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(7) ABSTRACT

A system and a method for tracking long term performance
of a vibrating body such as a gas turbine, includes a vibration
sensor who time domain outputs are transformed to the
frequency domain, using a fast Fourier transform process-
ing. Frequency domain outputs are provided as inputs to a
fuzzy adaptive resonance theory neural network. Outputs
from the network can be coupled to an expert system for
analysis, to display devices for presentation to an operator or
are available for other control and information purposes.
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NEURAL NETWORK BASED ANALYSIS
SYSTEM FOR VIBRATION ANALYSIS AND
CONDITION MONITORING

FIELD OF THE INVENTION

The invention pertains to systems and methods of vibra-
tion analysis. More particularly, the invention pertains to
such systems and methods which incorporate fuzzy adaptive
resonance theory neural networks for distinguishing
between normal and abnormal vibrations.

BACKGROUND OF INVENTION

Gas turbines engines and power generation, such as the
General Electric LM2500, are used in numerous marine
applications and for power generation. This harsh environ-
ment demands early detection and analysis of impending
turbine failure in order to prevent catastrophic failures which
may endanger personnel as well as shipboard equipment.

The current “state-of-the-art” monitoring equipment
incorporates the Wigner-Ville Distribution (WVD). The
WVD monitors the once-per-rev vibration energy of the
turbine components.

The once-per-rev energy occurs at the frequency corre-
sponding to the rotational velocity of the turbine. This type
of system is being used by the US and Foreign navies to
monitor the vibration of the LM2500 gas turbine.

The existing system incorporates acceleration sensors that
are mechanically connected to the turbine casing. These
sensors provide an analog signals suitable for analysis.
These signals are then fed into a data acquisition system to
filter and digitize the signal.

Sensor output signals are converted to the frequency
domain. In one aspect, the conversion can be implemented
using Fast Fourier Transform-type (FFT) processing. The
frequency domain representation can be processed by delet-
ing those frequency components known to be of little or no
interest.

In addition, the amplitudes of negative frequency com-
ponents can be set to zero. Inverse FFT processing can then
be carried out to produce a time domain signal having only
frequencies of interest and no negative frequencies.

The technique of isolating sections of the frequency
domain signal to create only a few frequency components in
the signal allows the WVD to be applied without any
smoothing to reduce cross-term energy. The cross-term
energy was controlled to occur in spectral locations that
were not used in the analysis. This technique can be used in
other analysis efforts with the WVD.

The WVD thus provides a highly accurate measure of the
turbine vibration amplitude at any instant. This has been
used as an important feature in a condition-based monitoring
application.

As the vibration level changes under identical operating
conditions, the change can be recorded and used as a
measure of turbine health. Steadily increasing vibration
levels indicate deteriorating turbine health.

The output of the WVD can be used with a thresholding
algorithm to detect excessive once-per-rev (1X) vibration.
Thresholding of the 1X vibration is used in many gas turbine
installations. This allowed detection of deteriorating turbine
condition. Ideally, the deterioration would be detected at an
early enough stage to prevent catastrophic damage, and to
schedule maintenance activities.

Complex signals have been processed by neural networks.
One known form of a neural net is the Fuzzy Adaptive
Resonance Theory, Fuzzy (ART) neural network.

10

15

20

25

30

35

40

45

50

55

60

65

2

This is a neural network architecture developed by
Stephen Grossberg and Gail A. Carpenter of the Department
of Cognitive and Neural Systems at Boston University. The
network uses a resonance concept that involves comparisons
of new inputs to information that is already learned.

If the new input is sufficiently close to the old
information, then resonance occurs and the network will
adapt to learn the new information. The first implementa-
tions of ART operated only on binary (0 or 1) data. The
theory has been extended to accommodate analog input
values of the range zero to one, using Fuzzy ART. The
“Fuzzy” prefix implies that the input numbers are analog; no
fuzzy logic connotations need be ascribed to the numbers.
The system learns to recognize analog values within subsets
of its total input space. The information that is presented to
the network occupies a section of the input space corre-
sponding to the amplitude of the information.

Fuzzy ART is called an unsupervised neural network
because the training set is presented to the network without
information as to the desired classification. Instead, the
network forms an internal representation of the data pre-
sented to it.

While the known vibration analysis systems have gener-
ally been effective for their intended purpose, it would be
desirable to improve the accuracy and extent of the analysis.
In this regard, it would be desirable to be able to detect the
presence of non-stationary frequency components. It would
also be desirable to be able to eliminate frequency compo-
nents not of interest.

It would also be desirable to be able to characterize, in
some sense, a particular turbine and then monitor, over time
the performance of that unit. In this fashion, deviations from
expected performance should be detectable at an early
enough stage to avoid the occurrence of catastrophic fail-
ures. Detected deteriorating performance can trigger unit
maintenance.

SUMMARY OF THE INVENTION

A system and method for monitoring dynamic perfor-
mance of an operating turbine utilizing at least one vibration
sensor coupled to the turbine incorporate a pattern recogni-
tion subsystem. The output signals from the sensor can be
transformed to a frequency domain using FFT-type process-
ing. These frequency components can be used as inputs to a
neural network.

The solutions to many data analysis problems have been
shown to be non-algorithmic in nature. That is, they cannot
be described or predicted through application of repetitive
numerical manipulation or analysis.

An inability to analyze a signal can be caused by the
presence of noise or minor variations in signal or sensor
data. These kinds of analysis have been shown to potentially
benefit from the application of systems that can detect
patterns in a signal or signals. One class of such a system is
the neural network. This is a system which can be trained to
“recognize” certain characteristics or trends in a signal.

In a preferred embodiment, the neural network of the
present system and method is the Fuzzy Adaptive Resonance
Theory (Fuzzy ART) neural network. The Fuzzy ART is a
type of adaptive resonance theory neural network that can
examine new input data, and decide if its already-learned
prototypes sufficiently match the input (resonate) and if so
then the new input is learned.

This network architecture is very good at novelty detec-
tion and can perform quick learning of new localized data
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without destroying the other stored information. This prop-
erty eases the implementation of an on-line monitoring
system, because retraining can occur in near real-time, as
opposed to other neural networks that must have lengthy
retraining to incorporate new information.

AFuzzy ART system as incorporated herein includes two
major components, an attentional subsystem and an orient-
ing subsystem. The attentional subsystem activates the sys-
tem in response to the input vector. The orienting subsystem
finds the correct internal representation of the new informa-
tion.

Each input vector presented to the network enters through
the Input Layer. The F, input layer preprocesses the input
layer vector, a, extending the representation of the input
vector to allow the network to represent ranges of input
vectors in a single neuron, as opposed to storing just a single
vector.

The F, activity layer determines the amount of activity
present in the different neurons when an input vector is
presented. In the F, layer, the input vector is compared with
the stored prototype information, using fuzzy arithmetic, to
determine how close the new vector is to the stored proto-
type.

The F, category layer retains the prototypes that are
checked for resonance with the input vector. The F, and F,
layers contain multiple neurons, but the F, layer contains
one neuron. In FIG. 11, the activity layer weights are shown
as W; and the prototype weights are shown as w;.

In operation, the new input vector is compared, in the
activity layer, F, to the long term memory (LTM) weights
emanating from the prototype layer F,. Short term memory
traces (STM) are thus generated. The orienting subsystem
checks these STM traces to find the most active neurons. The
amounts of resonance are also checked. If the neuron with
the most activation does not have sufficient resonance, the
orienting subsystem resets the network and a new neuron is
chosen for resonance testing. The chosen neuron then adapts
to learn any new information in the input.

The neural network forms a multidimensional internal
representation of the turbine operation. Operating conditions
are learned and recorded in the neural memory. If new
information that is close to the old information is learned,
the network weights will modify slightly to adapt to the new
data. For the weights to change, the new information must
resonate with the old information already learned. The
concept of resonance in fuzzy ART means that the informa-
tion must be in close proximity to already-learned data. The
degree of closeness is controlled by a parameter called
vigilance.

In one embodiment, a turbine can be used for propulsion
of a movable platform. Representative platforms include,
without limitation, a marine platform, such as a boat or a
ship, a land platform, such as a truck or a tracked vehicle, or
an aircraft. The present vibration monitoring system can be
carried by the respective platform coupled to the turbine.

In accordance herewith the system can be trained in
general using data from normally functioning turbines of the
same type as being monitored. Specific training using data
from the actual turbine to be monitored can be used to bind
the system to that particular turbine.

A visual display, coupled to the system, can be used to
advise an operator of any developing, abnormal vibration
patterns. A maintenance program can then be undertaken to
correct the developing malfunction.

Numerous other advantages and features of the present
invention will become readily apparent from the following
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4

detailed description of the invention and the embodiments
thereof, from the claims and from the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system for monitoring an
operating unit in accordance with the invention;

FIGS. 24 taken together are a block diagram illustrating
details of the Input Preprocessing block of FIG. 1;

FIG. 5 is a graph illustrating a typical turbine vibration
signal;

FIG. 6 is a graph of a frequency domain representation of
the time domain signal of FIG. §;

FIG. 7 is a graph of a frequency domain representation of
the noise floor of the signal of FIG. §;

FIG. 8 is a graph of a frequency domain representation of
the graph of FIG. 6 after additional processing;

FIG. 9 is a graph of a frequency domain representation of
a normalized version of the graph of FIG. §;

FIG. 10 is a multi-dimensional graph of separation of
frequency components;

FIG. 11 is a block diagram of Fuzzy ART layers;

FIG. 12 is a graph of an internal neural memory repre-
sentation of a learned spectrum;

FIG. 13 is a graph based on the graph of FIG. 12 wherein
the spectrum has been suppressed;

FIG. 14 is a graph indicating that a spectral change has
occurred;

FIG. 15 illustrates a training process for the network;

FIG. 16 illustrates a process for monitoring trends in an
operating unit; and

FIG. 17 illustrates a process for retraining the network
subsequent to conducting maintenance on the unit.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

While this invention is susceptible of embodiment in
many different forms, there are shown in the drawing and
will be described herein in detail specific embodiments
thereof with the understanding that the present disclosure is
to be considered as an exemplification of the principles of
the invention and is not intended to limit the invention to the
specific embodiments illustrated.

This invention has applicability to many types of
machinery, including jet engines, steam turbines, automobile
engines, pumps, compressors, tank engine turbines, and gas
turbines. In this description, the application of the invention
to a gas turbine is described, in order to disclose a preferred
embodiment and so as to enable one of skill to practice the
invention. Other applications can be made by a person
skilled in the art, based hereon, and familiar with the
application area.

An overall block diagram of a system S is illustrated in
FIG. 1. The system S is carried on a movable platform P. The
P is moved through a respective sea, land or atmospheric
medium by a turbine 10. An input preprocessing block is
further described in FIG. 2, FIG. 3, and FIG. 4.

Vibrations from turbine 10 are sensed by vibration trans-
ducers 12. Transducer 12 generates a signal that is instan-
taneously proportional to a unit of vibration, whether
displacement, velocity, or acceleration. Transducer 12 could
be implemented as a laser non-contact interferometer
system, a micro-electromechanical system, MEMS, sensor,
a piezo-ceramic accelerometer, or other technology.
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In this embodiment, and without limitation, transducer or
sensor 12 is described as an accelerometer that produces an
electrical voltage instantaneously proportional to the accel-
eration of the turbine at a given point in time. By the term
‘instantaneously proportional’ is meant that the output of the
vibration sensor is not a statistically calculated value, such
as root-mean-squared or average level of the vibration
signal. Multiple sensors could be used if desired.

The vibration sensor 12 must have sufficient bandwidth to
capture desired information that is available in the vibration
spectrum of the turbine. This information may include
turbine blade-pass frequencies, harmonics of blade-pass
frequencies, turbine once-per-rev frequencies, and their har-
monics.

The signal emanating from the vibration sensor 12 is a
time domain voltage signal having a form similar to that
illustrated in FIG. 5. This signal is a time-domain composite
of all the signals from each vibrating element in the turbine,
that fall into the system’s bandwidth.

The Filter and Digitizer 14 accept the time domain
information and condition it for digitization using the fol-
lowing process:

1. Impedance match and amplify the vibration signal from

sensor 12.

2. Low-pass filter the signal using an anti-aliasing filter.
This removes high-frequency information from above
the maximum vibration frequency being examined. The
out-of-band frequencies will then not corrupt the
in-band frequencies during the digitization process.

3. Digitize the signal using a suitable sampling rate and
precision to gather all the frequency information in the
signal. A representative sampling rate would be 40,000
samples per second, with 16 bits of resolution where
the highest frequency component of interest corre-
sponded to 20 kHz.

The filter could also be implemented as an analog/digital

hybrid filter using over sampling and decimation.

The Tachometers 46 measure the exact speed that rotating
elements in the turbine are turning. Various technologies
may be used for these tachometers, in the case of an LM2500
gas turbine, the tachometers are implemented using a mag-
netic gear-tooth sensor, and adjusted to yield digital pulses
at a rate proportional to the turbine rotational frequency.

These tachometer output signals are converted to a digital
number in a Tachometer Processing Block 48. The digital
tachometer values are updated each time the input digital
signals are processed by the Fourier Transform 60 of FIG. 2.

The Frequency Domain Input Preprocessor Block 50 is
illustrated in FIG. 2. The input vibration signals and tachom-
eter signals are prepared for analysis by the Fuzzy ART
Neural Network 34 in the Frequency Domain Input Prepro-
cessor. The outputs of the Frequency Domain Input Prepro-
cessor are components of the Input Matrix 52 to the neural
network.

The Input Matrix contains a serialized version of the input
spectrum, normalized to an amplitude range of [0,1] and
loaded into a vector within the Input Matrix. In one
embodiment, there are 65536 frequency elements in the
input vector.

The Input Matrix also receives a vector of frequency
values that increment throughout all the frequencies covered
by the normalized input spectrum. There is also a vector of
individual case vigilance values that control the attention
that the Fuzzy ART Neural Network devotes to each row in
the Input Matrix.

The Input Matrix also contains a submatrix that shifts the
neural memory dimension of individual rows in the Input
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Matrix to especially highlight certain key spectral compo-
nents. This process will greatly increase the learning speed
of the Fuzzy ART Neural Network.

The internal algorithms and elements of the FIG. 2
processing of the time-domain input signal through to the
Input Matrix V vector are illustrated in FIG. 3. These include
the Fourier Transform 60, Spectrum Normalizer 62 and
Serializer 64. The input signal is transformed into the
frequency domain, using the Fourier Transform.

The frequency domain spectrum is then normalized to a
[0,1] range in the Spectrum Normalizer 62. The spectrum is
presented to the Input Matrix in a serial fashion, represented
by the Serializer 64.

Before being input to the Fast Fourier Transform, FFT, 60,
the time domain signal is windowed using a Flat-Top
Window 100, see FIG. 3, to provide accurate signal ampli-
tudes and minimize scalloping losses in the spectrum. The
spectrum is converted from the complex number domain
into real values by the Absolute Value block 104. Then the
frequency-domain signal is converted into a logarithmic
representation 106 and made unipolar positive in block 108.
The signal spectrum now has a form as illustrated in FIG. 6.

The wavy noise baseline of FIG. 6 is removed in the steps
to normalize the signal for input to the neural network. The
spectrum is duplicated and one spectrum is processed by
taking the FFT 110 of the spectrum, subtracting high-
frequency components 112, taking the inverse-FFT 114, and
converting the spectrum to real numbers 116 to get from a
frequency spectrum representation of the noise floor.

The noise floor, calculated in this manner for the spectrum
of FIG. 6 is illustrated in FIG. 7. The noise-floor is then
subtracted 118 from the original spectrum to remove varia-
tions in the level of the noise floor. Because this subtraction
is performed using a logarithmic representation of the
spectrum, the resulting signal consists of just the signal to
noise ratio, SNR(k), of each component in the spectrum at
frequency k. All dependence on transducer calibrations, gain
and offset are removed by this step.

All negative values are set to zero 120. These negative
values are of the lowest amplitude noise, and not pertinent
to the system processing. This establishes the zero-level
noise floor. The signal spectrum now has a form as illus-
trated in FIG. 8.

To complete the signal standardization, each component
of the spectrum is then divided 122 by the signal to noise
ratio of the analog-to-digital converter circuitry to obtain a
normalized signal with an amplitude range of [0,1]. The final
normalized signal is illustrated in FIG. 9.

The normalized spectrum is stored in the Input Matrix as
a vector of values, with the zero-th value corresponding to
the DC or 0-Hertz frequency and the N-th value correspond-
ing to the maximum frequency in the spectrum. In one
implementation, the maximum frequency was 20 kHz, and
there were 65536 components in the frequency spectrum.

Although there were 65536 components in the frequency
spectrum, the use of cased-base vigilance results in the
network requiring only 500 neurons to represent an entire
65536-point spectrum of turbine vibration. The vector in the
Input Matrix was designated V to signify the vibration signal
vector.

For processing in the Fuzzy ART Neural Network 34,
individual case-based vigilance (also called indivigilance)
values are determined for each component of the resulting
spectrum, based on the amplitude of the component. The use
of individual case-based vigilance enables the neural net-
work to substantially completely ignore values that were of
a low-enough amplitude to be within the noise floor, while
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paying close attention to higher amplitude information that
may contain necessary spectral information.

The cutoff for the noise floor was taken as a value at the
point tangential to the knee of a histogram of signal ampli-
tudes. Above the knee, the amplitudes were more signal-like
and below the knee, the amplitudes were more noise-like.

In the illustrated embodiment, two different levels of
individual case-based vigilance were used, one for signal-
like, and one for noise like. Varying levels of indivigilance
could also be used depending on the signal amplitude, or
other information pertinent to the signal, such as its fre-
quency. The indivigilance was stored in the Input Matrix in
the r vector, in parallel with the vibration vector.

With reference to FIG. 2, the tachometer data was used by
the Create Dimensional Shift Vector Block 70 to indicate the
frequencies at which the turbine is spinning. Many features
in the spectrum are directly related to these features, includ-
ing once-per-rev vibration, blade-passing frequencies, gear
mesh frequencies, sidebands of blade-pass frequencies, and
oil-whirl. Some features in the spectrum tend to occur at
certain fixed frequency ranges, such as combustion noise.

The use of dimensional shift enables the neural network
to separate the information pertaining to these features into
separate sections of memory. In this way, the network will
not confuse these special inputs with other spectral ele-
ments.

The Spectral Features Memory 68 defines where these
features exist in the spectrum. The dimensional shift is
provided through a J matrix that is parallel to the other
vectors in the Input Matrix.

For the spectral features that occupy frequency bands that
move in the spectrum with respect to the turbine speed, as
sensed through the tachometers, the features are aligned
using the Current Turbine Speed Block 130, see FIG. 4. The
spectral components of the features are separated, block 134,
by a dimensionality offset in a certain bandwidth around
each feature.

An example of the separation of frequency spectrum
information using dimensionality shift is illustrated in FIG.
10. The a priori coding dimension of FIG. 10 is a linear
representation of the multidimensional shift of different
spectral components in the input to the neural network. The
term ‘a priori’ signifies that it modifies the input to the neural
network based upon previously known facts, such as the
spectral features. Various sections of the spectrum are sepa-
rated by a shift in the a priori coding dimension.

Sensitivity to changes in the spectrum is an implementa-
tion choice. In one embodiment, the sensitivity was chosen
to be 5%, such that a change of 5% of full-scale of any
component in the input spectrum, above the noise floor,
would be detected. This parameter, along with the number of
Input Matrix dimensions, controls the vigilance values for
the network. The vigilance required to detect a certain
percentage change is

where M is the number of input dimensions, and A is the
change amount with 0.05 corresponding to a 5% change.
The individual case-based vigilance is shown as p. This
equation shows that p must be greater than 0.99 to detect a
5% change in amplitude of a frequency component.

A dimensional shift is also created in a stair-step manner,
136 of FIG. 4, at periodic frequencies to help ensure
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separation of the information at those frequencies in the
neural memory. The frequency period chosen for increment-
ing the dimensional shift was smaller than the smallest
sideband separation that was expected in the spectrum. This
stair-step fractional-dimension shift allows the Fuzzy ART
neural network to learn the input information very rapidly
because vigilance trials in the network are reduced.

The dimensional shift is implemented as a small arith-
metic change in the value of the input vectors that make up
the J matrix. The spectral features are spread to different
locations in neural memory using fractional analog dimen-
sions 132 of FIG. 4.

Because the inputs to the Fuzzy ART Neural Network are
analog numbers of the range [0,1], the change in the dimen-
sion can be made to be smaller than a binary jump from 0
to 1. A fraction of a dimension is all that is required to
implement a change greater than the sensitivity, A, of the
system. There are 20 increments of 5% within the range
[0,1]. Thus, for a 5% change, a step of Yio was chosen to
exceed the Y20 step indicated by 5%.

There are multiple vectors in the J matrix. When the first
vector overflows, the next vector is incremented by V4o, and
the first vector is again run up through the range [0,1]. This
allows an arbitrary number of fractional-dimension shifts to
be made while requiring only d/j vectors in the J matrix,
where d is the number of separations in neural memory
required, and j is the modulus, or number of fractional-
dimension shifts capable of being fit into a single dimension
(19 in this case).

The Frequency Domain Input Processing section also
creates an F vector in the Input Matrix. This vector is just a
monotonically increasing vector 72 over the normalized
range [0,1 ] to indicate the frequency corresponding to each
row in the Input Matrix.

The Input Matrix 52 serves as the input to the neural
network for both training and on-line operation. The Input
Matrix has the form:

I=|F VJ|r
I=|F V I|r

F( v) JU, 1) J1,2) J(1,3)] | pl)
=|F(p) V(p) J(p, 1) J(p.D) J(p,3)|,|p(p)

F(P) V(P) J(P, 1) J(P,2) J(P,3)]| |p(P)

where

I=Input Matrix of input cases

r=vector of case vigilances

F=vector of frequencies from spectrum

V=vector of vibration velocities from spectrum

J=matrix of fractional—dimension separations

p=individual case vigilance

P=number of input cases in I

The Time Domain Statistics Processing 22 provides fur-
ther dimensions to the Input Matrix, if desired, to hold
information pertinent to the signal statistics, such as :
average, peak-to-peak, and root-mean-square (rms) values,
crest factor, K-factor and kurtosis. These features help to
classify the spectrum. These features will not change
throughout the spectrum, and serve as a constant value over
the processing of an Input Matrix particular to a given
frequency spectrum.

The Fuzzy ART Neural Network 34 is a type of Adaptive
Resonance Technology, ART, neural network, modified in
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this case to accept individual case-based vigilance values,
and to indicate when a novel case has been detected.
Through the careful setting of the vigilance values, the
network will detect a specified amount of change in any
frequency spectrum or time domain component.

The Fuzzy ART Neural Network is an established tech-
nology. Its use will be described here, as well as the
modifications made to accomplish the requirements of this
vibration analysis system. A short description of the network
follows.

A Fuzzy ART system consists of two major components,
the attentional subsystem and the orienting subsystem. The
attentional subsystem activates the system in response to
each input vector, and the orienting subsystem finds the
correct internal representation of the new information. Each
Fuzzy ART input vector is a row from the Input Matrix 52.
The entire Input Matrix supplies all the training vectors for
a single spectrum.

Fuzzy ART creates two internal representations of vectors
presented to the system. There is a long-term memory
(LTM) layer that represents information that the system has
learned and a short-term memory (STM) layer that perceives
and internalizes new cases presented to the system.

The long-term memory is stored in neurons, that are also
called processing elements (PEs), or nodes, contained in the
F, layer. The short-term memory is formed by neurons in the
F, layer.

The long-term memory neurons hold categories or tem-
plates that consist of hyper-cubic areas that encompass the
region of the input space representing the category of
information that it has learned. The short-term memory tests
the input vectors for degree of match between the long-term
memory and the input vector. The long-term memory makes
up the Neural Memory 32 of the system.

FIG. 11 illustrates the different Fuzzy ART layers, the
short-term memory F, layer, long-term memory F, layer, the
attentional subsystem, and the orienting subsystem. The F,
layer shown in FIG. 11 provides preprocessing of the input
vector to allow both low-amplitude and high-amplitude
information to affect the network in the same manner. The
input layer and the F, layer both consist of a single PE
containing a vector representation of the input case.

The F; and F, layers each contains a set of PEs. The F,
layer contains the same number of PEs as the F, layer. Each
PE in the F, and F, layers contains a vector of weights of the
same dimensionality as the processed input vector I in the F,
layer. The number of weights in { is twice the number of
dimensions in the input vector I, due to complement encod-
ing where each input value is subtracted from one to monitor
positive going and negative-going changes, as per Fuzzy Art
theory.

The top-down weight vectors in the F, layer are called w,,
with the j subscript signifying the neuron index number in
the F, layer. The bottom-up weight vectors in the F, layer
are called W, with the j subscript signifying the PE index
number in the F; layer. For each F, node, w,, there is a
corresponding F, node, W;. The W; weights are the short-
term memory traces, (STM) and the w; weights are the
long-term memory traces, (LTM).

FIG. 11 includes vigilance denoted by p. The vigilance
controls how close the system pays attention to the input
vector. Generally, the vigilance is set to a constant for the
whole training set. This makes all patterns equal in regards
to how closely the system learns the individual vectors. By
using a priori knowledge about the distribution of the input
information, the amount of vigilance that each vector gets
can be set on a per-case basis before input into the neural
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network. The case vigilance for input to the neural net can
be set by hand, or modulated algorithmically, based upon
features from the input case.

Applying the input matrix to the Fuzzy ART neural
network allows the network to detect all the information in
the spectrum, and make classification regions around each
point in the spectrum. The internal neural memory repre-
sentation of a learned spectrum can be seen in FIG. 12,
which shows the classification regions superimposed on the
normalized spectrum.

In FIG. 12, many small boxes i.e. 150a, 150b, 150c, are
constructed by the network around the higher amplitude
peaks in the spectrum. Larger boxes, i.c. 150d, are con-
structed around the noise information because noise infor-
mation was learned with a lower vigilance value. A trace
from neural memory without the superimposed spectrum is
illustrated in FIG. 13. Dimensionality shifts are not illus-
trated in these figures for clarity.

After a spectrum has been learned by the neural network,
changes in the spectrum are detectable. These changes are
detected through the novelty-detector capability of the
Fuzzy ART neural network.

FIG. 14 is a diagram illustrating a change, labeled “new
point”, that has exceeded the classification region for a small
section of the frequency spectrum. This is a change in a
single element of the spectrum. This could indicate a cata-
strophic event such as a turbine blade crack, or a change of
blade-set vibration over time.

The system S takes advantage of a more sophisticated
form of neural network, the Fuzzy ART, to permit fast
incremental training without loss of previously learned
information. New data, detected by the network, modifies
only a small portion of neural memory as opposed to
requiring retraining of all the network weights as would
occur in a back-propagation type of neural network. The
learning characteristics of the Fuzzy ART neural network
have been carefully characterized in order to prove the
ability to detect a given change in spectrum components.

The ability to detect changes in any component of the
frequency spectrum allows a detailed condition-based main-
tenance program to be established. The turbine could be
serviced when its parts start to wear.

With reference to FIG. 1, the Analysis System 36 accepts
all the detected change data that occurs in on-line use of the
turbine. The change data is correlated with the spectral
features, or maintained as an unpredicted phenomemon.
Increasing trends in spectral components can indicate need
for maintenance action. A fast-changing trend in turbine
vibration, that greatly exceeds the previously learned clas-
sification regions, can indicate a catastrophic event that
should precipitate immediate action. These events would be
determined in the Analysis System and transmitted to the
Turbine Controller 44 for alarm or emergency shutdown of
the turbine.

This system provides improved analysis of detailed spec-
tra. Prior art has used acceptance regions that were overlaid
on the spectrum. These acceptance regions were based upon
human expert knowledge and consisted of a limited number
of amplitude thresholds for different bands of the spectrum.
If the vibration exceeded one of these thresholds in a certain
band, an alarm would be raised.

In the present system, the acceptance regions are learned
automatically. They consist of the entire manifold of clas-
sification regions in neural memory. These classification
regions are bound directly to the turbine to which the system
is attached.

FIG. 15 illustrates a Fuzzy ART algorithm for training the
system S. The system is trained using vibration data from a
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turbine that is correctly operating, and installed in its
intended environment. The classification regions are created
in neural memory as the turbine is operated over its entire
range of operating points. The information is stored in
dimensionally separate locations in neural memory.

As the system S is operated on-line with the turbine, the
analysis region in neural memory is dynamically shifted as
governed by the turbine operating point. Therefore, the
turbine acceptance regions in the new system encompass the
entire turbine operating envelope, thus increasing the cov-
erage of the monitoring capability. The dependence upon a
human operator to manually determine acceptance regions is
removed.

From experiments with a preferred embodiment of the
system S, the entire 65536-point frequency spectrum
required only 500 neurons to learn to detect 5% changes in
the spectrum. This is a large compression of the data, but all
spectral points are encompassed by classification regions. To
learn the entire turbine operating envelope has been esti-
mated to require 3 Mbytes of memory. This memory would
be implemented in nonvolatile fast memory.

The system S can monitor thousands of components in the
spectrum, and detect changes throughout the spectrum, not
just at a few predetermined frequencies. It is highly tuned to
an individual turbine, and would remain with the turbine
through long periods of operating lifetime.

As the turbine components wear through use, the analysis
system detects trends in vibration response of components in
the spectrum. Trends are detected by monitoring the novel
cases in the input spectrum, as illustrated in FIG. 16.

The novel cases can be learned in order to provide on-line
adaptation to changes in the turbine spectrum. Increasing
trends in blade-pass vibrations can indicate damage to the
blade-set, as can increasing sidebands related to the blade-
pass frequencies. The trending system may be constructed
using an expert system to determine if known scenarios in
the trends are present, indicative of excessive wear. Other
technologies include fuzzy logic detector systems to gauge
the amount of wear present, as gauged by the changes in
spectral component amplitude. The amount of wear present
in various components can be summed to give an overall
estimate of turbine health, with a threshold provided for the
initiation of maintenance actions.

After maintenance actions have been taken to correct
turbine damage or wear, the system S will be automatically
retrained with the new turbine spectral signatures by reset-
ting the neural memory and running the turbine through its
various operating modes. This process is illustrated in FIG.
17. The retraining enables the system S to adapt to any
changes in the spectrum resulting from the maintenance
action.

A Display System 40 that is driven by the neural network
output and/or analysis system can display the current oper-
ating condition of the turbine, the accumulated changes in
various spectral components since the turbine spectrum was
first learned, and any alarms, predictions, or trends detected
by the analysis system. The display can enable a human
operator to distinguish between a normal operating condi-
tion of the turbine, and a damaged or deteriorating turbine,
based upon highlighted changes from the baseline spectrum.

Outputs 42 to external processing, illustrated in FIG. 1,
can include data related to individual turbine wear, or
damage. The data can be collected and combined with
operating data from multiple turbines to create a general
library of operating characteristics of a class of turbines.

Because the data has been collected from identical moni-
toring systems, such as the system S, the information is

10

15

20

25

30

35

40

45

50

55

60

65

12

easily combined in training sets. Data related to many types
of turbine malfunctions can be collected. This will enable
more accurate, automatic diagnosis of turbine faults as the
combined data is disseminated to the monitoring systems in
service.

Malfunctions in the turbine that can be distinguished in
the vibration spectrum can be collected and tagged as
appropriate to the malfunction. The information would then
be trained in the neural network. When the appropriate
neurons are activated, an output would be transmitted to the
analysis system to indicate that a known problem has been
detected.

The system S can be implemented on a single digital
signal processing, DSP, circuit card. All neural processing
can be done using a DSP microprocessor, accessing memory
on-line, with an ethernet connection to external processors.

The system S can alternately be implemented within a
general purpose desktop or laptop computer, using internal
RAM for storage while providing communication and dis-
play capabilities intrinsic to the computer. A signal acqui-
sition and digitization system can be installed in the com-
puter or interfaced to the computer from an external
electronics module. Alternative, separate processing units
could be created for each of the subsystems, including FFT,
Neural Net, Analysis System, and analog processing.

Desktop computer installations would be suitable for
power-plant operation. Embedded and ruggedized imple-
mentations would be appropriate for aerospace propulsion
engine use, such as for jet aircraft, and marine ships.

External processing and data archival systems could be
set up for the purpose of combining the information that was
automatically learned by the distributed neural network
systems. This information could be redistributed to the
various installations as important failure characteristics are
learned, thus increasing the on-line knowledge of all the
installations.

Various sensor types could be used, including
accelerometers, laser non-contact vibration sensors, micro-
electromechanical systems, MEMS, and fiber-optic based
vibration sensors, without departing from the spirit and
scope of the present invention. Various display mechanisms
could be employed, including flat-panel displays, cathode
ray tubes, and Light Emitting Diode indicators.

Alarm mechanisms for excessive vibration could include
flashing lights, and siren horns. Failure data could be trans-
mitted through electronic mail to remote locations. The
trending data could be accessed over the world wide web
using Java applets.

From the foregoing, it will be observed that numerous
variations and modifications may be effected without depart-
ing from the spirit and scope of the invention. It is to be
understood that no limitation with respect to the specific
apparatus illustrated herein is intended or should be inferred.
It is, of course, intended to cover by the appended claims all
such modifications as fall within the scope of the claims.

What is claimed:

1. Avibration analysis system for monitoring an operating
device comprising:

at least one vibration sensor;

transform circuitry, coupled to the sensors, for transform-

ing sensor outputs to frequency spectrum information;

a fuzzy adaptive resonance-type neural network for

receipt and processing of the information to generate
selected output information.

2. Asystem as in claim 1 wherein the transform circuitry
comprises a Fast Fourier Transform.

3. A system as in claim 1 which includes circuitry for
converting frequency and amplitude information to serial
form for presentation to the network.
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4. A system as in claim 3 which includes an expert system
for automatically analyzing the output information.

5. A system as in claim 1 wherein the transform circuitry
comprises a programmed processor.

6. A system as in claim 1 wherein the neural network
comprises a programmed processor and a plurality of net-
work implementing instructions.

7. A system as in claim 6 wherein the transform circuitry
is coupled to serializing circuitry which presents serial
information to the network implementing instructions.

8. A system as in claim 7 which includes normalizing
circuitry coupled between the transform circuitry and seri-
alizing circuitry.

9. A system as in claim 1 wherein parameters of the
network have been adjusted in response to presenting data
from at least one properly functioning source of vibrations.

10. A system as in claim 1 which includes windowing
circuitry coupled between the sensor and the transform
circuitry.

11. A system as in claim 1 which includes a filter and
wherein sensor outputs are filtered before being coupled to
the transform circuitry.

12. A system as in claim 11 which includes a digitizer
coupled between the filter and the transform circuitry.

13. A system as in claim 1 which includes normalization
circuitry, coupled to the transform circuitry, for providing a
normalized frequency domain representation to the network.

14. A system as in claim 13 wherein the normalizing
circuitry includes baseline noise removal circuitry.

15. A system as in claim 1 wherein the network includes
a serial input port.

16. A system as in claim 15 wherein characteristics of a
normal operating device have been incorporated into the
network.

17. A system as in claim 16 wherein the memory of the
network includes vibration-related information from a nor-
mally operating device.

18. A system as in claim 17 which includes circuitry for
detecting differences between the stored information and
signals from the sensor indicative of a current operating
condition.

19. A system as in claim 17 which includes circuitry for
detecting operational trends, in the input spectrum, which
indicate at least one of device wear and device damage.

20. A method of analyzing vibrations generated by a
device comprising:

training a resonant-type neural network to recognize a

normal class of vibrations from the device using fre-
quency domain inputs from comparable, normally
functioning devices;

detecting vibrations from the device to be monitored;

converting the detected vibrations to a frequency domain
representation using a variance reduced transform pro-
cess;

presenting the frequency domain information serially to
the trained network;

processing the information in the network; and determin-
ing if the detected vibrations are outside of the normal
operating mode of the device.
21. A method as in claim 20 which includes filtering the
detected vibrations.
22. A method as in claim 20 which includes detecting the
operating speed of the device.
23. Amethod as in claim 22 which includes differentiating
between periodic, speed related vibrations and non-speed
related vibrations.
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24. A method as in claim 20 which includes retraining
only portions of the network in response to having carried
out a maintenance procedure on the device.

25. A method as in claim 20 which includes coupling
outputs from the network to an analysis system.

26. A software based vibration analysis system compris-
ing:

executable instructions for transforming an input time

domain signal to a frequency domain representation;

instructions for analyzing and normalizing the frequency
domain representation; and

instructions for implementing a resonant-type neural net-
work including instructions for implementing network
short term and longer term memory wherein nominal,
expected characteristics of a selected type of device
being analyzed can be stored.

27. A system as in claim 26 which includes instructions
for detecting speed signals from the device and for distin-
guishing between substantially periodic, speed related and
non-speed related signals.

28. A system as in claim 27 which includes instructions
for removing base line noise from the frequency domain
representation, and normalizing the frequency domain rep-
resented.

29. A system as in claim 28 which includes instructions
for analyzing differences, detected by the network, between
an expected spectral pattern and a spectral pattern for the
input signal.

30. An apparatus comprising:

a movable vessel;

a turbine for moving the vessel;

at least one vibration sensor coupled to the turbine;

at least one speed sensor coupled to the turbine;

a processor for comparing digital frequency domain rep-
resentations of the signals from at least the vibration
sensor to prestored expected, frequency domain repre-
sentations of turbine vibrations wherein the processor
implements a software based, resonant-type neural
network to carry out the comparing process.

31. An apparatus as in claim 30 which includes processing
circuitry, coupled between the speed sensor and the proces-
sor and including executable instructions for distinguishing
between speed related vibrations and non-speed related
vibrations.

32. An apparatus as in claim 30 wherein the vessel is
selected from a class which includes a marine platform, a
land platform and an airborne platform.

33. An apparatus as in claim 32 which includes an output
device and executable instructions for presenting to an
operator indications of operational differences between the
frequency domain representation of current signals from the
vibration sensor and the prestored, expected frequency
domain representations.

34. An apparatus as in claim 33 which include instructions
for providing maintenance indicators to the operator.

35. A system as in claim 32 wherein the processor
includes a digital signal processor.

36. A system as in claim 32 wherein the processor
includes a programmable computer for executing at least
some of the instructions.

37. Asystem as in claim 32 wherein the system transmits
detected vibration information to an external collecting
point, for incorporation into a general vibration database.
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