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Summary

Objective: Early detection is paramount to reduce the high death rate of ovarian
cancer. Unfortunately, current detection tool is not sensitive. New techniques such as
deoxyribonucleic acid (DNA) micro-array and proteomics data are difficult to analyze
due to high dimensionality, whereas conventional methods such as blood test are
neither sensitive nor specific.
Methods: Thus, a functional model of human pattern recognition known as comple-
mentary learning fuzzy neural network (CLFNN) is proposed to aid existing diagnosis
methods. In contrast to conventional computational intelligence methods, CLFNN
exploits the lateral inhibition between positive and negative samples. Moreover, it is
equipped with autonomous rule generation facility. An example named fuzzy adaptive
learning control network with another adaptive resonance theory (FALCON-AART) is
used to illustrate the performance of CLFNN.
Results: The confluence of CLFNN-micro-array, CLFNN-blood test, and CLFNN-proteo-
mics demonstrate good sensitivity and specificity in the experiments. The diagnosis
decision is accurate and consistent. CLFNN also outperforms most of the conventional
methods.
Conclusions: This research work demonstrates that the confluence of CLFNN-DNA
micro-array, CLFNN-blood tests, and CLFNN-proteomic test improves the diagnosis
accuracy with higher consistency. CLFNN exhibits good performance in ovarian cancer
diagnosis in general. Thus, CLFNN is a promising tool for clinical decision support.
# 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Ovarian cancer accounts for 4% of all cancers among
American and Canadian women, and ranks fourth as
a cause of their deaths from cancer [1]. This high
rved.
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death rate is due to the fact that almost 70% of
women with ovarian cancer remained undiagnosed
until the disease has advanced to Stage III or IV. To
alleviate the situation, greater effort has to be
focussed on the early detection of ovarian cancer
since the survival rate is significantly higher if the
disease is diagnosed at an early stage [2]. However,
early detection of ovarian cancer is non-trivial. It is
recorded that 13—21% of women who underwent
surgery were found to be malignant [3]. Even annual
routine gynaecologic and pelvic examinations have
only detected 3% of the early stage ovarian cancer
Table 1 Ovarian cancer diagnosis modalities

Modality Sens

Bimanual pelvic examination 2

Surgical procedure
Pap smear 1

Imaging
Transabdominal ultrasonography (TAS) 5
Transvaginal ultrasonography (TVS) 6
TVS & colour Doppler imaging (CDI) 5
Power Doppler (with end diastolic velocity
distribution slope parameter)

9

Pulsed Doppler (with time averaged
maximum velocity parameter)

8

Impedance/spectra/colour Doppler
(with resistive index)

5

Colour Doppler (with pulsatility Index) 9
Power Doppler (with pulsatility index) 8
TVS & power Doppler
(colour Doppler energy)

10

TVS & morphology index (MI) �10
TAS & CA-125 5
TVS & CA-125 9
TVS & MI & CDI �10
3D sonography 7
3D power Doppler 5
3D sonography & 3D power Doppler 9
Computed tomography (CT) 4
CT with replicated reading 9
Positron emission tomography (PET) 1
2-Fluoro-2-deoxy-D-glucose & PET (FDG-PET) 1
PET-CT 6
Immunoscintigraphy 5
Magnetic resonance imaging (MRI) 8
MRI & immunoscintigraphy 8

Tumour marker
CA-125 2
CA-125 & OVX1 antibody 8
CA-125 & TPS 8
Cancer-associated serum antigen 5
Platelet counts 5
Risk of malignancy index (RMI) 8
Carcinoembryonic antigen (CEA) 6
Oligonucleotide micro-array analysis 9
DNA sequence analysis 8
cases, and 10% of Stages I—IV cancer [4]. This high-
lights the difficulty of the task at stake, and the high
false positive rate of present ovarian cancer diag-
nosis techniques.

Bimanual pelvic examination, sonography and
tumour marker are some common modalities for
ovarian cancer diagnosis. The reported accuracies
of these techniques are summarized in Table 1.
Sensitivity refers to the ratio of correctly identified
malignant cases to the total population of malignant
disease, whereas specificity is the ratio of correctly
identified benign cases to the total benign popula-
itivity (%) Specificity (%) Reference

6—67 94 [7,8]

0—30 Not available [6]

0—100 98 [5—8]
9—100 56—97 [7,9—12]
0—100 46—100 [7,9—10,13,14]
1—97 90—100 [15]

9 81 [16]

8—100 83—99 [13]

3 60 [13]
7 92—96 [13]
0 83 [9]

0 99 [7]
8—79 100 [6]
4—97 91—100 [11]
0 97 [7]
4 [14]
4—95 99 [13,14]
8—100 75 [13,14]
7—100 79—93 [5,12,14,18,19]
3—94 79—85 [20]
0—100 40—100 [18,19]
0—88 42—100 [18]
2—73 40 [18,19]
0—92 57—75 [17]
1—100 88—100 [5,8,12,17]
9 [17]

9—100 58—95 [6,7,11,21—23]
0 91 [24]
1 82 [25]
8 96 [25]
9—77 60—65 [26]
8 74 [22]
0 64 [21]
2 100 [27]
2 100 [27]
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tion. In Table 1, sensitivity and specificity are esti-
mated from the reported accuracies in tumour
classification, malignant detection on pre- and post-
menopausal patient.

dFrom Table 1, a large repertoire of ovarian
screening techniques implies thedifficultyassociated
with theovarian cancerdiagnosis task.Althoughmost
of the techniques appeared attractive, their accura-
cies are inconsistent. Every technique has its limita-
tions. For example, the pelvic examination is the
simplest way to discover ovarian cancer but it is
unable to detect ovarian tumour at an early stage
[5,6]. Surgical procedure like Pap smear, on the other
hand, has very low sensitivity [6]. As for medical
imaging modalities, they are inconsistent and highly
dependent on the skill of the imaging technicians/
operators. Hence, medical imaging diagnosis is sub-
jective and error-prone [11,12,18].

Another modality is blood assay such as cancer
antigen-125 (CA-125), albeit blood assay sensitivity is
claimed to be low [5,21,25]. Furthermore, CA-125
becomes unreliable if the woman is pregnant [28].
Apart from that, new microbiology techniques such
as deoxyribonucleic acid (DNA) micro-array and pro-
teomics have emerged in recent years. Despite DNA
micro-array andproteomics holding promising results
for cancer diagnosis [29], both technologies are high
dimensional and consequently the analysis becomes
time-consuming [30]. Together with the lack of
knowledge on the pre-cancer syndrome of ovarian
cancer, the limited ovarian cancer micro-array and
proteomics samples have hindered the progress of
DNA micro-array and proteomics. In short, none of
the modalities has sufficient sensitivity and specifi-
city when used as a standalone tool [1], resulting in
the difficulty of ovarian cancer diagnosis as well as
the limitation of current screening tool. The high
false positive rate not only produces suboptimal
patient outcome, at the same time, it also incurred
higher cost to both physician andpatient. Thus,many
have proposed to aid the ovarian cancer diagnosis
using computational intelligence tools. A plethora of
methods have been proposed to assist in fighting
ovarian cancer, as summarized in Table 2.

As shown in Table 2, computational intelligence
significantly enhances the diagnosis accuracy. These
clinical decision support systems (CDSSs) reduced the
inconsistency in medical decision. However, most of
the adopted techniques have their shortcomings;
they are namely: (1) not comprehensible–—no facility
for interpretation; (2) time-consuming–—manual rule
construction. Furthermore, most of the systems are
based on either positive or neutral learning of cases
and do not consider the contribution of negative
classes. Consequently, these CDSS were unable to
gain trust from physicians. Thus, complementary
learning fuzzy neural network (CLFNN) is proposed.
With complementary learning, the system learns
from positive and negative examples. As a result,
CLFNN generates positive and negative rules, which
provides a closer representation of the problem. At
the same time, CLFNN is capable of producing rela-
tively superior classification performance because of
the lateral inhibition feature existing between the
positive and negative fuzzy rule-bases. In other
words, a positive sample (malignant case) will con-
currently activate the positive rules and inhibit the
negative rules when presented to the system, hence
leading to a positive conclusion. This minimizes the
confusion in the inference process and produces
relatively good classification performance. Apart
from providing fuzzy rules to improve its comprehen-
sibility, CLFNN also offers reasoning process that is
closely akin to that performed by humans. Hence,
CLFNN is more comprehensible in comparison to
conventional methods. In this study, a CLFNN named
fuzzy adaptive learning control networkwith another
adaptive resonance theory (FALCON-AART) [43] is
described to illustrate the feasibility of using CLFNN
as an effective ovarian cancer CDSS.

This paper is organized as follows: Section 2
states the datasets used in this study, and briefly
describe the features of CLFNN. Section 2 also
covers the experimental setup. Section 3 describes
the experimental results and analyses. Section 4
concludes the paper.
2. Methods and material

2.1. Dataset

Three datasets are used in this work. They are
described in the following sections.

2.1.1. Micro-array gene expression
The first dataset is the micro-array gene expression
for ovarian cancer diagnosis. The ovarian cancer
dataset [44] consists of 30 samples obtained from
ovarian tumours and 24 normal samples. Each of
these samples comprises 1536 features. Class dis-
tribution of this ovarian cancer dataset is as follows:
� 2
4 samples of normal ovarian tumour.

� 1
 sample of Stage I mucinous ovarian tumour.

� 2
4 samples of Stage III serous ovarian tumour.

� 5
 samples of Stage IV serous ovarian tumour.

2.1.2. Blood assays
Another dataset is the ovarian cancer diagnosis
based on blood tests, collected from Singapore
National University Hospital (NUH). The dataset
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Table 2 Reported accuracy on computer-aided ovarian diagnosis or prognosis

Medical inputs/modalities Computational intelligence
tool

Accuracy (%) Training/
sample size

Ovarian cancer risk factors [22,31] Bayesian network 93 225/300
Naı̈ve Bayesian 93
Artificial neural network 95
Logistic regression 90

CA-125 II & CA-72-4 & CA-15-3 &
lipid-associated sialic acid [23]

Multilayer perceptron 90 174/429

Patient data [32] Genetic algorithm 80 Not mentioned
Fuzzy genetic algorithm 78
Fuzzy logic system 70
Fuzzy logic + genetic
algorithm

78

Genetic programming
(logical rules)

84

Genetic programming
(algebraic rules)

81

Multilayer perceptron 59
Multilinear regression 41

Laparotomy data [33] Multilayer perceptron 85 166/242
Logistic regression 68
Linear regression 73

Blood tests [34] Multilayer perceptron 93 35/50
Patient history & ultrasonography

measurements & colour Doppler
imaging measurements & blood
serum marker levels [35]

Bayesian network 62 Not mentioned

Magnetic resonance images [36] Linear discriminant analysis 97 Not mentioned
Patient history [37] Support vector machine 81 10-fold cross-validation, 199

Gene expression profile [38] k-Nearest neighbour 71 Leave-one-out, 32
CAST 43
Support vector machine 68
AdaBoosting 89

Proteomic serum mass spectra [39] Ensemble of 51 artificial
neural network

91 100/215

Proteomics ovarian cancer serum
mass spectra [40]

Genetic algorithms and
Kohonen clustering

97 137/253

Proteomic spectrum [41] Genetic algorithm 99 Not mentioned
Thermogram [42] CLFNN 94 26/78
was collected over a period of 5 years from the NUH
Department of Oncology and Gynaecology; consist-
ing of 172 patients diagnosed using several blood
tests. The class distribution is as follows:
� 2
3 samples of normal patient.

� 7
8 samples of benign cyst patient.

� 1
0 samples of borderline or proliferating tumour

patient.

� 1
9 samples of Stages I and II patient.

� 4
2 samples of Stages III and IV patient.

Each diagnosed case is associated with the
patient’s profile, blood composition and some com-
mon blood test such as CA-125, cancer-associated
serum antigen (CASA), etc. All features of the data-
set are listed in Table 3.

2.1.3. Proteomic spectra
The third dataset [40] is the proteomic spectra gen-
erated by the Protein Biology System 2 surface-
enhanced laser desorption/ionization-time of flight
(SELDI-ToF) mass spectrometer. It contains 253 insta-
nces, each with 15,154 intensity of molecular mass
per charge ratio. The class distribution is as follows:
� 9
1 samples of normal patient.

� 1
62 samples of ovarian cancer patient.
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Table 3 List of ovarian features

x1: age x16: D-dimer
x2: packed cell volume (PCV) x17: tissue plasminogen activator (tPA) activity
x3: hemoglobin (Hgb) x18: tPA antigen
x4: b-Thromboglobulin (TG) x19: urokinase-like plasminogen activator (uPA) activity
x5: reaction time of thrombelastography (TEG-r) x20: uPA antigen
x6: coagulation time of TEG (TEG-K) x21: uPA receptor
x7: maximum amplitude of TEG (TEG-MA) x22: PA inhibitor 1 (PAI-1) activity
x8: fibrinogen x23: PAI-1 antigen
x9: factor VII x24: PAI-2 antigen
x10: von Willebrand-factor (VWF) x25: protein C antigen
x11: thrombin—antithrombin complex (T/AT) x26: protein S antigen
x12: prothrombin fragment 1 & 2 (F1 + 2) x27: cancer antigen-125 (CA-125)
x13: antithrombin III (A-TH3) activity x28: cancer-associated serum antigen (CASA)
x14: A-TH3 antigen x29: tissue factor pathway inhibitor (TFPI)
x15: plasminogen x30: blood platelet
2.2. FALCON-AART

FALCON-AART belongs to the class of CLFNN. In
contrast to conventional methods, CLFNN exploits
positive and negative learning, as well as the lateral
inhibition between these two classes. CLFNN has the
following three characteristics:
1. L
earning from positive and negative samples.

2. S
egregation of positive and negative knowledge.

3. E
xploitation of lateral inhibition between posi-

tive and negative classes.

Formally, complementary learning can be
described as follows:

Given a universe of discourse U consisting of T
elements, U = {x1, . . ., xt, . . ., xT}, a fuzzy set AC

representing a particular concept C, the elements
in U will have unity membership if it belongs to the
concept C (see Eq. (1)):

mAC
ðxÞ ¼ 1 if SMðx;ACÞ� r

0 otherwise

�
(1)

where SM(�) is a function for computing the similar-
ity measure between the input to the reasoning
system and the fuzzy set AC; and r is a predefined
threshold. Similarly, elements that do not belong to
concept C will have unity membership function for
the concept :C. This is described in Eq. (2):

mA:CðxÞ ¼
1 if SMðx;A:CÞ� r
0 otherwise

�
(2)

Through the lateral inhibition property, when-
ever a positive sample is presented to the system,
the positive sample activates the positive rules and
concurrently inhibits the negative rules, which leads
to positive output of the system. Complementary
learning therefore is believed to improve the system
in pattern recognition.
FALCON-AART autonomously generates fuzzy
rules in the form described by Eq. (3):

IF x1 isA and x2 isB; THEN y1 isC and y2 isD (3)

The fuzzy rule in Eq. (3) is an example of a system
with two inputs and two outputs. It consists of five
elements:
1. I
nput linguistic variables (x1, x2).

2. I
nput linguistic terms (A, B). This represents

fuzzy entities such as tall, short, thin, fat, etc.
FALCON-AART represents input linguistic terms
with trapezoidal membership function.
3. I
f—Then rule: links the antecedent part (i.e.
input linguistic variables and terms as above)
with the consequent part (i.e. output linguistic
variables and terms as below).
4. O
utput linguistic variables (y1, y2).

5. O
utput linguistic terms (C, D).

FALCON-AART has five layers that are mapped into
the elements of the fuzzy rule (see Fig. 1).

Prior to the commencement of training, FAL-
CON-AART has only the input and output layers. As
training progresses, it automatically constructs its
hidden layer using the modified Fuzzy ART algo-
rithm [43]. An adaptive and gradually decreasing
learning constant is applied to the algorithm
such that structural learning becomes a function
of time. With this, FALCON-AART is able to alle-
viate the stability-plasticity dilemma as well as to
avoid the problem of generating non-representa-
tive or redundant clusters. It dynamically parti-
tions the input and output spaces into trapezoidal
fuzzy clusters, and subsequently these clusters
are fine-tuned using the adaptive back-propaga-
tion algorithm. The tuning is performed on the
slope as well as the kernel of the fuzzy sets.
When new training patterns are presented, if they
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Figure 1 Architecture of FALCON-AART.
are sufficiently similar to the stored cluster, the
stored cluster will resonate. The resonant cluster
will then expand to incorporate these patterns
using the structural learning algorithm. Training
terminates when the mean square errors bet-
ween two epochs are sufficiently equal. The infer-
ence process of FALCON-AART is summarized as
follows.

Let x = (x1, . . ., xi, . . ., xI) denotes the input,
where i 2 [1, I] is the index to the input. Fuzzy sets
A and B are the input and output fuzzy sets, respec-
tively. A fuzzy set A is described by its membership
function, denoted as mA(x).
Step 1 I
nput fuzzification: input xt ¼ ðxt1; xt2; . . . ; xtI Þ
is fuzzified to xt ¼ ðxt1; xt2; . . . ; xtI Þ before
feeding into the system.
Step 2 A
ntecedent matching: fuzzified input fuzzy
sets are compared with their corresponding
rule antecedents. Subsequently, the simi-
larity measure (SM) is computed using
Eq. (4):

SM ¼ m
xt
i
\Ai j
ðxti Þ

¼ xti \Ai j

¼ m
xt
i

ðxti Þ � mAi j
ðxti Þ

(4)
where * is the t-norm operation. Since xti is
a fuzzy singleton, Eq. (4) can be simplified
to Eq. (5):

SM ¼ m
xt
i

ðxti Þ � mAi j
ðxti Þ

¼ 1 � mAi j
ðxti Þ

¼ mAi j
ðxti Þ

(5)
Step 3 R
ule fulfilment: in this step, the overall
similarity measure (OSM) between the fuz-
zified inputs and rule antecedents are com-
puted using Eq. (6):

OSMrule k ¼
1

I

XI
i

SMik (6)

where SMik is the similarity measure of the
ith antecedent of rule k, and I is the input
dimension.
Step 4 C
onsequent derivation: the consequents of
the fired rules are derived based on the
rules’ OSM, as shown in Eq. (7):

m
BðlmÞk
ðymÞ ¼ mBðlmÞk

ðymÞ � zrule k (7)

There may be more than one rule that is
connected to a consequent. Hence, the final
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Table

Human

Making
Weight

that
Choosi

best
Retriev

expe
Acting
inferred consequent derived is the aggrega-
tion of the different consequents inferred
using different rules. The final inferred con-
sequent is described in Eq. (8):

Blm ¼ f½BðlmÞk �; where f can be \ ; [ ;
P

¼ [
k2f1;2;...;Kg

BðlmÞk ; choose f to be [

¼ max
k2f1;2;...;Kg

fm
BðlmÞk
ðymÞg

¼ max
k2f1;2;...;Kg

fmBðlmÞk
ðymÞ � zrule kg

¼ max
k2f1;2;...;Kg

fzrule kg � mBlm
ðymÞ

(8)

Output defuzzification: the final consequent
derived from the output fuzzy sets are
Step 5
defuzzified to produce a crisp output. The
center of area defuzzification is adopted and
is described in Eq. (9):

ym ¼
PL

l¼1 KrlmBlmPL
l¼1 Blm

(9)

where Krlm is the kernel of fuzzy set B.
Every FALCON-AART inference step has a one-to-
one mapping to the human inference step, as shown
in Table 4. This suggests that FALCON-AART has an
inference process that is highly akin in a human.

2.3. Experimental setup

All the experiments are run on a system with an Intel
Pentium IV 2 GHz processor, and 512 MB random
access memory (RAM). Each sample of the dataset
is divided into positive (malignant) and negative
(benign and normal) classes. For every dataset, three
stratified training and testing cross-validation sets
are generated. The system is then trained and
assessed using the training/testing sets. FALCON-
AART is benchmarked against some popular tools
[45], namely, naı̈ve Bayesian (NB), radial basis func-
tion (RBF), adaptive network-based fuzzy inference
system (ANFIS) [46], support vector machine (SVM),
C4.5, k-nearest neighbour (kNN), andmultilayer per-
4 Similarity of human and FALCON-AART inference

observations
ing the past experience or knowledge
describes the current situation
ng the experience or knowledge that
reflects the current situation
ing the actions of best matched past
rience or knowledge
out the actions
ceptron (MLP). The metrics used apart from classifi-
cation accuracy are sensitivity and specificity which
are described in Eqs. (10) and (11), respectively:
sensitivity ¼
number of positive samples correctly predicted

total number of positive samples

(10)

specificity ¼

number of negative samples correctly predicted

total number of negative samples

(11)
3. Experiments

3.1. DNA micro-array gene expression

Examination of the gene expression identified by
DNA micro-array provides an important insight into
the biology of ovarian cancer detection. However,
gene expression obtained using DNA micro-array
contains a large number of features (1536 genes
for this dataset). It is impossible to employ all the
features to classify. Even if it were possible, there
will be redundant genes that may significantly con-
tribute to classification error. Furthermore, classi-
fication using statistical method such as kNN and
MLP cannot be quantitatively evaluated and inter-
preted in an intuitive and human-like manner.
Owing to these issues, feature selection has to be
undertaken to select the most relevant features
prior to classification. For this dataset, sparse logis-
tic regression [47] has been used to select the nine
most relevant features. In order to illustrate that
the improvement of the performance is due chiefly
to the CLFNN and not the feature selection method,
the experiments were repeated using another nine
most relevant features selected by the SVM feature
selectionmethod [48]. Note that feature selection is
only performed on the training set and not the
testing set so that no bias is introduced. Each FAL-
CON-AART is trained with different stratified set of
FALCON-AART

Feeding input to the system
Computing overall similarity

Selecting maximally fired rule

Determining the conclusion implied
by the maximally fired rule
Output the conclusion
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Table 5 Classification rate on ovarian cancer dataset (using sparse logistic regression)

Method Sensitivity (%) Specificity (%) Accuracy (%) Training time (s) Number of rules

NB 33.30 96.70 68.50 0.01 NA
RBF 75.00 76.70 75.90 0.10 NA
ANFIS 75.00 76.70 75.90 1.80 9
SVM 58.30 56.70 57.40 0.80 NA
C4.5 79.20 70.00 74.00 0.60 4
kNN 70.80 86.70 79.60 0.02 NA
MLP 75.00 83.30 79.60 0.50 NA
FALCON-AART 62.50 100.00 81.30 0.06 5

NA: not available.

Table 6 Classification rate on ovarian cancer dataset (using SVM attribute selection)

Method Sensitivity (%) Specificity (%) Accuracy (%) Training time (s) Number of rules

NB 87.50 93.30 90.70 0.01 NA
RBF 83.30 100.00 92.60 0.60 NA
ANFIS 83.30 96.70 90.70 1.60 12
SVM 33.30 100.00 70.40 0.10 NA
C4.5 87.50 93.30 90.70 0.30 3
Knn 83.30 96.70 90.70 0.02 NA
MLP 87.50 96.70 92.60 0.80 NA
FALCON-AART 90.00 91.70 90.70 0.50 10

NA: not available.

Figure 2 Fuzzy set constructed.
training and testing data (1/3 for training and 2/3
for testing). Classification performance of FALCON-
AART is benchmarked against conventional methods
and the averaged results are presented in Tables 5
and 6. The settings for the three-layer MLP are nine
input nodes, eight hidden nodes, and one output
node. Both hidden and output node activation func-
tions are sigmoidal functions. It was trained using
back propagation with momentum until the mean
square error of training set reaches 10	8. The SVM
employed radial basis function as its kernel function
and its C parameter was set at 2. The k value of kNN
was chosen as 5. As for the ANFIS network, the
membership function chosen is bell shape and the
number of epoch is 100.

The most crucial advantage of FALCON-AART is its
ability to provide reasoning for its computation. In
contrast, MLP and kNN act as black boxes to the user,
no rationale is provided to support their output.
Table 7 lists the rules autonomously generated by
FALCON-AART and C4.5. The linguistic terms such as
‘low’, ‘medium’ and ‘high’ are characterised by
fuzzy sets that are dynamically constructed. Exam-
ples of the constructed fuzzy sets are shown in Fig. 2.

The number of rules generated by FALCON-AART
is more than in a decision tree. This is because
FALCON-AART is a CLFNN that learns from both
positive and negative samples. Consequently, posi-
tive and negative rules are generated individually
and they are segregated from each other. The rules
generated by FALCON-AART are equipped with the
capability to capture data uncertainty. In contrast
to a decision tree, FALCON-AART is more tolerant to
noise as small perturbation in the data would not
generate a very different system. In addition, the
rules in FALCON-AART allow the use of linguistic
terms, giving the system greater expressive power.
At the same time, it encapsulates unnecessary
details from the user. From Table 7, the complexity
of FALCON-AART rules is higher than those rules in a
decision tree. A significant way to reduce the com-
plexity of FALCON-AART is through careful feature
selection prior to the training process. For illustra-
tion, when effective feature selection is performed
prior to the FALCON-AART training, the complexity
of the rules is significantly reduced. The rules gen-
erated by FALCON-AART are given in Table 8. Fig. 3
shows the graphical representation of the rules.
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Table 7 Complementary rules generated by FALCON-AART and C4.5

FALCON-AART C4.5

Positive rule IF gene1 is very low AND gene2 is very low AND
gene3 is medium AND gene4 is medium AND
gene5 is high AND gene6 is marginal low AND
gene7 is extremely low AND gene8 is low AND
gene9 is very low THEN Ovarian Cancer

IF gene5 
 0.90 AND gene7 
 9.95
AND gene6 
 3.50 THEN Ovarian
Cancer

Negative rule IF gene1 is marginal low AND gene2 is medium
AND gene3 is marginal high AND gene4 is marginal
high AND gene5 is marginal high AND gene6 is
extremely high AND gene7 is low AND gene8
is high AND gene9 is low THEN Normal

IF gene5 > 0.90 THEN Normal

Table 8 Fuzzy rules with lower complexity

Rules FALCON-AART

Positive rule IF gene1 is medium AND gene2 is marginal low AND gene3 is low Then Ovarian Cancer
Negative rule IF gene1 is very low AND gene2 is low AND gene3 is very low Then Normal
As shown in Table 8, the rules generated by
FALCON-AART are now less complex and can be
readily understood by the user. Unfortunately,
there is trade off between interpretability and
the performance of the system. With only three
input features, the accuracy degrades from 92 to
70%, which is a 22% decline. Hence, one has to
decide on the basis of the application to strike a
balance between interpretability and perfor-
mance. Graphical representation of the rules is
Figure 3 Graphical repres
given in Fig. 3. The fuzzy sets represent the input
and output spaces. The range of the fuzzy sets
describes the linguistic terms used in the rules,
and captures the uncertainty in the data. Using
these rules, it is shown that FALCON-AART possesses
a human-like inference process, as illustrated by
the flowchart in Fig. 4.

From Fig. 4, one can see that inference process of
FALCON-AART is closely similar to human reasoning
process, namely:
entation of fuzzy rules.
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Figure 4 Inference process of FALCON-AART.
(1) P
hysician performs laboratory observation simi-
larly FALCON-AART receives the data sample,
(2) P
hysician determines the matching degree of
the current observation with his/her knowledge
and experiences similarly FALCON-AART com-
putes the matching degree of each rule,
(3) P
hysician selects the best-matched knowledge
or experience similarly FALCON-AART activates
the rule with the maximum overall matching
degree,
(4) P
hysician evaluates the selected knowledge and
gives his/her conclusion similarly FALCON-AART
determines the consequent linked to the acti-
vated rule and derives the conclusion.
3.2. Blood test

In the blood assay dataset, not all blood test results
are available for each case. Some cases have miss-
ing value in more than 10 features. Therefore, list-
wise deletion [49] is carried out. All cases with
missing values are removed. Hence, the reduced
set contains 62 normal and 45 ovarian cancer
cases. The goal is to diagnose whether a patient
has cancer or not based on the 30 blood test results.
The averaged performance of the systems is shown
in Table 9.

From Table 9, FALCON-AARToutperforms most of
the methods in ovarian cancer diagnosis. This shows
that FALCON-AART is able to generalize the
acquired/learnt knowledge well. The training time
of FALCON-AART is quite close to the other conven-
tional methods, and is acceptably fast. The number
of rules generated by FALCON-AART is similar to
those produced by the decision tree algorithm.
However, it outperforms C4.5. These rules can be
used to explain why and how FALCON-AART derives
its decision. After careful validation, these fuzzy
rules can be used to guide an inexperience physi-
cian. Fuzzy rule is better suited than crisp rule
generated by the decision tree algorithm because
fuzzy rule can handle uncertainty in the data while
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Table 9 Result on ovarian cancer using blood test

Method Sensitivity (%) Specificity (%) Accuracy (%) Training time (s) Number of rules

NB 73.20 60.00 67.60 0.02 NA
RBF 70.70 50.00 62.00 0.10 NA
ANFIS 92.00 55.00 74.30 2.60 10
SVM 100.00 33.30 60.00 0.05 NA
C4.5 100.00 50.00 78.90 20.00 4
kNN 87.80 43.30 69.00 0.01 NA
MLP 90.20 50.00 73.20 1.90 NA
FALCON-AART 95.00 57.00 78.90 0.50 5

Table 10 Different diagnostic rules

Fuzzy rule Expert diagnostic rule Crisp rule

IF age is young AND blood platelet is few AND PCV is high
AND Hgb is medium AND TG is medium AND TEG-r is very
fast AND TEG-K is medium AND TEG-MA is quite small AND
fibrinogen is quite small AND factor VII is quite high AND
T/AT is medium AND VWF is quite high AND antithrombin
activity is marginal low AND antithrombin antigen is
medium AND plasminogen is quite small AND D-Dimer
is very low AND tPA activity is very high AND tPA antigen
is very high AND uPA activity is high AND uPA antigen is very
high AND uPA receptor is medium AND PAI-1 activity is
marginal low AND F1 + 2 is quite low AND PAI-1 antigen is
quite low AND PAI-2 antigen is quite low AND Protein
S antigen is quite high, THEN Normal

IF CA-125 is less than
35 U/ml THEN Normal [28]

IF age < 37 AND
plasminogen 
 104
THEN Normal

IF F1 + 2 is about 1.4 nmol/l
THEN Normal [50]
IF T/AT is about 0.8—5.0 mg/l
THEN Normal [51]
IF D-Dimer is approximately
0.5 mg/ml THEN Normal [50]

Figure 5 Subset of fuzzy set on protein S antigen.
crisp rule cannot. Examples of fuzzy rule, expert
diagnostic rule, and crisp rule are given in Table 10.

As shown in Table 10, FALCON-AARTrule is highly
similar to the diagnostic rule used by a physician.
FALCON-AART not only has a human-like reasoning
process, but also has the facility that allows phy-
sician to justify and evaluate its decision using
familiar terms. Note that if the details are needed,
the exact range of values mediated by the linguis-
tic term can be extracted from FALCON-AART. In
contrast to the crisp rule generated by a decision
tree, the fuzzy rules generated by FALCON-AART
can cater to uncertainty that may be present in the
blood test results due to erroneous recording or
measurement. Crisp rule generated by a decision
tree is limited in its expressive power because it
does not allow the application of linguistic hedges
such as ‘‘about’’, ‘‘approximately’’, which are
often found in expert diagnostic rule. On the con-
trary, FALCON-AART rule is more akin to an expert
diagnostic rule, and has superior modelling capa-
city because it employs complementary learning by
which rules are generated for each class. FALCON-
AART also allows the use of linguistic hedges. Note
that the linguistic terms such as ‘‘young’’, ‘‘few’’
and ‘‘high’’ are described by the fuzzy sets auton-
omously constructed by FALCON-AART. It encapsu-
lates unnecessary details from the physician and
hence, allows easier interpretation. An example of
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Table 11 Result of ovarian cancer diagnosis using
lesser features

Training/
testing

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

G1
Benign 66.70 100.00 88.20
I & II 40.00 100.00 85.00
III & IV 100.00 100.00 100.00

Mean 68.90 100.00 91.10

G2
Benign 100.00 90.90 94.10
I & II 40.00 100.00 85.00
III & IV 100.00 75.00 88.20

Mean 80.00 88.60 89.10

G3
Border 20.00 100.00 93.00
Benign 60.70 84.60 72.20
I & II 14.30 100.00 88. 90
III & IV 94.10 81.10 85.20

Mean 47.30 91.40 84.80

G4
Border 20.00 100.00 93.00
the fuzzy set is shown in Fig. 5. The total over-
lapping region tells that this particular test is not
useful for distinguishing the classes. Triangular
fuzzy sets mediate the meaning of less uncertainty,
whereas trapezoidal fuzzy sets capture more
uncertainties present in the blood test.

Although the use of full input dimension for
classification can reduce the chance of getting con-
tradicting rules, it may render the rule non-readable
due to the higher dimensionality. As interpretability
of the system is paramount, especially for clinical
decision support, efforts have to be put in to
enhance the system comprehensibility. An estab-
lished approach is to perform feature selection prior
to the system training. The aim is to reduce the
number of input dimension, and to trim off irrele-
vant blood test that is not a strong discriminating
indicator for the different classes. Simpler rule can
be generated with a reduced set of rules giving rise
to clarity and potentially superior recognition per-
formance. Four groups of training/testing set are
generated; each containing the 10 most relevant
features selected using Monte Carlo feature selec-
tion method [52]:
Benign 57.10 88.50 72.20
I & II 14.30 100.00 88. 90
� G
1: x2, x8, x9, x10, x11, x12, x14, x17, x27, and x30.

III & IV 82.40 91. 90 88.90
� G
2: x2, x7, x9, x11, x17, x18, x21, x22, x29, and x30.
� G
 Mean 43.50 95.10 85.80
3: x5, x7, x9, x11, x12, x15, x23, x24, x25, and x27.

� G
4: x1, x3, x8, x9, x11, x14, x16, x23, x24, and x30.

The results are listed in Table 11. The perfor-
mance improves when the 10 most relevant features
are used for classification. A mean accuracy of 91%
can be attained. This suggests that blood tests CA-
125, PA inhibitor 1, are important ovarian cancer
indicators.

Apart from assisting in diagnosis, FALCON-AART
can be used as a concept validation tool for hypoth-
eses associated with ovarian cancer diagnosis. For
example, it is known that effective classification of
borderline and benign ovarian cancer is difficult
[53], but there is no well-established support for
this. Hence, one can conduct an experiment using
FALCON-AART to classify borderline and benign
ovarian cancer. To illustrate this, datasets G5—G7
that contain only borderline—benign, borderline—
Stages I and II, and borderline—Stages III and IV data
are created. The task is to identify the cases of
borderline cancer from the other cases. The result is
shown in Table 12. As can be seen in Table 12, it is
relatively easier to distinguish cases of borderline
cancer from other stages of ovarian cancer in con-
trast against benign cases. This provides supporting
evidence to the conjecture that borderline cases are
indeed difficult to be distinguished from benign
cases.
3.3. Proteomic pattern

Proteomics is the study of protein. Since disease can
occur due to gene and post-transcription mutation,
and the fact that protein is the one that controls the
cellular function, protein study provides different
perspective in cancer research and could potentially
revolutionize the conventional medical practice.
The success of proteomics in other study has demon-
strated that it is a promising tool for gynaecological
cancers [30]. However, the analysis of the large
number of proteins is difficult, and therefore
requires effective bio-informatics tool. For this
dataset, as there are 15,154 features, it is difficult
to incorporate all features to train the system. It
would incur enormous amount of time and would be
very expensive. Hence, the top 50 most relevant
features are extracted using the augmented var-
iance ratio (AVR) [54], as described in Eq. (12):

AVRðxÞ ¼ SbðxÞ
ð1=dÞ

Pd
i¼1 SiðxÞ=mini 6¼ j jmiðxÞ 	 m jðxÞj

(12)

where d is the number of classes, Si(x) is the within-
class variance for ith class, Sb(x) is the between-
class variance, and mi(x) is the mean for ith class.
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Table 12 Classification of borderline cancer from other cases

Set Sensitivity
(%)

Specificity
(%)

Predict
(%)

Number
of rules

Training
time (s)

G5 (border vs. benign) 0.00 100.00 93.30 14.00 2.00
G6 (border vs. I & II) 50.00 100.00 94.70 9.00 0.70
G7 (border vs. III & IV) 20.00 100.00 94.70 3.00 0.10
Since the AVR ignores the possible interactions
between the features, SVM feature selection
method [48] is applied to the top 50 most relevant
features, taking into consideration the possible rela-
tionship between these features for feature rank-
ing. As there is no systematic way of determining the
optimal set of features, FALCON-AART is applied to
this ovarian cancer diagnosis study of proteomic
pattern using different number of features. The
averaged accuracy versus the number of features
is given in Fig. 6. It can be seen that the confluence
of FALCON-AART and proteomics yields significant
and promising performance. Even with only 1/3 of
the samples used, an accuracy of 100% can be
attainable. This shows that generalization capabil-
ity of FALCON-AART, as well as the potential of
complementing proteomic pattern analysis with
CLFNN. From Fig. 6, 97.02% has been achieved with
FALCON-AART when using only the most relevant
gene. This shows that proteomic pattern analysis
is indeed a very promising and effective tool for
ovarian cancer diagnosis. Most of the conventional
methods are able to achieve close to 100% accuracy
using the same training and testing sets. Hence, only
MLP and C4.5 are presented together with FALCON-
AART in Fig. 6. As seen in Fig. 6, the proteomic
features work differently under different methods.
This affirms that there is no panacea that will work
for all types of problems. A method perform well in
one area may not perform well in another. The
oscillation observed in the beginning for C4.5 sug-
gests that some of the features may act as noise to
the system. These irrelevant features affect the
system performance. All in all, FALCON-AART offers
Figure 6 Accuracy vs. number of features.
the most consistent performance over different
number of features, demonstrating that FALCON-
AART is a competent system that is highly feasible
for realizing CDSS.
4. Conclusion

FALCON-AART has demonstrated its superior capabil-
ity as a CDSS for ovarian cancer diagnosis. Fast train-
ing, simple fuzzy rule generation, and superior
accuracy are advantages exhibited by FALCON-AART
in this study. Most significantly, FALCON-AART has the
ability to generate complementary fuzzy rules for its
reasoning process. These rules could potentially aid
physicians in their analysis as well as their diagnostic
decision process for ovarian cancer. FALCON-AART
performs consistently with accuracies on par or
superior to other conventional approaches used in
the benchmark for the ovarian cancer diagnostic
task. It automatically and judiciously constructs
the complementary fuzzy rule knowledge from large
dataset such as micro-array. It outperforms conven-
tional artificial neural network and statistical
methods in terms of accuracy. Furthermore, the
FALCON-AART reasoning process is closely akin to
the human reasoning process, which allows system
analysis using familiar terms. Comparing the experi-
mental results of FALCON-AARTwith those in Tables 1
and 2, it is shown that FALCON-AART indeed improves
the accuracy of the diagnosis, providing a highly
attractive alternative to other computational tech-
niques for ovarian cancer detection. Moreover, it has
enabled a more consistent performance in ovarian
cancer detection with accurate decision support.
FALCON-AART improves the system comprehensibil-
ity as well as the accuracy in ovarian cancer detec-
tion. The interpretability of the decision system can
be further enhancedwhen the rules adhere to the set
of interpretability criteria [55]. However, they are
not considered in this work. Other related works that
have been developed at the Centre for Computa-
tional Intelligence [56] that partially address this
issue are [57,58]whichemploy rough set andHebbian
ordering in rule reduction. On the other hand, the
attractive accuracy offered by the confluence of
FALCON-AART — gene expression profile, and the
confluence of FALCON-AART — proteomic pattern,
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affirms the values of these tools in ovarian cancer
diagnosis. In the future, FALCON-AART can be built
based on other clinical ovarian cancer screening tools
such as sonography, gene expression profile, and
proteomicpattern.TheseCDSScan thencomplement
each other in ovarian cancer diagnosis, and this
multimodal diagnostic approach is believed to enha-
nce the accuracy of ovarian cancer diagnosis. Also in
this work, it is found that not all the blood tests are
relevant to ovarian cancer diagnosis, as suggested
by the experimental result of training/testing set
G1—G4, where using the 10most relevant blood tests
boosts the classification accuracy. The proteomic
method provides the most interesting result, con-
firming its huge potential in combating ovarian can-
cer. Alternatively, the different types of CLFNN such
as genetic and hierarchical complementary learning
[59—63] can also be used to form an ensemble system
to complement each of the medical approach.
Another improvement can be achieved by incorpor-
ating the concept of chance into the system [64] so as
to enhance the interpretability of the CDSS. It has
also been illustrated that FALCON-AART can be
employed as a concept validation tools to validate
clinical hypotheses or conjectures by adequate
experimental settings. In this study, FALCON-AART
was employed to support for the conjecture:
borderline cases are difficult to be classified from
benign cases. In the future, with the availability of
data, it can be applied to validate other hypotheses
or theories associatedwith ovarian cancer. For exam-
ple, breast-feeding, age, race, obesity, number of
ovulations, level of gonadotropins, carcinogens and
gene deficiencies are risk factors for ovarian cancer
[31].
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