneously. These
CPUs can be linked together in many ways allowing a wide
variety of parallel processing architectures.

A Muliiple Instruction-stream Multiple Data-stream
(MIMD) (i.e., several CPUs simultaneously execute differ-
ent instructions on different data) machine known as a
transputer cluster has been specifically developed for par-
allel processing over the years. A transputer is a 32-bit
computer chip that is a complete computer with its own CPU
and local memory. Each transputer has four serial links for
interprocessor communications. Through the links, a trans-
puter can be connected with other transputer units to form a
high performance concurrent system. In addition, networks
of transputers can have any desired topology, such as
pipeline, tree, and array structure, which means that they
have the flexibility to suit a wide range of applications.

In a preferred embodiment, The FDN was implemented
on a 486 personal computer and a network of four trans-
puters. Time-consuming computational tasks are designed to
perform on the transputer network, such as neural network
training and diagnosis, and fuzzy logic-based hypothesis and
test procedures. The 486-PC works as a host computer for
job assignment, activity coordination, user interface, and
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data acquisition. A number of machines or components can
be monitored using this system.

Described below is the hardware and software configu-
rations of the transputer network utilized by the preferred
embodiment and the implementations of the FDN diagnosis
and training procedures, as well as fuzzy logic-based
hypothesis and test procedure, on the transputer network.
This performance of these procedures on the transputers is
evaluated and compared with the performance on a 486 PC.

The paralle] processing hardware used in a preferred
embodiment is MicroWay’s Quadputer board. The Quad-
puter is a single slot, AT form factor board that includes the
control logic for four T800-25 transputers, each with four
megabytes of external memory for a total of sixteen mega-
bytes on a board. The speed of each transputer is 25 MHz.

Because each transputer node on the board has its own
local memory which cannot be accessed directly by other
transputers, it is necessary to communicate directly by
actively sending and receiving information across the con-
nections between transputers. FIG. 10 illustrates the physical
connections of the four transputers 1010-1040 on the Quad-
puter board.

This network of transputers 1010-1014 can be configured
into different configurations, such as pipeline and tree,
because each transputer has a connection with the other
three transputers. For example, in the tree configuration,
Transputer 1 1010, sometimes being referred to as “root”
transputer, is connected to Transputer 2 1020, Transputer 3
1030, and Transputer 4 1040 via Links 1, 2, and 3, respec-
tively.

It can also be seen from FIG. 10 that there are four
uncommitted links, T1L0O, T2L1, T3L2, and T4L3. These
links can be used to connect with other transputer boards or
to produce multiple connections between two transputers on
the same board except for TIL0O which is dedicated to
connection with the host computer (not shown). Therefore,
the role of the root transputer 1010 is very important since
it has to interface with the host computer to perform data I/O
functions. In other words, all the information in the other
transputers has to transfer to the root transputer 1010 first in
order to be displayed on the host computer. In a preferred
embodiment, a 486 PC running at 33 MHz is used as the host
computer. Of course, other computers can be used as will
become apparent to those skilled in the art.

Because every information transfer has to go through the
root transputer 1010, the complexity of communications in
the network is increased. Hence, a programmer has to be
fully aware of the derailed communications in the network,
such as which node is connected to which via which link,
while implementing a parallel program on the network. In
order to resolve this problem, a communication package
called Express 1310 is used by the present invention, as
shown in FIG. 13. Express 1310 is available from ParaSoft
Sells Corp., 27415 Trabuco Circle, Mission Viejo, Calif.,
92692, (714) 380-9739. With this package, any transputer is
able to send/receive messages directly to/from each other as
well as the host computer 1050, regardless of the specific
hardware or configuration involved. FIG. 13 shows the
hardware structure with Express 1310 through which the
host PC 1105 and all the transputer nodes are connected to
one another.

There are two programming models provided by Express
1310, one is the Cubix model and the other is the “Host-
Node” model. The Cubix model is conceptually the sim-
plest. In this model, the parallel program including data and

file I/O, graphics, user interface, etc. has to be loaded and’
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approach is that the program is easy to debug, expand, and
maintain. The disadvantage of this approach is that it may
require more memory than is available on the transputer
nodes.

The “Host-Node” model entails writing a program to run
on the host computer which coordinates and controls the
activities on the transputer nodes. In this model, all the /O
has to be handled by the host program and then sent in
messages to the transputer nodes. The advantage of this
approach is that the I/O speed is faster; in addition, it is able
to provide a more complex graphical user interface. These
two properties are crucial for application purposes. More-
over, it may be wasteful to port the developed graphical user
interface and data acquisition codes to the transputer envi-
ronment under the Cubix model when it may run intact on
the host computer. Therefore, the “Host-Node” model is
used as the programming model in a preferred embodiment.

In a preferred embodiment, the programming language
used for the host PC 1105 is Turbo C++, and the parallel
programs for the transputer nodes are written and complied
using Logical Systems C.

As described above, the diagnosis procedure of the modi-
fied ARTMAP network 200 is designed to find the two most
likely faults for each pattern which is presented to the
network 200. Searching for these two possible faults is done
sequentially on the 486 PC which means that modified
ARTMAP network 200 finds the first node in the F, layer
which passes the vigilance test 250 as the first possible fault,
then finds the next one as the second possible fault. In a
preferred embodiment, this procedure is implemented on
transputers. FIG. 14 shows a transputer implementation of
the FDN diagnosis procedure.

It has been shown that a single T800-25 transputer is
much slower than a 486 PC. This is not only because the
CPU speed of the T800-25 transputer is slower than the 486
PC, but also because there is a communication overhead
involved in the transputer implementation. However, the
parallel processing advantage of transputers becomes sig-
nificant when comparing the efficiency of using one trans-
puter to that of using two transputers. The efficiency of
diagnosis increases about 42% (from 0.19 second to 0.11
second). Besides, the performance of using two transputers
in diagnosing five patterns is the same as that of a 486 PC.

Furthermore, the deviation of diagnosis times is larger for
transputers. Transputers tend to take more time at the first
attempt. This is because all the network information has to
be transferred the first time while only the input vector has
to be transferred thereafter.

The most time-consuming task in the modified ARTMAP
network 200 training procedure (Shown in FIG. 5) is the
adaptation of bottom-up weights (B, ) and top-down weights
(T;). This is because the weights adaption is performed
iteratively for each training pattern. As described below, the
procedure of the FDN weight adaption is implemented on a
transputer network.

Transputer implementation of the modified ARTMAP
network 200 training procedure is illustrated in FIG. 11.
Different ways of implementation were considered; the uses
of one, two, and three transputers to search for a node in the
F, layer which passes both vigilance tests 240 and 250 and
performs the weight adaption procedure. In the first case, all
the weight adaptions are performed sequentially on one
transputer 1110. In the second case, the update of weights
between the F, layer 240 and the Map Field 130 is carried
out on a first transputer 1110 while bottom-up and top-down
weights adaption are done on a second transputer 1120.
Then, bottom-up and top-down weights are further separated
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to work on two transputers 1120, 1130 in the last case. As
mentioned above, the normalized input vector p in the F,
layer 230 is updated every time each weight update iteration
is made. Hence, in the second transputer 1120, calculations
of vector p is performed after the top-down weights are
updated. Then, the new updated vector p is sent to the third
transputer 1130 to be used for bottom-up weight adaption
(see Equation (35)). Therefore, there is a single direction
communication link 1140 from transputer 1120 to transputer
1130.

The programming logic for this procedure on transputers
is the same as the diagnosis. The only difference is that both
target output vector 220 and the weights between the F2
layer 240 and the Map Field 130 have to be sent to the
transputers.

It has been shown that a 486 PC is much faster than the
other three transputer implementation configurations. In
addition, the improvement of training performance from the
use of one transputer to two transputers is not significant
(about 5%). The worst training performance happens when
three transputers are used. It is almost three times slower
than the 486 PC. The reason for this low training speed is
that there is a large communication overhead involved
between nodes 1 and 2.

As for the deviation in training time, the 486 PC has a
larger deviation. This is because the number of network
resets tends to be higher for later training patterns, which
means more training time is needed. However, the deviation
for the transputer is not as large as the 486 PC since there is
a communication overhead involved in training. Therefore,
later tests took longer.

An alternative embodiment uses multiple processors by
having both host PC and transputers work in parallel. When
the host PC finishes file and data I/O for the first training
pattern, it continues to receive the information for the next
training pattern from the user, while transputers receive the
data from the host PC and start the training process. The total
/O and training time reduction from this approach after five
tests is about 12.6% (from 45.02 second to 39.35 second).

Described below is a transputer implementation of the
fuzzy logic-based hypothesis and test procedure. As
described above, the use of this procedure is to perform deep
fault reasoning for the patterns that the fault diagnostic
network is not able to recognize. The fuzzy logic-based
hypothesis and test procedure first generates, for example,
six reference patterns based on the given bearing parameters,
machine running condition, and baseline vibration signature,
then compares those generated patterns with the given
unknown vibration signature to determine the similarity
among them.

FIG. 12 shows transputer implementations of the hypoth-
esis and test procedure using one transputer and three
transputers. For the case of using one transputer, the gen-
eration and comparison of all six bearing defects are done
sequentially on a single transputer 1110. For the case of
using three transputers 1110-1130, all the transputers work
in parallel with each one of them assigned to work on two
defect patterns. The host transputer 1105 is responsible for
I/O and the user interface, as well as sending bearing
parameters, machine running condition, etc., to the trans-
puter nodes and receiving the outputs (i.e., similarity) from
all three transputers 1110-1130.

It has been shown that the 486 PC is faster than a single
transputer. However, when the task is divided into three
pieces performed by three transputers, the average time
reduction is about 37% (from 0.60 second to 0.38 second).
The performance of the hypothesis and test procedure can be
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greatly improved if more defects are included in the model
and, at the same time, more transputers are used to imple-
ment the procedure.

6. Conclusion

More and more manufacturing companies are adopting
predictive maintenance in their maintenance programs
today. The fault diagnostic system presented herein provides
an effective predictive maintenance program. With the capa-
bility of performing robust and on-line fault diagnostics, the
system is able to reduce machine downtime and costs
dramatically.

While the invention has been particularly shown and
described with reference to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the spirit and scope of the invention.

Appendix A

Physical Beating Models

The following is a list of theoretical equations for calcu-
lating bearing defect vibration signal frequencies [See
Braun, S., Mechanical Signature Analysis: Theory and
Applications, Academic Press, London, 1986; Sandy, J.,
“Monitoring and Diagnostics for Rolling Element Bear-
ings,” Sound and Vibration, June 1988, pp. 16-20]:

fi,:% (n)(1+% cosa) A1)
f"’z'%()— (n)(l—-l—)— cos(x) A2
fc——i% (n)(l—% cosoc) A3
2 (A4
ety (8)[1-(%0) | |
=N 2 ( 5 ) @
fne “23_ (A6)
where

N=shaft speed (CPM)

n=number of rotating elements

d=rolling element diameter

D=bearing pitch diameter (to roller center)

o=contact angle

f,=inner race defect

f ,=outer race defect

f=cage defect

f,s=roller spin

f,=misalignment

f;~=shaft imbalance

What is claimed is:

1. A fault diagnostic system, comprising:

(a) a data acquisition module that collects sensory signals;

(b) a diagnostic module, connected to said data acquisi-
tion module, that performs on-line fault detection for a
physical machine or process, fault diagnostics, and
provides recommendations in regard to said on-line
fault detection and said fault diagnostics; and

(c) a machine model module, connected to said diagnostic
module, that provides a physical model for identifying

fault conditions that cannot be diagnosed by said diag-
nostic module.
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2. The fault diagnostic system of claim 1 , wherein said
data acquisition module includes a plurality of sensors each
capable of real-time data acquisition.

3. The fault diagnostic system of claim 1, wherein said
diagnostic module includes a parametric modeling module,
a modified ARTMAP neural network, a fuzzy logic module,
and an expert system.

4. The fault diagnostic system of claim 3, wherein said
machine model module includes physical models for bearing
and gears, and provides data for preliminary training of said
modified ARTMAP neural network.

5. The fault diagnostics system of claim 1, wherein said
data acquisition module includes means for preprocessing
said sensory signals using an autoregressive model.

6. The fault diagnostic system of claim 1, wherein said
diagnostic module comprises detection means for perform-
ing fault detection that includes detecting abnormal condi-
tions in said physical machine or process by using an overall
root mean square (RMS) measurement and a covariance
statistic of an exponentially weighted moving average
method (EWMA), wherein a control limit is set for said
RMS and said EWMA, and if said sensory conditions
exceeds said control limit than an abnormal condition exists.

7. The fault diagnostic system of claim 1, wherein said
diagnostic module comprises identification means for per-
forming fault identification based on a model-based reason-
ing approach that includes fuzzy logic methodology.

8. The fault diagnostic system of claim 1, wherein said
diagnostic module comprises an expert system that performs
fault verification and that provides recommendations about
detected faults to a user.

9. The fault diagnostic system of claim 1, wherein said
diagnostic module and said machine model module are
implemented on a transputer network.

10. The fault diagnostic system of claim 1, wherein said
sensory signals include vibration signals, pressure signals,
and/or temperature signals from said physical machine or
process.

11. The fault diagnostic system of claim 1, wherein said
diagnosis module comprises a fault diagnostic network,
wherein said fault diagnostic network includes:

() an ART module that accepts an input pattern, said ART
module having a first layer and a second layer, and
configured to perform a first vigilance test and generate
a recognition category; and

(b) a map field, connected to said ART module and to a
target output pattern, that performs a mapping between
said recognition category and said target output pattern,
and triggers the performance of a second vigilance test;

wherein said second vigilance test determines the close-
ness between said target output pattern and said rec-
ognition category.

12. The fault diagnostic system of claim 11, wherein said

first layer comprises three levels that each include:

means for performing integration of intrafield and inter-
field inputs to produce an integrated activation signal;
and

means for performing normalization of said integrated

activation signal.

13. The fault diagnostic system of claim 11, wherein said
ART module is an ART2 network that can accept binary or
analog input patterns.

14. The fault diagnostic system of claim 11, wherein said
target output pattern is a binary vector, wherein each node of
said binary vector corresponds to a particular machine or
process condition.

15. The fault diagnostic system of claim 11, further
comprising parameter means for fitting a raw vibration
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signal collected from a machine under review to a prede-
termined parametric model, wherein said parameter means
generates a parameter.

16. The fault diagnostic system of claim 15, further
comprising a normalization module, connected to said
parameter means, that removes meaningful negative values
that said ART module is not able to recognize from said
parameter.

17. The fault diagnostic system of claim 16, wherein said
normalization module comprises:

(1) means for dividing said parameter into a negative part

and a positive part;

(2) means for scaling said negative part and said positive
part by dividing said parameter by a maximum param-
eter value.

18. The fault diagnostic system of claim 11, wherein each
node of said second layer corresponds to a particular fault
condition.

19. The fault diagnostic system of claim 1, wherein said
machine model module further provides a deep fault rea-
soning mechanism to identify complex or multiple fault
conditions.

20. A method for diagnosing a physical machine or
process, the method comprising the steps of:

(1) acquiring a first set of data from the physical machine

or process;

(2) preprocessing said first set of data using an autore-
gressive model, said preprocessing generating an
autoregressive parameter; and

(3) detecting abnormal conditions in said autoregressive
parameter using an overall root means square (RMS)
measurement and a covariance statistic of an exponen-
tially weighted moving average (EWMA), wherein if
an abnormal condition is detected then,

(a) identifying whether said physical machine or pro-
cess has a fault, including,

(i) determining a hypothesis with the aid of a fault
diagnostic network, and if said fault diagnostic
network cannot generate a hypothesis, then

(ii) determining a hypothesis with the aid of a
model-based reasoning approach, wherein said
model-based reasoning approach uses fuzzy logic;
and

(b) supplying said identifiable fault to a fault expert
system having a knowledge base with a set of rules,
wherein said fault reasoning expert system checks
said identifiable fault against said set of rules.

21. The method of claim 20, wherein step (3) comprises
the steps providing an indication to a user that said machine
or process is operating in a normal manner, a poientially
problematic manner, or a dangerous manner.

22. The method of claim 20, wherein said fault reasoning
expert system also checks said identifiable fault against
damage and repair history and machine usage information.

23. The method of claim 22, further comprising the step
of displaying said identifiable fault along with recommen-
dations via a user interface.

24. The method of claim 20, further comprising the steps
of preprocessing said second set of acquired data using an
autoregressive model, said preprocessing generating an
autoregressive parameter, and normalizing said autoregres-
sive parameter.

25. The method of claim 20, further comprising the step
of acquiring a second set of data from said physical machine
or process after said abnormal condition is detected.
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