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A Gaussian Adaptive Resonance Theory Neural
Network Classification Algorithm Applied
to Supervised Land Cover Mapping Using

Multitemporal Vegetation Index Data
Doug Muchoney and James Williamson

Abstract—Neural network classifiers have been shown to
provide supervised classification results that significantly improve
on traditional classification algorithms such as the Bayesian
(maximum likelihood [ML]) classifier. While the predominant
neural network architecture has been the feedforward multilayer
perceptron known as backpropagation, Adaptive resonance
theory (ART) neural networks offer advantages to the classifica-
tion of optical remote sensing data for vegetation and land cover
mapping. A significant advantage is that it does not require prior
specification of the neural net structure, creating as many internal
nodes as are needed to represent the calibration (training) data.
The Gaussian ARTMAP classification algorithm bases the prob-
ability that input training samples belong to specific classes on
the parameters of its Gaussian distributions: the means, standard
deviations, and a priori probabilities. The performance of the
Gaussian ARTMAP classification algorithm in terms of classifi-
cation accuracy using independent validation data indicated was
over 70% accurate when applied to an annual series of monthly
1-km advanced very high resolution radiometer (AVHRR) satel-
lite normalized difference vegetation index (NDVI) data. The
accuracies were comparable to those of fuzzy ARTMAP and a
univariate decision tree, and significantly higher than a Bayesian
classification algorithm. Algorithm testing is based on calibration
and validation data developed and applied to Central America to
map the International Geosphere-Biosphere Programme (IGBP)
land cover classification system. Thus, it provides a realistic test of
the algorithms for operational classification of a regional remote
sensing and site dataset.

I. INTRODUCTION

A. MODIS 1-km Land Cover and Land Cover Change

BOSTON University, Boston, MA, will produce land cover
and land cover change products globally at 1000 m and

0.25 resolutions on a quarter-annual basis using an annual
temporal sequence of multispectral and multiresolution mod-
erate resolution imaging spectroradiometer (MODIS) data. The
primary purpose of MODIS land cover characterization [1] is
to support global modeling indirectly by providing inputs to
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MODIS algorithms that generate model parameters such as
leaf area index/fraction of photosynthetically active radiation
(LAI/FPAR), bidirectional distribution function (BRDF), and
surface temperature, and directly by providing land cover
inputs to models.

The principal inputs to the quarterly land cover products are
monthly BRDF, BRDF-corrected nadir surface reflectances,
vegetation index, snow cover, land surface temperature, and
spatial texture for a one-year sequence [1]. We have examined
several different types of decision tree (DT) and artificial neural
network classification algorithms to develop the land cover
product. The DT classifiers include univariate decision trees
[2], multivariate decision trees [3], and hybrid trees [4]. The
neural network algorithms include two Adaptive Resonance
Theory (ART) systems: Fuzzy ARTMAP [5]–[7] and Gaussian
ARTMAP [8], [9]. Evaluation of these ARTMAP and DT
classification algorithms using several remote sensing data sets
has shown that they produce comparable results that are consis-
tently superior to those produced by maximum likelihood (ML)
classification [10], [11]. The primary land cover classification
system to be mapped is the 17-class IGBP classification [12].

B. Objectives

The purpose of this research is to compare the Gaussian
ARTMAP classification algorithm with another ART artificial
neural network, and with decision tree and traditional Bayesian
(ML) classification algorithms. Algorithm testing is based on
calibration and validation data developed and applied using an
annual series of monthly 1-km advanced very high resolution
radiometer (AVHRR) normalized difference vegetation index
(NDVI) data to map multiple land cover and vegetation classifi-
cation systems and parameters in Central America [13]. In this
regard, it provides a real test of the algorithms for operational
classification of a regional remote sensing and site dataset.

II. SUPERVISEDCLASSIFICATION ALGORITHMS FOR

LAND COVER MAPPING

A. Bayesian Classification Algorithm

The Bayesian or maximum-likelihood classification algo-
rithm (MLC) calculates the probability that a pixel belongs to
one of the set of possible classes based on the mean measurement
vector for each class and the covariance matrix for each class
by band [14]. The probability that a pixel belongs to a class
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is based on the distance between the pixel value and a scaled
and variance/covariance-corrected class mean [5]. The pixel is
then assigned to that class to which the weighted distance is the
lowest (i.e., to which it has the highest probability of belonging).
The principal assumptions of MLC are that the input channels
are Gaussian (normally) distributed and that the training data
statistics for each class, which can be thought of as samples, are
also normally distributed. The assumption of equal probabilities
can be modified by applying prior probabilities [15], which
neural networks can also use. [16]. MLC has a long history of
use, and is an efficient algorithm that is easy to understand
and modify. Weaknesses of MLC are that its assumptions of
normality and of equal probability are often incorrect.

B. Decision Tree Classification Algorithm

Decision trees have been widely applied to remotely sensed
data for land cover and vegetation characterization [17]–[20].
A decision tree is a divisive classification procedure that recur-
sively partitions a data set into subdivisions based on tests de-
fined at each branch (or node) in the tree [2]. A decision tree is
composed of a root node comprising all of the data, a set of in-
ternal nodes (splits), and a set of terminal nodes (leaves). Each
internal node in a decision tree has one parent node, and two
or more descendant nodes. Using this framework, a data set is
classified according to the decision surfaces defined by the tree,
and class labels are assigned to each observation according to
the leaf node into which the observation falls. The decision tree
algorithms can use univariate [21], bivariate and multivariate [3]
criteria [4]. Hybrid decision trees [10] use multiple classifica-
tion algorithms on different subtrees within the framework of a
single, larger decision tree structure.

C. Neural Network Classification Algorithms

Neural nets are complex and dense systems of nonlinear
computational elements that are patterned after bioneurological
systems that are composed of computational nodes that are
linked by adaptive weights. Neural nets are self-organizing,
adaptive and nonlinear [22]. For networks in general, gain con-
trol, vigilance and choice parameters determine how inputs are
matched to existing categories of outputs and how “novelties”
are detected. Neural nets must be both plastic, that is able to
recognize new inputs, and stable, that is, insensitive to all but
the important changes. Mathematically, the most important
component is the transfer function which determines how a
neuron will scale its response to incoming signals and produce an
activation. The transfer functions are generally threshold-logic,
hard-limit, continuous function (sigmoidal) nodes, and radial
basis functions [23].

1) Backpropagation:The neural network backpropagation
classification algorithm is composed of layers of neurons
that are interconnected through weighted synapses. The first
layer (F1) consists of the classification input variables and
the layer output consists of a binary vector representing the
output classes. Intermediate, hidden layers provide an internal
representation of neural pathways through which input data are
processed to arrive at output values or conclusions [1].

In a supervised mode, input variables are fed forward through
the network to produce an output vector. During a following

backpropagation phase, the synapse weights are adjusted so
that the network output vector more closely matches the desired
output vector, which is a binary-coded representation of the
training class. The network weights are adjusted by feeding the
summed squared errors from the output layer back through the
hidden layers to the input layer. The network cycles through the
training set until the synapse weights have been adjusted so that
the networkoutputhas converged, toan acceptable level,with the
desired output. The trained neural network is then given new data
and the internal synapses guide the processing flow through ex-
citement and inhibition of neurons. This results in the assignment
of the input data to the output classes [1]. Backpropagation re-
quires that the number of internal layers be specified beforehand
based on empirical results and understanding of the relationship
between training/testingand the input imagedata features [24].

2) Adaptive Resonance Theory:ART networks are funda-
mentally different than backpropagation algorithms. The neural
nets used in this analysis are from the class of ART [5] networks,
including fuzzy ART [6], [7] and Gaussian ARTMAP [8], [9].
ART neural networks process inputs into categories, with the
category formation being governed by a set of three parame-
ters. The vigilance parameter () regulates how broad a category
might be. The match function then determines if a selected cat-
egory is sufficiently appropriate to meet the vigilance criteria.
These categories are related to specific output classes in such a
way that they represent multiple, nonlinear partitions of feature
space that map to output classes [8].

ART models form stable recognition categories in response to
arbitrary inputs. The original ART network categorized binary
inputs using unsupervised or “teacher-less” learning. ART 2 is
an extension of ART that allows for categorization of analog in-
puts. ART incrementally clusters inputs into stable categories,
with the number of categories a function of the vigilance pa-
rameter . The vigilance parameter determines how broad cate-
gories might be in feature space based on the networks distance
metric. Thus, ART incrementally creates the number of cate-
gories that are needed to define clusters of input samples, with
the inclusiveness of the categories inversely related to[8].

The ART activation function provides an estimate of the like-
lihood that an input belongs to a specific category, while the
match function determines if the category is similar enough to
the input to satisfy the vigilance parameter. Activation of a cate-
gory (F node) can be interpreted as making a hypothesis about
an input [8], [9].

ARTMAP: ARTMAP extends ART into a supervised
classification mode by using the ARTs unsupervised clustering.
ART categories (hidden units or Fnodes) learn predictions
or mappings to output classes during training. If a chosen
category makes the wrong prediction, the vigilance parameter
is temporarily raised to the level needed to reset the category.
If the chosen category satisfies the match function, the system
resonates and learning has been achieved. This match tracking
guarantees that for a given input, the category (or categories if
distributed learning are used) that resonates has a better match
than all other categories that are reset. So ARTMAP organizes
the clustering of the data based on predictive feedback from the
labels that it assigns to the categories (clusters), as well as by
how the data are distributed in feature space [8].
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Fig. 1. Gaussian ARTMAP activation and match functions.

Fuzzy ARTMAP:Fuzzy ARTMAP, like ARTMAP, ex-
tends the binary ART 1 to the analog domain by using the /\
AND fuzzy operator instead of thelogical intersection. Fuzzy
ARTMAP input vectors are complement coded, which makes
the denominator of the match criteria a constant. Each category

is initialized with a weight vector . The choice function
( ) selects the nonreset category with the highest activation that
is determined by the size of the weight vector. If the choice pa-
rameter is small, broad categories in feature space are favored.
If is large, categories with large weight vectors, and thus tight
categories,are favored.Thematchcriterionrequires thatachosen
category’s weight vector be sufficiently close to the input vector
[8]. ART classifiers have been found to be an improvement on
traditional classifiers in some respects. ARTMAP dynamics are
fast, stable, and scalable, overcoming common limitations of
other neural networks such as backpropagation [1].

3) Gaussian ARTMAP Classification Algorithm:Gaussian
ARTMAP is an adaptation to ART that is based on using
Gaussian distributions to define the category choice functions.
For each category, there is an associateda priori probability
and a mean and variance in each input dimension. The Gaussian
ART activation function evaluates the probability that an input
belongs to a category’s distribution, as well as the category’sa
priori probability (Fig. 1). The match function (Fig. 1) is based
on how well the input fits the category’s distribution, which is
normalized to unit height. The likely class prediction is based
on these activations [8], [9]. For Gaussian ARTMAP, high
vigilance ( ) means that more internal categories are created
by the network to match input data to output categories; the
categories are less broad in the feature space.

Gaussian ARTMAP accommodates choice and distributed
learning. In choice learning, the maximally activated category is
chosen. That is, the chosen category’s match function satisfies
the vigilance criterion, and the category resonates and learns
the prediction. In distributed learning, each category is assigned
credit based on the proportion of the net activation ofall cate-
gories whose match function satisfies the vigilance criterion.
When Gaussian ART is extended to Gaussian ARTMAP, the
prediction of an output class during testing is akin to picking the
class with the highest net probability. This is similar to methods
of potential and radial basis functions. The activation of all
categories sharing the same prediction are summed to yield the

most probable class prediction rather than basing the prediction
solely on the maximum ART category as in Fuzzy ARTMAP.

Calibrating (training) Gaussian ARTMAP only requires esti-
mating category means, covariances, anda priori probabilities
from the training data. The Gaussian distributions themselves
must be separable. Gaussian ARTMAP can fit data that vary
between dimensions, but not that covary. This would require
that each category store a covariance matrix. Like the MLC al-
gorithm, Gaussian ARTMAP is based on the assumption that,
for each category, the input channels are normally distributed.
However, because multiple categories can map to a single output
class, there is no assumption that the class conditional distribu-
tions are normal. Rather, the assumption is that they are mixtures
of normal distributions [8], [9].

In a supervised mode, Gaussian ARTMAP chooses an output
class with the highest conditional probability and also provides
an indication of the strength of the relationship with the test data.
Gaussian ARTMAP represents the input data density with sep-
arable Gaussian distributions, with the number and inclusivity
of the distributions a function of the vigilance parameter. Both
Fuzzy and Gaussian ARTMAP most efficiently represent data
that are uncorrelated across dimensions.

The primary difference between Fuzzy ARTMAP and
Gaussian ARTMAP is the use of different statistics to define
each category. Rather than representing an interval within
each dimension, as is the case with Fuzzy ARTMAP, Gaussian
ARTMAP represents the mean and variance. In addition,
Gaussian ARTMAP represents thea priori probabilities of
the category. There is potential inefficiency in the fuzzy
categories, which are defined by the minimum and maximum
in each dimension in terms of their ability to support smooth
generalizations in higher dimensions [8].

III. T EST SITE AND DATA

A. Site Data

The dimensions of the study area are 11691813-km
AVHRR pixels, bounded by 6 to 9 N and 77.22 to 93
W (Fig. 2). The regional site comprises southern Mexico,
Guatemala, Belize, Honduras, El Salvador, Nicaragua, Costa
Rica, and Panama. Central America includes a diverse array
of natural and human-modified landscapes including broadleaf
evergreen, deciduous and semi-deciduous forests, pine savanna
and woodlands, swamp and mangrove forests, herbaceous wet-
lands, and agricultural types. As such, it provides an excellent
test for regional classification.

The data for training and testing the supervised classifiers
were developed by Boston University, the Stanford University
Center for Conservation Biology, Stanford, CA, The Nature
Conservancy, and the Central America Vegetation Working
Group of the Comisión de la Centroamericana de Ambiente
y Desarrollo (CCAD), which was established to support
vegetation mapping and monitoring in Central America. Pairs
of analysts delineated training/testing sites on Landsat thematic
mapper (TM), Systeme pour l’Observation de la Terre Haute
Resolution Visible (SPOT-HRV), and AVHRR data, and
populated the database based on field, plot and ancillary map
data at two workshops held in Guatemala and Nicaragua.
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Fig. 2. Study area and test site locations.

428 sites were distributed among the 17 IGBP classes and ex-
tracted from 18 Landsat TM and 2 SPOT-XS multispectral (XS)
scenes (Fig. 2, Table I). The criteria for selecting sites were that
they were at least 2 km 2 km and that they be representa-
tive of the bioregions, vegetation, and land cover classes. The
site polygons were also defined to be within larger patches of
classes, with at least a 1-km buffer from the polygon boundary
to the patch boundary. This was to ensure that misregistration
and mislocation of the AVHRR data and the co-referenced TM
or SPOT data would not permit a training polygon to actually
represent land cover outside of the patch. After a quality assur-
ance check was performed to ensure that the site data labels were
correct, 20 sites were removed from the database because they
were either obviously mislabeled or did not meet the minimum
site size criteria resulting in 408 total sites.

Feature extraction and parameterizing the database involved
assigning labels to appropriate categories of a suite of parame-
ters based on the System for Terrestrial Ecosystem Parameteri-
zation (STEP) Model and database [25]. STEP provides for ex-
plicit description of the structural, functional, and compositional
components of the vegetation and landscape tied to specific sites
and plots. The primary purpose of STEP is to provide a com-
prehensive model of the land surface that can be used to train
and test algorithms and to validate land surface products. Formal
sites are established and described based on high-resolution re-
mote sensing data, ancillary data, and field plot data. STEP
can be used to translate multiple classification systems better
than commonly used look-up table approaches. This accommo-
dates the wide array of classifications used by various models
to parameterize biophysical processes such as those of the bio-
sphere–atmosphere transfer scheme (BATS) [26], Biome-BGC
[27]–[31], land surface model (LSM) [32], the simple biosphere
model (SiB) [33], and the SiB2 [34].

B. Remotely Sensed Data

The primary remotely sensed data used in this study are
monthly composited AVHRR NDVI) data for 1992–93 provided

TABLE I
SITE DISTRIBUTION BY IGBP LAND COVER CLASS

by the U.S. Geological Survey EROS Data Center (USGS-EDC),
Bouler, CO [35], in lieu of MODIS data that will be used for
generating global 1-km land cover when data become available
following its recent launch on the Terra (EOS-AM) platform
in 2000. NDVI is based on the relationship of reflected red and
near-infrared reflectance that is highly correlated with both leaf
area index (LAI) and biomass. The monthly data provide an
indication of overall greenness of the vegetation, and can be used
to characterize the phenology of vegetation. The AVHRR data
were monthly composited using maximum NDVI to remove
cloud and topographic effects and extreme off-nadir pixels [35],
[36], as well as scan angle dependence of radiance [37]. Addi-
tional bidirectional reflectance distribution function (BRDF) or
atmospheric correction was not employed.
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TABLE II
REGIONAL IGBP CLASSIFICATION RESULTS(MEAN PERCENTCLASSIFICATION ACCURACY OFFIVE RUNS)

The use of the monthly-composited AVHRR data may be
problematic [36]. Compositing is biased toward selecting
off-nadir pixels, especially in forward-scanning views in winter
months in the northern hemisphere [38]. As with any large-area
projection, they also found that the effective mapping unit was
geographically variable. In this case, errors due to the Goode’s
homolosine projection system and resampling methods [35]
were most probably minimal compared to those caused by
misregistration and varying viewing/illumination artifacts.
Lack of sensor calibration confuses the temporal trajectory
of the multitemporal NDVI signal [39]. A land/sea mask was
applied to the AVHRR data as part of the processing. Temporal
smoothing or generalization might enhance the meaning of the
temporal signal [40], but was not applied to the data set used in
this study. While the use of temporal metrics such as month of
maximum NDVI and annual range of NDVI have been shown
to improve classification accuracy [41], [42], the monthly data
were used as simple features in the classification process.

The 1-km AVHRR-NDVI data lack the spectral resolution,
radiometric calibration and locational accuracy qualities of
MODIS data. NDVI is especially unsuited for mapping nonvege-
tated land-cover classes such as snow, ice, water, urban areas, and
bare ground. The AVHRR data do, however, provide a regional
multitemporal dataset, and maximum-value NDVI monthly
compositing removed many of the atmospheric effects evident in
the daily or ten-day composite data for the same period.

IV. EVALUATION CRITERIA, TESTING, AND RESULTS

A. Evaluation Criteria

The evaluation criteria for the classification algorithms are
classification accuracy, training data requirements, and the algo-
rithm’s ability to generalize diverse training data to appropriate
output classes. Given the cost of generating reliable site data for
training, testing, and validation, the classification algorithm re-
quirement for training data is an important consideration. These
requirements include the number and quality of training sites.

TABLE III
GAUSSIAN ARTMAP � VALUES, CLASSIFICATION ACCURACY, AND F NODES

Problems with site data include errors in labeling and represen-
tativeness of subpopulations.

MLC requires substantial training data, in the neighborhood
of at least 10–30 times the number of training examples per class
[43], [16]. For neural networks, there seems to be the promise of
using smaller training sets [44]. Neural networks in general have
been found to be robust to training site heterogeneity [24] and
missing data. Backpropagation can require extensive training,
while ART is designed to be stable enough to preserve signifi-
cant past learning while still allowing new information to be in-
corporated in the neural network structure as such information
appears in the data input stream [1]. Decision trees are tolerant
of noisy training data and have been used to remove noisy/dirty
training data [10].

B. Testing the Supervised Classification Algorithms

From the 408 sites, five sets of calibration (80%), and the val-
idation (20%) pixel were randomly generated by class (strat-
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Fig. 3. Relationship of number of sites to Fnodes by class.

ified random sampling) to allow for independent training and
accuracy assessment. In this approach, the algorithm calibrates
(trains) on 80% of the pixels in each class, and its accuracy is
assessed (validated) for the remaining 20% of pixels, which are
unseen. Since results are sometimes dependent on the actual
random selection of pixels, we repeated the selection procedure
five times, thus providing five sets of training and testing pixels
to the classification and accuracy assessment process.

Supervised classification based on the five random pixel splits
was performed using each classification algorithm applied to the
17-class IGBP land cover system by training and testing on the
monthly-composited NOAA AVHRR NDVI data for 12 months
of 1992 and 1993 [35]. The IGBP labels for the five calibration
and validation splits of the 408 sites were applied to the Gaussian
ARTMAP, Fuzzy ARTMAP, decision tree, and ML (Bayesian)
classification algorithms. For all approaches, the error rates were
similar for all five of the calibration–validation pixel splits.

V. RESULTS OFPIXEL CALIBRATION AND VALIDATION

A. Bayesian Classification Algorithm

The mean overall accuracy of the MLC algorithm as applied
without prior probabilities with one statistic per class was poor
in comparison to the other algorithms, with a mean accuracy of
52.58 percent and a range of approximately 49–53%. A signifi-
cant problem with the MLC algorithm is singularities (zeros) that
occur inthecovariancematrixandresult indivisionbyzeroerrors.

B. Decision Tree Classification Algorithm

The decision tree classification algorithm tested was a uni-
variate, the results of which are provided in Table II. The mean
overall accuracy of the five runs was 74.79%.

TABLE IV
GUASSIAN ARTMAP ERRORRATES BY CLASSIFICATION RUN

C. Fuzzy ARTMAP Classification Algorithm

For the Fuzzy ARTMAP classification, the choice parameter
was applied thorough its range of 0.01–0.99 to determine the

optimum value based on the classification accuracy of unseen
test pixels. An value of 0.95 was selected, and applied to
the five train/test data splits. The mean overall accuracy for the
Fuzzy ARTMAP runs is 79.30% (Table II).

D. Gaussian ARTMAP Classification Algorithm

For the Gaussian ARTMAP algorithm, the vigilance param-
eter was applied thorough its range of 0.01–0.99 to determine
the optimum value based on the classification accuracy of un-
seen test pixels. As expected, a smaller vigilance resulted in
fewer F nodes being created to represent the data and asin-
creased, the number of Fcategories also increased. The rela-
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TABLE V
GUASSIAN ARTMAP IGBP CLASSIFICATION ACCURACY CONTINGENCY TABLE

Fig. 4. Gaussian ARTMAP IGBP land cover classification.

tionship of , F categories, and per-class accuracy is presented
in Table III. Accuracy and the number of Fnodes increases
with accuracy up to , at which time, accuracy begins
to decrease. More Fnodes are being created to (over) fit the
data, to the point where validation (test) data are no longer being
classified, that is, there is no longer any category that meets the
match criteria.

Based on this analysis, parameter values of and a
variance of were selected to train each of the five iter-
ations based on exploring the relationship of the vigilance pa-
rameter to training. This vigilance value is a compromise be-
tween using a high vigilance that tends to fit the training data

(exemplars) well to the output classes and the need to gener-
alize training data to the output classes. Fig. 3 presents the rela-
tionship of the number of sites to the number of Fnodes that
were created for each class. Some classes require fewer nodes
than sites, while others require more. Gaussian ARTMAP also
generates per-class probability estimates, indicating the proba-
bility that an input fits a class output. It is also possible to map
individual F categories rather than their coinciding class label.
Intersecting the mapping of Fcategories with site distribution
confirmed that some sites required multiple Fcategories to rep-
resent them, while other sites generalized well and could be rep-
resented by a single Fnode.
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The error rates for the Gaussian ARTMAP runs are reported
in Table IV. Both per-class and overall accuracy were relatively
stable for each of the five calibration/validation iterations
(range 80.92–83.86%, ), and the mean overall
accuracy for the IGBP Gaussian ARTMAP classifications is
82.23%. The example contingency table of run 1 (Table V)
presents the per-class errors and interclass error structure
associated with Gaussian ARTMAP. The mean accuracy of the
five Gaussian ARTMAP iterations is 82.77%. A regional map
was produced using all calibration and validation data using
Gaussian ARTMAP (Fig. 4).

VI. CONCLSIONS

As Table II indicates, the primary forest classes (Classes 1 and
2) were mapped well by all algorithms, while Closed Shrubland
and Savanna (Classes 6 and 9) were particularly problematic
for the DT and Gaussian ARTMAP algorithms. Testing of the
Gaussian ARTMAP classification algorithm can be summarized
by the following.

1) It produced classification accuracies that are better than
univariate decision tree and Fuzzy ARTMAP classi-
fication algorithms. Applying the IGBP classification
system, the Gaussian ARTMAP averaged almost 83%,
and Fuzzy ART neural network, 79%, and the DT almost
75%. Gaussian ARTMAP does not require prior speci-
fication of the network structure. It is flexible in that it
generates a sufficient number of internal categories that
are needed to match inputs to outputs. Its parameters can
be varied to develop internal categories that can either
generalize or designed to fit the input data specifically.

2) Predictions are based on the mean, variance, and thea
priori probabilities of the category, making interpreta-
tion of the Gaussian ARTMAP network rather straight-
forward.

3) The use of pixel-based splits for calibration and validation
is problematic for some algorithms. When using pixel-
based sampling to calibrate and validate site-data subsets,
the algorithm is presented with one or more examples
(pixels) from each site. This has been shown to provide
higher agreement indices than when polygon splitting is
performed [41], [45].

4) The number of Fcategories varies for land cover types
indicating that some classes generalize better than others.

5) The probability estimate of Gaussian ARTMAP is useful
for evaluating the relative strength of the prediction.

6) The individual F nodes can be mapped, and their rela-
tionship to individual sites can be evaluated. This pro-
vides a useful indicator of the number of Fnodes that
are required to represent a specific site. If a site requires
multiple nodes to represent or capture its variability, then
it most probably is a heterogeneous site. It is possible to
determine what site or sites that are represented by one or
more nodes. This feature can be used to indicate poten-
tially mislabeled or mixed sites.

As such, Gaussian ARTMAP has been demonstrated to be
a viable algorithm for supervised classification of remotely
sensed data.
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