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Abstract The primary objective of group technology (GT) is
to enhance the productivity in the batch manufacturing environ-
ment. The GT cell formation problem is solved using modified
binary adaptive resonance theory networks known as ART1. The
input to the modified ART1 is a machine-part incidence ma-
trix comprised of the binary digits “0” and “1”. And the out-
puts are the list of part families and the corresponding part
list, machine cells and their corresponding list of machines, and
the number of exceptional elements. This method is applied to
the known benchmarked problems found in the literature and
it is found to outperform other algorithms in terms of mini-
mizing the number of the exceptional elements. The relative
merits of using this method with respect to other known algo-
rithms/heuristics in terms of computational speed and consis-
tency are presented.

Keywords Adaptive resonance theory networks -
Cell formation - Group technology

1 Introduction

In the batch shop production environment, the cost of manufac-
turing is inversely proportional to the batch size and the batch
size determines the productivity. In the real time environment
the batch size of the components is often small leading to fre-
quent changeovers, larger machine idleness and less productivity.
To alleviate this problem group technology (GT) can be imple-
mented to accommodate small batches without loosing much
of the production run time. In GT the part families are char-

P. Venkumar

Department of Mechanical Engineering,

Arulmigu Kalasalingam College of Engineering,

Anand Nagar, Krishnankoil — 626 190, Tamil Nadu, India

A.N. Haq (&)

Department of Production Engineering,
National Institute of Technology,
Tiruchirappalli — 620 015, Tamil Nadu, India
Email: anhaq@nitt.edu

acterized based on their similarity and its processing sequence.
Similar type of parts are clustered into part families, and the as-
sociated machines, which in this family of parts are required to
be processed, are grouped into machine cells. This facilitates the
processing of batches of similar components within the same ma-
chine cell without much time loss in changeover/machine setup
time. The primary concern in GT is to identify the machine cells
and part families such that movement of parts from one GT cell
to another cell is kept minimum. This is achieved through the
following steps.

(1) Construction of machine-part incidence matrix with the
help of route cards of all the components. In this matrix the col-
umn represents the parts, the row represents machines and the
entry will have “1” or “0”, where “1” indicates the part corres-
ponding to the particular column which is to be processed on the
machine corresponding to the particular row and “0” indicates
otherwise.

(2) Block diagonalizing the machine-part incidence matrix to
yield 1s along the diagonal block.

The part families and machine cells can be identified from
the diagonal blocks of this matrix containing more 1s and less
Os. If there are any 1s off the diagonal blocks, it indicates the
inter-cell movements of the concerned parts known as excep-
tional elements.

There have been several methods to solve this cell formation
problem viz., array manipulation, hierarchical clustering, non-
hierarchical clustering, mathematical programming, graph the-
ory, heuristics, etc. These methods are found to produce good
solutions for well structured matrices where part families and
machine cells exist naturally. However, they fail to produce so,
for ill structured matrices in the block diagonalization will end
up with many exceptional elements.

The iterative activation and competition model proposed
by Moon [1] exhibited a significant advantage over the earlier
algorithm, which are based on iterative procedure. The neu-
ral network applications proposed by Kaparthi and Suresh [2],
Malave and Ramachandran [3] and Dagli and Huggahalli [4]
have demonstrated the ability of a neural network in solving cell
formation problem.
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This paper uses the neural network paradigm called ART1
paradigm for cell formation. Basically the ART1 network classi-
fies a set of binary vectors into groups based on their similarity.
The ARTI recognizes patterns and clusters the binary vectors
with the recognized pattern based on the devised comparison
mechanism.

In this paper, an ART1 network is employed in solving the
cell formation problem. The architecture of ART is based on the
idea of adaptive resonant feedback between two layers of nodes
as developed by Carpenter and Grossberg [5]. The ART1 Model
described in Carpenter and Grossberg [5] was designed to cluster
binary input patterns.

The ART network is an unsupervised vector classifier that
accepts input vectors that are classified according to the stored
pattern they most resemble. It also provides for a mechanism
adaptive expansion of the output layer of neurons until an ade-
quate size is reached based on the number of classes, inherent in
the observation. The ART network can adaptively create a new
neuron corresponding to an input pattern if it is determined to
be “sufficiently” different from existing clusters. This determin-
ation called the vigilance test is incorporated into the adaptive
backward network. Thus, the ART architecture allows the user to
control the degree of similarity of patterns placed in the cluster.

In this paper a few modifications are made on the standard
ART1 architecture to make it suitable for the cell formation
problem. Dagli and Huggahalli [4] also modified the ART1 in
their work to improve its performance in cell formation. The
limitation of the heuristics is identified and removed while for-
mulating this procedure. This modified ART1 is totally different
from Dagli and Huggahalli’s [4] modified ART1 procedure. The
method is validated with the test cases studied in the literature
and comparisons are presented.

2 The modified ART1
2.1 Drawbacks of ART1 in cell formation

The basic form of ART1 paradigm provides excellent results when
there is a similarity in the input vector. However, this method
does not provide satisfactory results when the stored patterns grow
sparser. Changing the vigilance parameter of the network can min-
imize this effect, but the optimization still becomes difficult as the
number of input patterns increases. The classification process is
also dependent on the order in which the input vectors are applied.
In the ART1 network, determining the proper vigilance value can
be problematic. For the machine-part matrix problem too high
a vigilance value will result in groups that are more similar, at the
expense of creating too many groups. Too low a vigilance value
will result in everything being placed into just a few groups, essen-
tially performing no true classification.

2.2 The operation of modified ART1

The modified ART1 architecture consists of two stages. The op-
eration of the first stage is almost similar to ART1. The Fig. 1
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Fig. 1. The modified ART1 architecture

shows the architecture of the first stage of the modified ART1
network. In this stage, from the machine-part incidence matrix
row-wise inputs are applied to the network.

The first stage consists of two layers systems, one being
the attention system and the other, the orienting subsystem. The
attention system consists of two layers of neurons (compari-
sion layer and recognition layer) with feed-forward and feed-
backward characteristics. The classification decision is indicated
by a single neuron in the recognition layers that fires. This sys-
tem determines whether the input pattern matches one of the pro-
totypes stored. If a match occurs, resonance is established. The
system also consists of an additional module labeled reset. The
orienting subsystem is responsible for sensing a mismatch be-
tween the bottom-up and top-down patterns on the recognition.

The recognition layer response to an input vector is com-
pared to the original input vector through the term vigilance.
When the vigilance falls below a threshold, a new category must
be created and the input vector must be stored into that category.
This is a previously unallocated neuron within the recognition
layer and is allocated to a new cluster category associated with
the new input pattern.

Each recognition layer neuron, j, has a real-valued weight
vector B; associated with it. For each neuron in the recognition
layer a dot product is formed between its associated weight B;
and the output vector C. The output C is the logical “OR” be-
tween the input vector X and the binary valued weight vector 7;.
For the new cluster the input X is identical to the output C. The
neuron with the largest dot product has weights that best match
the input vector. It wins the competition and fires, inhibiting all
other outputs from this layer.

In the original ART1, the logical “AND” operator is applied
between the input vector X and 7;. In the modified ART1, due to
the logical “OR” operator if the number of 1s in the output C is
more when compared to the 7; then the C is given as the input
to the network. If any other stored neuron wins then the clusters



are merged. If the same pattern or new cluster wins then the same
stored patterns are maintained.

During the comparison phase, a determination must be made
as to whether an input pattern is sufficiently similar to the win-
ning stored prototype to be assimilated by that prototype. A test
for this termed vigilance is performed during this phase.

The similarity ratio, S, is the number of 1s in the logical
“AND” between the vector X and the vector 7T} to the number of
1s in the X vector. If the unallocated neuron (i.e., new cluster)
wins then there is no similarity checking. However, for all other
stored pattern there will be a criterion by which to accept or re-
ject a cluster according to this metric. The test for vigilance can
be represented as follows.

S > p vigilance test passed (1)
S < p vigilance test failed 2)

where p is the vigilance parameter

If the vigilance test is passed, there is no substantial differ-
ence between the input vector and the winning prototype. Thus
the required action is simply to store the input vector into the
winning neuron cluster. In this case, there is no reset signal.
Therefore, when the search phase is entered, the weights for this
input vector are adjusted.

If S is below a preset threshold, the vigilance level, then the
pattern is not sufficiently similar to the winning neuron cluster
and the firing neuron should be inhibited. The inhibition is done
by the reset block, which resets the currently firing neuron.

The search phase is then entered and if no reset signal has
been generated, the match is considered adequate and the clas-
sification is complete. Otherwise this process repeats, neuron by
neuron, until one of two events occurs:

(1) A stored pattern is found that matches X above the level of
the vigilance parameter, that is, § > p. The weight vectors, T;
and B; of the firing neuron are adjusted or

(2) All stored patterns have been tried, then a previously unallo-
cated neuron is associated with the pattern, and 7; and B; are
set to match the pattern.

In the second stage, there is only the comparison and recogni-
tion layer. There is no reset. The output of the first stage modified
ART1 is the grouped rows. In this second stage the 7; and B;
weights are fixed based on the first stage-grouped rows.

Next the column-wise inputs are applied to the network. For
each neuron in the recognition layer a dot product is formed
between its associated weight B; and the input vector X. The
neuron with the largest dot product wins the competition and
fires, inhibiting all other outputs from this layer, but the weights
are not adjusted. This process continues for all the columns. The
final output is the grouped columns.

Once again row-wise inputs are applied to the second stage
network. The weights are fixed based on the grouped columns. If
the final output from this stage’s number of row groups are iden-
tical to the previous number of row groups then the process ends.
Otherwise, the second stage process continues until the previ-
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ous number of row groups and current number of row groups are
identical.

The next step of the modified ART1 is to find out the num-
ber of exceptional elements. Once again the row-wise inputs are
applied to the second stage of modified ART1. The previous row-
wise input weights are taken. If any one of the input rows has
a dot product value only in the winner neuron then there are no
exceptional elements. However, if there is any row which has a
dot product value more than one neuron then there will be an
exceptional element.

The final output of the modified ART1 is the GT cells, cor-
responding part and machine groups and exceptional elements.

2.3 Modified ART1 algorithm

The modified ART1 algorithm is as follows:

Step 1. Before starting the network training process, all the
weight vectors bottom-up weight (B;) and top-down
weight (7}) as well as the vigilance parameter (o) must
be set to initial values. The p value range is between 0
and 1. According to Carpenter and Grossberg [5], the B;
should be

bij=L/(L—1+m) foralliand j, &)

where m = the number components in the input vector

L = aconstant > 1, (typically L = 2)

The weights of the 7; are all initialized to 1, so

ti=1 foralliand j. 4)

Step 2. The row-wise inputs are applied to the network; recog-
nition is performed as a dot product for each neuron in
the recognition layer and is expressed as follows:

m
netj = Zbijci. (5)
i=1

The maximum of net; is the winner neuron,
where b;; = the bottom-up weight in the neuron i in the
comparison layer to neuron j in the recognition layer.
c¢; = the output vector of the comparison layer neuron;
for the new cluster it is identical to input X;, otherwise
the logical “OR” vector applied between input vector X;
and the stored vector 7j.
If the new cluster wins then go to step 4 otherwise go to
step 3. For the new cluster all the 7; elements are 1.
Step 3. For the winner, compare the vector 7; to the input vector
X. If their similarity S is below the vigilance threshold,
then select the next maximum net; value as a winner neu-
ron. This step continues until the condition 7 is satisfied.

S=K/D (6)
S>p, O
where

D = the number of 1s in the X vector and
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Step 4.

Step 4a.

Step 5.
Step 6.

Step 7.

Step 8.
Step 9.

Step 10.

Step 11.
Step 12.

Step 13.
Step 14.

K = the number of 1s in the resulting vector. The result-
ing vector is the logical “AND” vector applied between
X and T;.

In this step, the network enters a training cycle that
modifies the weights in #; and b;;, the weight vectors
associated with the winning recognition layer neuron.
The weights in the vector #;; that are associated with the
new stored pattern are adjusted so that they equal the
corresponding binary values in the vector C

®)

If the number of 1s increases in ¢; when the logical
“OR” vector is applied between X and Tj, then ¢; is
given as an input to the network. If any other stored
neuron wins and also passes the vigilance test then the
entire group is merged with the stored neuron and the
tji updated. Suppose all other stored patterns are found
to mismatch the input, but a previously unallocated neu-
ron or same stored neuron wins, then the same stored
patterns are maintained.

The b;; are updated to the normalized values of the vec-
tor C. According to Carpenter and Grossberg [5] the b;;
should be

bij = (Lcl-)/(L—l—i—ch).
k

Repeat Step 2 to Step 4 for all the rows.
Based on the grouped rows, the T; weights are fixed and
then the B; weights are fixed by using Eq. 10

b,’j = (Ltji) /(L —1+m).

lii =c¢; for all i.

(C))

(10)

The Column-wise inputs are applied to the network and
the fnet; is calculated by using Eq. 11. The maximum
fnet; is the winner neuron.

m
fnetj:Zb,:,'x,-, (11)
i=1
where x; = input vector.
Repeat Step 7 for all the columns.
Based on the grouped columns the 7; weights are fixed
and the B; weights are fixed by using Eq. 10.
The row-wise inputs are applied to the network and the
fnet; is calculated by using Eq. 11. The maximum fnet;
is the winner neuron.
Repeat Step 10 for all the rows.
If the current number of row groups are identical to
previous number of row groups then go to Step 13, oth-
erwise go to Step 6.
The previous row-wise input weights are taken.
Once again row-wise inputs are applied to the network
and the exceptional elements (EE) are calculated by
using the following equation:

N
EE = Z (anetj — max (fnetj)) /blj
n=1

12)

Where N = the total number of rows (i.e., machines)
and b;; = the fixed bottom-up weight value (i.e., b;; =
L/L—14+m).

3 Numerical illustration

The proposed modified ART1 network was tested on a matrix
used by Boctor’s [6] example problem. Table 1 shows the inci-
dence matrix and the size of the matrix is 7 x 11, where eleven
parts use seven machine types. Therefore, eleven neurons are re-
quired for the row-wise input.

The weights are initialized by using Eqs. 3 and 4. The L
value 2 is selected and the p value is taken as 0.1.

bij=2/2—1411)=0.16 foralliand j,
ti=1 foralli and j .

The row-wise inputs are applied to the network. The input
row number, winner neuron, x;, ¢;; and ¢; are shown in Table 2. In
Table 2, the last column is checking whether the number of 1s in-
creases in ¢; when compared to the #j;. If there is an increase then
¢; is given as the input to the network and the winner is identified.
In this example the same stored neuron is the winner. So there is
no change in the stored pattern.

The training weights t;; and b;; are calculated by using Eqgs. 8
and 9. The weights for each row and corresponding winner are
shown in Table 3.

The row groups are identified and the grouped neurons are
“0”, “1” and “2”. For the “0” neuron the assigned rows are 1, 5
and 6. For the “1” neuron the assigned rows are 2 and 3 and for
the “2” neuron the assigned rows are 4 and 7.

Based on the grouped parts the t; weights are fixed and
the b;; weights are calculated by using Eq. 10. The weights are
shown in Table 4 and column-wise inputs are applied to the net-
work.

The column groups are identified and the total number of
groups is 3. For the neuron “0” the grouped columns are 1, 3, 4,
7 and 11. For the neuron “1” the grouped columns are 2, 6 and 9.
The grouped columns for the neuron “2” are 5, 8 and 10.

Once again, the f;; weights are fixed based on the grouped
columns and the b;; are calculated by using Eq. 10. The weights

Table 1. Machine-part incidence matrix

Parts

Machines
9B W —
coocoo =~
cooco~=—o
N e R =R =
o—o—ococo
—oco—00o
cooco~=—oO
co—~ocooco~
—ocococococo
coco~—oco
—oco—~0o0O
o—ocooco~—




Table 2. First stage output of the modified ART1
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Row no. Winner Row-wise input (x;) Top-down weights (#;;) Output (C;) Checking (If Y~ C; > " tj;)
1 0 10100010001 New winner 10100010001
1 11000100000 New winner 11000100000
3 1 01000100100 11000100000 11000100100 Yes. Then C; is input
to the network
1 11000100100 Same winner. So the same stored pattern is maintained
4 2 00011000010 New winner 00011000010
5 0 00100010000 10100010001 10100010001
6 0 00110000001 10100010001 10110010001 Yes. Then C; is input
to the network
0 10110010001 Same winner. So the stored pattern is maintained
7 2 00001001010 00011000010 00011001010 Yes. Then C; is input
to the network
2 00011001010 Same winner. So the same stored pattern is maintained

Table 3. First stage weights of the modified ART1

Row no. Winner Top-down weights (i) Bottom-up weights (b;;)

1 0 10100010001 0.40 0.00 0.40 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.40
2 1 11000100000 0.50 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00
3 1 11000100100 0.40 0.40 0.00 0.00 0.00 0.40 0.00 0.00 0.40 0.00 0.00
4 2 00011000010 0.00 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.50 0.00
5 0 10100010001 0.40 0.00 0.40 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.40
6 0 10110010001 0.33 0.00 0.33 0.33 0.00 0.00 0.33 0.00 0.00 0.00 0.33
7 2 00011001010 0.00 0.00 0.00 0.40 0.40 0.00 0.00 0.40 0.00 0.40 0.00

Table 4. Second stage fixed weights based on the grouped columns

Neuron Top-down Bottom-up weights (b;;)

no. weights (#j;)

0 1000110 0.25 0.00 0.00 0.00 0.25 0.25 0.00
1 0110000 0.00 0.25 0.25 0.00 0.00 0.00 0.00
2 0001001 0.00 0.00 0.00 0.25 0.00 0.00 0.25

are shown in Table 5. The row-wise inputs are applied to the net-
work and the total number of groups is 3.

The numbers of grouped rows are identical when compared
to the previous grouped rows. Once again the row-wise inputs are
applied to the network. The previous fixed weights are taken and
the exceptional elements are calculated by using the Eq. 12. The
total number of exceptional elements is 2.

The total number of row groups and column groups is 3.
Therefore the total number of GT cell is 3. For the GT cell num-
ber “1” the first row groups and first column groups are assigned.

Table 5. Second stage fixed weights based on the grouped rows

Similarly for the second and third GT cells, the corresponding
row and column groups are assigned. The number of exceptional
elements is identical to Boctor’s [6] solution, but the groups are
different.

4 Experimentation on data from literature

The proposed algorithm has been coded in C++ and executed
in a Pentium III, 700 MHz system. For all the tested problems
the p value is taken as 0.1. The first set of problems was solved
based on problems solved by Boctor [6]. The problem solved
by Boctor [6], involves an incidence matrix for ten problems
with 16 rows (machines) and 30 columns (parts). By using the
simulated annealing algorithm (SA) the data was tested by Boc-
tor [6]. The same data were given as input to the modified
ART1 network in the same manner. The solution given by the
modified ART1 does not meet the Boctor’s [6] constraints. The
constraints are the number of cells and maximum machines per-

Neuron no. Top-down weights (z;;) Bottom-up weights (b;;)

0 10110010001 0.16 0.00 0.16 0.16 0.00 0.00 0.16 0.00 0.00 0.00 0.16
1 01000100100 0.00 0.16 0.00 0.00 0.00 0.16 0.00 0.00 0.16 0.00 0.00
2 00001001010 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.16 0.00 0.16 0.00
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mitted to each cell. After combining one or two outputs of the
modified ART1 GT cells the Boctor’s [6] constraints are sat-
isfied and the solutions are identical to the optimal solution
given by Boctor [6]. The combining operation is also done by
using the modified ART1 second stage. The GT cells are com-
bined and the weights are fixed based on the clusters. After
combining, the proposed modified ART1 solution is superior in
four problems and identical in all other problems when com-
pared to the SA algorithm. Zhao and Wu [7], using the genetic
algorithm (GA), tested the same problems. Zhao and Wu [7]
also gave the average computational time for GA as 2 min. The
modified ARTI is also compared with the genetic algorithm
and after combining one or two clusters the results are supe-
rior for four problems and identical to all other problems. The
computational time is also very low for the modified ARTI.
The comparative results with computational time are shown
in Table 6.

Table 6. Comparison of results for Boctor’s [6] ten problems

The next tested data set is 36 rows (machines) and 90 columns
(parts). This data set adopted from King and Nakornchai [8] was
used to further validate the functioning of modified ART1. The
modified ART1 performs extremely well, producing results that
are very much comparable to the rank order clustering 2 (ROC2)
algorithm proposed by King and Nakornchai [8] and modified
procedure in ART1 proposed by Dagli and Huggahalli [4]. The
ROC?2 algorithm produced, a solution that has 18 duplications
with six remaining exceptional elements and Dagli and Hugga-
halli [4] obtained 3 GT cells with 21 duplications and 11 excep-
tional elements using a modified procedure in ART1. However,
this modified ART1 has resulted in 3 GT cells with 12 duplica-
tions and 12 exceptional elements, which is shown in Fig. 2. The
duplication machines are also identified by using this modified
ART1. If any row requires more than one exceptional element
then that GT cell will require the particular row (i.e., machine)
duplication. That can be identified using step 14. Thus the modi-

Problem Boctor’s [6] Modified ART1
no. Constraints Exceptional elements EE after combining Without clustering CPU time
No. Max. no. Optimum  SA Zhao and with Boctor’s [6] No. No. of machines EE (s)
of cells of machines Wu [7] GA constraints of cells Max. Min.

1. 2 8 11 11 11 11 2 8 8 11 0.03

2. 2 12 3 3 3 3 3 7 4 6 0.01

3. 2 12 1 4 4 1 4 5 3 8 0.01

4, 2 9 13 13 13 13 3 7 3 23 0.01

5. 2 12 4 4 4 4 4 5 3 11 0.01

6. 2 12 2 3 3 2 4 5 2 6 0.01

7. 2 12 4 4 4 4 4 7 3 9 0.01

8. 2 11 5 11 11 5 3 7 4 11 0.01

9. 2 11 5 8 8 5 3 8 3 9 0.01
10. 2 12 5 5 5 5 3 7 3 8 0.00
Fig.z.36X90ma[rix-b]0ckdiag_ ST T12333444567 0 T 12222333333444555556667 7888 11122223444345556666667777777888883%

T012698469169015

3435

9

1235782373457806924046 57801240045826923457801367891235789

onal form after duplication T [ —
1 1 1t
1
1 11 1 1
33 1 11 1 1 11
1 1 1 11
1 1
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Table 7. GT matrices selected from the literature

Problem no. Size Source

1. 7x11 Boctor [6]

2. 20 x 35 Carrie [9]

3. 9x9 Gangaware and Ham [10]

4. 10x 15 Chan and Milner [11]

5. 15x 10 Chan and Milner [11]

6. 8x20 Chanrasekaran and Rajagopalan [12]

7. 40 x 100 Chanrasekaran and Rajagopalan [13]

8. 13 x25 Leskowsky, Logan and Vannelli [14]

9. 10x 15 Kusiak and Lee [15]

10. 24 x40 Chandrasekaran and Rajagopalan [16]

11. 24 x40 Chandrasekaran and Rajagopalan [16]

12. 16 x 30 Srinivasan, Narendran and Mahadevan [17]
13. 8 x 10 Melody Kiyang [18]

14. 10x 11 Ravichandran and Chandra Sekhara Rao [19]

fied ART1 shows classification accuracy that is superior to those
of previous algorithms. Dagli and Huggahalli [4] also used sep-
arate method to find the exceptional elements and duplication
machines. However, this modified ART1 gives not only machine
and part groups, it also gives the exceptional elements and dupli-
cation machines.

In addition to the above tested problems 14 matrices includ-
ing well-structured and not so well structured matrices have been
considered for evaluation. The matrix sizes and their sources are
listed in Table 7.

It is found that the proposed modified ART1 algorithm re-
sults are identical (without combining) in number of excep-
tional elements, number of GT cells, part groups and machine
groups for the ten problems when compared to all other algo-
rithms. The results of four problems are superior, but they do
not meet the source problem constraints (i.e., number of GT
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cells). The modified ART1 result groups decrease with number
of exceptional elements. The modified ART1 results with com-
putational time and literature techniques with results are shown
in Table 8.

5 Future work

Several improvements to the modified ART1 are possible. The
scope of this paper is restricted to the modified procedure for the
ARTT1 for cell formation with the single objective of minimiz-
ing the exceptional elements. Some of the issues like constraints,
multi objectives and large size of matrices can be implemented in
this modified ART1.

6 Conclusion

The modified ART1 neural network has been successfully im-
plemented for cell formation problems. The results are compared
with popular existing algorithms and found that the modified
ART1 solution is superior to others. The modified ART1 gives
parts and machine clusters and the number of exceptional elem-
ents. The computational effort is very low in the modified ART1
when compared to all other algorithms. Also most of the conven-
tional and non-conventional techniques give different results for
each and every run. However, the modified ART1 gives the same
result for all the runs. This modified ART1 is suitable for any size
of machine-part incidence matrix.

Acknowledgement The authors wish to thank the management of Arulmigu
Kalasalingam College of Engineering, Krishnankovil and the Department of
Production Engineering of the Regional Engineering College, Thiruchira-
palli for their support of this research work.

Table 8. Exceptional elements from modified ART1 for selected incidence matrices

Problem Source results Modified ART1 results
no. No. of cells EE  Techniques Proposed by No. of cells  EE CPU time
(s)
3 0 Iri’s algorithm Boctor [6] 3 0 0.00
2 4 2 Numerical taxonomy Carrie [9] 4 2 0.01
Carpenter-Grossberg network Kaparthi and Suresh [2]
3. 3 7 Fuzzy clustering approach Chao-Hsien Chu and Jack Hayya [20] 2 4 0.00
4. 3 6  Cutting plane algorithm Crama and Oostern [21] 3 6 0.00
5. 3 0  Heuristic algorithm Aravind and Harold [22] 3 0 0.01
6. 3 9  Cutting plane algorithm Crama and Oosten [21] 3 9 0.00
Assignment model Srinivasan, Narendran and Mahadevan [17]
Nonhierarchical clustering Srinivasan and Narendran [23]
7 10 37  Zodiac Chandrasekaran and Rajagopalan [13] 6 31 0.05
8 3 9  Cutting plane algorithm Crama and Oostern [21] 3 9 0.01
9 3 4 Neural network approach Kusiak and Lee [15] 3 4 0.00
LINDO software (Scharge [25]) Kusiak [24]
10. 7 19  Adaptive GA Mak, Wong and Wang [26] 5 16 0.01
11. 7 0 ROC Chandrasekaran and Rajagopalan [16] 7 0 0.00
12. 4 20  Adaptive GA Mak, Wong and Wang [26] 3 16 0.00
13. 2 5  Kohonen self-organizing map networks Melody Kiang [18] 2 5 0.00
14. 3 0 Fuzzy approach Ravichandran and Chandra Sekhara Rao [19] 3 0 0.00
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