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Abstract—Neural network classifiers have been shown to
provide supervised classification results that significantly improve
on traditional classification algorithms such as the Bayesian
(maximum likelihood [ML]) classifier. While the predominant
neural network architecture has been the feedforward multilayer
perceptron known as backpropagation, Adaptive resonance
theory (ART) neural networks offer advantages to the classifica-
tion of optical remote sensing data for vegetation and land cover
mapping. A significant advantage is that it does not require prior
specification of the neural net structure, creating as many internal
nodes as are needed to represent the calibration (training) data.
The Gaussian ARTMAP classification algorithm bases the prob-
ability that input training samples belong to specific classes on
the parameters of its Gaussian distributions: the means, standard
deviations, and a priori probabilities. The performance of the
Gaussian ARTMAP classification algorithm in terms of classifi-
cation accuracy using independent validation data indicated was
over 70% accurate when applied to an annual series of monthly
1-km advanced very high resolution radiometer (AVHRR) satel-
lite normalized difference vegetation index (NDVI) data. The
accuracies were comparable to those of fuzzy ARTMAP and a
univariate decision tree, and significantly higher than a Bayesian
classification algorithm. Algorithm testing is based on calibration
and validation data developed and applied to Central America to
map the International Geosphere-Biosphere Programme (IGBP)
land cover classification system. Thus, it provides a realistic test of
the algorithms for operational classification of a regional remote
sensing and site dataset.

|. INTRODUCTION
A. MODIS 1-km Land Cover and Land Cover Change

B

MODIS algorithms that generate model parameters such as
leaf area index/fraction of photosynthetically active radiation
(LAI/FPAR), bidirectional distribution function (BRDF), and
surface temperature, and directly by providing land cover
inputs to models.

The principal inputs to the quarterly land cover products are
monthly BRDF, BRDF-corrected nadir surface reflectances,
vegetation index, snow cover, land surface temperature, and
spatial texture for a one-year sequence [1]. We have examined
several different types of decision tree (DT) and artificial neural
network classification algorithms to develop the land cover
product. The DT classifiers include univariate decision trees
[2], multivariate decision trees [3], and hybrid trees [4]. The
neural network algorithms include two Adaptive Resonance
Theory (ART) systems: Fuzzy ARTMAP [5]-[7] and Gaussian
ARTMAP [8], [9]. Evaluation of these ARTMAP and DT
classification algorithms using several remote sensing data sets
has shown that they produce comparable results that are consis-
tently superior to those produced by maximum likelihood (ML)
classification [10], [11]. The primary land cover classification
system to be mapped is the 17-class IGBP classification [12].

B. Objectives

The purpose of this research is to compare the Gaussian
ARTMAP classification algorithm with another ART artificial
neural network, and with decision tree and traditional Bayesian
(ML) classification algorithms. Algorithm testing is based on
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is based on the distance between the pixel value and a scdladkpropagation phase, the synapse weights are adjusted so
and variance/covariance-corrected class mean [5]. The pixethat the network output vector more closely matches the desired
then assigned to that class to which the weighted distance is thitput vector, which is a binary-coded representation of the
lowest (i.e., to which it has the highest probability of belongingjraining class. The network weights are adjusted by feeding the
The principal assumptions of MLC are that the input channedsmmed squared errors from the output layer back through the
are Gaussian (normally) distributed and that the training datalden layers to the input layer. The network cycles through the
statistics for each class, which can be thought of as samples,taa@ing set until the synapse weights have been adjusted so that
also normally distributed. The assumption of equal probabiliti¢ise network output has converged, to an acceptable level, with the
can be modified by applying prior probabilities [15], whichdesired output. The trained neural network is then given new data
neural networks can also use. [16]. MLC has a long history ahd the internal synapses guide the processing flow through ex-
use, and is an efficient algorithm that is easy to understanilementand inhibition of neurons. This results in the assignment
and modify. Weaknesses of MLC are that its assumptions @ffthe input data to the output classes [1]. Backpropagation re-

normality and of equal probability are often incorrect. quires that the number of internal layers be specified beforehand
based on empirical results and understanding of the relationship
B. Decision Tree Classification Algorithm between training/testing and the inputimage datafeatures [24].

Decision trees have been widely applied to remotely sensed?) Adaptive Resonance TheonART networks are funda-
data for land cover and vegetation characterization [17]_[2@1_entally d'lffergnt than packpropagat|on algorithms. The neural
A decision tree is a divisive classification procedure that recJf€ts used in this analysis are from the class of ART [5] networks,
sively partitions a data set into subdivisions based on tests §iluding fuzzy ART [6], [7] and Gaussian ARTMAP [8], [9].
fined at each branch (or node) in the tree [2]. A decision treefXT neural networks process inputs into categories, with the
composed of a root node comprising all of the data, a set of #Rt€gory formation being governed by a set of three parame-
ternal nodes (splits), and a set of terminal nodes (leaves). E&¥$- The vigilance parameter)fegulates how broad a category
internal node in a decision tree has one parent node, and #Right be. The match function then determines if a selected cat-
or more descendant nodes. Using this framework, a data se98"Y is sufficiently appropriate to meet the vigilance criteria.
classified according to the decision surfaces defined by the tré8€se categories are related to specific output classes in such a
and class labels are assigned to each observation according@y that they represent multiple, nonlinear partitions of feature
the leaf node into which the observation falls. The decision trégace that map to output classes [8].
algorithms can use univariate [21], bivariate and multivariate [3] ART models form stable recognition categories in response to
criteria [4]. Hybrid decision trees [10] use multiple classificaarbitrary inputs. The original ART network categorized binary
tion algorithms on different subtrees within the framework of mputs using unsupervised or “teacher-less” learning. ART 2 is

single, larger decision tree structure. an extension of ART that allows for categorization of analog in-
o . puts. ART incrementally clusters inputs into stable categories,
C. Neural Network Classification Algorithms with the number of categories a function of the vigilance pa-

Neural nets are complex and dense systems of nonliné@feterp. The vigilance parameter determines how broad cate-
computational elements that are patterned after bioneurologiggries might be in feature space based on the networks distance
systems that are composed of computational nodes that @dric. Thus, ART incrementally creates the number of cate-
linked by adaptive weights. Neural nets are seIf-organizinQPfieS that are needed to define clusters of input samples, with
adaptive and nonlinear [22]. For networks in general, gain cotfie inclusiveness of the categories inversely relatgd[&).
trol, vigilance and choice parameters determine how inputs arel he ART activation function provides an estimate of the like-
matched to existing categories of outputs and how “noveltiethood that an input belongs to a specific category, while the
are detected. Neural nets must be both plastic, that is ablenatch function determines if the category is similar enough to
recognize new inputs, and stable, that is, insensitive to all i€ input to satisfy the vigilance parameter. Activation of a cate-
the important changes. Mathematically, the most importag@@ry (Fz node) can be interpreted as making a hypothesis about
component is the transfer function which determines howaa input [8], [9].
neuron will scale its response to incoming signals and produce an ARTMAP: ARTMAP extends ART into a supervised
activation. The transfer functions are generally threshold-logi@assification mode by using the ARTs unsupervised clustering.
hard-limit, continuous function (sigmoidal) nodes, and radi&iRT categories (hidden units or, Fhodes) learn predictions
basis functions [23]. or mappings to output classes during training. If a chosen

1) Backpropagation:The neural network backpropagatiorcategory makes the wrong prediction, the vigilance parameter
classification algorithm is composed of layers of neuroris temporarily raised to the level needed to reset the category.
that are interconnected through weighted synapses. The flfghe chosen category satisfies the match function, the system
layer (F1) consists of the classification input variables arr@sonates and learning has been achieved. This match tracking
the layer output consists of a binary vector representing thearantees that for a given input, the category (or categories if
output classes. Intermediate, hidden layers provide an interdatributed learning are used) that resonates has a better match
representation of neural pathways through which input data dnan all other categories that are reset. So ARTMAP organizes
processed to arrive at output values or conclusions [1]. the clustering of the data based on predictive feedback from the

In a supervised mode, input variables are fed forward throutgtbels that it assigns to the categories (clusters), as well as by
the network to produce an output vector. During a followingow the data are distributed in feature space [8].
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Activation: Gaussian distributions with a priori probabilities. most probable class prediction rather than basing the prediction
solely on the maximum ART category as in Fuzzy ARTMAP.
Calibrating (training) Gaussian ARTMAP only requires esti-
c mating category means, covariances, amtiori probabilities
from the training data. The Gaussian distributions themselves
x must be separable. Gaussian ARTMAP can fit data that vary
between dimensions, but not that covary. This would require
Match: Gaussian distributions with unit height. that each category store a covariance matrix. Like the MLC al-
gorithm, Gaussian ARTMAP is based on the assumption that,
for each category, the input channels are normally distributed.
However, because multiple categories can map to a single output
class, there is no assumption that the class conditional distribu-
tions are normal. Rather, the assumption is that they are mixtures
of normal distributions [8], [9].
Fig. 1. Gaussian ARTMAP activation and match functions. In a supervised mode, Gaussian ARTMAP chooses an output
class with the highest conditional probability and also provides
an indication of the strength of the relationship with the test data.
(f?\aussian ARTMAP represents the input data density with sep-
arable Gaussian distributions, with the number and inclusivity
the distributions a function of the vigilance parameter. Both
zy and Gaussian ARTMAP most efficiently represent data

B

Fuzzy ARTMAP:Fuzzy ARTMAP, like ARTMAP, ex-
tends the binary ART 1 to the analog domain by using the
AND fuzzy operator instead of thelogical intersection. Fuzzy
ARTMAP input vectors are complement coded, which mak
the denominator of the match criteria a constant. Each categ . ;

(4) is initialized with a weight vectotv,. The choice function tare uncorrelat'ed across dimensions.
(«) selects the nonreset category with the highest activation tt&?ir he. primary dlﬁgrence betwee.n Fuzzy AR.TMAP af‘d
aussian ARTMAP is the use of different statistics to define

is determined by the size of the weight vector. If the choice p%\ch category. Rather than representing an interval within

rametek is small, broad categories in feature space are favore ich dimension, as is the case with Fuzzy ARTMAP, Gaussian

If «is large, categories with large weight vectors, and thus tig TMAP represents the mean and variance. In addition

c:ategories,arefavored.Thematchcriterionrequiresthatacho&eanussian ARTMAP represents the priori probabilities of

category’s weight vector be sufficiently close to the inputvect%e category. There is potential inefficiency in the fuzzy

[8]. ART classifiers have been found to be an improvement %%tegories, which are defined by the minimum and maximum

traditional classifiers in some respects. ARTMAP dynamics are : L . -

fast, stable, and scalable, overcoming common limitations |8£each_d|men3|_on n term_s of th_elr ability to support smooth
' ' ! . dgeneralizations in higher dimensions [8].

other neural networks such as backpropagation [1].

3) Gaussian ARTMAP Classification Algorithn@aussian
ARTMAP is an adaptation to ART that is based on using IIl. TESTSITE AND DATA
Gaussian distributions to define the category choice functions.

For each category, there is an associaegtiori probability A. Site Data

and amean and variance in each input dimension. The Gaussiaphe dimensions of the study area are 11691813-km

ART activation function evaluates the probability that an inpdyHRR pixels, bounded by to 9 N and 77.22 to 9%
belongs to a category’s distribution, as well as the categary’sy (Fig. 2). The regional site comprises southern Mexico,
priori probability (Fig. 1). The match function (Fig. 1) is base@&uatemala, Belize, Honduras, El Salvador, Nicaragua, Costa
on how well the input fits the category’s distribution, which iRica, and Panama. Central America includes a diverse array
normalized to unit height. The likely class prediction is basesf natural and human-modified landscapes including broadleaf
on these activations [8], [9]. For Gaussian ARTMAP, higlavergreen, deciduous and semi-deciduous forests, pine savanna
vigilance () means that more internal categories are creatgfld woodlands, swamp and mangrove forests, herbaceous wet-
by the network to match input data to output categories; theénds, and agricultural types. As such, it provides an excellent
categories are less broad in the feature space. test for regional classification.

Gaussian ARTMAP accommodates choice and distributedThe data for training and testing the supervised classifiers
learning. In choice learning, the maximally activated categoryvgere developed by Boston University, the Stanford University
chosen. That is, the chosen category’s match function satisf®snter for Conservation Biology, Stanford, CA, The Nature
the vigilance criterion, and the category resonates and leaG@esnservancy, and the Central America Vegetation Working
the prediction. In distributed learning, each category is assign@doup of the Comision de la Centroamericana de Ambiente
credit based on the proportion of the net activatiomlbicate- y Desarrollo (CCAD), which was established to support
gories whose match function satisfies the vigilance criterionegetation mapping and monitoring in Central America. Pairs
When Gaussian ART is extended to Gaussian ARTMAP, tlu¢ analysts delineated training/testing sites on Landsat thematic
prediction of an output class during testing is akin to picking thmapper (TM), Systeme pour I'Observation de la Terre Haute
class with the highest net probability. This is similar to method®esolution Visible (SPOT-HRV), and AVHRR data, and
of potential and radial basis functions. The activation of aflopulated the database based on field, plot and ancillary map
categories sharing the same prediction are summed to yield tlaa at two workshops held in Guatemala and Nicaragua.
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Fig. 2. Study area and test site locations.
428 sites were distributed among the 17 IGBP classes and ex- TABLE |
tracted from 18 Landsat TM and 2 SPOT-XS multispectral (XS) SITE DISTRIBUTION BY IGBP LAND COVER CLASS
scenes (Fig. 2, Table I). The criteria for selecting sites were that mean
t_hey were a_t Ieas_t 2 knx 2 krr_1 and that they be representa- 45 IGBP Class sites| pixels | area
tive of the bioregions, vegetation, and land cover classes. The (km?) | (km?)
site polygons were also defined to be within larger patches of ™1 [Evergreen needleleaf forest | 42 15241 36.3
classes, with at least a 1-km buffer from the polygon boundary 2 |Evergreen broadleaf forest | 131 3629| 27.7
to the patch boundary. This was to ensure that misregistration _3 |Deciduous needleleaf forest | 0 0 0.0
and mislocation of the AVHRR data and the co-referenced TM _4__|Deciduous broadleaf forest 15 386 257
or SPOT data would not permit a training polygon to actually 3 _|Mixed forest 25 847) 33.9
represent land cover outside of the patch. After a quality assur- s 8Iosed ;hr;blagds 140 156; 39.0
ance check was performed to ensure that the site data labels wer pen SANBancs 336| 33.6
. 8 |Woody savannas 12 469} 39.1
correct, 20 sites were removed from the database because the 5 TSavannas 5 2071 331
were _either_ ob_viously _misl_abeled or dio_l not meet the minimum 5 Grassiands >7 845 31:3
site size criteria resulting in 408 total sites. 11 |Permanent wetlands 20 8421 211
Feature extraction and parameterizing the database involved™ 12 |[Croplands 51 1068] 38.6
assigning labels to appropriate categories of a suite of parame-_13 |Urban and built-up 16 269 16.8
ters based on the System for Terrestrial Ecosystem Parameteri _14 _|Cropland mosaics 10 370| 37.0
zation (STEP) Model and database [25]. STEP provides for ex- _15_[Snow/ice 0 0
plicit description of the structural, functional, and compositional 13 Svar:e”;rd?parse'y vegetated 1:; 72? ;g'g
; ; PP ater bodies .
components of the vegetation and landscape tied to specific sites tolals 708 1 13501137 11

and plots. The primary purpose of STEP is to provide a com-
prehensive model of the land surface that can be used to train

and test algorithms and to validate land surface products. Forrpgthe U.S. Geological Survey EROS Data Center (USGS-EDC),
sites are established and described based on high-resolutiorBiuler, CO [35], in lieu of MODIS data that will be used for
mote sensing data, ancillary data, and field plot data. STERnerating global 1-km land cover when data become available
can be used to translate multiple classification systems betgffowing its recent launch on the Terra (EOS-AM) platform
than commonly used look-up table approaches. This accomm®2000. NDVI is based on the relationship of reflected red and
dates the wide array of classifications used by various modelsar-infrared reflectance that is highly correlated with both leaf
to parameterize biophysical processes such as those of the Biea index (LAI) and biomass. The monthly data provide an
sphere—atmosphere transfer scheme (BATS) [26], Biome-BGf{gication of overall greenness of the vegetation, and can be used
[27]-[31], land surface model (LSM) [32], the simple biospherg characterize the phenology of vegetation. The AVHRR data
model (SiB) [33], and the SiB2 [34]. were monthly composited using maximum NDVI to remove
cloud and topographic effects and extreme off-nadir pixels [35],
[36], as well as scan angle dependence of radiance [37]. Addi-

The primary remotely sensed data used in this study drenal bidirectional reflectance distribution function (BRDF) or
monthly composited AVHRR NDVI) data for 1992—-93 providedtmospheric correction was not employed.

B. Remotely Sensed Data
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TABLE 1

REGIONAL IGBP QLASSIFICATION RESULTS (MEAN PERCENT CLASSIFICATION ACCURACY OF FIVE RUNS)

IGBP train/test Gaussian Fuzzy

Class Class Name pixels pTc MLC | ARTMAP | ARTMAP
1 Evergreen needleleaf forest 1515 74.87 54.63 84.49 79.00
2 Evergreen broadleaf forest 3575 84.55 87.11 91.55 79.00
3 Deciduous needleleaf forest
4 Deciduous broadieaf forest 370 63.82 63.26 75.41 83.90
5 Mixed forest 845 65.55 38.55 72.31 76.90
6 Closed shrublands 125 54.15 23.26 46.40 83.00
7 Open shrublands 335 65.66 37.71 82.69 93.00
8 Woody savannas 470 65.12 24.92 77.66 85.80
9 Savannas 60 34.25 5.36 15.00 78.10
10 Crasslands 845 70.48 49.26 78.22 81.20
11 Permanent wetlands 800 65.92 46.14 72.00 80.60
12 Croplands 1950 70.37 57.01 83.69 68.00
13 Urban and built-up 265 57.25 64.89 71.32 82.90
14 Cropland mosaics 365 68.62 35.10 76.99 91.70
15 Snow/Ice
16 Barren or sparsely vegetated 35 29.83 17.71 28.57 72.20
17 Water bodies 440 98.48 94.10 97.05 95.40

total/mean 11995 74.79 52.28 82.77 79.30
The use of the monthly-composited AVHRR data may be TABLE Il

problematic [36]. Compositing is biased toward SelectinSAUSSIAN ARTMAP p VALUES, CLASSIFICATION ACCURACY, AND F, NODES

off-nadir pixels, especially in forward-scanning views in winter oSt
months in the northern hemisphere [38]. As with any large-area accuracy samples
projection, they also found that the effective mapping unit was rho %) |F2nodes | gt
geographically variable. In this case, errors due to the Goode’s classified
homolosine projection system and resampling methods [35] 0.001]  91.20 427 0
were most probably minimal compared to those caused by 0‘001 gl'gg f‘é; 8
misregistration and varying viewing/illumination artifacts. 02 9120 228 0
Lack of sensor calibration confuses the temporal trajectory 03 91.32 434 0
of the multitemporal NDVI signal [39]. A land/sea mask was 0.4 91.00 448 0
applied to the AVHRR data as part of the processing. Temporal 05 92.02 502 0
smoothing or generalization might enhance the meaning of the 8-3 gigg ggg g
temporal signal [40], but was not applied to the data set used in 08 54.85 7446 0
this study. While the use of temporal metrics such as month of 0.9 93.83 2833 0
maximum NDVI and annual range of NDVI have been shown 0.95 91.10 4000 2.53
to improve classification accuracy [41], [42], the monthly data 0.99 64.59 4000 11.03

were used as simple features in the classification process.

The 1—I§m AV.HRR'NDVI data Ia}ck the speciral reso.lytlonProblems with site data include errors in labeling and represen-
radiometric calibration and locational accuracy qualities ?{E\tiveness of subpopulations

MODIS data. NDVIis especially unsuited for mapping nonvege- : . - . .
tated land-cover classes such as snow, ice, water, urban areas ?M C requires substantial training data, in the neighborhood

n : -
bare ground. The AVHRR data do, however, provide a regio I??t e1a63t EO—SO t|m|es tthe nllimltfr oftra|n|ngte>k<)ar;1hples per_clasfs
multitemporal dataset, and maximum-value NDVI monthl ], [16]. For neural networks, there seems to be the promise o

compositing removed many of the atmospheric effects eviden ﬁing smaller training sets [44]'. Neurql networks in ggneral have
the daily or ten-day composite data for the same period. een found to be robust to training site heterogeneity [24] and
missing data. Backpropagation can require extensive training,

while ART is designed to be stable enough to preserve signifi-
cant past learning while still allowing new information to be in-
A. Evaluation Criteria corporated in the neural network structure as such information

The evaluation criteria for the classification algorithms ar@Ppears in the data input stream [1]. Decision trees are tolerant
classification accuracy, training data requirements, and the al§noisy training data and have been used to remove noisy/dirty
rithm’s ability to generalize diverse training data to appropriaféaining data [10].
output classes. Given the cost of generating reliable site data for ) ) o )
training, testing, and validation, the classification algorithm r&- Testing the Supervised Classification Algorithms
quirement for training data is an important consideration. TheseFrom the 408 sites, five sets of calibration (80%), and the val-
requirements include the number and quality of training sitedation (20%) pixel were randomly generated by class (strat-

IV. EVALUATION CRITERIA, TESTING, AND RESULTS
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ified random sampling) to allow for independent training and TABLE IV
accuracy assessment. In this approach, the algorithm calibrates ~GUASSIAN ARTMAP ERRORRATES BY CLASSIFICATION RUN
(trains) on 80% of the pixels in each class, and its accuracy ieep Ciassification run (tho=0.6; g=30) mean
H ini 0, i H class 1 2 3 4 5|test pixels | accuracy
assessed (validated) for the remaining 20% of pixels, which & : T oC1 3T X T e

unseen. Since results are sometimes dependent on the ac 0245  91.89]  9259]  90.07] _ 90.77 715] 9155
0 H : 0 0 0 0 0 0
random selection of pixels, we repeated the selection proced: R T Ty R A 754

2
3
. . . . . . . . . 4
five times, thus providing five sets of training and testing pixel s 7041] 7101|7337 7041|7633 169 72.31
6
7
8
9

g . 48 44 52 48 40 25 46.40
to the cIa§S|f|cat|on.a.1nd accuracy assess_ment process. . o515 saosl 7761 06 T
Supervised classification based on the five random pixel spli

75.53 81.91 76.6 79.79 74.47 94 77.66

: ra . : H 25 16.67 8.33 25 0 12 15.00
was performed using each classification _al_gorlthm app_hed to tl—; 6l B2 7515 57 8047 T )
17-class IGBP land cover system by training and testing on tI_11 66.27] 68.05 69.23] 6864  68.64 160[  72.00

hi ited NOAA AVHRR NDVI data for 12 th 12 86.41 82.05 84.36 84.87 80.77 390 83.69
monthly-composite atafor Lz months —; 69.81] 6415 7547 7925 67.92 53| 71.32
of 1992 and 1993 [35]. The IGBP labels for the five calibratior__14 7945 78.08] 7534 7397] 7808 73] 76.99

. . . . . . 15 0 0 0 0 0 0
and validation splits of the 408 sites were applied to the Gaussi—g 5857 1420l iAo isEe| 42.86 712857
ARTMAP, Fuzzy ARTMAP, decision tree, and ML (Bayesian)_1* 97.73]  9205| 9886 97.73| 98.86 88| 97.05
overall 82.74 82.74 83.41 82.24 82.70 2399 82.77

classification algorithms. For all approaches, the error rates were
similar for all five of the calibration—validation pixel splits.
C. Fuzzy ARTMAP Classification Algorithm
V. RESULTS OFPIXEL CALIBRATION AND VALIDATION For the Fuzzy ARTMAP classification, the choice parameter
« was applied thorough its range of 0.01-0.99 to determine the
optimum value based on the classification accuracy of unseen
The mean overall accuracy of the MLC algorithm as applig@st pixels. Ana value of 0.95 was selected, and applied to

without prior probabilities with one statistic per class was poghe five train/test data splits. The mean overall accuracy for the
in comparison to the other algorithms, with a mean accuracy pfizzy ARTMAP runs is 79.30% (Table II).

52.58 percent and a range of approximately 49-53%. A signifi-

cant problemwiththe MLC algorithm is singularities (zeros) thdd. Gaussian ARTMAP Classification Algorithm

occurinthe covariance matrixandresultindivision by zeroerrors. ror the Gaussian ARTMAP algorithm, the vigilance param-

o o ) eterp was applied thorough its range of 0.01-0.99 to determine

B. Decision Tree Classification Algorithm the optimum value based on the classification accuracy of un-
The decision tree classification algorithm tested was a ursieen test pixels. As expected, a smaller vigilance resulted in

variate, the results of which are provided in Table Il. The medewer F, nodes being created to represent the data apdras

overall accuracy of the five runs was 74.79%. creased, the number of, [Eategories also increased. The rela-

A. Bayesian Classification Algorithm
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TABLE V
GUASSIAN ARTMAP IGBP QLASSIFICATION ACCURACY CONTINGENCY TABLE
T : . -
Class Belerence Cilp IGBP Class [peem 1 ko™ plosl pgyaimeand) P
i 20 T £ | & | 7 | ® [ @ | w | 7 T W[ W] %] 7|
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Fig. 4. Gaussian ARTMAP IGBP land cover classification.

tionship ofp, F, categories, and per-class accuracy is present@kemplars) well to the output classes and the need to gener-
in Table Ill. Accuracy and the number of, hodes increases alize training data to the output classes. Fig. 3 presents the rela-
with accuracy up tgp = 0.8, at which time, accuracy beginstionship of the number of sites to the number gfrffodes that
to decrease. MoresFnodes are being created to (over) fit thevere created for each class. Some classes require fewer nodes
data, to the point where validation (test) data are no longer beitgin sites, while others require more. Gaussian ARTMAP also
classified, that is, there is no longer any category that meets tfenerates per-class probability estimates, indicating the proba-
match criteria. bility that an input fits a class output. It is also possible to map
Based on this analysis, parameter valuep 6 0.6 and a individual F, categories rather than their coinciding class label.
variance ofy = 30 were selected to train each of the five iterintersecting the mapping of,Feategories with site distribution
ations based on exploring the relationship of the vigilance peenfirmed that some sites required multipledategories to rep-
rameter to training. This vigilance value is a compromise beesent them, while other sites generalized well and could be rep-
tween using a high vigilance that tends to fit the training datasented by a single;Fode.
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