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(7) ABSTRACT

The optical flow of an array of pixels in an image field is
determined using adaptive spatial and temporal gradients.
Atrtifacts are avoided for image objects which are moving
smoothly relative to the image field background. Data from
three image frames are used to determine optical flow. A
parameter is defined and determined frame by frame which
is used to determine whether to consider the data looking
forward from frame k to k+1 or the data looking backward
from frame k-1 to frame k in initializing spatial and or
temporal gradients for frame k. The parameter identifies
signifies the areas of occlusion, so that the gradients looking
backward from frame k-1 to frame k can be used for the
occluded pixel regions. The gradients looking forward are
used in the other areas.
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MOTION ESTIMATION WITHIN A
SEQUENCE OF DATA FRAMES USING
OPTICAL FLOW WITH ADAPTIVE
GRADIENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This invention is related to U.S. patent application Ser.
No. 09/216,692, filed Dec. 18, 1998 for “Template Matching
Using Correlative Auto-Predictive Search;” U.S. patent
application Ser. No. 09/216,691, filed Dec. 18, 1998 for
“Template Matching in Three Dimensions Using Correlative
Auto-Predictive Search™; U.S. patent application Ser. No.
09/233,894, filed Jan. 20, 1999 for “Color Clustering for
Scene Change Detection and Object Tracking in Video
Sequences;” and U.S. patent application Ser. No. 09/323501,
filed Jun. 1, 1999, for “Video Object Segmentation Using
Active Contour Modelling With Global Relaxation,” of
Shijun Sun et al. The content of all such applications are
commonly assigned and are incorporated herein by refer-
ence and made a part hereof.

BACKGROUND OF THE INVENTION

This invention relates to motion estimation within a
sequence of data frames, and more particularly to an
improved optical flow method of deriving motion estima-
tion.

Extracting motion information from a sequence of data
frames is desirable for many applications in the fields of
computer vision and data compression. In the context of
computer vision, the data frames are frames of image data.
Motion estimation is beneficial for many computer vision
applications, including but not limited to (i) the estimation
of three-dimensional scene properties, (ii) visual sensor
motion estimation, (iii) motion segmentation, (iv) comput-
ing focus of expansion and time to collision of objects, (v)
performing motion compensated image encoding, (vi) com-
puting stereo disparity, (vii) measuring blood flow and heart
wall motion in medical imagery, and (viii) even for the
measuring of minute amounts of growth in seedlings.

Typically motion analysis involves a first stage in which
the optical flow is measured in a sequence of two-
dimensional image frames. A subsequent second stage
involves deriving actual motion of image objects in three-
dimensional space, or inference of some other higher level
computer vision tasks from the computed optical flow.
Optical flow is a measure of the apparent motion of a
brightness pattern. More specifically optical flow is a dis-
tribution function of apparent velocities of movement of
brightness patterns within a sequence of images. The image
frame is a two dimensional array of pixels representing,
perhaps, a three dimensional image. The image may include
objects or components which move at differing velocities
and in differing three-dimensional directions. The projection
of three-dimensional surface-point velocities onto the two-
dimensional viewable image plane of a display is approxi-
mated by the measures of optical flow for the differing
portions of the image.

In “Determining Optical Flow,” by B. K. P. Horn and B.
G. Schunck, Artificial Intelligence, Vol. 17, pp. 185-204,
1981 a method for finding the optical flow pattern is pre-
sented which assumes that the apparent velocity of the
brightness pattern varies smoothly almost everywhere in the
image. Their computation is based on the observation that
the flow velocity has two components and that the basic
equation for the rate of change of image brightness provides
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2

only one constraint. Smoothness of the flow was introduced
as a second constraint to solve for optical flow. Such
smoothness constraint presumes there are no spatial discon-
tinuities. As a result, Horn and Schunck excluded situations
where objects occlude one another. This is because at object
boundaries of an occlusion, discontinuities in reflectance are
found.

The Horn and Schunck method is described in more detail
below. Consider the image brightness at pixel (x,y) in the
image plane at time t to be represented as the function
I(x,y,t). Based on initial assumptions that the intensity
structures of local time-varying image regions are approxi-
mately constant under motion for at least a short duration,
the brightness of a particular point is constant, so that dI/dt
=0. Based on the chain rule of differentiation, an optical flow
constraint equation (I) can be represented as follows:

L3, uL (3, v+ (3, 1)=0 )

where

L=91(x,y,t)/0x=horizontal spatial gradient of the image

intensity;

1y=.8I(X,}{,t)/ay=vertica1 spatial gradient of the image

intensity,

I,=91(x,y,t)/dt=temporal image gradient of the image

intensity;

u=dx/dt=horizontal image velocity (or displacement); and

v=dy/dt=vertical image velocity (or displacement).

The optical flow equation (I) is a linear equation having two
unknowns, (i.e., u, v). The component of motion in the
direction of the brightness gradient is known to be I,/(I >+
1,%)"2. However, one cannot determine the component of
movement in the direction of the iso-brightness contours at
right angles to the brightness gradient. As a consequence, the
optical flow velocity (u,v) cannot be computed locally
without introducing additional constraints. Horn and
Schunck introduce the smoothness constraint. They argue
that if every point of the brightness pattern can move
independently, then there is little hope of recovering the
velocities. However, if opaque objects of finite size are
undergoing rigid motion or deformation, neighboring points
on the objects should have similar velocities.
Correspondingly, the velocity field of the brightness patterns
in the image will vary smoothly almost everywhere. They
admit however that such a smoothing constraint is likely to
result in difficulties in deriving optical flow along occluding
edges.

Given such smoothing constraint, the optical flow equa-
tion is solved by minimizing the sum of errors for the rate
of change of image brightness. The total error to be mini-
mized is:

s
min(,,,v)f(lx-u+1y-v+1,)2+w2-(u§+u§+v§+v§)2dxdy (D
D

where D represents the image plane, u,, u,, v,, and v, are the
velocity spatial gradients, and . is a parameter to control the
strength of the smoothness constraint. The parameter o
typically is selected heuristically, where a larger value
increases the influence of the smoothness constraint.

The difficulty in handling incidents of occlusion is
because image surfaces may appear or disappear in time,
complicating and misleading tracking processes and causing
numerical artifacts. Accordingly, there is a need for a method
of estimating optical flow which is reliable even in the
vicinity of occlusions.
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3
SUMMARY OF THE INVENTION

According to the invention, the optical flow of an array of
pixels in an image field is determined using adaptive tem-
poral gradients and in some embodiments adaptive spatial
gradients, so as to avoid artifacts at occlusions. In particular,
artifacts are avoided for occlusions at image objects which
are moving smoothly relative to the image field background,
(e.g., generally constant velocity over the time periods from
image frames k-1 to k+1).

According to one aspect of the invention, data from three
image frames are used to determine optical flow. A
parameter, S, is defined and determined frame by frame
which is used to determine whether to consider the data
looking forward from frame k to k+1 or looking backward
from frame k-1 to frame k when initializing the spatial
and/or temporal gradients for frame k. In particular, the
parameter S signifies the areas of occlusion, so that the
gradients looking backward from frame k-1 to frame k can
be used for such pixel regions. The gradients looking
forward are used in the other areas.

According to another aspect of the invention, the temporal
gradients are determined by convolving a symmetric matrix
to avoid one-half time interval shifts in data between the
backward-looking and forward-looking temporal gradients.

According to another aspect of the invention, the param-
eter S is convolved in some embodiments with a smoothing
function to define a more generalized parameter (e.g., S,,).

According to another aspect of the invention, an embodi-
ment of the motion estimation method is implemented in a
system for image object tracking and segmentation. In a
described embodiment the system includes (i) a modified
adaptive resonance theory-2(M-ART2) model for detecting
changes of scenes, (ii) a two-dimensional correlative auto-
predictive search (2D CAPS) method for object tracking,
(iii) an edge energy derivation method and (iv) an active
contour model with global relaxation for defining optimal
image object boundaries. The motion estimation method
allows edge energy to be estimated based, not just on the
color components, but also on the motion vectors (V,, V).
The motion estimation derived for a previous frame of
image data provides guidance for the CAPS object tracking
analysis in a current frame. For example, the motion esti-
mation is used in one embodiment to reduce the search area
when looking for a template match during CAPS processing.
Also, the motion estimation during an initial frame simpli-
fies user interaction. For example, when a manual process is
used to identify an initial object to be tracked, rather than
having a user identify edge points, the user can simply click
on any one or more moving points on the object to be
tracked.

According to one advantage of this invention, optical flow
is determined without substantial artifacts, even in the
presence of occlusions, where optical flow changes
smoothly. According to another advantage of this invention,
optical flow motion estimation within the image object
tracking and segmentation system improves, for example,
MPEG-4 video encoding and content based video editing.
These and other aspects and advantages of the invention will
be better understood by reference to the following detailed
description taken in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart of a conventional method for
determining optical flow;
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FIGS. 2A and 2B are two sequential data image fields
illustrating the occlusion problem in optical flow analysis;

FIGS. 3A, 3B and 3C are three sequential data image
fields illustrating the occlusion problem;

FIG. 4 is a flow chart of an optical flow determination
method for an image frame k according to an embodiment
of this invention;

FIG. § is a flow chart of an optical flow determination
method for an image frame k according to another embodi-
ment of this invention;

FIG. 6 is a block diagram of a system for performing
video segmentation and object tracking according to an
embodiment of this invention;

FIG. 7 is a flow chart of a method for processing a
sequence of image frames to perform object tracking and
image segmentation, including a method of motion estima-
tion according to an embodiment of this invention;

FIG. 8 is a diagram of an input, processing, output
sequence for the modified applied resonance theory sub-
system of FIG. 6;

FIG. 9 is a flow chart for a method of pattern learning and
recognition implemented by the modified applied resonance
theory subsystem of FIG. 6;

FIG. 10 is a diagram of a template and search area for
performing a correlative autopredictive search (CAPS);

FIG. 11 is a flow chart of a process for determining CAPS
step sizes according to an implementation of the CAPS
subsystem of FIG. 6;

FIG. 12 is a diagram of a search area of data points with
a window area to be tested against a template;

FIG. 13 is a flow chart of a process for performing a fast
search of the search area to identify local matches between
a template and a subset of window areas of the search area;

FIG. 14 is a diagram of center data points for windows in
the vicinity of the local template match to be tested for a
better match (also shown are center points for nearby
windows tested during the fast search);

FIG. 15 is a diagram of a quadrature modelling filter for
decomposing an image to achieve detailing images and a
low pass residue;

FIG. 16 is a flow chart of the active contour modelling
process according to an embodiment of this invention;

FIG. 17 is a diagram of a 5x5 pixel domain about a current
edge point (pixel) used for selecting other candidate points
which might be used in place of the current edge point;

FIG. 18 is a diagram of potential edge points processed to
preserve one optimal path for an image object boundary
according to an embodiment of this invention; and

FIG. 19 is a partial travel path of the contour in the
process of being derived from the set of points of FIG. 18.

DESCRIPTION OF SPECIFIC EMBODIMENTS
Optical Flow Derivation
The Gauss-Seidel iterative method represented below in
equation (III) was used by Horn and Schunck to solve the
optical flow equation based on data from two consecutive
image frames:

L-a"+1,-V"+1, (11D

utl =g~
o+ 2+ 2
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-continued
Le-d"+1,- V" + I,
a?+ 2+ 12

ntl _ —n
Vit =yt -,

Here, n is an iteration counter and u and v are the weighted
local averages of u and v, respectively. FIG. 1 shows a
simplified flow diagram for the conventional Horn and
Schunck method. At step 20, the spatial and temporal
gradients are estimated from discrete image data. In
addition, the initial estimates of u° and v° are set—typically,
to zero. At step 22, the flow velocities, u** and v™** are
estimated. At step 24, the optical flow computed in a current
iteration is tested to see if the maximum square error, MSE,
(or in some embodiments the maximum absolute difference)
is less than a threshold value, or if the iteration counter, n,
exceeds a maximum iteration count. If neither branch test
positive, then at step 26 u” and v"”, the weighted local
averages of the flow velocities u and v are estimated. Then
steps 22 and 24 are re-executed. If at step 24, either
contingency tests positive, then the values for v*** and v***
are accepted at step 28 as the optical flow estimate for the
image frame.

For two sequential image frames, k and k+1, the image
gradients are estimated as

- Lo . . . vy
L, J 0y = ZUG j+ Ll =16 )+ 1+ 1, j+ 1,80~
I+ 1, L O+10G j+ L k+ D=0 j b+ D+
I+ 1, j+Lk+D=I0+1, j,k+ 1)
1
L joky = UG+ 1 j =16 J R+ 1+ L+ 1K) =
IG, j+ LO+IG+1, e+ D=0 j b+ D+
IG+ 1, j+Lk+ D =IG, j+ 1, k+1)]
1
L, j, k) = Z[I(i, Lk+ D=1 jl+1G+1, j+ 1L, k+1)—
G+ 1, j+LO+IG j+ 1L, k+1)—
IG, j+ L+ 1+ 1, jk+ D) =I(i+1, j, k)]
and the weighted local averages are estimated as
V)

u(i, j, k)zé-[u(i—l,j,k)+
u(l, j+ 1 k) +uli+1, j ) +ui, j—1, )]+
%-[u(i—l,j—l,k)+u(i—1,j+1,k)+
wi+ 1, j—L k) +ul+1, j+1, k)]

1
VO J )= g D=1 R+ v+ LR +

v(i+ 1, jo k) + v, j— 1,00+
1

2-[\/(1’—1,j—l,k)+v(i—1,j+1,k)+

—

vii+l, j-Lk+v(i+], j+1,k)]

Note that i and j correspond to spatial coordinates of a pixel
and k corresponds to a temporal coordinate.
The Occlusion Problem

Referring to FIGS. 2A and 2B, two sequential frames k
and k+1 of an image field 30 are depicted, in which a
foreground image object 32 is moving from left to right
relative to the image field 30 background. By sequential, it
is meant that frames k and k+1 other number) does not come
between frames k and k+1 in temporal order. Specifically,
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6

note that there may be image frames between frames k and
k+1 that have not been sampled or that have been sampled
and have been discarded for purposes of determining optical
flow.

For purposes of discussion, frame k shows an area 34 just
to the right of the foreground image object 32 which such
object 32 shall occupy during the subsequent frame k+1.
Specifically, due to the motion of object 32 area 34 will be
covered in frame k+1. Similarly, frame k+1 shows an area 36
just to the right of the foreground image object 32 which
such object shall occupy in frame k+2 (not shown).

Note that optical flow is evaluated based on at least 2
image frames. In comparing the data for frame k and frame
k+1, however, there will be a discrepancy in area 34.
Specifically, there will be calculated artifacts in deriving
optical for area 34 because the brightness pattern in area 34
is not continuous. The same occlusion problem occurs in
processing area 36 of frame k+1.

According to an embodiment aspect of this invention, the
optical flow can be derived even for occlusions. FIGS. 3A,
3B and 3C show three sequentially sampled frames k-1,k
and k+1 of the image field 30, in which the foreground
object 32 is moving from left to right relative to the image
field 30 background. Referring to FIG. 3A, in frame k-1 an
area 38 is shown representing the portion of the background
which the object 32 will move into during frame k. In
addition frame k-1 shows the area 36 which the object will
occupy in frame k+1. Focus in particular on the occlusion
arca 38. As object 32 moves during the time between
sampling frame k-1 and frame k, the object 32 has moved
relative to the background image field 30. In particular area
38 in frame k-1 is covered in frame k due to the object 32
motion. Assuming that the object 32 motion is smooth for a
relatively short period of time, (e.g., the time period to
sample frames k-1 through k+1), the occlusion in frame k
(covering area 38 of frame k-1) can be recovered from the
previous frame k-1. In particular by combining the image
data from the three frames k-1, k and k+1 the occlusion
challenge can be overcome.

Method for Determining Optical Flow

Using the data from frames k-1, k and k+1, adaptive
spatial and temporal gradients are derived. In particular,
forward spatial and temporal gradients are is derived for the
optical flow from frame k to frame k+1, while backward
spatial and temporal gradients are derived for the optical
flow from frames k-1 to frame k. The respective gradients
are defined below, where the superscript f corresponds to
forward and the superscript b corresponds to backward:

S U . o D
K. j k= g UG j+ 10 =10, )+ 10+ 1 j+ 14 =

G+ 1, ) +1G, j+ L k+ D =10, j,k+ 1)+
Ii+ 1, j+Lk+ D) =1+ 1, j,k+1)]
1
If(i, J k)= Z[I(i,j+1,k)—1(i, LR+HIG+L, j+1,k)—
G+ 1, ) +1G, j+ L k=D =10, j k-1 +
IG+1, j+1, k=1 =IG+1, jk=1)]
1
E, j,k)zZ[I(i+1,j,k)—l(i,j,k)+1(i+1,j+1,k)—
G, j+ LK +1G+ 1, jk+ D =10, j,k+ 1)+

IG+1, j+ 1, k+ )= I(, j+1,k+1)]

1
Ily’(i, Jo k)=~ Z[I(i+1,j,k)—1(i, LR+IG+1, j+1,k) -
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-continued
16, j+ L+ IG+]1, k=D =16, j, k=D +

IG+1, j+ 1L, k=1)—IG j+1,k=1)]
I,f(i, J k)= %[I(i, Lk+1D) =10, j, b+
G+ 1, j+ L k+ D)= I(i+1, j+1, )+
IG, j+ L k+ D) =10, j+ 1, )+
IG+1, L k+ )= I(i+1, j, k)]
I,f(i, J k)= %[I(i, Lk+1D) =10, j, b+
G+ 1, j+ L k+ D)= I(i+1, j+1, )+
IG, j+ L, k=D =1 j+ L k-1+

I+, k=1 -I(i+1, jk-1)]

A parameter, S, is defined below in equation (VII) to derive
the gradients L, [, and I, adaptively from the forward and
backward gradients defined in equation (VI):

S5 R=ILS G )i j O+ G v )+ )| (VID

Sb(irjr k)=|1xb(irjr k)yulij, k)+1yb(irjr k)yv(iJ, k)+1tb(irjr k)l

As per equation 1, S is to equal zero. In practice, though, the
smaller the value of S, the better the solution to the optical
flow equation. The spatial and temporal gradients are
defined adaptively based on the values for S. Specifically, . . .
if

RISENS (ISR (VIID)

Then
LGj =Lk

LGH0=L (k) ()

15 0)=1(),k);
Otherwise,
LG R=L05,6)

LGjR=L1Gj k) X)

LG5R=Ij k)

Referring to FIG. 4, a flow chart of a method for deter-
mining optical flow according to one embodiment of this
invention begins at step 40. The forward and backward
spatial and temporal gradients (i.c., L/, L% 17, 1%,17,1,”) are
derived for the horizontal, vertical and temporal dimensions
based on equation (VI). In addition, the initial estimates of
u° and v° are set—typically, to zero. At step 41, the adapted
spatial and temporal gradients I, I, It are determined based
on equations (VII), (IX), and (X). At step 42, the flow
velocities, u"** and v"** are estimated. At step 44, the optical
flow computed in a current iteration is tested to see if the
maximum square error, MSE, (or in some embodiments the
maximum absolute difference) is less than a threshold value,
or if the iteration counter, n, exceeds a maximum iteration
count. If neither branch test positive, then at step 46 u” and
v", the weighted local averages of the flow velocities u and
v are estimated and at step 41, the adaptive gradients are
redetermined. Then steps 42 and 44 are re-executed. If at
step 44, either contingency tests positive, then the values for
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u™?! and v**' are accepted at step 48 as the optical flow
estimate for the image frame k.
Alternative Method for Determining Optical Flow

One difficulty with the method described with regard to
FIG. 4 is that there is a one-half time interval shift in the
spatial and temporal gradients, respectively. In an alternative
embodiment the one-half time interval shift is avoided. In
such alternative embodiment the spatial gradients I and I
are derived from a single frame (k) using an edge detector
such as the Sobel edge detection method. The spatial gra-
dients based on the Sobel edge detection method are given
below in equation (XI):

L, k) = (XD

1
Z[I(i—l,j+1,k)—1(i+1,j+1,k)+1(i—1,j—1,k)—

IG+1, j- 1L +2-1G-1, jk)=2-1(i+ 1, j, k)]
1
LG, J k)~ Z[I(i—l,j—l,k)—l(i—l,j+1,k)+
i+ 1, j-Lk-IG+1, j+ 1, k)+

200, j- 1L k) =210, j+1, k)]

The forward and backward temporal gradients, I/, are
estimated by convolving a symmetric matrix with the frame
differences (to have no spatial shift), as given below in
equation (XII):

H, j ko~ (XID)

%[41(1', Lk+ D) =410, j o+ 1G+1, j+ 1L, k+1)—
IG+ 1, j+ L, 0+ 210, j+ Lk+ D) =210 j+1, )+
UG+, jhk+ 1) =2+ 1, j )+ 200G, j— 1, kk+1) —
2, j-1, k) +20G—1, jk+1)=21G—1, j, k) +
IGi-1, j-1Lk+1)—I(-1,j- 1,k +
Ii-1,j+Lk+1)-1(G-1, j+1, k) +
Ii+1, j—1Lk+1)—IG+1, j—1,6)]
P, j k) =~ 11—6[4-1(1', Gl =410, jk—1)+
I+ 1, j+ 1L, =1+ 1, j+ L,k-1)+
200, j+ 1, k) =210 j+ 1L, k=1 +
20+ 1, k) =2 00+1, k=1 +
200, j-1,k) =210, j—1, k=1 +
2. 0(-1, jk)=2-1G-1, jk=1)+
IGi-1,j-1,k)—IG-1, j—-1, k=1 +
IGi-1, j+ 1L, k)—IG-1, j+ 1L k=1+

Ii+1, j-Lk)-IG+1, j-1,k-1)]

The parameter S, is now redefined as in equation (XIII)
below:
SO Ryl e o Ry v O+ ) (XIID

The temporal gradients are defined adaptively based on the
values for S. Specifically,
If

RUAESEN(A35)
Then

(XIV)
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LG R=LE58) (XV)
Otherwise
I R)=T7G ) k) XVD

Referring to FIG. §, a flow chart of the alternative method
for determining optical flow according to one embodiment
of this invention begins at step 50. The spatial gradients (i.e.,
L, L) for the horizontal and vertical dimensions based on
equation (XI)and The forward and backward temporal gra-
dients (i.e., I/, 17) are derived for the temporal dimension
based on equation (XII). In addition, the initial estimates of
u° and v° are set—typically, to zero. At step 51, the adapted
temporal gradient, I, is determined based on equations
(XIV), (XV), and (XVI). At step 52, the flow velocities, u™**
and u™** are estimated. At step 54, the optical flow computed
in a current iteration is tested to see if the maximum square
error, MSE, (or in some embodiments the maximum abso-
lute difference) is less than a threshold value, or if the
iteration counter, n, exceeds a maximum iteration count. If
neither branch test positive, then at step 56 u™ and v", the
weighted local averages of the flow velocities u and v are
estimated and at step 51, the adaptive temporal gradient is
redetermined. Then steps 52 and 54 are re-executed. If at
step 54, either contingency tests positive, then the values for
u™?! and v are accepted at step 58 as the optical flow
estimate for the image frame k.

Both methods for determining optical flow are based on
the assumption that optical flow is generally constant over
the short term (e.g., from frames k-1 through k+1). In
situations where the optical flow significantly varies within
such time interval, artifacts still may occur. Consider, for
example, a moving object which is changing direction with
time. The embodiments described assume that optical flow
is generally constant. According to these methods, the
occlusion is avoided by looking backward rather than for-
ward to recapture, in effect, the occlusion area for the current
frame k. In doing so, however, when there has been a change
in direction, some of the occlusion area differs. Thus, only
part is recaptured leaving at least part of an artifact. Such
shortcoming is not addressed here.

Object Tracking and Segmentation System

FIG. 6 shows a system 10 for image object segmentation
and tracking according to one embodiment of the invention.
System 10 includes a user interface 11, a modified adaptive
resonance theory-2 (M-ART?2) subsystem 12, a correlative
auto-predictive search (CAPS) subsystem 14, an edge
energy derivation subsystem 16, a motion estimation sub-
system 17, and an active contour modelling subsystem 18.
The M-ART?2 subsystem 12 serves to detect scene changes
in a sequence of image frames. The CAPS subsystem 14
serves to identify an object in a given image frame. The
CAPS subsystem also serves to track the object among a
sequence of input image frames. The motion estimation
subsystem 17 generates motion vectors. The edge energy
subsystem 16 serves to calculate the edge energy for an
image object to be modelled. The active contour modelling
subsystem 18 serves to segment an image object and accu-
rately model an edge boundary of the image object being
tracked.

The various subsystems are implemented in software on
one or more host computing devices. Preferably the func-
tions of the various subsystems are performed by pro-
grammed digital computers of the type which are well
known in the art. A host computer system for embodiments
of the invention typically includes a display monitor, a
keyboard, a pointing/clicking device, one or more proces-
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sors or multiprocessors, random access memory (RAM), a
non-volatile storage device such as a hard disk drive, and
other devices such as a communication or network interface
(e.g., modem; ecthernet adapter), a transportable storage
media drive, such as a floppy disk drive, CD-ROM drive, zip
drive, bernoulli drive or other magnetic, optical or other
storage media. The various components interface and
exchange data and commands through one or more busses.
The computer system receives information by entry through
the keyboard, pointing/clicking device, a network interface
or another input device or input port. The computer system
may be any of the types well known in the art, such as a
mainframe computer, minicomputer, or microcomputer. To
speed up computations, (e.g., convolutions, correlations)
parallel processing may be implemented.

FIG. 7 shows a system flow chart of a method 21 for
tracking and segmenting an image object according to an
embodiment of this invention. Input to the method at steps
23 and 25 are initial edge points and an initial image frame.
In one application the initial edge in points are selected
manually by an operator using a conventional video editing
application interface. In another application the edge points
are derived automatically and fed into a method embodiment
of this invention.

The initial image frame is processed at step 27 using a
modified applied resonance theory-2 (M-ART?2) process to
define clusters of image pixels. The M-ART2 process is
described below in a separate section. At step 29, the motion
estimation vectors are derived. At step 31 the edge energy of
the input edge boundary is derived. Then at step 33 an active
contour model is applied to segment the edge boundary and
accurately model the object boundary. The active contour
model is described below in a separate section. At step 35 the
modelled image boundary is output. In some embodiments
the output is written to a buffer, a file, and/or to a display.

Iterative processing then is performed for subsequent
image frames. In some embodiments each image frame is
processed. In other embodiments, image frames are periodi-
cally or a periodically sampled. At step 37 the next image
frame to be processed is input to the method implementation
21. At step 39 the M-ART?2 method is performed to identify
whether there has been a scene change. If a scene change is
detected at step 43, then the method 21 is complete, or is
re-initialized to track another image object. If a scene change
has not occurred, then the image object is identified from the
image frame using a two-dimensional correlative auto-
predictive search (2D-CAPS) process at step 45. The
2D-CAPS process is described below in a separate section.
If at step 47 the image object is not found using the
2D-CAPS process, then the tracking method 21 terminates
or re-initializes for tracking another object. If the object is
identified, then the motion vectors are estimated at step 49
and the edge energy for the object boundary is derived at
step 53. Then at step 55 an active contour model is applied
to segment the image boundary and accurately model the
object boundary. At step 57 the modelled image boundary is
output. As described above for the initial image frame, in
some embodiments the output is written to a buffer, a file,
and/or to a video screen. The process then repeats steps 35,
37, 39, 43, 45, 47, 49, 53, 55, 57 for another image frame.
As a result, an image object is segmented and tracked over
many image frames.

Modified Applied Resonance Theory (M-ART2)—Scene
Change Detection

A preferred embodiment of the method of modified
applied resonance theory is described in the commonly-
assigned U.S. patent application Ser. No. 09/233,894, filed
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Jan. 20, 1999 for “Color Clustering for Scene Change
Detection and Object Tracking in Video Sequences.” The
content of such application is incorporated herein by refer-
ence and made a part hereof.

The modified adaptive resonance theory-2 (“modified
ART-2") subsystem 12 performs pattern learning and rec-
ognition on a sequence of input image frames. Referring to
FIG. 8, the M-ART2 subsystem 12 processes a current
image frame 60 grouping the image frame contents into
clusters 66. The image frame 60 is formed by an array of
image pixels P. For a raster type image frame, the image
pixels are arranged into y rows and X columns. In a preferred
embodiment the image pixels are color image pixels coded
according to a standard red, green, blue coding scheme (e.g.,
NTSC), a standard yellow, magenta, cyan and black coding
scheme (YMCK), a standard luminosity, chrominance,
brightness coding scheme (e.g., YUV) or some other color
coding scheme. Each image frame is a set of data points.
Each pixel is a data point. A data point is referred to herein
as an input vector. Input vector P; corresponds to pixel P
(xy;) which for an RGB coding scheme has a value
(R,G,B). The M-ART?2 subsystem 12 processes a sequence
68 of input vectors P corresponding to a given set of data
points (i.e., a current image frame 60). The input vectors P
are grouped into clusters 66.

Each cluster 66 is a learned or a recognized pattern. For
a first set of input data (i.e., an initial image frame) there is
no prior information for allocating the data points into
clusters. Thus, the patterns are learned. For subsequent sets
of data points (e.g., subsequent images in a sequence of
image frames), the patterns previously learned may be used.
Specifically, data points for a current set of data points
(image frame) are tested to try and recognize the prior
patterns in the new set of data points. The process for
analyzing the subsequent sets of data points is a recognition
process. During the recognition process, the previous
learned patterns also are updated and modified based upon
the new data.

Pattern Learning and Recognition:

Referring to FIG. 9, a flow chart of the M-ART?2 process
27/39 for pattern learning and recognizing commences at
step 76. If the current image frame is an initial image frame,
then at step 78 various parameters are reset. Further, if the
current image frame is an initial image frame then there are
no clusters that have been started.

The current image frame 60 is processed in an iterative
manner (step 80). At step 82, an initial set of prototype
vectors for this processing iteration of the current image
frame is obtained. There is a prototype vector for each
cluster defined. If the current image frame is an initial image
frame, then there are no prototype vectors. The prototype
vector is a weighted centroid value based upon a history of
input vectors allocated to the corresponding cluster.

The process for allocating input vectors into clusters is
performed for each input vector (step 84). Such process is
based upon a minimum distance measure. In various
embodiments an euclidean distance, an absolute distance or
some other distance measure is used. In one embodiment the
euclidean distance is used. An input vector is allocated to a
cluster to which it has a minimal euclidean distance with the
cluster’s prototype vector. At step 86, the prototype vector
closest to the input vector is found.

As a self-organizing control for allocating data into
clusters, a vigilance parameter, also referred to herein as a
vigilance value, is used. A vigilance test is performed at step
88. If the minimum euclidean distance is not less than the
vigilance value, then a new cluster is defined at step 90. The
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input vector is assigned to such new cluster and becomes the
initial prototype vector for such new cluster. If the minimum
euclidean distance is less than the vigilance value, then the
input vector is assigned to the cluster corresponding to the
closest prototype vector at step 92. Thus, an input vector is
allocated to a pre-existing cluster or a new cluster.

For a new learning and recognition process, there are no
prototype vectors to start with. Thus, the first input vector
will define an initial prototype vector for a first cluster. The
minimum distance between the next input vector and the
prototype vectors will be to the first prototype vector (since
at this point in the example there is only one prototype
vector). If such minimum distance exceeds the vigilance
value, then the second input vector becomes an initial
prototype vector for a second cluster. If, however, such
minimum distance is within the vigilance value distance,
then the second input vector is allocated to the first cluster.

If the second input vector is allocated to the first cluster,
then the prototype vector for such first cluster is modified at
step 94. The modified prototype vector for the first cluster
becomes the weighted centroid value for all data points
among the first cluster, based upon the following equation:

(old)

P, )+ w 9

(new) _ |lcluster;

lcluster®®) + 1

where,

w, "*=new prototype vector for cluster k=new centroid

value;

w,=old prototype vector for cluster k=old centroid

value;

P(x,y)=input vector;

|| cluster,®*® |=number of vectors in cluster k.

The influence of the new input vector in the cluster has a
weighted influence on the prototype vector of the cluster.
The weight is proportional to the number of input vectors in
the cluster, and thus, corresponds to a statistical centroid.
This process for updating the prototype vector provides a
self-scaling feature to the cluster learning and recognition
process.

This process is used for allocating each input vector of the
current image frame. Once all the input vectors have been
allocated in a given iteration, testing is performed to deter-
mine whether another iteration is needed and whether outlier
clusters are present.

For an initial data set where no information is previously
stored, one or more initial clusters are defined as above. An
iterative process is used, however, to achieve a self-
stabilizing quality to the clusters. Specifically, once the
entire data set has been processed, allocating the input
vectors into clusters, another iteration of allocating the input
vectors into clusters is performed. Prior to performing
another iteration, however, the clusters are analyzed for
quantity in an outlier test (see step 96). According to such
test, any cluster having less than a prescribed threshold
number of input vector members is discarded. More spe-
cifically the prototype vector is discarded and thus not used
in finding a minimum distance to input vectors during a
subsequent iteration. The input vectors in the discarded
cluster are considered to be outliers (e.g., noise).

Consider, for example, a data set including 30,000 data
values. Also, consider that after the first iteration, a first
cluster has 20,000 members, a second cluster has 8,000
members, a third cluster has 1985 members, and a fourth
cluster has 15 members. In this example, assume the pre-
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scribed threshold value is 64. Because cluster 4 has less than
64 input vector members, it is discarded. It is expected that
many of the input vectors in this fourth cluster will be
allocated into another cluster during a subsequent reitera-
tion. Note that this is an example, and that the threshold
value may be prescribed as a matter of design, or based upon
empirical analysis.

For the next iteration the prototype vectors from the
remaining clusters of the prior iteration are retained (step 82
of next iteration). In our example above, the prototype
vectors from the first three clusters are retained, while the
prototype vector from the fourth cluster is discarded. Each
input vector then is re-allocated to a cluster during this
subsequent iteration by determining the prototype vector to
which it has a minimum euclidean distance. If such mini-
mum distance is less than the vigilance value, then the input
vector is allocated to the cluster corresponding to that
prototype vector. If such minimum distance exceeds the
vigilance value, then the input vector defines a prototype
vector for a new cluster. According to various embodiments,
either the same or a different vigilance value is used during
the subsequent iterations.

Upon identifying a cluster into which an input vector is
allocated during a subsequent iteration, the prototype vector
(ie., weighted centroid) for such cluster is recalculated.
During the subsequent iteration the number of input vectors
in the cluster is not reset, but remains at its last count from
the prior iteration. Thus, the weighting influence of the
current input vector is less during the subsequent iteration
than during the prior iteration.

After the subsequent iteration is complete, like in the prior
iteration, any cluster having fewer than a prescribed thresh-
old number of input vector members is discarded (step 96).
The clusters then are tested for convergence (step 98) to see
if the number of input vector members in each cluster has
significantly changed. If the number has not changed
significantly, then the iterative process is complete. In this
sense, the process is self-stabilizing. If a cluster was dis-
carded for such iteration, such discarded cluster is consid-
ered to be an outlier and the members are considered as
noise.

The number of cluster members is considered to change
significantly if it has changed by more than a prescribed
number of data points or prescribed percentage, whichever
is larger. Such number and percentage are defined empiri-
cally. If the number of members has changed significantly
then a new iteration is performed (step 80). In the new
iteration, the remaining (e.g., non-discarded) prototype vec-
tors from the immediately prior iteration are used as the
initial prototype vectors for each remaining cluster (step 82).
The iterations continue until, either the number of members
in each cluster is not changed significantly (convergence test
at step 98), or a prescribed maximum number of iterations
has occurred. Such maximum number of iterations is deter-
mined as a matter of design or empirically.

For a current image frame which is subsequent to an
initial image frame, the prototype vectors correspond to the
final prototype vectors from the preceding image frame
processed among the sequence of image frames being pro-
cessed. Each input vector in such current image frame is
allocated to a cluster by determining the prototype vector to
which it has a minimum euclidean distance (step 86). If such
minimum distance is less than the vigilance value (step 88),
then the input vector is allocated to the cluster corresponding
to that prototype vector (step 92). If such minimum distance
exceeds the vigilance value, then the input vector defines a
prototype vector for a new cluster (step 90). A new cluster
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corresponds to a new prototype pattern. According to vari-
ous embodiments, either the same or a different vigilance
value is used for the subsequent image frames in the
sequence relative to that used for an initial image frame. In
a preferred embodiment, the vigilance value is increased for
the subsequent data sets, relative to that for the initial data
set.

Upon identifying a cluster into which an input vector is
allocated, the prototype vector (i.e., centroid) for such
cluster is recalculated. The number of input vectors in the
cluster is held over from the processing of the prior image
frame. Thus, the prototype vector is a weighted centroid
based upon multiple iterations of multiple image frames in
a sequence of image frames.

After all the input vectors of the current data set have been
allocated into clusters, another iteration of allocating the
input vectors into clusters is performed. Prior to performing
another iteration, however, the clusters are analyzed for
quantity in the outlier test (step 96). Any cluster having less
than a prescribed threshold number of input vector members
is discarded as described above for the initial data set. For
the subsequent iteration the prototype vectors from the
remaining clusters of the first iteration are retained. Each
input vector then is re-allocated to a cluster during the
subsequent iterations in the same manner as described
above.

Each image frame in the sequence is similarly processed.
In a preferred embodiment, the starting prototype vectors for
allocating input vectors of a current data set are the final
prototype vectors obtained during processing of the imme-
diately prior data set. Further the count of the number of
input vectors in a clusters is held over from prior iterations
and prior image frames. New clusters defined as the
sequence of data clusters continue correspond to new pro-
totype patterns. New prototype patterns may occur in an
image sequence, for example, due to an image object
insertion, deletion or change.

Detecting Scene Changes Within a Sequence of Image
Frames:

In the course of processing a sequence of image frames of
a common scene, it is expected that much of the image
content is similar from image frame to image frame. As a
result, the defined clusters will be similar from image frame
to image frame. The hold over of the count of input vectors
in a cluster used in weighting the centroid of the cluster is
based upon such assumption. If while processing a given
image frame however, it is determined that the prototype
vectors for each one of several clusters have changed
beyond a threshold amount, then it is considered that the
scene being imaged has changed. Specifically, upon pro-
cessing any given image frame, if more than a prescribed
number of prototype vectors has changed by more than a
predetermined amount, then a scene change is considered to
have occurred.

Ascene change is determined by tracking a cluster change
ratio from image frame to image frame. Specifically, after
the iterative processing of input vectors for a current image
frame is complete, the cluster rate of change for that image
frame is derived. Cluster rate of change is derived in a
preferred embodiment using the following equation:

ne

DI =N

k=1
Niotat

R =

where,
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R/=cluster change ratio for image frame f;

N//=number of input vectors in cluster k of frame f (actual
number, not the count used in prototype vector centroid
which counts input vector for each iteration);

N,,,.; total number of input vectors in image frame f; and

n/=number of clusters in frame f.

Note that if the k-th cluster in frame f is a new cluster, then
N,/~* is simply zero. A scene change is identified at step 43
(see FIG. 7) when the cluster change ratio for an image
frame f exceeds a prescribed value, (e.g., 5%-10%). The
prescribed value is determined empirically or be design and
may exceed the example values of 5%—10%.

If a scene change is detected for a current image frame f,
then the method 21 terminates, or is restarted (at step 23)
with the current image frame f set to be an initial frame.
Image frame f then is re-processed as the current frame.
Since it is an initial frame, parameters are reset at step 78.
Specifically, the prototype vectors are discarded. Thus at
step 82 there are no prototype vectors. As a result, during
processing of the first input vector, such input vector will
define a new cluster and become the prototype vector for
such cluster (step 90). Additional cluster then are defined
based upon whether the current input vector is farther than
the vigilance value distance away from the prototype vector
(s). Note that initially there are no prior input vectors in each
new cluster (cluster count=0 when first deriving the
weighted centroid of a new cluster).

Correlative Auto-Predictive Search (CAPS)—Object Track-
ing

Apreferred embodiment of the correlative auto-predictive
search process is described in the commonly-assigned U.S.
patent application Ser. No. 09/216,692, filed Dec. 18, 1998
for “Template Matching Using Correlative Auto-Predictive
Search.” The content of such application is incorporated
herein by reference and made a part hereof.

The CAPS process is executed for image frames follow-
ing an initial image frame. The object to be tracked has been
defined during processing of the initial image frame. The
object location is updated (by the CAPS process) during
processing of subsequent image frames. The initial object or
the updated object from the prior frame serves as a template
for locating the object in the current image frame. Referring
to FIG. 10, the object being tracked serves as a template 108
while the current image frame serves as a search area 110.
The template 108 is overlaid onto a window 112 within the
search area 110. A motion vector is maintained which
identifies the change in location of the object from one frame
to the next. In some embodiments the motion vector derived
from the previous frame is used to select a starting window
112. For example, the motion estimation subsystem 17
derives motion vector at step 29 for the initial frame and step
49 for subsequent frames. During CAPS processing the
motion vector derived for a prior frame at one of these steps
29, 49 is used to estimate a window area where the object is
located within the current frame. Such estimated location is
the starting window within the search area for template
matching to locate the object within the current image frame.

The template 108 data points are compared to the win-
dow’s 112 data points to determine if the data points
correlate to a desired degree. If they do, then a match for the
template has been found. In a search area 110 formed by ‘m’
rows of ‘n’ data points, a template formed by ‘k’ rows of ‘p
data points may be placed over (m—k+1)-(n-p+1) potential
windows 112.

To reduce the number of windows 112 that the template
108 is compared with, an effective step size is derived from
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the template. According to a 2-dimensional implementation
embodiment, a step size along a first axis 114 is derived and
a step size along a second axis 116 is derived. Rather then
compare the template to every possible window of the
search area 110, the template 108 is moved along either or
both of the first axis 114 and second axis 116 by the
corresponding first axis step size or second axis step size.

Once the desired step sizes are derived, then the template
108 is compared to the various windows 112 of the search
area 110 at the step size increments during a fast search
process. In one embodiment the comparison is a correlation
function of the template 108 and the window 112 and results
in a correlation coefficient. Any window 112 in which the
correlation coefficient with the template 108 is found to
exceed a specific value is a local match for the template. In
a preferred embodiment the specific value is the cut value
times a threshold value.

Next, a full search then is performed in the vicinity of any
location which is a local match. A full search of such vicinity
encompasses performing a correlation between the template
and every potential search area window between the local
match location window and the windows at the prior and
next step in each of the horizontal and vertical axes. For
example, if the horizontal step size is 3 pixels and the
vertical step size is 4 pixels, then correlations are performed
for windowsz=1 pixel and+2 pixels along the horizontal axis
and+1 pixel, 2 pixels and £3 pixels along the vertical axis.
In addition correlations are performed for windows off the
axes within the area delineated by the step sizes. Thus, the
full search of the vicinity of the local match for this example
includes (2*2+1)*(2*3+1)-1=34 correlations between the
template and the search area. Any locations among the local
match locations and the locations tested during the full
search of the vicinity which exceed the threshold value are
considered template matches. In some embodiments, only
the location having the highest correlation is considered a
match. In other embodiments there may be multiple
matches. Thus, the top matches or all matches above the
threshold are selected as resultant matches.

Determining Step Size:

To determine effective step sizes, the template 108 itself
is analyzed. Referring to FIG. 11, at a first step 120 the
template 108 is padded with additional data points to
achieve a padded template. For circular padding, multiple
copies of the template 108 are used to increase the template
size. The number of copies may vary for differing embodi-
ments. In a preferred embodiment there are at least 9 full
copies. of the template in the circularly padded template. In
another embodiment, a padded template is achieved by
linear padding. For linear padding, data points are added in
which each data point has a common value. The common
value is a padding constant. In one embodiment the padding
constant may be 0 or another fixed value. In a preferred
embodiment the padding constant is derived from the data
values of the various data points which make up the template
108. For example, in one embodiment an average data value
is derived for all the temple 108 data points using any of
various averaging techniques. This average value serves as
the padding constant. For image data, the added data points
are pixels and the padding constant is a pixel intensity and/or
color. Preferably the center window of the padded template
formed by linear padding also is formed by the original
template 108.

Referring again to FIG. 11, at another step 122 the
template 108 is correlated to various windows of the padded
template. Because the center of the padded template equals
the original template 108, it is known that the correlation
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between the template 108 and the center window is 1.0.
Thus, that correlation need not be calculated. It is already
known. For a two dimensional analysis, a correlation
between the original template 108 and windows of the
padded template are derived for windows along either of
such axes 114, 116 moving in either direction away from the
center window. The step size for selecting adjacent window
to evaluate is one data point. Consider for example a
template which is 40 pixels by 60 pixels and a padded
template which is 120 pixels by 180 pixels. The step size is
one pixel. Starting from the center window, there are 40
potential windows in a first direction along the first axis 114
and 40 potential windows in a second, opposite direction
along the same axis 114. In step 122 a correlation is
performed between the template and the select windows. As
the selected window changes along the first axis 114 in the
first direction, the resulting correlation coefficient is likely to
decrease below 1.0. Eventually there will be a window
where the correlation coefficient falls to a prescribed cut-off
value. Such cut-off value may vary for differing
embodiment, but preferably is less than a threshold value
which identifies an estimated match between a window and
the template. A window will be found in the padded template
in each direction along axis 114 where the cut-off criteria is
met.

Rather than perform a correlation for each potential
window along the first axis 114, correlations are performed
for windows along the axis 114 away from the center
window in each direction until a window is identified in such
direction where the correlation coefficient intersects the
cut-off value. For two dimensional analysis, there is a cut-off
point found in each direction from the center window along
the first axis 114. The distance between those two windows
in data points is the width along the first axis.

Referring to FIG. 11, at step 124 the first axis step size is
derived from the width along the first axis 114 between
windows which have a correlation to the template 108 equal
to or less than the prescribed cut-off value. The step size
along the first axis 114 is a fraction of the width. In a
preferred embodiment, one-half the width is taken as the
step size for the given axis. In other embodiments, the step
size is taken as the entire width or some other fraction of the
width.

In steps 126 and 128 the correlations are repeated along
the second axis 116 in two opposing directions to find a
width along the second axis 116. For two dimensional
analysis, there is a cut-off point found in each direction from
the center window along the second axis 116. The distance
between those two windows in data points is the width along
the second axis. A fraction of this distance is taken as the
step size for the corresponding axis (e.g., first axis, or
horizontal, step size; second axis, or vertical, step size). In
a preferred embodiment, one-half the width is taken as the
step size. In other embodiments, the step size is taken as the
entire width or some other fraction of the width. Preferably,
the step size along the second axis 116 is derived in the same
manner as the step size along the first axis 114. The step
sizes are referred to herein as correlative auto-predictive
search (‘CAPS’) step sizes.

Fast Search:

Once the CAPS step sizes have been derived, a fast search
is performed comparing the template 108 to the search area
110. It is a fast search in the sense that not every potential
window of the search area is compared to the template.
Referring to FIG. 12, the search area 110 is shown as an
array of data points 74, 75 such as image pixels points. The
two CAPS step sizes are used for selecting windows from
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the search area 110 to be compared to the template. The data
points in the search area 110 about which the template is
centered during successive steps are designated with an open
circle and part number 75. Other data pints in the points
which are not center points are designated as a data point 74.

Referring to FIG. 13, at a step 136 the template 108 (see
FIG. 10) is overlaid to a starting window 112 of the search
area 110. The starting window can be any window of the
search area. In a preferred embodiment the starting window
112 is selected by predicting the object location with the
motion vector, derived for the previous frame. In one
embodiment a linear prediction calculation is implemented,
although other more complex prediction algorithms also
may be used.

At step 138 a correlation is performed between the
template 108 and the starting window and every+/-x-th
window along the first axis 114, where x is the first axis step
size. Thus, for a horizontal axis step size of ‘x’, the template
is shifted along the horizontal axis 114 by x data points at a
time. More specifically, a center point 77 of the template 108
coincides with a given pixel 75 for a given iteration. The
template then is moved to center over another data point 74
that is X points away from the given pixel 75 along the
horizontal axis 114. The template 108 is moved in each
direction along the axis 114 using the first step size of x. A
correlation is performed at each step.

At step 140 the shifting along the first axis 114 and testing
of windows is performed for a template center point repo-
sitioned over every y-th row of data points. Specifically,
once the initial row of the search area has been tested, the
template 108 is moved along the second axis 116 to another
row that is y data points away, where y is the second axis
step size. This next row then is tested by shifting along the
first axis 114 using the first axis step size. A correlation is
performed at each iteration. Then another row is tested
which is y data points away along the second axis 116. In
this manner the template is shifted by the second step size
along the second axis 116 and by the first step size along the
first axis 114 to select windows to be tested during the fast
search. For example, in a search area which is 400 pixels by
400 pixels, and where the first axis step size is four and the
second axis step size is four, there are 100*100=10,000
windows tested during the fast search.

Of the tested windows, at step 142 the window location
for any correlation which resulted in a correlation coefficient
which is greater than or equal to the product of the cut value
times a predetermined threshold value is considered a local
match. In a preferred embodiment the cut value is the same
for each axis. Where the cut value used along one axis differs
from the cut value used along the other axis, either cut value
may be used. Alternatively, an average of the cut values may
be used. The threshold value is a predetermined value and
signifies the minimum correlation coefficient acceptable to
designate a window as being a match for the template.
Typical values are 0.8 and 0.9. The specific value may vary
based upon the search area or type of date. The specific value
may be determined empirically for different types of data or
search area characteristics.

Local Full Search:

Once the fast search is complete (or during the course of
the fast search), a local full search is performed about each
of the local matches. For a given window of the search area
110 which is a local match, the windows which are within
a 2-dimensional area bounded by the step sizes (for the
respective axes) are tested by a local full search. Note that
the windows which are exactly a step size away along either
axis 114, 116 were already tested during the fast search. To
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do the local full search we test all the intermediary windows
in the area between the local match and the windows plus or
minus one step size away along either axis 114, 116. For
example, given a first axis step size of x and a second axis
step size of y, the windows having a center point which
are+/-0, 1, 2, . . ., x-1 data points away from the locally
matched window along the first axis, and+/-0,1,2,...,y-1
data points away from the locally matched window along the
second axis, are tested during the full search. Although, the
local match need not be recorrelated.

Referring to FIG. 14, the window corresponding to the
local match has a center data point 146. The template is
moved at a step interval of one data point in either direction
along either axis up to but not including the data point which
in one step size away. As the template is moved over this
area, the windows tested during the local full search will
have a center data point 148. FIG. 14 shows all the center
points 148 for a given local full search as black dots for an
implementation in which the first axis step size is four and
the second axis step size is four. FIG. 14 shows the nearby
center points from the fast search as open dots 75.

A correlation is performed between the template 108 and
each window in the vicinity of the local match. For the
vicinity shown in FIG. 14 in which the step is four, there are
48 additional windows tested. Any of the additional 48
windows or the local match which has a correlation coeffi-
cient which equals or exceeds the threshold value is a match
of the template. Alternatively, of the windows where the
correlation coefficient exceeds the threshold value, only the
window or windows having the highest correlation
coefficient(s) are selected as matched. For example, one or
more windows may have the same correlation coefficient
which is highest. As another example the windows corre-
sponding to the top ‘n’ correlation coefficients may be
selected, where each window correlation coefficient also
exceeds the threshold value.

Once the template match is found, the corresponding
window in the search area is the object being tracked. The
relative position of the object within the search area 110 for
the current image frame is compared to the relative position
of the object in the search area for the prior image frame. The
motion vector is derived/updated from the relative positions
to define the movement of the object. In one embodiment,
the vector is a linear vector derived from respective mid-
points of the object from the two image frames. In another
embodiment a more complex vector analysis is performed to
identify rotation or other two-dimensional or three-
dimensional motion of the object being tracked.

In one embodiment the area of the image frame corre-
sponding to the template match is output to the edge energy
modelling subsystem 16, where the edge potential energy of
the object boundary is derived. In addition, a set of data
points along the periphery of the template match is sampled
to serve as an estimate of the current image object boundary.
Such estimate is input to the active contour modelling
subsystem 18.

Implementing the Correlation Function:

The correlation coefficient for a correlation between two
data sets ‘a’ and ‘b’ is defined below. The data set ‘a’ is the
template 108. The data set ‘b’ is a window of the padded
template (or of a rotational offset of the padded template) for
the process of finding the CAPS step sizes. The data set ‘b’
is a window of the search area 110 (or of a rotational offset
of the search area) for the process of identifying candidate
locations, potential template matches or template matches.
Each of data sets ‘a’ and ‘b’ may be a matrix, image or
another set of data points. The correlation coefficient, corr is:
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E{la - E(@)] = [b- E(D)]}
sd(a) = sd(b)

COFr =

which may be simplified to

_ Ela+b) - E@+E®)
N = T @ wsd (D)

where

E(x)=expected value of data set (x)

sd(x)=standard deviation of data set (x)

and corr is between —1.0 and +1.0.

Motion Estimation

Referring again to FIG. 7, motion vectors for an initial
frame are estimated at step 29, while motion vectors for
subsequent frames are estimated at step 49.

The motion vectors Vx, Vy correspond to the flow veloci-
ties u, v described above with regard to a current frame k of
the optical flow methods. The flow velocities, and thus the
motion vectors are estimated using one of the methods
described above (with regard to FIGS. 4 and 5). According
to such methods the data from three frames (e.g., the
previous frame (k-1), the current frame (k) and the next
frame (k+1)) is used to derive the flow velocities. However,
for an initial frame the motion estimation at step 29 relies on
just the data from frames k and k+1. For a subsequent frame
the motion estimation at step 49 relies on the data from
frames k-1, k and k+1. For a last frame there also is an
exception. For a last frame k, where there is no frame k+1,
the data from frames k-1 and k are used. The result of step
29 or step 49 is a velocity estimate for each data point of the
image frame k which is processed. In some embodiments a
motion estimate is derived for all pixels of the frame. For
other embodiments a motion estimate is derived for a subset
of pixels.

Edge Energy

Referring to FIG. 7, edge energy is generated at steps 31
and 53. More particularly, it is edge potential energy which
is derived. Various measures of potential energy may be
implemented. In one embodiment a multiple level wavelet
detection algorithm is used to extract high frequency com-
ponents of an image. The high frequency details are ana-
lyzed to identify image object edges. In a preferred embodi-
ment Haar wavelet detection is used.

The input to be processed to derive edge potential energy
is an image. In one embodiment the image is the entire
image frame. In other embodiments, the image is an image
object (e.g., the template match area found by the CAPS
subsystem 14). The derived edge potential energy is an array
of potential energy for each data point (pixel) of the image.

The input image is decomposed by filtering the image
with a quadrature mirror filter (QMF) pair which brings out
the image details, while simultaneously smoothing the
image. The QMF pair includes a high pass filter for bringing
out the image details, and a low pass filter for smoothing the
image. Referring to FIG. 15 a multiple level QMF decom-
position 150 of an image frame 152 is shown. The image
frame 152 is passed through a low pass filter 154 and a high
pass filter 156 to obtain a low pass component 158 and a
high pass component 160. These components, in turn, are
filtered. The low pass component 158 is passed through a
low pass filter 162 and a high pass filter 164. The output of
low pass filter 162 is lowpass residue 166. The output of
high pass filter 164 is the horizontal detail 165 of the image
frame 152.
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In parallel, the high pass component 160 is passed through
a low pass filter 168 and a high pass filter 170. The output
of the low pass filter 168 is the vertical detail 169 of the
image frame 152. The output of the high pass filter 170 is the
diagonal detail 171 of the image frame 152. The low pass
residue 166 and the three detailing images 165, 169, 171 are
the first level QMF decomposition of the image frame 152.
In some embodiments a second level QMF decomposition
172 also is performed in which the low pass residue 166 is
input similarly through two stages of low pass and high pass
filters to achieve a second-level, low-pass residue and three
detailing images (horizontal detail, vertical detail and diago-
nal detail). In some embodiments the same filters may be
used in the second level decomposition as were used in the
first level decomposition. for example, the low pass residue
166 is merely input to filters 154, 156 instead of the image
frame 152.

The high pass filtering function is a wavelet transforma-
tion (1), while the low pass filtering function is a scaling
function (¢) corresponding with the wavelet. The scaling
function causes smoothing, while the three wavelets bring
out the image details. The scaling function and wavelet
transforms in one dimensional space are given by the
equations below:

Pap(x) ,—¢( 2 ], a>b,be
¥, (x)——1 w(—]a>0 beR
a,b — > s
Where,

¢,4(x) is the family of scaling function at sale a and
translated by b;
), (X) is the family of wavelets at scale a and translated
by b;
a is the scaling factor;
b is the translation desired
¢ is ¢o.0; and
Y vis Yoo
Two dimensional wavelets are defined as tensor products
of the one-dimensional wavelets. The two-dimensional scal-
ing function is ¢(X,y)=¢p(x)*¢(y). The two-dimensional
wavelets are:

P1(62)=6()"$()
Pa(62)=6 () ()
P362)=p () ()

Although the scaling may be varied from one level of
decomposition to another, in one embodiment such scaling
is not varied.

A first level QMF decomposition is performed. For a
second level decomposition the low pass residue 166 of the
first level decomposition is analyzed without further down-
sampling. In some embodiments additional levels of decom-
position may be obtained by passing the low pass residue of
the prior level through a two stage filtering process (similar
to that for the prior levels).

For any given level of decomposition there are four
images: the low pass residue, the vertical detail, the hori-
zontal detail and the diagonal detail. The horizontal and
vertical detail are gradients of the image along x and y axes.
The magnitude of the image is taken at every level of
decomposition. The diagonal details have been omitted in
one embodiment, because they did not contribute signifi-
cantly.
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In a preferred embodiment up to five levels of decompo-
sition are used for each color component of the image frame,
in which the low pass residue from the prior stage is input
to the filters 154, 156 to generate image details and residue
for the current stage. Preferably, only data from the even
levels (e.g., levels 2, 4, and 6) are used to avoid half-pixel
shifts in the edge energy. The integration of the multiple
levels and multiple channel (color component) data is
guided by their principle component. In one implementation
the ratio of multiple-level edge gradients is selected as
1:2:4:8:16 for the five levels of decomposition. With respect
to the color components (Y, Cr, Cb) and motion estimates
(Vx, Vy), edge gradient ratios of 1:1:1:1:1 are used.

In a preferred embodiment the horizontal detail and
vertical detail of a given level (i) of decomposition are
combined to generate the edge potential energy (EPE) for
that level as follows:

EPE (i)=sqrt [horizontal detail®(i)}+vertical detail?(f)]

where i=i-th level of decomposition.
For an embodiment in which 5 levels of decomposition are
executed, the total edge potential energy (EPE) for a given
component are summed together:

EPE ~EPE (2)+2*EPE (4)+4*EPE (6)+8*EPE (8)+16*EPE (10)

where ¢ is the component being processed. In one
embodiment there are five components being pro-
cessed. There is an edge potential energy calculation
for each color component (e.g., Y, Cr, and Cb) and for
each motion estimate (e.g., Vx and Vy). Thus, for each
pixel of an image frame there are three color values and
two motion values. The color values for color Y of each
pixel are processed together to derive an EPE, value.
The color values for color Cr of each pixel are pro-
cessed together to derive an EPE_, value. The color
values for color Cb of each pixel are processed together
to derive an EPE ., value. The motion values values for
motion estimate Vx of each pixel are processed
together to derive an EPE,, value. The motion values
for motion estimate Vy of each pixel are processed
together to derive an EPEy; value.

The overall edge potential energy for the entire frame,
inclusive of all color and motion components is the weighted
sum of the energy from the different components. For a
weighting factor of (1, 1, 1, 1, 1) the total potential energy
is given by:

Total Edge Potential Energy=EPE +EPE +EPE o, +EPE+EPE;

where Y, Cr and Cb are the color components and Vx and
Vy are the motion estimates. In other embodiments R,G
and B color components or those of another color
component model may be used. The weighting factor
may vary depending on the color components model
being used. Similarly additional or alternative motion
components also may be used, such as for a third axis
or for polar coordinates.

The total edge potential energy is an array having an
energy value for each pixel of the image processed. The edge
potential energy is input to the active contour model for use
in object segmentation. In some embodiments the edge
energy is input to the CAPS process. When providing an
input to the CAPS process, the edge energy is being used to
predict where the object being tracked is located in a current
image frame. For such an embodiment, the “motion estima-
tion” step 49 and the “Generate Edge Energy” step 53 are
executed prior to the CAPS step 45 (see FIG. 7).
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Note that in various embodiments, the edge potential
energy is derived before or after the CAPS model executes.
When the edge potential energy is calculated first, a pre-
dicted location for the image object may be derived with the
edge potential energy as an input to the CAPS subsystem 14.
When the CAPS model executes first, the image being
processed for edge potential energy is the template matched
portion of the image frame.

Active Contour Model—Object Segmentation

Once an image object has been identified, the image
boundary (i.e., edge) is segmented to more accurately model
the object edges. The active contour modelling subsystem 18
performs such segmentation. In particular, at step 55 (FIG.
7) an active contour model is applied to segment the image
object boundary.

Input to the active contour model is the derived total edge
potential energy and a current image object boundary. The
total edge potential energy is derived at step 53 (see FIG. 7).
For an initial frame the current image object boundary is the
boundary input to the system at step 23 (see FIG. 7). The set
of data points for the current image object boundary are used
by the active contour model at step 33 (see FIG. 7).

For subsequent image frames, the current image object
boundary is derived by the CAPS subsystem 14, as
described above. The set of data points for the current image
object boundary are used by the active contour model at step
55 (see FIG. 7).

Referring to FIG. 16, a flow chart 192 of the active
contour model includes a first step 194 at which edge points
are received by the active contour modelling subsystem 18.
The number of input edge points may vary. At step 196, the
edge points which are too close together are eliminated, (i.e.,
less than a first threshold distance apart). In one embodiment
points are considered too close together when they are less
than 2.5 pixels apart. In other embodiments the distance may
be smaller or larger. At step 198 additional points are added
by interpolation where the adjacent points are too far apart,
(ie., greater than a second threshold distance apart). In one
embodiment points are considered too far apart together
when they are greater than 6.0 pixels apart. In other embodi-
ments the distance may be smaller or larger than 6.0 while
being larger than the first threshold distance.

At this stage of the process there are a given number of
current edge points, as modified from the input edge points.
Although the number of edge points may vary from contour
to contour, we will describe the process for N current edge
points. At step 200 the active contour modelling subsystem
18 performs global relaxation on the N current edge points.
To do so, for each current edge point, M candidate points are
selected from a box around the current edge point. In one
embodiment M equals 4, although in various embodiments
the number of candidate points may vary. In one embodi-
ment a 5x5 box is used. However, the size of the box may
vary. A larger box leads to a more flexible contour, but more
computation time. The shape of the box may be square,
rectangular or another shape.

Referring to FIG. 17, a 5x5 box 174 of pixels surrounding
the current edge point 176 is divided into four regions 178,
180, 182, 184. Within each region there are 6 pixels. One of
those 6 pixels is selected in each region to be a candidate
pixel (‘point’) which may potentially replace the current
edge point 176 as an object boundary edge point. Thus, 4
candidate points 186—189 are selected for each current edge
point 176. In alternative embodiments a different number of
candidate points, or another method of selecting candidate
points, may be used.

For a given region 78, the candidate point is the pixel
among the 6 potential points which has the highest edge

15

20

25

30

35

40

45

50

55

60

65

24

potential energy. For an image object boundary which has N
current edge points, and where there are M (e.g., four)
alternative candidate points for each one of the N points,
there are (M+1)" (e.g., 5™) possible contours from which to
select the modelled image object boundary. At step 202 a
travel algorithm is applied to the current edge points with the
alternative candidate points to select an optimal contour
path. FIG. 18 shows a travel path diagram for the possible
contours. There are (M+1 (e.g., 5) points in each column.
The five points correspond to a current edge point 176 and
four candidate edge points 186, 189 for such current edge
point 176. The number of points in each row (which also
equals the number of columns) corresponds to N.

To choose the optimal image object boundary, a starting
location 190 on the current contour is selected. Such location
190 corresponds to any given current edge point 176 and its
M=4 candidate edge points 186-189. From each of such
M+1=5 points, an optimal path is derived. Of the 5 resulting
paths the most optimal path then is selected to be the
modelled object boundary. The process for deriving the
optimal path is the same for each of the M+1 paths to be
derived.

Referring to FIG. 19, consider a path that is to start from
edge point 176s. A segment of the path is constructed by
advancing to one of the M+1 points in the adjacent column
s+1. Thus, one choice is to step to point 176(s+1). Another
choice is to step to candidate point 186(s+1). The others
choices include 187(s+1), 188(s+1) and 189(s+1) Only one
choice is selected. The choice is made by determining for
which of the M+1=5 points in column (s+1) the resulting
path has the least difference in energy (e.g., the most energy
savings). The selected point is preserved along with a
distance of how far such point is from the current point in
column s+1. Consider an example where point 186(s+1) is
selected. Such point is preserved along with a distance value
(e.g., in pixels) of far many pixels such point is from the
point 176(s+1).

Similarly, to construct the next segment of the path a point
among the M+1 points in column s+2 is selected. For each
segment along the path only one of the M+1=5 potential
segments are preserved, along with a distance from such
point to the current point 176 in the same column.

The same process is performed to derive a path which
starts from point 186s. A first segment of the path is
constructed by advancing to one of the M+1 points in the
adjacent column s+1. One choice is to step to point 176(s+
1). Another choice is to step to candidate point 186(s+1).
The others choices include 187(s+1), 188(s+1) and 189(s+
1). Only one choice is selected. The choice is made by
determining for which of the M+1=5 points in column (s+1)
the resulting path has the most difference in energy relative
to the current contour 173. The selected point is preserved
along with a distance of how far such point is from the
current point in column s+1. Respective paths starting from
point 187s, 188s and 189s, respectively are constructed in
the same manner. The M+1 resulting paths then are com-
pared to see which one is the most optimal path, (e.g., most
difference in energy relative tot he current contour 173).

According to this method, rather than perform 5%
computations—one for each one of the potential contours—
only M+1D)*(M+1)*N)—(e.g., 5*(5*N))—computations
occur.

The energy difference between a contour which steps to
the current point for a given point among the 5 potential
points at a given step is derived as follows:



US 6,480,615 B1

25

Lo g A AP -
SE;=fi —f = f S
Lo drd v d
EE e
where,
viv2)
flul, u2, vi, vZ):f TEPE =+« ds
(al u2)

T % Y Xivrs Vi)

£, by, a1, by

0=t ¥~ (rars Yers)l

di*=\(as, b)~(a101, biu)l

di=|[(@; b)~(@se1s b)) -[0 Y-yl

d*=|(a;, b)-(x;, ¥

TEPE=total edge potential energy
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segment between two points)

£ represents the integral of the total edge potential energy
along the i-th segment of the current contour;

f! represents the integral of the total edge potential energy
along the i-th segment of the candidate contour;

d,° represents the length of the i-th segment of the current
contour;

d;' represents the length of the i-th segment of the
candidate contour;

d;? represents the distance between the two segments
when we look at them as vectors;

d;? represents the distance between the i-th current con-

tour point and the i-th candidate contour point.

The terms d,° and d,* correspond to tension in the contour.
The term d,? corresponds to stiffness for keeping the shape
of the modelled contour similar to the current contour. The
term d;> corresponds to pressure to keep the candidate
contour close to the current contour. The optimal contour is
the one having the optimal AE. In one embodiment this is the
maximum AE. In other embodiments negative TEPE is used
instead, so optimum becomes the minimum AE.

At the completion of step 202, the optimal contour is a
polygon. As a result, the points identified at step 202 selected
from the travel algorithm, may or may not be on the actual
smooth object boundary. Thus, fine tuning is performed at
step 204.

Each segment of the optimal contour includes the points
selected using the travel algorithm as end points, along with
the pixels in between. The pixels in between although not
part of the travel problem are part of the input image being
processed. In the fine tuning process the pixel along the
segment having the highest edge potential energy is selected
as the most reliable point of such group for being on the
actual object boundary. A most reliable point is selected for
each segment of the polygon (i.e., optimal contour path
output from the travel algorithm). Points then are selected to
be filled in between the most reliable points using the

10

15

20

25

30

35

45

50

60

65

26

criteria: (i) a new point should be 8 connected to a previ-
ously selected boundary point, and (ii) the distance of the
new boundary point to the next boundary point should be
less than the distance from the previous boundary point to
the next boundary point.

Once the object boundary has been fine tuned, the active
contour process is repeated with the object boundary of the
prior iteration being the current edge points. Global relax-
ation then is performed again at step 200 to select alternative
candidate points for the current edge points. Then the travel
algorithm is reapplied at step 202, followed by fine tuning at
step 204. After the fine tuning step, at step 206 an iteration
count is tested to determine if a maximum number of
iterations have been executed. If a maximum number of
iterations has occurred, then the edge points making up the
fine tuned boundary are the image object boundary points
output at step 57 (see FIG. 7). If not, then at step 208 the
contour is checked to see if it has changed from the prior
iteration. If it has not changed then the edge points making
up the fine tuned boundary are the image object boundary
points. If the contour has changed, then the process is
repeated commencing at step 200 with the global relaxation
process.

Meritorious and Advantageous Effects

By adaptively defining the image gradients (spatial and
temporal or just temporal), artifacts resulting from occlu-
sions can be avoided for cases where the optical flow is
varying smoothly, (i.e., generally constant from frames k-1
through k, although some variation may occur).

Although a preferred embodiment of the invention has
been illustrated and described, various alternatives, modifi-
cations and equivalents may be used. For example, although
specific edge detection and averaging kernels are presented
(equations VI, XI and XII), more sophisticated edge detec-
tors and averaging kernels may be used, instead, to initialize
the spatial and/or temporal gradients. Also, to further gen-
eralize the optical flow determination, the parameter S may
be refashioned as a parameter, s,,, by convolving S with a
smoothing kernel, as for example by equation (XVII):

8,0, Ky=(Vie)[4-5"4 (i )
+2-5P (i1, K)+2-SP0(i41,,K)
+2-80 (0, j+1,k)+2-87(1,j-1,k)
+SFO(I+1,+1,k)
+SP(-1,j-1,h)+S"(i+1,j-1,k)

+§MO(i-1,7+1,k)] (XVID)

The inventions described herein are applicable to various
optical flow determinations, including but not limited to
hierarchical optical flow techniques, temporal refinement
optical flow techniques, and color optical flow techniques.
Such determinations are useful for many computer vision
compression techniques, such as motion detection, object
tracking, video conferencing, MPEG-4 encoding, and more.
Such determinations also may be applied to data compres-
sion methods. Therefore, the foregoing description should
not be taken as limiting the scope of the inventions which are
defined by the appended claims.

What is claimed is:

1. A method of predetermining the optical flow of a
plurality of image pixels in an image frame, k, among a
sequence of image frames, k-1, k and k+1, the method
comprising the steps of:

initializing for the plurality of image pixels adaptive

horizontal spatial gradients, adaptive vertical spatial
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gradients, adaptive temporal gradients, horizontal
image velocity and vertical image velocity, wherein
said adaptive horizontal spatial gradients, adaptive ver-
tical spatial gradients and adaptive temporal gradients
are derived from said image frames k-1, k and k+1;

iteratively determining for a given pixel of said plurality
of image pixels for frame k, a series of acts, including:

estimating a horizontal spatial gradient at the given pixel
from the adaptive horizontal spatial gradient at said
given pixel;

estimating a vertical spatial gradient at the given pixel
from the adaptive vertical spatial gradient at said given
pixel;

estimating a temporal gradient at the given pixel from the
adaptive temporal gradient at said given pixel;

estimating horizontal image velcity and a vertical image
velocity at the given pixel based on a weighted local
average of horizontal image velocity, a weighted local
average of vertical image velocity, the estimated hori-
zontal and vertical spatial gradients and the estimated
temporal gradient;

determining whether to execute another iteration for said
given image pixel;

when executing another iteration, estimating the weighted
local average of the horizontal image velocity and the
weighted local average of the vertical image velocity;
and

when not executing another iteration accepting the esti-
mated horizontal image velocity and the estimated
vertical image velocity of the given pixel as the optical
flow for the given pixel.

2. The method of claim 1, further comprising the steps of:

iteratively determining for each other pixel of said plu-
rality of image pixels for frame k, a series of acts for
estimating the horizontal spatial gradient, the vertical
spatial gradient, the temporal gradient, the horizontal
image velocity and the vertical image velocity,
respectively, of said each other pixel.

3. Amethod for determining the optical flow of a plurality
of image pixels in an image frame, k, among a sequence of
image frames, k-1, k and k+1, the method comprising the
steps of:

initializing for the plurality of image pixels a horizontal
spatial gradient, a vertical spatial gradient, adaptive
temporal gradients, horizontal image velocity and ver-
tical image velocity, wherein the adaptive temporal
gradients are derived from image frames k-1, k and
k+1;

iteratively determining for a given pixel of said plurality
of image pixels for frame k, a series of acts, including:

estimating a temporal gradient at the given pixel from the
adaptive temporal gradients at said given pixel;

estimating a horizontal image velocity and a vertical
image velocity at the given pixel based on a weighted
local average of horizontal image velocity, a weighted
local average of vertical image velocity, the horizontal
and vertical spatial gradients and the estimated tempo-
ral gradient;

determining whether to execute another iteration for said
image pixel;

when executing another iteration, estimating the weighted
local average of the horizontal image velocity and the
weighted local average of the vertical image velocity;
and
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when not executing another iteration accepting the esti-
mated horizontal image velocity and the estimated
vertical image velocity of the given pixel as the optical
flow for the given pixel.

4. The method of claim 3, further comprising the steps of:

iteratively determining for each other pixel of said plu-
rality of image pixels for frame k, a series of acts for
estimating the temporal gradient, the horizontal image
velocity and the vertical image velocity, respectively, of
said each other pixel.

5. A method for tracking an image object within a

sequence of image frames, the method comprising:

determined for a current image frame whether there has
been a change of scene;

where there has not been a change in scene, searching the
current image frame for presence of the image object;

where presence of the image object has been found,
identifying a first set of data points corresponding to the
image object and a second set of N data points corre-
sponding to an initial estimate of the desired contour of
the image object, wherein said second set of data points
define a current object contour, the first set of data
points including at least the second set of data points;

determining the optical flow for the first set of data points
based on the current image frame, a previous image
frame and a subsequent image frame;

deriving edge potential energy for the first set of data
points based at least in part on the determined optical
flow;

refining the current object contour into the desired contour
using the current object contour, and the derived edge
potential energy.

6. The method of claim §, in which the step of determin-

ing the optical flow for the first set of data points, comprises:

initializing for the first set of data points adaptive hori-
zontal spatial gradients, adaptive vertical spatial
gradients, adaptive temporal gradients, horizontal
velocity and vertical image velocity, wherein said adap-
tive horizontal spatial gradients, adaptive vertical spa-
tial gradients and adaptive temporal gradients are
derived from said current image frame, said previous
image frame and said subsequent image frame;

iteratively determining for a given data point among said
first set of data points, a series of acts, including:

estimating a horizontal spatial gradient at the given data
point from the adaptive horizontal spatial gradient at
said given data point;

estimating a vertical spatial gradient at the given data
point from the adaptive vertical spatial gradient at said
given data point;

estimating a temporal gradient at the given data point
from the adaptive temporal gradients at said given data
point;

estimating a horizontal image velocity and a vertical
image velocity at the given data point based on a
weighted local average of horizontal image velocity, a
weighted local average of vertical image velocity, the
horizontal and vertical spatial gradients and the esti-
mated temporal gradient;

determining whether to execute another iteration for said
given data point;

when executing another iteration, estimating the weighted
local average of the horizontal image velocity and the
weighted local average of the vertical image velocity;
and
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when not executing another iteration accepting the esti-
mated horizontal image velocity and the estimated
vertical image velocity of the given data point as the
optical flow for the given data point.
7. The method of claim 6, further comprising the steps of:
iteratively determining for each other data point among
the first set of data points, a series of acts for estimating
the horizontal spatial gradient, the vertical spatial
gradient, the temporal gradient, the horizontal image
velocity and the vertical image velocity, respectively, of
said each other data point.
8. The method of claim 6, further comprising the steps of:
for each one data point among said second set of data
points, selecting a corresponding plurality of M candi-
date data points from the first set of data points, the
second set of data points and the corresponding plu-
rality of candidate data points forming an array of
(M+1) by N data points;

selecting a starting set of M+1 data points, which includes
a data point among the second set of data points and its
corresponding plurality of M candidate data points;

for each data point among the starting set of M+1 data
points, selecting an optimal object contour path to
derive M+1 optimal object contour paths, in which each
one optimal contour path is selected segment by
segment, wherein a next segment is added to said each
one optimal object contour path by selecting one data
point among an adjacent set of M+1 data points, the
adjacent set of M+1 data points including a data point
from the second set of data points and its corresponding
plurality of candidate data points, the selected one data
point for said next segment being selected by calculat-
ing an energy difference relative to the current object
contour for each one data point among said adjacent set
of M+1 data points; and
selecting one of the M+1 optimal object contour paths.
9. The method of claim 8, in which the step of selecting
a corresponding plurality of M candidate data points from
the first set of data points, comprises, for each one data point
among said second set of data points:
grouping into M groups, the data points in the vicinity of
said one data point of the second set of data points; and

selecting as a candidate data point, the data point from
each one of the M groups which has the optimal edge
potential energy.
10. The method of claim 5, in which the step of deter-
mining the optical flow for the first set of data points,
comprises:
initializing for the first set of data points a horizontal
spatial gradient, a vertical spatial gradient, adaptive
temporal gradients, horizontal image velocity and ver-
tical image velocity wherein the adaptive temporal
gradients are derived from image frames current image
frame, said previous image frame and said subsequent
image frame;
iteratively determining for a given data point among said
first set of data points, a series of acts, including:

estimating a temporal gradient at the given data point
from the adaptive temporal gradients at said given data
point;

estimating a horizontal image velcity and a vertical image

at the given data point based on a weighted local
average of horizontal image velocity, a weighted local
average of vertical image velocity, the horizontal and
vertical spatial gradients and the estimated temporal
gradient;
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determining whether to execute another iteration for said
given point;
when executing another iteration, estimating the weighted
local average of the horizontal image velocity and the
5 weighted local average of the vertical image velocity;
and

when not executing another iteration accepting the esti-
mated horizontal image velocity and the estimated
vertical image velocity of the given data point as the
optical flow for the given point.

11. The method of claim 10, further comprising the steps

of:

iteratively determining for each other data point among
the first set of data points, a series of acts for estimating
the temporal gradient, the horizontal image velocity
and the vertical image velocity, respectively, of said
each other data point.

12. The method of claim 10, further comprising the steps

of:

for each one data point among said second set of data
points, selecting a corresponding plurality of M candi-
date data points from the first set of data points, the
second set of data points and the corresponding plu-
rality of candidate data points forming an array of
(M+1) by N data points;

selecting a starting set of M+1 data points, which includes
a data point among the second set of data points and its
corresponding plurality of M candidate data points;

for each data point among the starting set of M+1 data
points, selecting an optimal object contour path to
derive M+1 optimal object contour paths, in which each
one optimal contour path is selected segment by
segment, wherein a next segment is added to said each
one optimal object contour path by selecting one data
point among an adjacent set of M+1 data points, the
adjacent set of M+1 data points including a data point
from the second set of data points and its corresponding
plurality of candidate data points, the selected one data
point for said next segment being selected by calculat-
ing an energy difference relative to the current object
contour for each one data point among said adjacent set
of M+1 data points; and

selecting one of the M+1 optimal object contour paths.

13. The method of claim 12, in which the step of selecting
a corresponding plurality of M candidate data points from
the first set of data points, comprises, for each one data point
among said second set of data points:

grouping into M groups, the data points in the vicinity of
said one data point of the second set of data points; and

selecting as a candidate data point, the data point from
each one of the M groups which has the optimal edge
potential energy.

14. A system for determining the optical flow of a
plurality of image pixels in an image frame, k, among a
sequence of image frames, k-1, k and k+1, the system
comprising:

a processor which initializes, for the plurality of image
pixels, adaptive horizontal spatial gradients, adaptive
vertical spatial gradients, adaptive temporal gradients,
horizontal image velocity and vertical image velocity,
wherein said adaptive horizontal spatial gradients,
adaptive vertical spatial gradients and adaptive tempo-
ral gradients are derived from said image frames k-1,
k and k+1;

a processor which iteratively determines for a given pixel
of said plurality of image pixels for frame k, a series of
estimates, including:
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an estimate of a horizontal spatial gradient at the given
pixel from the adaptive horizontal spatial gradient at
said given pixel;

an estimate of a vertical spatial gradient at the given pixel
from the adaptive vertical spatial gradient at said given
pixel;

an estimate of a temporal gradient at the given pixel from
the adaptive temporal gradient at said given pixel;

an estimate of a horizontal image velocity and a vertical
image velocity at the given pixel based on a weighted
local average of horizontal image velocity, a weighted
local average of vertical image velocity, the estimated
horizontal and vertical spatial gradients and the esti-
mated temporal gradient;

wherein the iteratively determining processor determines
whether to execute another iteration for said given
image pixel, when executing another iteration, the
iteratively determining processor estimating the
weighted local average of the horizontal image velocity
and the weighted local average of the vertical image
velocity, and when not executing another iteration the
iteratively determining processor accepting the esti-
mated horizontal image velocity and the estimated
vertical image velocity of the given pixel as the optical
flow for the given pixel.

15. The system of claim 14 for tracking an image object
within a sequence of image frames, the system further
comprising:

means for determining for a current image frame whether

there has been a change of scene;

where there has not been a change in scene, means for
searching the current image frame for presence of the
image object;

where presence of the image object has been found,
means for identifying a first set of data points corre-
sponding to the image object and a second set of data
points corresponding to an initial estimate of the
desired contour of the image object, wherein said
second set of data points define a current object
contour, the first set of data points including at least the
second set of data points;

means for deriving edge potential energy for the first set
of data points based at least in part on the determined
optical flow; and

means for refining the current object contour into the
desired contour using the current object contour, and
the derived edge potential energy.

16. A system for determining the optical flow of a
plurality of image pixels in an image frame, k, among a
sequence of image frames, k-1, k and k+1, the system
comprising:

15

25

30

35

40

45

50

32

a processor which initializes, for the plurality of image
pixels, a horizontal spatial gradient, a vertical spatial
gradient, adaptive temporal gradients, horizontal image
velocity and vertical image velocity, wherein the adap-
tive temporal gradients are derived from image frames
k-1, k and k+1;

a processor which iteratively determines for a given pixel
of said plurality of image pixels for frame k, a series of
estimates, including:

an estimate of a temporal gradient at the given pixel from
the adaptive temporal gradient at said given pixel;

an estimate of a horizontal image velocity and a vertical
image velocity at the given pixel based on a weighted
local average of horizontal image velocity, a weighted
local average of vertical image velocity, the horizontal
and vertical spatial gradients and the estimated tempo-
ral gradient;

wherein the iteratively determining processor determines
whether to execute another iteration for said given
image pixel, when executing another iteration, the
iteratively determining processor estimating the
weighted local average of the horizontal image velocity
and the weighted local average of the vertical image
velocity, and when not executing another iteration the
iteratively determining processor accepting the esti-
mated horizontal image velocity and the estimated
vertical image velocity of the given pixel as the optical
flow for the given pixel.

17. The system of claim 16 for tracking an image object
within a sequence of image frames, the system further
comprising:

means for determining for a current image frame whether
there has been a change of scene;

where there has not been a change in scene, means for
searching the current image frame for presence of the
image object;

where presence of the image object has been found,
means for identifying a first set of data points corre-
sponding to the image object and a second set of data
points corresponding to an initial estimate of the
desired contour of the image object, wherein said
second set of data points define a current object
contour, the first set of data points including at least the
second set of data points;

means for deriving edge potential energy for the first set
of data points based at least in part on the determined
optical flow; and

means for refining the current object contour into the
desired contour using the current object contour, and
the derived edge potential energy.
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