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[57] ABSTRACT

" A masking field network F, is characterized through
. Systematic computer simulations serves or a content

addressable memory. Masking field network F; receives
input patterns from an adaptive filter F;—F; that is
activated by a prior processing level Fi. The network
F» activates compressed recognition close that are pre-
dictive with respect to the activation patterns flickering
across Fi, and competitively inhibits, or masks, codes

~ which are unpredictive with respect to the F patterns.

The masking field can simultaneously detect muitiple

. groupings within its input patterns and assign activation

weights to the recognition codes for these groupings
which are predictive with respect to the contextual
information embedded within the patterns and the prior
learning of the network. Automatic rescaling of sensi-
tivity of the masking field as the overall size of an input
pattern changes, allows stronger activation of a code
for the whole F pattern than for its salient parts. Net-
work F also exhibits adaptive sharpening such that
repetition of a familiar F; pattern can tune the adaptive
filter to elicit a more focal spatial activation of its F,

- recognition code than does an unfamiliar input pattern.

The F; recognition code also becomes less distributed
when an input pattern contains more contextual infor-
mation on which to base an unambiguous prediction of
the F) pattern being processed. Thus the masking field
embodies a real-time code to process the predictive
evidence contained within its input patterns. Such capa-
bilities are useful in speech recognition, visual object
recognition, and cognitive information processing.

37 Claims, 34 Drawing Sheets
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PATTERN LEARNING AND RECOGNITION
APPARATUS IN A COMPUTER SYSTEM

GOVERNMENT SUPPORT

This invention was made with Government support
under AFOSR-85-0149 awarded by the Air Force. The
Government has certain rights in this invention.

RELATED APPLICATIONS

This is a continuation of co-pending application Ser.
No.06/934,412, filed on Nov. 24, 1986, now abandoned,
which is a continuation-in-part of the U.S. application
Ser. No. 802,479 filed Nov. 27, 1985 for NEURAL
DYNAMICS OF SPEECH AND LANGUAGE
CODING: DEVELOPMENTAL PROGRAMS,
PERCEPTUAL GROUPING, AND COMPETI-
TION FOR SHORT TERM MEMORY, now aban-
doned.

BACKGROUND OF THE INVENTION

One of the fundamental problem areas in speech and
language research, particularly with regards to percep-
tion, cognition and artificial intelligence, concerns the
characterization of the functional units into which
speech sounds are grouped by a receiver (person or
machine). A core issue concerns the context-sensitivity
of these functional units, or the manner in which the
perceptual grouping into functional units can depend
upon the spatio-temporal patterning of the entire speech
stream. Another core issue concerns the adaptive tuning
of recognition mechanisms, and the manner in which
such tuning can alter the groupings which emerge
within a context of familiar elements. Adaptive tuning
of recognition processes is one of the mechanisms
whereby representations become unitized or chunked
into coherent recognition codes through experience.

For example, a word such as “myself” is used by a
person as a unitized verbal chunk. In different contexts,
however, the components “my”, “self”, and “elf” of
“myself” are all used as words in their own right. More-
over, although an utterance which ended with the term
“my” would generate one grouping of the speech
stream, an utterance which went on to include the en-
tire word “Myself” could supplant this one grouping
with one appropriate to the longer word. Thus in order
to understand how context-sensitive language units are
perceived by a receiver, an analysis must be made of
how all possible groupings of the speech stream are
analyzed through time and how certain groupings are
chosen in one context without preventing other group-
ings from being chosen in a different context.

A similar problem is solved during visual object rec-
ognition and figure-ground segmentation, and cognitive
information processing. For example, letters such as E
contain as parts, letters such as L and F.

Furthermore, the functional units into which an ob-
server groups a speech or visual stream of data are
dependent upon the observer’s prior language experi-
ences. For example, a unitized representation for the
word “myself”’ does not exist in the brain of an observer
who is unfamiliar with this word. Thus an adequate
theory of how an observer parses and adaptively groups
a speech stream into context sensitive language units
needs to analyze how developmental and learning pro-
cesses bias the observer to experience some perceptual
groupings above others. Such developmental and learn-
ing process are often called processes of “self-organiza-
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tion” in theoretical biology and physics (Synergetics of
the Brain. E. Basar, H. Flohr, H. Haken, and A. Man-
dell, (Eds.), New York: Sprunger-Verlag, 1983). B.
Lindstom, P. MacNeilage, and M. Studdert-Kennedy in
1983 have recently suggested the importance of self-
organizing processes in speech perception (“Self-
Organizing Processes and the Explanation of Phonolog-
ical Universals”, Explanations of Linguistic Universals.
Butterworth, Comrie and Dahl (Eds.) The Hague:
Mouton.

Stephen Grossberg introduced the “Adaptive Reso-
nance Theory” in “Adaptive Pattern Classification and
Universal Recoding, I: Paralleled Development and
Coding of Neural Feature Detectors”, Bioligical Syber-
netics, 1976. The theory has since undergone extensive
development and application. One such development is
a theory of speech and language perception which arose
from an analysis of how a language system self-organ-
izes in real-time in response to its complex input envi-
ronment. Stephen Grossberg, “A Theory of Human
Memory: Self-Organization and Performance of Senso-
ry-Motor Codes, Maps, and Plans™, Progress in theorecti-
cal Biology. R. Rosen and F. Snell (Eds.), New York:
Academic Press, 1978; and Stephen Grossberg, “Stud-
ies of Mind and Brain: Neural Principles of Learning,
Perception, Development, Cognition, and Motor Con-
trol”, Reidel Press, Boston 1982. This approach empha-
sized the moment-by-moment dynamical interactions
that control language development, learning, and mem-
ory, and introduced a neural model called a masking
field.

The present invention quantitively analyzes and fur-
ther develops the masking field as the core process
within the theory of speech and language perception
which solves the adaptive grouping problem in the
Adaptive Resonance Theory, and more particularly
shows how internal language representations encode a
speech stream in a context-sensitive fashion. In addition,
a masking field solves a similar grouping problem in
applications to visual object recognition and cognitive
information processing.

SUMMARY OF THE INVENTION

The present invention discloses a massively parallel
cooperative-competitive network, called a masking
field for pattern recognition. The masking field simulta-
neously detects, through direct access, both whole
input patterns and partial groupings of their subpat-
terns, and assigns activity weights to the codes of the
groupings. The weights predict how informative these
subpatterns are based upon their spatial scale and past
experience of the network. When the input patterns are
spatial encodings of a time series such as a speech or
radar stream, the masking field parses the speech stream
into context-sensitive language representations. The
masking field enables temporal lists of events to be
grouped, or chunked, into unitized representations,
reorganizes perceptual groupings of past item sublists
based on information carried by newly occurring items,
and binds together information (which speech units)
and temporal order information (when they occurred)
into context-sensitive codes. These language units are
emergent properties due to the masking field automati-
cally rescaling its sensitivity as the overall size of the
input pattern changes yet remaining sensitive to the
microstructure within each input pattern. The masking
field network obeys simple rules of neuronal develop-
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ment: random growth of connections along spatial gra-
dients, activity-dependent self-similar cell growth, and
competition for conserved synaptic sites. These growth
rules generate a network architecture whose parallel
interactions can directly activate correct sublist group-
ings or chunks without the need for prior search.

In accordance with the present invention, the net-
work accomplishes direct access by performing a muiti-
ple scale analysis of temporally evolving input patterns.
This analysis enhances correct subpattern and pattern
encodings and competitively masks unappropriate list
encodings in short term, or working memory. The en-
hanced short term memory activities embody a hypoth-
esis, or code, which represents the input stream. This
code can predict, or anticipate, subsequent events by
assigning activities to groupings which have not yet
fully occurred, based on the available evidence. Thus
the masking field has a predictive priming capability
with which it anticipates the larger groupings of which
an input may form a part during the next time interval.
No serial programs or cognitive rule structures exist
within the network to accomplish these properties, and
nodes of the network obey membrane equations under-
going mass action, feedback, cooperative-competitive
interactions.

The masking field exhibits an adaptive sharpening
property whereby a familiar input pattern causes a more
focal spatial activation of its recognition code than an
unfamiliar input pattern. The recognition code also
becomes less distributed and includes fewer predictive
groupings when an input pattern contains more infor-
mation on which to base an unambiguous prediction of
the input pattern. The masking field thereby solves the
credit assignment problem by embodying a real-time
code for the predictive evidence contained within its
input patterns.

Further design principles are embodied by the net-
work which are called the sequence masking principle,
and the principle of self-similar growth. The network
design suggests how associative mechanisms, multiple-
scale competitive interactions, and modulatory gating
signals can be joined together to regulate the learning of
unitized recognition codes.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features and advan-
tages of the invention will be apparent from the follow-
ing more particular description of preferred embodi-
ments of the invention, as illustrated in the accompany-
ing drawings in which like reference characters refer to
the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the in-
vention.

FIG. 1 is a block diagram of the adaptive resonance
theory which provides one application area in which
the process of the present invention takes place.

FIG. 2 is a schematic view of the pattern encoding
process of the present invention.

FIGS. 3a and 3b illustrate a volume dependent merm-
brane receptor scheme embodied in the process of the
invention.

FIGS. 4a-4b illustrate an activity-dependent self sim-
ilar cell growth scheme embodied in the process of the
invention in lieu of the scheme in FIG. 3.

FIGS. 54-5f illustrate the two types of sensitivities
possessed by a masking field embodying the present
invention.
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FIGS. 6-16 illustrate masking field properties
through computer simulations.

FIG. 6 is an illustration of the F; list coding for the
single item (0) in F; which is stored in STM of a simu-
lated masking field F.

FIG. 7 is an illustration of the F; list coding for the
single item (1) in F,.

FIG. 8 is an illustration of the F list coding for the
single item (2) in F;.

FIG. 9 is an illustration of the F; list coding across
two Fyitems (0,1) in decreasing order of activation size.

FIG. 10 is an illustration of the F; list coding across
two items (0,1) in increasing order in F{ showing that
the masking field distinguishes between different order-
ings of the same items.

FIG. 11is an illustration of the F3 list coding for three
Fjitems (0,1,2) in decreasing order.

FIG. 12 is an illustration of the F» list coding for three
Fj items (0,1,2) with order (1), (2), (0) in item size.

FIG. 13 is an illustration of the F, STM list coding for
three F items (0,1,2) in increasing order of activation
size.

FIG. 14 is an illustration of the F; list coding updated
through LTM learning showig sublist groupings for the
input item (0).

FIG. 15 is an illustration of the F; list coding updated
through LTM learning showing sublist groupings for
the Fy item (0,1).

FIG. 16 is an illustration of the F; list coding updated
through LTM showing sublist groupings for the Fyitem
0,1,2).

FIG. 17 is an illustration of the interactions amongst
the F2 nodes of a masking field.

FIG. 18a is a graph of a faster-than-linear increase of
the sampling signal f(x;) of STM activity x;over a large
domain of x; activities.

FIG. 180 is a graph of a threshold-linear increase of
the sampling signal f(x;) of STM activity x;over a large
domain of x; activities.

FIGS. 19¢~194 are illustrations of a computer simu-
lated masking field with adaptively sharpened list cod-
ings using the same input items as in FIG. 14 and 15
showing how learning biases an adaptive filter to
choose the preferred list code at F.

FIG. 20 is an illustration of computer simulated
adaptive sharpening in response to the input items of
FIG. 16.

FIG. 21 is illustrations of the changes in F» LTM
strength through time due to learning.

FIGS. 22a-22¢ are illustrations of computer simula-
tions showing a transition from a widespread to a focal
phase 2 activation across Fs.

FIGS. 234-23d are illustrations of computer simula-
tions showing the list codes stored in STM at F> under
different learning rates.

FIG. 24 is a schematic view illustrating excitatory
and inhibitory pathways eliminating the Phase 1 burst
problem.

FIG. 25 is a schematic view showing the inhibitory
and excitatory pathways of FIG. 24 as internal feedback
pathways of Fa.

FIG. 26 as an schematic view of another structural
solution to the Phase 1 burst problem

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention is a further development of a
real-time neural network model, called a masking field.
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The masking field is a multiple-scale, self-similar, auto-
matically gain-controlled cooperative-competitive
feedback network. It acts like a content-addressable
memory whose properties are useful for understanding
how a large class of compressed recognition codes are
established during real-time speech recognition, visual
object recognition, and cognitive information process-
ing.

One example in which the compressed encoding or
chunking process to which the masking field is directed
takes place within the macrocircuit of S. Grossberg’s
Adaptive Resonance Theory depicted in FIG. 1. This
macrocircuit governs self-organization of language rec-
ognition and recall processes via a combination of
auditorily-mediated language processes (the levels A)),
visual recognition processes (level V*), and motor con-
trol processes for language production (the levels M)).
These stages interact internally via conditionable path-
ways (black lines) and externally via environmentally-
mediated auditor feedback of self-generated sounds
(dotted lines).

All the stages A;and M; within the theory obey simi-
lar general network laws. These laws describe coopera-
tive and competitive interactions among nodes that exist
at each level. Such cooperative-competitive interac-
tions endow the network levels with properties of cellu-
lar activation and short term memory (STM). Different
levels exhibit specialized properties of STM due to two
types of factors: differences in the interconnections and
other parameters of the cells at each level; and the fact
that the different levels, by occurring within different
locations of the total network heiarchy, receive differ-
ent types of inputs. One task of the theory is to show
how a wide variety of STM properties can be generated
from a small number of STM laws by choosing special-
ized intercellular wiring diagrams.

All of the learning and long term memory (LTM)
processes within the theory occur in its inter-level path-
ways. All of these learning processes also obey similar
dynamical laws. They encode different types of infor-
mation due to their different parameter choices and
their different locations within the total network
heiarchy.

The present invention focuses on the design level As
of this network heiarchy. Level A4, which is called a
masking field, generates a context-sensitive encoding of
the activation patterns that flicker across Level Aj
through time. The activation patterns across Aj influ-
ence A4 via the adaptive filter, or conditionable path-
ways, from Ajzto As. It will be described how develop-
mental growth rules of connections from A3z to Agand
growth rules of connections within A4 enable A4 to
achieve a context-sensitive parsing of Aj3’s activity pat-
terns. First, a brief review is given on the properties of
Levels Ay, Aj, and Aj to clarify the meaning of the
activity patterns across Aj that A4 can encode.

At an early stage of development, environmentally
activated auditory patterns at stage A;in FIG. 1 start to
tune the adaptive weights, or long-term memory
(LTM) traces, within the pathways from A to Aj. This
also starts the altering of the patterning of short-term
memory (STM) auditory *“Feature Detector” activation
across Az. After the LTM tuning process begins, it can
be supplemented by a “babbling” phase. It is during this
“babbling” phase that endogenous activations of the
motor command stage My can elicit simple verbaliza-
tions. These verbalizations generate environmental
feedback from M; to A; which can also tune the

—_

0

40

45

50

55

60

65

6

A|—Aj pathways. The learning within the feedback
pathway Mi—A |—A; helps to tune auditory sensitivi-
ties to drticulatory requirements.

Just as the auditory patterns across A; tune the
A1—A; LTM traces, the endogenously activated motor
command patterns across M tune the M;—M,; LTM
traces. The activation patterns across M; encode the
endogenously activated motor commands across Mj,
into “motor features” using the same mechanisms that
the activation patterns across Aj use to encode the ex-
ogenously activated auditory patterns across Aj into
“auditory features”.

The flow of adaptive signalling is not just bottom-up
from A to Ajand from M;to M;. Top-down condition-
able signals from A, to A, and from M; to M also exist.
These top-down signal patterns represent learned ex-
pectations. Their most important role is to stabilize the
learning that proceeds within the adaptive pathways
A1—Ajand M|—M;. In so doing these top-down signal
patterns also constitute the read-out of optimal expecta-
tions in response to ambiguous or novel bottom-up
signals. These optimal expectations predict the patterns
that the system expects to find at A; or M based on past
experience. The predicted and actual patterns merge at
A1 and M, to form completed composite patterns which
are a mixture of actual and expected information.

Auditory and motor features are linked via an asso-
ciative map from Az to M. When M, is endogenously
activated, it activates a motor representation at M; via
the adaptive pathway M;—M3 and it activates an audi-
tory representation at A via environmental feedback
M;—A plus adaptive pathway A;—A;. Since A; and
M; are then simultaneously active, the associative map
Aj-M; can be learned. This map also links auditory
articulatory features.

The associative map Ax—M; enables the imitation of
novel sounds, in particular, of non self-generated sounds
to get underway. It does so by analyzing a novel sound
via the bottom-up auditory pathway A|—Aj, mapping
the activation patterns of auditory feature detectors via
the associative map A;—My, and then synthesizing the
motor feature pattern into a net motor command at M|
via the top-down motor template M,—M;. The motor
command or synergy, that is synthesized in this way
generates a sound that is closer to the novel sound than
are any of the sounds currently coded by the system.
Also, the environmental feedback from M; to A fol-
lowed by the learned map A—A;—M;—M;| defines a
closed feedback loop, or “circular reaction” (See Pia-
get, J. “The Origins of Intelligence in Children™, New
York: Norton, 1963).

The stages A2 and M3 can each process just one spa-
tial pattern of auditory or motor features at a time. Thus
Aj can process an auditory “feature code” that is de-
rived from a narrow time slice of a speech spectrogram,
and M; can control a simple motor synergy of synchro-
nously coordinated muscle contractions. These proper-
ties are consequences of the fact that spatial patterns, or
distributed patterns of activity across a field of network
nodes, are computational units of the real-time network.
These computational units are a mathematical conse-
quence of the associative learning laws that govern the
network as detailed in Grossberg’s, S., “Studies of Mind
and Brain: Neural Principles of Learning, Perception,
Development, Cognition, and Motor Control”, Boston:
Reidel Press, 1982. The later levels A;and M;in FIG. 1
are all devoted to building up recognition and recall
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representations for temporal groupings, or lists, of spa-
tial pattern building blocks.

A spatial pattern of activity across Aj encodes the
relative importance of all the “feature detectors” of A,
which represent the auditory pattern that is momen-
tarily activating Aj. Each spatial pattern across A
activates an adaptive pathway from A;to Ajin addition
to activating the associative map from A to My, Al-
though all the adaptive pathways of the theory obey the
same laws, each pathway learns different information
depending on its location in the network. Since the
Aj—Ajpathway is activated by feature patterns across
A3, the pathway builds up learned representations in the
form of compressed recognition codes, or chunks, of
these feature patterns. Each such representation is
called an item representation. The item representations
include the representations of phonemes.

All new learning about item representations is en-
coded within the LTM traces of the A;—Aj3 adaptive
pathway. Although each item representation is ex-
pressed as a pattern of activation across A3, the learning
of these item representations does not take place within
Aj. For example, as a sequence of sound patterns acti-
vates Aj, the patterns of “auditory feature” activation
across A can build up and rapidly decay, via a type of
iconic memory (Sperling, G., “The information Avail-
able in Brief Visual Presentations”, Psychological Mono-
graphs, 1960). These A;activation patterns, in turn, lead
to activation of item representations across As. The
item representations are stored in STM as a type of
“Working Memory” (Levels of Processing in Human
Memory. Cermak, L. S. and Craik, F. (Eds.)), Hillsdale,
N.J.: Erbaum, 1979), due to the feedback interactions
within A3. As a succession of item representations
across Ajis stored in STM, the spatial pattern of STM
activity across Aj represents ‘“Temporal Order Infor-
mation” across the item representations of As.

As more items are presented, the evolving spatial
patterns of activity across Aj include larger regions of
the item field, up to some maximal length. Thus, the
temporal processing of items is converted into a succes-
sion of expanding spatial patterns in A3. This is the main
reason why spatial mechanisms that are applicable to
visual processing can also be used to design a masking
field A4 for speech processing.

Each activity pattern across Aj is a context-sensitive
computational unit in its own right. In such a represen-
tation, changing any one activity changes the coded
meaning of the entire list of items. Hence, the activity
pattera “is” the code, and no further labels or algo-
rithms are needed to define it. There are, however,
three sets of laws by which the code operates.

First are the laws whereby items can reliably repre-
sent temporal order information via the spatial pattern-
ing of activation across A3. Stephen Grossberg in “A
Theory of Human Memory: Self-Organization and Per-
formance of Sensory-Motor Codes, Maps, and Plans”,
Progress in Theoretical Biology, R. Rosen and F. Snell
(Eds.), Vol. 5, New York: Academic Press, 1978, and in
“Behavioral contrast in short-term memory: Serial Bi-
nary Memory Models or Parallel Continuous Memory
Models”, Journal of Mathematical Psychology, 1978,
introduced the “LTM Invariance Principle” in order to
derive STM laws for Ajthat are compatible with stable
LTM encoding. This principle shows how to alter the
STM activities of previous items in response to the
presentation of new items so that the repatterning of
STM activities that is caused by the new items does not
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inadvertently obliterate the LTM codes for old item
groupings. For example, consider the word “myself”.
The LTM codes for “my”, “self”’, and “elf” should not
be obliterated just because the network is learning the
new word ‘“‘myself”. On the other hand, the predictive
importance of the groupings “my”, “self”, and “elf”
may be reduced by their temporal embedding within
the list “Myself”. Therefore, A3 is designed to satisfy
the LTM Invariance Principle which states:

The spatial patterns of temporal order information in
STM are generated by a sequentially presented list in
such a way as to leave the A3-——A4 LTM codes of past
event groupings invariant, even though the STM
activations caused by these past groupings may
change markedly across A4 as new items activate Aj.

Suitably, designed cooperative-competitive interac-
tion across A3 mechanistically realizes this principle.
For present purposes, different STM activity patterns
across the same set of item representations within Aj
encode different temporal orderings of these items. The
Aj design based on the LTM Invariance Principle has
also been used to analyze and predict various other data
(see Grossberg, S., “A Theory of Human Memory:
Self-Organization and Performance of Sensory-Motor
Codes, Maps, and Plans”, Progress in Theoretical Biology,
R. Rosen and F. Snell (Eds.), Vol 5. New York: Aca-
demic Press, 1978; “Behavioral Contrast in Short-Term
Memory: Serial Binary Memory Models or Paralleled
Continuous Memory Models”, Journal of Mathematical
Psychology, 1978; “The Adaptive Self-Organization of
Serial Order in Behavior: Speech, Language, and
Motor Control™, Pattern Recognition by Humans and
Machines, Vol I: Speech Perception E. C. Schwab and H.
C. Nusbaum (Eds.), New York: Academic Press, 1986;
and Grossberg, S. and Stone, G. O. “Neural Dynamics
of Attention Switching and Temporal Order Informa-
tion in Short Term Memory”, Memory and Cognition, in
press 1986).

Described next are the second and third sets of laws
by which the code operates. These laws govern, respec-
tively, how a compressed, or unitized, representation of
an entire list, such as a word, is learned and performed,
and how items are rehearsed and recalled before and
after they are unitized by A4. By way of background for
these laws suppose that an analysis-by-synthesis of a
novel sound has been accomplished by the composite
map Aj—A;—M;—Mj. Such a map generates a novel
pattern of auditory features across Aj and a novel pat-
tern of motor features across M». These feature patterns
can then trigger learning of unitized item representa-
tions at A3 and M3s. These unitized representations can
be learned even though the network never endoge-
nously activated these feature patterns during its “bab-
bling” phase. In this way, the network’s learned item
codes can continue to evolve into ever more complex
configurations by a combination of imitation, self-
generated vocalization, STM regrouping, and LTM
unitizqtion. An associative map A3—M3 between new
unitized item representations also continues to be
learned.

As the network processes a speech stream, it estab-
lishes an evolving STM pattern of temporal order infor-
mation across the item representations of Aj. Since
every sublist of a list is also a list, the conditionable
pathway from A3 to A4 simultaneously “looks at”, or
filters, all the sublist groupings to which it is sensitive as
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the speech stream is presented through time. The mask-
ing field within A4 then determines which of these sub-
list groupings will represent the list by being stored in
STM at As.

These sublist representations contribute to the recog-
nition of words (Grossberg S. and Stone, G. O., “Neu-
ral Dynamics of Word Recognition and Recall: Atten-
tional Priming, Learning, and Resonance,” Psychologi-
cal Review, in press, 1986), but cannot, by themselves,
elicit recall. This raises the issue of how short novel lists
of familiar items can be recalled even before they are
unitized. First note that a verbal unit can have both an
‘item representation and a list representation. Next, note
that recall of a short novel list of familiar items is trig-
gered by a nonspecific rehearsal wave to A3 (Grossberg
S. “A Theory of Human Memory” Self-Organization
and Performance of Sensory: Motor Codes, Maps, and
Plans”, Progress in Theoretical Biology. R. Rosen and F.
Snell (Eds.), Vol 5. New York: Academic Press, 1978,
and Serial Binary Memory Models or Parallel Continu-
ous Memory Models”, Journal of Mathematical Psychol-
ogy, 1978. Such a wave opens an output gate that ena-
bles output signals of active items to be emitted from
Aj to M3, with the most active item representations
being read-out before less active item representations.
As each item is read-out, it activates a negative feed-
back loop to itself that selectively inhibits its item repre-
sentation, thereby enabling the next item representation
to be read-out. Each item representation is recalled via
the learned A3—M3;—M>—M| sensory-motor map.

This type of recall is immediate recall from STM, or
working memory, of a list of unitized item representa-
tions. It is a type of “controlled” process, rather than
being an “automatic” unitized recall out of LTM. In
order for a unitized list chunk in A4 to learn how to
read-out its list of motor commands from LTM, the
chunk must remain active long enough during the learn-
ing process to sample pathways to all of these motor
commands, In the simplest realization of how temporal
order information across item representations is en-
coded in and read-out of LTM, the top-down template
from A4 to Ajzlearns this information while the condi-
tionable pathway from Ajto A4 is being tuned. Later

“activation of a list chunk in A4 can read this LTM tem-
poral order information into a pattern of STM temporal
order information across the item representations of Aj.
Activation of the rehearsal wave at this time enables the
list to be read-out of STM. Unitized recall can hereby
occur via the learned As—A3—-M3—M;;—M; sensory-
motor map.

With this background, the design of the masking field

A4 can now be described in detail. Mathematical rela-

tionships used in computer simulations of the masking
field follow the conceptual description. The masking
field is a real-time network model for solving the adapt-
ive grouping problem. As a sequence of items is tempo-
rally processed, the masking field updates its choice of
list representations, parsing the item sequence into a
predictive grouping of content-addressable, compressed
sublist choices based on a combination of a priori pa-
rameter choices and past learning. A spatial pattern of
STM activity across the item representations of Aj
provides inputs which are grouped by A4 As more
items are presented, new spatial patterns are registered
that include larger regions of the Aj item field, up to
some maximum list length. Thus, the temporal process-
ing of items is converted by Aj into a succession of
expanding spatial patterns.
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This is pictorally shown in FIG. 2. An item field F, is
received by masking field F; from a spatial pattern of
STM activity across the item representations of A3. The
masking field F; simultaneously detects multiple group-
ings within the item field F) and assigns weights 20, 22,
24 to the compressed representations or codes for these
groupings. The groupings with their respective weights
are predictive of the input pattern with respect to the
context of the item field and the prior learning of the
system.

The example of the word “myself” is illustrative here,
where the words “my”, “self”, and “elf” are the multi-
ple groupings within an item field consisting of the
word “myself”. Greater weights are assigned to the part
“my” and “self’ than to the word “‘elf”’ because it is
predicted that the part “my” and “self”” are more salient
parts of the word “myself” than “elf”’. This prediction is
based on the context of the item field “myself” and prior
learning or familiarity with similar words and contexts.
Further, an item field which ends in the word “my”
would generate one set of groupings and an item field
which goes on to include the entire word “myself”
would generate a set of groupings which supplant the
former grouping.

The same is true when words such as “myself” are
presented visually rather than auditorily. Then the
problem becomes one of visual object recognition and
of figure-ground segmentation. The problem exists also
on a finer level of visual or auditory processing, since
letters such as E contain, as items in a visual item field,
letters such as “L” and “F”. The masking field is capa-
ble of sensing multiple pattern groupings, which sub-
tend multiple spatial scales, and assigns each of these
groupings a proper coding weight in its short-term
memory (STM) representation or code of these group-
ings.

Given this property, a principle of the masking field
design can be stated which relates the item field F) to
the masking field F; via the adaptive filter Fj—F,.

The masking field F receives the input pattern from
the adaptive filter F;—F3 in a manner that obeys the
sequence masking principle. The Sequence Masking
Principle states: Broader regions of the item field F; are
filtered by the F1—F; pathways in such a way that the
broader regions selectively excite nodes in F; with
stronger masking parameters.

In other words, the masking field F; is sensitive to the
spatial frequency or scale of the item fields that it re-
ceives from Aj. The term spatial frequency is also
meant to mean multiple scale as well as spatial scale.
Nodes in the masking field (FIG. 2) such as 7, 8, 9,
which are selectively sensitive to a prescribed spatial
scale range define masking subfields 12, 14, 16, respec-
tively. Each masking subfield is characterized by a dif-
ferent choice of numerical parameters, which are deter-
mined by simple neuronal growth rules to be discussed.
Subfields whose cell populations have broader spatial
scales and/or more coding sites such as subfield 14 can
competitively mask STM activities of subfields with
narrower spatial frequency scales and fewer coding
sites such as subfields 12 and 16.

The rules of neuronal growth which the masking
field F; obeys for the connections between the item field
F) and its own nodes 7, 8, and 9 include:

Random growth of connections along spatial gradi-
ents from F; to Fy;

Self-simular activity-dependent node growth within
F»; and
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Intercellular interactions among F2 nodes which
compete for conserved synaptic sites.

Because these growth rules can be obeyed by any
number of network levels, masking fields can be linked
into a coding heiarchy Fi—F;—F3-s. . . F, whose
successive levels are able to detect and manipulate even
more abstract groupings of the item field F;.

For clarity throughout this discussion, the item field
F| is called the “item” level and the masking field F; is
called the “list” level. These abstract terms are consis-
tent with the dynamical properties of the two levels F
and F;, and avoid pitfalls of alternative nomen-
clatures—such as “word level” and “letter level”-
which do not adequately deal with the context-sen-
sitivity of code reorganizations that occur during per-
ceptual and cognitive processing.

In understanding the growth rules several properties
are implicit, namely:

(A) Sequence Representation: All realizable item
sequences, up to a maximal sequence length, can ini-
tially generate some differential reaction, however
weak, in the masking field.

(B) Masking Parameters Increase with Sequence
Length: Critical masking parameters of masking field
nodes increase with the length of the item sequences
that activate them. This rule holds until an optimal
sequence length is reached.

(C) Masking Hierarchy: Nodes that are activated by a
given item sequence can mask nodes that are activated
by subsequences of this sequence.

(D) Sequence Selectivity: If a node’s trigger sequence
has length n, it cannot be supraliminally activated by
sequences of length significantly less than n.

Properties (A) and (B) suggest that the F1—F; path-
way contains a profusion of connections that are scat-
tered broadly over the masking field. Property (C) sug-
gests that closely related sequences activate nearby cells
in the masking field. Postulate (D) says that, despite the
profusion of connections, the tuning of long-sequence
cells prevents them from responding to short subse-
quences.

The main problem is to resolve the design tension
between profuse connections and sequence selectivity.
This tension must be resolved both for short-sequence
nodes and long-sequence nodes. Applicant has found
that a balanced combination of the random growth rules
in F1—F; and activity-contingent self-similar growth
rules within F; solves this design tension. The interac-
tion of these growth rules can best be understood by the
following,

Suppose that each item node in F; sends out a large
number of randomly distributed pathways towards the
list nodes in F,. Suppose that an item node randomly

contacts a sequence node with a small probability P.-

This probability is small because there are many more
list nodes than item nodes. Let x be the mean number of
such contacts across all of the sequence nodés. Then the
probability that exactly k pathways contact a given
sequence node is given by the Poisson distributicn

ake—X
k!

Py

If K is chosen that K<A<K+1, then Py is an increas-
ing function of k if 1=k=K and a decreasing function
of k if kZ K. If A is sufficiently small (approximately 4),
then (1) implies that sequences of length k=K will be
represented within the masking field, thereby satisfying

20

30

40

50

55

60

65

12
properties (A) and (B). Related random growth rules
such as the hypergeometric distribution, also have anal-
ogous properties.

Due to the broad and random distribution of path-
ways, list nodes will tend to be clustered near nodes
corresponding to their sublists, thereby tending to sat-
isfy property (C). A further property is also needed to
satisfy property (C). Since a long-list node tends to
mask all of its sublists, such a node must be able to send
inhibitory signals to all the nodes which code these
sublists. Thus the interaction range (the of axons) an Fa
node should increase with the length of the list to which
it is maximally sensitive as shown in FIG. 2. This is
called the Principle of Self-Similar Growth

In order to realize property (D), an F; node that
receives k pathways from F dilutes the input in each
pathway so that almost all k pathways must be active to
generate a suprathreshold response. As k increases, the
amount of dilution also increases. This property sug-
gests that long-list cells may have larger cellular vol-
umes, since a larger volume can more effectively dilute
a signal due to a single output pathway. Larger volumes
also permit more pathways to reach the cell’s surface,
other things being equal. The constraint that long-list
nodes are associated with larger parameters, such as
number of sites and spatial scales, is hereby extended to
include larger surface areas. This conclusion reaffirms
the importance of the self-similarity principle in design-
ing a masking field: A node has longer interactions
(axons) because it has a larger node body to support
these interactions.

As a result, the four formal properties (A)-(D) are
realized in the design of the masking field by a combina-
tion of simple rules of neuronal growth where profuse
random growth occurs along spatial gradients from F
to F» which induces activity-dependent self-similar
growth within F; that is constrained by competition for
synaptic sites.

Two main ways to accomplish this property which
have not yet been experimentally tested are described
by Cohen, M. A., and Grossberg, S. “Neural Dynamics
of Speech and Language Coding: Developmental Pro-
grams, Perceptual Grouping, and Competition for
Short-Term Memory”, Human Neurobiology, 1986. A
combination of the two ways is also possible. One way
relies on F nodes which originate at about the same size
and grow as pathways randomly grow from F;to F;as
shown in FIG. 3. The Fr—F; pathways generate vari-
able levels of F; node activation which cause variable
amounts of node growth. The second scheme depends
on F; having volume-dependent membrane receptors as
shown in FIG. 4. The nodes of F; are of various sizes
and the number of membrane synaptic sites covaries
with node size to prevent over excitation of the nodes.

The masking field F; selects its codes or unitized
representations of the groupings of the item field F; by
performing a multiple spatial scale or spatial frequency
analysis of the activity patterns in the item field F;. This
analysis enhances correct groupings and competitively
inhibits, or masks, unappropriate groupings of Fy items.
In particular, the masking field F2 does not confuse
“wholes” with their “parts”, yet it enables familiar
“parts” to emerge as “wholes” in their own right in an
appropriate input context. For example, the words
“my” and “self’, may be processed as “wholes” if they
are presented separately or processed as “parts” within
“myself” when presented together.
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The spatial pattern of enhanced F; STM activities
across F; embodies the unitized code, or hypothesis,
which represents the input stream (the item field). As
will be described in greater detail below, this code can
predict, or anticipate, subsequent events by assigning
activities to groupings which have not yet fully oc-
curred, based on the available evidence. Thus, the
masking field acts like a real-time prediction, or evi-
dence gathering, content-addressable memory machine
indicated by the rectangle referenced by A4 in FIG. 2.
No serial programs or cognitive rule structures exist
within the masking field network to accomplish these
properties. Instead, the masking field nodes obey mem-
brane equations undergoing shunting (mass action),
on-center off-surround (cooperative-competitive) re-
current (feedback) interactions shown in FIG. 17. The
STM code of the masking field F; is an emergent prop-
erty of these interactions.

In FIG. 17, a list node 5 of F; receives a code or
unitized representation of a grouping 3 of item nodes of
the item field F...List node 5 is linked with itself by a
positive feedback interaction 6 and with other list nodes
13 of masking field F; by negative feedback lines 21.
These interactions are recurrent on-center off-surround
interactions due to their feedback and cooperative-com-
petitive design. Between list node 5 and item nodes 3 is
an adaptive filter 17 of the masking fields F; long-term
memory. The adaptive filter 17 enables proper weights
15 to be assigned to each signal crossing pathways
F/—F,. These weights 15 multiply the signal with an
amount indicative of the signals predictive importance
based on past learning. The product is a part of the
spatial activity pattern across F; and part of the unitized
code.

The multiple spatial scale analysis performed by the
masking field F; is sensitive to two different types of
pattern changes. As a list/word like “myself” is pro-
cessed, a subword such as *“my” occurs before the entire
list/word “myself” is experienced. FIG. 5a schematizes
this type of informational change. As the list/word is
presented, earlier STM activities within F;, shown in
FIG. 5a as the tall dark bar element, are modified and
supplemented by later STM activations shown as the
shorter, lighter colored bars. The STM pattern across
F expands (shown left to right) as the list word is pres-
ented. After the word “myself” is fully stored within F
parts such as “my”, “self”, and “elf” are still present
within the whole. The masking field F; then automati-
cally rescales its initial response to “my” as the remain-
der of “myself” is presented. In this way, the masking
field is able to favor the whole list/word rather than its
parts.

The masking fields ability to favor a representation of
a whole list rather than its parts derives from its sensitiv-
ity to the overall scale of each of the groupings within
the whole list which it can detect. This automatic scal-
ing property allows the masking field to favor a whole
pattern rather than its parts yet does not continue to
favor the same whole pattern code when only a part of
the pattern is presented. Further, the marking field
sensitivity responds to the part as a new whole in its
own right so that larger pattern codes are favored when
the larger patterns actually occur and smaller pattern
codes are favored when the smaller patterns occur.

The second sensitivity of the masking field analysis is
sensitivity to internal pattern microstructure. This is
illustrated by the two words “LEFT” and “FELT”.
The two words illustrate the issue that the same set of
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item representations —e.g. codes for the letters “L",
“E”, “F”, and “T”, may be activated by different item
orderings—e.g. L-E-F-T and F-E-L-T. To distinguish
two such activity patterns across item field F, sensitiv-
ity within masking field F» to different spatial patterns
of F1is insufficient because groupings within both *left”
and “felt” may activate the same spatial patterns of F.
Instead sensitivity to different items in an STM pattern
which excite the same set of item codes (i.e. letters “F”,
“E”, “L”, and “T”) is required, as shown in FIG. 5b.
The same set of items is shown by a triplet having one
dark, one medium and one light bar component. The
sensitivity to the pattern microstructure allows each bar
of the triplet to have its own intensity or height in the
three different whole patterns shown. Through such
sensitivity the individual item intensities are acknowl-
edged and considered by the masking field.

The automatic rescaling and microstructure detec-
tion properties follow from the manner in which non-
linear feedback interactions among F; nodes automati-
cally transform the inputs received by F; into com-
pressed activation codes of F,. This type of non-linear
feedback is absent from many alternative grouping algo-
rithms of the prior art. In recent contributions to devel-
oping such algorithms, a central problem is to discover
how to use “negative votes” to cancel “off-peak posi-
tive votes in parameter space” (Brown, c.m. “Inherent
Bias and Noise in the Hough transform”, IEEFE Trans-
actions on Pattern Analysis and Machine Intelligence,
1983). A related type of problem is solved by the mask-
ing field. The masking field replaces algorithms for
positive and negative “voting” with a real-time network
undergoing positive and negative feedback interactions.
Hence, the present invention combines the design of
nonlinear feedback within F; with the proper type of
nonlinear learning in the F1—F; adaptive filter to gen-
erate stable learning of the unitized groupings with
environmentally predictive properties.

The masking field F»is also capable of simultaneously
discriminating more than one grouping within a list of
events that activates F). For example, a masking field
F, might respond to the F) representation of the word
“myself” by strongly activating an F; node population
that is sensitive to the whole word and weakly activat-
ing Fz node populations that are sensitive to the word’s
most salient parts. More generally, it might react to a
pair of events A and B by representing the events singu-
larly and as a unitized configuration. In such representa-
tion, the total STM pattern across F; represents the F;
STM pattern. The relative sizes of Fy’s STM activities
weight the relative importance of the unitized group-
ings which are coded by the respective F2 node popula-
tions.

The suprathreshhold .STM activities across F» are
approximately normalized, or conserved, due to the fact
that its feedback interactions are competitive between
positive and negative feedback shown in FIG. 17. The
STM activities across F; thus function like a real-time
probablistic logic, or hypothesis-testing algorithm or
model of the evidence which the masking field F; has
about the pattern across F).

Further, the masking field possesses a predictive,
anticipatory or priming capability. In response to a
single item across the item field Fy, the masking field F2
node population which is most vigorously activated
encodes that item. In addition, less vigorous activations
may arise at these F» nodes which represent the most
salient larger groupings of which the item forms a part.
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The masking field then anticipates, or predicts, the
larger groupings that may occur of which the item may
form a part during the next time interval.

As more items are stored by Fi, Fy's uncertainty
concerning the information represented at F decreases
due to the emergence of a more predictive overall pat-
tern. As Fy’s uncertainty decreases, the spatial distribu-
tion of STM activity across Fz becomes more focused,
or spatially localized, and includes fewer predictive
groupings. This type of spatial sharpening measures the
degree of informational uncertainty within the F code.

Results of computer simulations of the masking field
are shown in FIG. 6-16. The masking field sensitivities
to multiple pattern scales and internal pattern micro-
structure are illustrated in simulations of FIG. 6-13.
These figures depict the simplest type of grouping by a
masking field of the present invention. In this example,
each distinct STM activity pattern across F; activates a
unique node or population of nodes in F; for STM stor-
age within F;. That is, the masking field globally groups
activity patterns across F into STM choices within F>.
Distinct choices are made in response to Fj patterns
which vary in overall scale as well as in microstructure,
thereby demonstrating the properties summarized
above. The same numerical parameters were used in all
these simulations; only the input pattern varied. No
learning was allowed to occur within the long-term
memory (LTM) traces or adaptive weights that multi-
ply the signals in F1—F; pathways.

In FIGS. 14-16 the predictive multiple grouping
properties of a masking field are illustrated. In the com-
puter simulations depicted in these figures, a fixed but
different set of parameters was used to illustrate how a
masking field can generate STM representations which
encode multiple groupings, including predictive group-
ings of activity patterns across F;. In these STM repre-
sentations, the masking field is maximally sensitive to
the total STM pattern across Fy, but it also generates
partial activations to salient subpatterns (“parts’”) and
superpatterns (“predictions”) of this pattern. Again, no
learning was allowed to occur within the LTM traces in
F1—F; pathways.

In FIG. 6, a single item in F is active as shown on the
graph line under the heading “Item Field”. This item
generates positive inputs to a large number of nodes in
F,. The input sizes are depicted by the heights of the
bars in the three rows labelled “Input Pattern”Each
row lists all F2 nodes which receive the same number of
pathways from F). The first row consists of Fz nodes
which receive one pathway, the second row consists of
F; nodes which receive two pathways, and the third
row consists of F2 nodes which receive three pathways.
In row 1, each F; node in the set labelled (i) receives a
pathway from the F item node labelled (i) where i=0,
1, 2, ... 4. Note that the four F; nodes receive inputs
from the (0) Fynode. In row 2, all F, nodes labelled (0,
1) receive pathways from the Fj nodes (0) and (1). In
row 3, all F; nodes labelled (0, 1, 2) receive pathways
from the F) nodes (0), (1), and (2).

The inputs to all the F2 nodes which receive path-
ways from the F| node (0) are positive. There are 44
such nodes in FIG. 6. Despite this fact, the only F»
nodes capable of becoming persistently active in STM
are the nodes which receive pathways only from the
active item node (0). These are the F; nodes labelled (0).
The STM activities of all other F; nodes are quickly
inhibited by the competitive feedback interactions
within F;, despite the fact that many of these F; nodes
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also receive large excitatory inputs from Fy. The equi-
librium STM activities of the F2 nodes are listed in three
rows under the heading “List Code in STM". These are
the activities which F> can transform a widespread
input pattern into a focal, and appropriate STM activa-
tion code. The height of each bar indicates the intensity
of the activity represented by that bar. Positive activity
is shown as a bar lying above the line of each row I, 11,
and IIl. Negative activity is shown as a bar below the
row line. Note the only positive activity in response to
the input pattern is the Oth node of the F; list code found
in Row I of the list code. It is this part of the code that
is stored in F2 STM.

FIGS. 7-13 further illustrate the STM code forma-
tion properties of the masking field. Each of these fig-
ures represents the network response to a different input
pattern. In FIGS. 7 and 8, a different item at F is acti-
vated. Each item generates a widespread input pattern
to F. Each input pattern is contrast-enhanced into a
focal STM activation. This STM activation is restricted
to the F; nodes which receive pathways from only the
active item node.

A comparison of FIGS. 6, 7, and 9 illustrates the
self-scaling property of masking field dynamics. Sup-
pose that the temporally ordered list of items (0), (1), is
received by F1. The list as a whole generates a different
spatial pattern across F| in FIG. 9 than does the first
item (0) in FIG. 6 or its second item (1) in FIG. 7 taken
independently. The list as a whole also activates even
more nodes than does either item taken separately. De-
spite this fact, only a single F; node’s activity is stored
in STM. This Fanode is, moreover, an appropriate node
because it is one of the (0,1) nodes that receive path-
ways only from the F items (8) and (1). This compari-
son thus illustrates the ability of Fa nodes which are
activated by larger numbers of F; nodes to mask the
activity of F, nodes which are activated by smaller
subsets of Fynodes. This is a key property in F>’s func-
tioning as a content-addressable memory.

A comparison of FIGS. 9 and 10 illustrates the ability
of F» to distinguish item patterns with different micro-
structure. In both of these figures the set of F; items, (0)
and (1), is activated, but a different spatial pattern of
activity exists across the items. The spatial pattern in
FIG. 9 may represent the temporally ordered list of
items (0, 1), whereas the spacial pattern in FIG. 10 may
represent the temporally ordered list (1, 0). This denotes
that the intensity of item (0) is greater than that of item
(1) in FIG. 9 and vice versa in FIG. 10. The simulations
show that F; is sensitive to the item pattern as a whole,
because F> can generate different STM responses to
these patterns even though they activate the same items
or unordered set of Fynodes in the item field. In particu-
lar, in FIGS. 9 and 10 different F> nodes become active
within the set of Fa nodes which receives pathways only
from items (0) and (1).

This comparison between FIGS. 9 and 10 clarifies
what is meant by the assertions that the spatial pattern
across F1 is the computational unit of the network, and
that the differential STM responses of F3 to these com-
putational units embodies a context-sensitive list chunk-
ing process.

A comparison of FIGS. 6-11 illustrates a more de-
manding variant of these F» properties. As a temporally
ordered list of items (0), (1), (2) is processed by F, all
the items become individually active at F| as the spatial
patterns in FIG. 6, 9, and 11 evolved through time. The
stored STM, pattern in FIG. 11 is however restricted to
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a single F> node which is one of the nodes receiving
pathways only from items (0), (1), and (2) or the set
(0,1,2) as labelled on the graph. Thus, F; selects a com-
pressed content-addressable representation of the whole
pattern at Fy, rather than its constituent items.

A comparison of FIGS. 11-13 makes the same point
as the comparison of FIGS. 9 and 10 but in a more
demanding variation. In each of the FIGS. 11-13, the
same unordered set of items (0), (1) and (2), is active
across Fy. The spatial patterns across F represent dif-
ferent temporal orderings of these items: (0,1,2), (1,2,0)
and (2,1,0) respectively. In each figure, a different F;
node is activated, shown in the third row of the list
code. The active F; node is moreover one of the nodes
that receives pathways only from the item nodes (0), (1)
and (2), thus labelled on the graph as a (0,1,2) node.
Thus, the content-addressable F, code is sensitive to the
microstrucutre of the Fy activity patterns.

FIGS. 14-16 describe the reactions of a masking field
whose parameters are chosen to enable multiple group-
ings of Fy patterns to be coded in STM at F;. The same
input patterns were used as in FIGS. 6, 9, and 11. Com-
parison of FIGS. 14-16 shows how the automatic scal-
ing property enables F, to update its STM representa-
tions based upon all the groupings which it can detect as
the Fj activity pattern expands. In FIG. 14, item (0)
most strongly activates the (0) nodes of Fj, but also
weakly activates other F nodes that represents group-
ings which include (0). The F; nodes which receive an
item pathway only from (0) have a maximal activity
level of about 0.130 shown in row I of the list code. The
F3 nodes which receive two item pathways, including a
pathway from (0), have a maximal activity level of
about 0.07 shown in row II of the List Code. The F;
nodes which receive three item pathways, including a
pathway from (0), have a maximal activity level of
about 0.007 shown in Row III of the List Code. These
activity levels or weights characterize the degree of
“evidence” which the masking field F; possesses that
each grouping is reflected in the input patterns.

In FIG. 15, the (0,1) spatial pattern across F| most
strongly activates an F; node within the (0,1) subfield of
F,, but also weakly activates other nodes of F; which
receive inputs from (0). The activity levels are about
0.19 for the (0,1) node on row II of the List Code and
about 0.072 for the (0) nodes of Row I of the List Code.

In FIG. 16, the (0,1,2) spatial pattern across Fi most
strongly activates an F; node within the (0,1,2) subfield
of F, having an activity of about 0.184. It also weakly
activates the (0) subfield of F; with activity level of
about 0.004. The STM activity pattern across F2 be-
comes more focused from FIG. 14 to 15 to 16 as increas-
ing contextual information reduces predictive uncer-
tainty.

The foregoing has illustrated the STM properties of
the masking field. The masking field also posesses an
adaptive sharpening property in its long-term memory
(LTM). .

When an arbitrary unfamiliar input pattern to F;
generates an STM representation across Fj, the LTM
learns from this F1—F; pairing in such a way that a
subsequent input of the same pattern to F; generates a
spacially sharpened, or contrast-enhanced STM pattern
across Fj. In particular, when F2 makes a choice in
STM, as in FIGS. 6-13, then learning which satisfies an
adaptive sharpening property acts to confirm this
choice. More generally, adaptive sharpening prevents
the learning in the pathways which adaptively filter
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signals between F; and F; from destroying the good
pre-wired properties of the masking field. Learning
accentuates the initial decisions due to interactions of
the adaptive filter with the masking field, but does not
upset this balance due merely to repeated presentations
of the same Fj pattern.

The adaptive sharpening property is not trivially
satisfied by all associative learning laws of the art. This
is because F, automatically reorganizes its STM reac-
tions based on the global patterning, of the inputs re-
ceived by all of its nodes. The LTM obeys a single
LTM law which is used in all the F1—F; pathways of
the adaptive filter. The LTM law reacts to all possible
combinations of activity patterns across Fy and Fj with
adaptive sharpening, and not a destruction of the global
balance between F1—F; inputs and F,—F; interactions.

The LTM law guarantees the adaptive sharpening
property and enables the multiple groupings of F pat-.
terns to be influenced by learning. Hence, if a pre-
scribed pattern across F| is repeatedly presented, then
this pattern becomes “familiar” by tuning the adaptive
filter to preferentially code its most salient groupings in
STM at F,. If a novel superset pattern at Fj is then
presented that is, a pattern which includes the familiar
pattern as a subpattern then the subset pattern group-
ings of the familiar pattern can coherently ‘“break
away” from the complementary superset groupings.
The superset pattern can consequently be represented
by an STM pattern of resonant “parts”, or “structural
groupings” across Fz. In other words, prior adaptive
tuning enables a novel F; pattern to generate a directly
accessed STM reaction across F» which segments the
F) pattern into a distributed code of familiar groupings.

The adaptive sharpening property also enables the
repeated presentation of a superset grouping to gradu-
ally mask otherwise possible subset groupings, unless
the subset patterns are also frequently presented in their
own right to F/. In intuitive terminology, a coherent set
of familiar parts may come to represent the whole, or a
more global segmentation may come to represent the
whole, depending upon the statistics of the input time
series. Interactions between the adaptive filter and
masking field can then dynamically organize incoming
input patterns into structural relationships which are
learned from the statistics of a unique input environ-
ment, rather than trying to outguess the environment
using pre-wired segmentation rules that usually fail in
most environments.

In the computer simulation of the present invention,
applicant demanded a strict version of the adaptive
sharpening property. Given all the STM groupings in
FIG. 6-16, it was demanded that the adaptive sharpen-
ing chose the F; population which was maximally fa-
vored in STM before learning began. The LTM law
which satisfies this has the form

& 2 = fdl -2 + LI} @

where Z; is the adaptive weight or LTM trace in the
adaptive filter F1—F; from the jth node V;in item field
F| to the ith node V;in masking field F»; I;is the input
from Vj; x; is the STM activity level of V; f(x) is a
nonlinear sampling signal that is activated by suffi-
ciently large values of x; and € and L are constants.

A law such as stated in (1) violates the Hebbian asso-
ciative postulate that is the basis for many current learn-
ing models. From Hebb, D. O. “The Organization of
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Behavior”, New York: Wiley, 1949 the Hebb Postulate
states: “When the axon of cell A is near enough to excite
a cell B and repeatedly or persistently takes part in
firing it, some growth process takes place in one or both
cells such that A’s efficiency, as one of the cells firing B
is increased”.

Furthermore, the learning rule in (1) is called an
“associative rule” whereby LTM efficiency changes as
a function of a time average of correlated presynaptic
and post-synaptic cell activities. Associative rules are
often called “Hebbian” rules in honor of Hebb. It is
believed that this convention has however caused con-
fusion in the associative learning literature because dif-
ferent associative rules can support qualitatively differ-
ent types of learning properties.

The Hebb Postulate seems plausible if one assumes
that the unit of associative learning is a single node’s
activity whose correlation with another node’s activity
can increase the LTM strength of a pathway between
the nodes. A different associative rule is needed, how-
ever, if one agrees that the unit of associative learning is
a spatial pattern of acitvity across a network of nodes, as
is required by FIGS. 6-16. Then the correlation be-
tween a spatial pattern across F and a node’s activity in
F; enables the LTM traces in the set of pathways from
Fi to the active F; node to encode the entire spatial
pattern of activity into LTM. In this situation, an asso-
ciative rule is needed which can encode both increases
and decreases of LTM strength as a function of the
pairing of node activities, because an inactive node V;at
F1 should cause Z;; to approach zero when correlated
with an active node Vi at F,. Thus a change in the
functional unit of learning from a single node to a spatial
pattern across a network of nodes necessitates an asso-
ciative rule that violates the Hebb Postulate.

Another nonclassical property of the learning law (1)
is that the sampling signal f(x;) is a nonnegative function
which grows faster-than-linearly, such as, but not lim-
ited to, quadratically as shown in FIG. 18(¢) or in a
threshhold-linear fashion as x; increases above zero as
shown in FIG. 18(b). In equation (1), the sampling sig-
nal f(x;), values of x;determine a much slower learning
rate in Zy than do large values of x,. Consequently, F;
nodes which acquire an initial STM advantage can
greatly amplify that advantage by speeding up the
learning of their contiguous LTM traces. In contrast,
F2 nodes whose activities remain below zero cannot
trigger any learning in their contiguous LTM traces
because f(x;)=0 if x; 0. This property justifies calling
f(x;) a sampling signal.

The state-dependent learning rate f(x;) in (1) says that
learning can occur only at LTM traces Z;; whose target
activities x; are chosen by the cooperative-competitive
decision-making machinery of F2. All LTM traces Zj
whose F items receive positive inputs I; can influence
Fy's decision-making by multiplying these inputs on
their way to F2. In contrast, a much smaller number of
LTM traces can learn from the decision-making process
due to the property that F, chooses a compressed rec-
ognition code which is much less distributed than the
input patterns which it receives. In this sense, LTM
read-out through the adaptive F1—F; filter and LTM
read-in by the associative law (1) are at least partly
dissociated due to intervention of the cooperative-com-
petitive interactions within F,.

Applicant has found that the learning law (1) con-
firms all the STM choices described in FIGS. 6-13.
Also, the adaptive sharpening property is illustrated by
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the multiple groupings in FIGS. 14-16 being adaptively
transformed into STM choices when the learning law
(1) is used in the F—F; adaptive filter.

FIGS. 19 through 23 describe the equilibrium STM
choice that is generated when the learning process ap-
proaches a limit in response to each input pattern. The
fact that the system always approaches equilibrium
STM and LTM values is a fundamental property since
feedback interactions between STM (fast) and LTM
(slow) processes can easily lead to sustained oscillations,
in a poorly designed system.

In the full dynamical system, STM reacts to an input
pattern more quickly than does the slower LTM learn-
ing process. In a singular approximation to the full dy-
namical system, it is assumed that LTM does not change
at all until the STM activities have almost reached an
equilibrium value. The LTM learning process is then
switched on and both STM-and LTM interact until they
conjointly approach equilibrium. Using such a singular
approximation, a much faster LTM learning rate (a
larger € in equation (1)) can be used without signifi-
cantly changing the equilibrium STM and LTM pat-
terns that are found using the full system. A comupter
simulation of a singular system was thus done much
more quickly then a simulation in which the full system
was integrated with a small e until it reached equilib-
rium. After confirming the adaptive sharpening prop-
erty using a singular approximation, simulations with
the full system were done using several different
choices of the learning rate parameter € in equation (1).

FIGS. 19 and 20 describe the equilibrium patterns in
a singular system all of whose parameters, except the
learning rate €, are the same as in the simulations of
FIG. 14-16. For FIGS. 14-16 the learning rate e=0. In
FIGS. 19 and 20, € was set equal to zero until the STM
traces across Fa were close to equilibrium, then € was
switched to equal 1 to allow the full system to approach
equilibrium. '

A comparison of FIGS. 194, 194, and 20 with FIGS.
14-16 respectively shows that the adaptive sharpening
property is obtained. Comparison of the input patterns
to F7 nodes without learning in FIGS. 14-16 and after
learning in FIG. 19a, 194, and 20 shows how LTM
changes in the F1—F; pathways alters the total input to
the F nodes. More specifically after learning, there are
no positive activities in row II and I of the list code in
FIG. 192 where there was activity in those rows in
FIG. 14 before learning. This is an accurate sharpening
of the activity code to be stored in F; since the input to
F; was merely a single (0) item which shou'd corre-
spond only to the (0) nodes in row I of the list code
leaving no positive activity in rows I and III. The same
sharpening of the masking field input pattern and conse-
quent list code occured in FIG. 194 with learning com-
pared to FIG. 15 without learning. In FIG. 194, one
(0,1) node of the masking field input pattern is exagger-
ated above the other 2-item nodes. This is reflected in
the increased activation of node (0,1) in the list code and
the decreased activities of the other list code nodes
relative to the activities obtained in the list code in FIG.
15. Moreover, row II with the exaggerated (0,1) F>
input node of FIG. 19 shows that adaptive sharpening is
obtained over row II of the input pattern to F3in FIG.
15. On the other hand, the input pattern to F2in FIG. 15
does not emphasize any one (0,1) node relative to the
other F; input nodes and produces a more ambiguous
list code for the Fj input of (0,1). Similarly row III of
the F; input pattern in FIG. 20 is a sharpening of row
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II1 of the F; input pattern in FIG. 16. Consequently, the
list code of FIG. 204 is a single (0,1,2) node which is a
sharpening of the Isit code in FIG. 16 having (0) nodes
plus a relatively higher activated (0,1,2) node.

Having achieved the adaptive sharpening property in
a singular system, the property is next demonstrated
without a change in parameters other than € in the full
system as shown in FIG. 21. In these full system simula-
tions € was set at 0.1 and the decay rate of STM activi-
ties across F; in the absence of internal feedback signals
was chosen to equal 1. The adaptive sharpening prop-
erty was confirmed in the full system using plausible
relative rates of STM and LTM change. FIG. 21 de-
picts a computer simulation of how the LTM values in
a subset of F1—F; pathways changed through time due
to learning. The simulations show that the present
masking field and associative learning laws are suffi-
cient to generate the properties (a)-(D).

In FIG. 21, the item field has an input of a (0) item
and a relatively smaller (1) item. The first picture is
taken at a time 1.025. Each of the masking field nodes
(0) through (4) are shown as a pie-shaped segment of the
semicircle graph. Masking field nodes (0) and (1) have
fully activated signals from the input set (0,1). That is,
pathways from both items (0) and (1) of the item field
show full activation of all the (0) and (1) nodes of the
masking field. Full activation is shown by a complete
radius in the graph and partial activation by a partial
radius. At a later time of 1.057 and 1.123, the activation
levels of some pathways have slightly decreased from
full radial extension in (0) and (1) of the masking field to
partial radial extension. This is due to the learning of the
masking field. More LTM alterations in the pathways
appear at times 3.038 and 5.427. Finally, at times 7.814
and 8.524 only one (0) node of the masking field is fully
activated, one (1) node is 75 percent active, and the
other (0) and (1) nodes are minimally active.

There are three major phases in F;’s reaction to an
input pattern at F;. In phase 1, the input pattern starts to
deliver signals to Fz nodes via the F—F; pathways and
many F nodes thereby start to become activated. As
these nodes become activated, they begin to generate
feedback signals, notably competitive signals, to other
F3 nodes as previously shown in FIG. 17. The balance
between excitatory and inhibitory signals to each node
quickly contrast-enhances the input pattern from F; and
generates the more focal STM reactions at F; which are
depicted in FIGS. 6-16. In the absence of additional
learning, reset, or habituative mechanisms, these focal
STM reactions are stored by the balance of inputs and
feedback signals within Fa.

Phase 2 consists of the contrast enhancement and

storage of these STM patterns. In the language of the’

Hough transform, the positive and negative “votes”
cast by the masking field cancel both “off-peaks” and
“false peaks” caused by the adaptive filter. A computer
simulation of the transition from Phase 1 to Phase 2 is
summarized in FIG. 22. The parameters are the same as
those in FIG. 9. Each successive picture (a) through (e)
depicts the STM activities of Fj nodes at a later time
after the onset of the input pattern to F;. The beginning
STM activities of row 1 show positive (0) nodes and
relatively less positive (1) nodes. Later in FIG. 22¢, the
(0) nodes are negative and the (1) nodes are even more
negatively active due to the feedback interactions of Fa.
In row II, all the original nodes have positive activity
except for the (2,3), (2,4), and (3,4) nodes in FIG. 22a.
By the later time the nodes of row II are all negative
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except for two (0,1) nodes, one of which is much more
active than the other. In row III all of the nodes except
for the (2,3,4) nodes change from positive activity to
negative. Thus, FIG. 22 shows that after the input pat-
tern activates Fy, there is a massive but transient activity
burst across F» which is quickly sculpted by F;'s feed-
back interactions.

If € in equation (1) is chosen so large that significant
learning can occur during Phase 1 (i.e. the learning rate
is too fast) then many F nodes Vj can sample the F;
activity pattern because their learning rates ¢ f(x;) are
large during Phase 1. In contrast, if € is small, then
insignificant learning occurs during Phase 1 because the
duration of Phase 1 is not long enough to integrate a
large LTM change at rate € f(X;) During Phase 2, only
those F2 nodes which are selected by the internal feed-
back interactions within F2 can sample the input pat-
tern, and thereby tune their LTM traces because
f(X;)=0 at all other Fz nodes. Thus, if the learning rate -
is fast relative to the duration of Phase 1, then learning
is not controlled by the masking field’s grouping pro-
cess. Morever, such spurious learning can interfere with
the masking field’s ability to select a predictive group-
ing during Phase 2.

FIG. 23 describes computer simulations which illus-
trate how a change in the learning parameter can alter
the equilibrium grouping that is finally learned. Choos-
ing € too large can also cause violations of the adaptive
sharpening property. FIG. 23a repeats FIG. 9 to aid
comparison of the no-learning case with several learned
groupings. In FIGS. 23b-d, € was chosen to equal 1, 0.1
and 0.01, respectively. When e=1, F; selected both (0)
and (0,1) nodes as shown in FIG. 23¢c. When €=0.01, F»
chose the correct (0,1) node shown in FIG. 234. In all
cases, the learned F, grouping exhibited a form of
adaptive sharpening. In FIG. 235 however, the chosen
F3 nodes do not code information about item (1) at all.
The reason for this bias towards (0) nodes at fast learn-
ing rates can be traced to properties of the Phase I
surge. In FIG. 21, an initial advantage of (0) nodes
above (0,1) nodes can be seen before the self-scaling
feedback interactions within F; reverse this advantage.

These results illustrate that in the masking field here-
tofore described, there exists a trade-off between the
rate of cooperative-competitive decision-making by F»
and the rate of learning by the F1—F; adaptive filter.
Learning must be sufficiently slow relative to the deci-
sion-making process to avoid spurious learning of tran-
sient decisions. The results also show, however, that a
proper scaling of rates, with LTM approximately 100
times slower than STM, can avoid this sampling prob-
lem.

The design problems of Phase 1 surge and fast learn-
ing that are raised by the simulation in FIGS. 22 and 23
are solved in one embodiment of the present invention
by a modification of the masking field’s internal connec-
tions. The modification substantially reduces the Phase
I surge and enables the masking field to learn in a way
that is insensitive to whatever residual surge may still
occur.

The Phase I surge is due to the fact that all F1—F;
inputs are excitatory. Applicant proposes that, before
these inputs can influence their target nodes in F, they
activate internal feedback pathways within Fz which
balance the excitatory signals with inhibitory signals.
This is illustrated in FIG. 24 where inhibitory signals 42
are registered at the same moment that excitatory sig-
nals 45 are registered in F; due to internal feedback
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pathways at 46. There are no time intervals during
which excitatory inputs 45 can activate Phase I bursts
that is not controlled by inhibitory signals 42.

In the preferred embodiment, applicant chooses the
feed forward inputs from the adaptive filter to use the
same internal feedback nodes that are used to define the
masking field, as shown in FIG. 25. The uncontrolled
Phase 1 burst is then prevented by a structural mecha-
nism which immediately begins the grouping process
when it receives an input burst.

As FIG. 25 shows, the masking field is now broken
into three internal stages. Stage 1 receives the excit-
atory inputs 52 from Fj. Stage 2 contains the internal
pathways 54 which distribute excitatory and inhibitory
signals across the masking field F,. Stage 3 contains the
target nodes of these internal pathways. These target
nodes always receive a mixture of excitatory 57 and
inhibitory 58 signals. They are never exposed to an
uncontrolled Phase 1 burst. The Stage 3 nodes give rise
to topographic, positive feedback pathways 25 to their
Stage 1 source nodes 2. These positive feedback path-
ways 25 close the feedback loops within the masking
field Fa. Using these stages, the internal feedback inter-
actions of the masking field remain unchanged, yet the
F, inputs engage these interactions before they ever
influence Stage 3 nodes.

The architecture in FIG. 25 prevents a totally uncon-
trolled Phase 1 burst from occurring. On the other
hand, the internal feedback within the masking field
does not instantaneously select an equilibrium grouping.
It remains to say how the LTM traces within the
F1—F; pathways can be buffered against learning activ-
ity patterns that are far from equilibrium.

The main problem to be overcome is clearly illus-
trated in FIG. 25. Although the Stage 3 cells receive a
mixture of excitatory 57 and inhibitory signals 58, the
Stage 1 cells receive only excitatory signals 52. More-
over, the Fi—F; pathways about the Stage 1 cells.
What prevents the LTM traces within the endings of
these pathways from being activated by sampling sig-
nals from the Stage 1 cells applicant hypothesizes is the
sampling signal which activates an LTM trace and is
not derived from a Stage 1 node. Rather, the sampling
signal is activated by feedback from a Stage 3 node
through pathway 25. Many Stage 3 nodes will be imme-
diately inhibited by Stage 2 interneurons when an input
pattern turns on. Use of Stage 3 nodes as a source of
sampling signals enables masking field interactions to
restrict learning from its very first moments of interac-
tion, because many Stage 1 nodes which are initially
activated by F; inputs correspond to Stage 3 nodes
which are never activated during the ensuing grouping
process. In order to instantiate this constraint, applicant
simply replaces equation (1) by the following equation:

(03]

4

ar i =

AXN-2Z; + LI

where x/3) is the activity of the ith node population in
Stage 3 of the masking field. The concept that internal
feedback signals generate LTM sampling signals was
introduced in Grossberg, S., “A Neural Model of At-
tention, Reinforcement, and Discrimination Learning”,
International Review of Neurobiology, 1975. Applicant
now believes that it may be a design principle which is
widely used in the brain, whether the feedback signal is
intercellularly generated, as in FIG. 25, or intracellu-
larly generated by a network of biochemical feedback
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interactions. Some of the properties which can be used
to experimentally test for this design are now summa-
rized.

Dissociation of LTM Read-In and Read-Out: Feedback
as a Neural Modulator

Read-out of LTM occurs when an LTM trace multi-
plicatively gates a signal on its way from F to F;. In the
masking fields above, LTM is read-out in to the same
F2 nodes which enable the LTM traces to sample, or
read-in, new LTM values (FIG. 17). The design in FIG.
25 dissociates the processes of LTM read-out and LTM
read-in by enabling some Stage 1 nodes to become acti-
vated without triggering any learning, no matter how
fast the learning rate is chosen.

The feedback signals from Stage 3 to stage 1 do not
however, act only as sampling signals. They must also
activate their target Stage 1 nodes 2 in order to close the
internal feedback loops which enable the masking field
to select its list code in STM. LTM traces which abut
Stage 1 differentiate between the activation of Stage 1
cells by inputs from F and activation of Stage 1 cells by
feedback signals from Stage 3. If such a distinction were
not made, then a functional dissociation of LTM read-
out and LTM read-in would not be achieved.

There exist two type of dissociation schemes: a dy-
namical scheme and a structural scheme which can be
instantiated either chemically or electrically. In the
dynamical scheme, the LTM traces continue to use
Stage 1 cells as sampling signals, but the threshold for
activating the sampling signal f(x;) is chosen high. It is
assumed that Stage 1 cells can only be activated enough
to exceed the sampling threshold when their direct
activation by inputs from F| is supplemented by large
positive feedback signals from stage 3 cells. Although
such a mechanism may be -adequate to solve simple
learning problems, it is inadequate in a complex learning
system. For example, in a masking field, if the sampling
threshold is chosen too small, then the Phase 1 surge
can be learned. If the sampling threshold is chosen too
large, then many groupings which should induce adapt-
ive tuning will fail to do so. Such a design is not robust.

In contrast, a strucutral scheme to the problem is
manifestly robust. In one such structural scheme, the
feedback signal is delivered via a different chemical
transmitter then the chemical transmitter which gates
signals from F; to F; and regulates learned LTM
changes in F1—F; pathways. Term f (X/3)) in equation
(2) can then be realized by a modulatory action of the
feedback transmitter upon the feedforward transmitter.

The use of two transmitters enables both transmitter
systems to electrically activate Stage 1 cells, yet also
enables LTM traces abutting Stage 1 cells to distinguish
between feedback signals from Stage 3 and their aggre-
gate effects upon Stage 1 cells. In one microscopic
realization of such a dual transmitter system, either
transmitter can cause macromolecular changes in the
cell membranes of Stage 1 cells which enable electrical
activation to occur, but only their conjoint action can
cause those macromolecular changes which enable the
learning process to unfold. Prior art data concerning
associative learning in invertebrates implicates a Ca+ +
dependent membrane current which is activated only
when pairs of critical events occur together. Further it
is known that a catecholaminergic transmitter may,
moreover, participate in the activation of this Ca+ +
current. The feedback signal from Stage 3 to Stage 1
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plays an analogous formal role in the circuit depicted in
FIG. 25. The suggestion that associative learning may
depend upon a Ca+ + current was made in Grossberg
S., “Some Physiological and Biochemical Consequence
of Psychological Postulates”, Preceedings of the Na-
tional Academy of Sciences, 1968; and “On the Produc-
tion and Release of Chemical Transmitters and Related
Topics in Cellular Control”, Journal of Theoretical Biol-
ogy, 1969, based upon the fragmentary biochemical
evidence then available, to explain how a learning equa-
tion such as (1) could be physically realized.

Another structural scheme to solve the dissociation
problem can also be envisaged. In this scheme, each
F1—F, pathway causes a local change in its target node
membranes 4 at Stage 1 as shown in FIG. 26. These
local membrane channels 4 cause local changes in po-
tential which are summated by the Stage 1 nodes 60
before these nodes activate Stage 2 nodes. Feedback
signals from Stage 3 nodes cause global action poten-
tials throughout the Stage 1 nodes 60. These global
action potentials activate membrane channels 62 which
cannot be activated merely by local signals from Fj.
These membrane channels 62 enable learning to occur
within the abutting LTM traces. This possibility was
used in Grossberg, S. “A Neural Model of Attention,
Reinforcement, and Discrimination Learning”, Interna-
tional Review of Neurobiology, 1975 to discuss classical
conditioning within the hippocampus and in Grossberg
S., “A Theory of Human Memory: Self-Organization
and Performance of Sensory Motor Codes, Maps, and
Plans”, Progress in Theorectical Biology. R. Rosen and F.
Snell (Eds.), Volume 5 New York: Academic Press,
1978; and “Studies of Mind and Brain: Neural Principles
of Learning, Perception, Development, Cognition, and
Motor Control”, Boston: Reidel Press, 1982 to discuss
neocortical conditioning. It is a structural, rather than a
dynamical scheme because all feedback signals are as-
sumed to trigger the global change which enables learn-
ing to occur, not only feedback signals which can sum-
mate sufficiently with feedforward signals. Such a
structural scheme could also be used to trigger a Ca+ +
dependent current when the node is globally activated.

The mathematical description of a masking field is as
follows. The nodes V; of a masking field have STM
activities or potentials x{t) which obey the membrane

equations of neurophysiology; namely
o e Y N (ol Y =S (N P

V(t) is a variable voltage; C is 2 constant capacitance;
the constants V+, V—, and V7 are excitatory, inhibi-
tory, and passive saturation points, respectively; and the
terms g+, g— and gf are conductances which can vary
through time as a function of input signals. Hence, the
term (V+—V)g+ describes an excitatory channel, the
term (V——V)g— describes an inhibitory-channel; and
(VP—V)gPdescribes a passive channel. Due to the mul-
tiplicative relationship between conductances and volt-
ages in equation (3), the membrane equation is also said
to describe shunting interactions.

In a masking field, the nodes are linked together via
recurrent, or feedback, on-center off-surround interac-
tions (FIG. 17). The properties of a masking field are
thus part of the general theory of shunting recurrent
on-center off-sourround networks. A review of the
general properties of this class of networks is found in
Grossberg, S. (Ed), “Adaptive Resonance in Develop-
ment, Perception, and Cognition”, Mathematical Psy-
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chology and Psychophysiology, Providence, Rl: American
Mathematical Society, 1981 and Grossberg, S. “The
quantized geometry of Visual Space: The Coherent
Computation of Depth, Form, and Lightness”, Behav-
ioral and Brain Sciences, 1983.
Equation (3) can be rewritten for the potential x{t) as

d

dt

Xi= —AXi+ B -X)Pi— (Xi+ OQ @

where subscript i refers to the ith node, x;is the activity
level of the ith node; 0 is the passive equilibrium point,
B (>0) is the excitatory saturation point, and —C (=0)
is the inhibitory saturation point. Term P; is the total
excitatory input and term Q;is the total inhibitory input
to Vi As the inputs P; and Q; fluctuate through time
—C=x;=B. i

The excitation input P;is a sum of the total input from
the item field and a positive feedback signal from V;to
itself. Thus, P; can be written in the form

(5)
P; = 2 IiPiZji + DRX;
i jeI & il RXD)

where I;is the output from the item node (j); Py is the
strength of the pathway from Vjin F) to V;in F»; and
Z;;is the adaptive weight of the LTM trace within this
pathway. Term Df(x;) is the positive feedback signal
from V;to itself. This feedback signal enables V;to store
activities in STM after I; terminates.

Inhibitory input Q; in equation (4) is a sum of feed-
back signals g(x,,) from other nodes V,, in the masking
field. Thus, Q; can be written as

(6)
Qi = 2 g(Xm) Emi
mel

where E,;is the inhibitory coefficient from node V,, to
node V;and mel is the set of masking field nodes Vi,
which receive inputs I from item nodes.

However, the nodes in different subfields of a mask-
ing field possess different parameters. Headscript (J) is
then used in equation (4) to denote all unordered sets J
of Fyitem nodes that selectively send pathways to nodes
in Fy. Equation (4) is rewritten as

LX)t —ax) - oo O

where x{?denotes the STM activity of an F; population
V&) which receives input pathways only from the set J
of Fyitem nodes. Any number of different population of
nodes VA in F2 may correspond to each fixed set J of
Fi items.

Equation (5) is rewritten as

®

K = 2 1B Z) + Dy A

= Z

jeI
Where jeJ is the unordered set of F) item nodes which
belong to the set J of items that talk to a population of
F; nodes; and /J/ denotes the size of set J, thus D/J/
depends on the size of set J and not on the items in set
J. Dy the excitatory feedback coefficient is thus sensi-
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tive to the spatial scale of the population V/{J) and not
to the microstructure or ordered items of set J.
Equation (6) is likewise refined by headscript (J).
Function Q4/) obeys the relationship

9
o = n‘?‘k g Exy ®

where Egy determines the strength of the inhibitory
feedback pathway from V,,(K) to V), m denotes all
activations within a set, and K denotes all unordered
sets.

This path strength depends only upon the unordered
sets K and J of items to which V,,(¥) and V(J) respond.
Egyexpresses the randomness of the self-similar growth
process between populations in F; as follows:

Mass Action Interactions

Exj = Fyyy Grxs Hyxngy (10)

F/i;, G/ksand H/gn s depend only upon the size of
an unordered set of items. Where J, K, and their inter-
section KNJ are unordered sets. Equation (10) ex-
presses the assumption that the inhibitory interaction
strength from V,,(8) to V/is the result of an interaction
of three independent random factors. The net strength
Ekcan thus arise from a statisfically independent inter-
action between growth factors that depend on the sizes
of K, J, and their overlap.

Placing equations (8), (9), and (10) into equation (7)
gives the following:

Masking Field Equation

(11)

£ = —axt) + B~ XM I:jezj PP 2 + Dy 6 ]—

(X§J) + 0 mzk XN Frys Grxy Hiknsr

Dy, determines how the positive feedback from a node
to itself varies with the node’s self-similar scale. It is
assumed that D/, increases with scale, thereby enabling
nodes corresponding to longer sublists to gain a com-
petitive advantage in STM, other things being equal.
The simplest choice is made in Applicant’s simulations,
namely

Dyyy = D/J/, (12)
where D is a positive constant. This rule is consistent
with the possibility that, as an F; node (population)
grows in response to high levels of Fj input, it also
produces more excitatory synaptic sites for its own axon
collaterals.

The total connection strength to each population
VA from all nodes in F) and the total inhibitory con-
nection strength to each population V) from all nodes
in F;are both chosen to be independent of K and J. This
property is compatible with the interpretation that the
size of each node (population) is scaled to the total
strength of its input pathways (as shown in FIG. 3). If
more pathways input to such a node, then each input’s
effect is dilated more due to the larger size of the node
shown in FIG. 4. The property of matching node (pop-
ulation) volume to the total number of input pathways is
called “‘conservation of synaptic sites”.
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Conservation of synaptic sites enables the network to
overcome the following problem. Due to the random-
ness of the growth rules, there may exist different num-
bers of nodes in each of F3’s masking subfields. As these
F3 nodes compete for STM activity, the competitive
balance could be biased by accidents of random growth.
A mechanism is needed to control the proliferation of
random connections. Conservation of synaptic sites is
one effective mechanism. A masking field embodying
such a growth rule employs the following relationships:

.

Synaptic Conservation Rule:

13)

2 Pj = constant = |
jeJ

where more pathways from V;in Fito V;in F causes
each pathway to carry less weights. And, '

mZ, kF/3/6/3/8/K NI/ =constant=F (14)
so that the sum of all inhibitory nodes of a node in Fais
constant. From equation 14

F

(15)
2 Gyx/ Hiknys
mK

Fryy =

which denotes an F> node’s capacity relative to the
capacity of all the nodes which communicate to it.

Alternatively the coefficients P;{/) were replaced by
P [1+axPi)—1] which obeys the Weber Law Rule.
Similar results were found within a reasonable parame-
ter range.

The connections P;¥) from F; to F; are chosen to
satisfy the synaptic conservation law of equation 13 as
well as a random growth law.

Random Normalized Growth Rule:
#

(16)

P,‘,J) = 7-5/— (1= Py + Pryy

where fluctuation coefficient P,/ determines how ran-
dom the growth is from F; to Fa. If P,;,=0 then
growth is deterministic (but spatially distributed) be-
cause

) R
5 =i

In this limiting case all connection strengths from
item nodes in F; to a fixed list node in F; are equal, and
vary inversely with the number /J/ of item nodes that
contact the list node. If 0< P/, =1, then the coefficients
;&40 in equation 16 influence the connection strengths
P;AN. The numbers [r;#):jeJ] are chosen pseudo-ran-
domly; that is they are uniformaly distributed between O
and 1 such that

jeo

Thus, the randomness of growth from F; to Fy’s con-
trolled by the number of paths out of an item node of
F1 and not by how many paths converge into an F»
node.
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Equations 16 and 17 together enable the conservation
rule of equation 13.

The fluctuation coefficients P,/;, were made to de-
pend upon the set size /J/ by P,;, being chosen so that
the standard deviation of [P;#):jeJ] divided by the mean 5
of [P;&:je]] is independent of /J/. This is accomplished
as follows:

To produce a pseudorandom sequence of numbers
[1;i): jeJ] distributed uniformly over the simplex

]

one proceeds as follows. By a standard algorithm
(Knuth, D. E., “Seminumerical Algorithms: The Art of
Computer Programming” Vol 2, Reading MA: Addi-
son-Wesley, 1981), one obtains a vector of numbers
w=(w}, W2 .., wp) uniformly distributed over the n-
cube I, = Xj=; "[0,1]. Rearrange the numbers in w in order
of increasing size to produce a new vector w'=(w",
w2, .., Wy)such that wi=wh= ... =w'y,. The map
w—sw’ from I, into itself is determined by a permutation
o of the indices (1,2, . . . ,n) such that w';=wo(i). Each
permutation o can transform a different subset of I,into
vectors with increasing entries. Thus, I, can be decom-
posed into sets D¢ such that a single permutation o can
map all WeDyg into W'el,,. Hence the map w—w' trans-
forms uniformly distributed vectors in I, onto uniformly
distributed vectors in I, with elements in increasing
order.

Next map vectors w’ in I, with elements in increasing
order onto vectors y in S, 4 via the one-to-one linear
transformation yj=w', y;=wi—wti . . . ,
Yn=Wn—Wp_1, and yp41=1—w,. Since this linear
transformation maps equal volumes onto equal surface
areas, the vectors y are uniformly distributed on the
simplex Sy,41.

The coefficient of variation of [P): jeJ] is made
independent of /J/ (> 1) as follows. By the above con-
struction, the marginal distribution rj{) in Eq. 16 is
distributed with density function (/J/—1) (1—x)///-2,
The mean of this distribution is

10

(18)
(@:) yet

Sp = [(Vl, Yoo ynr ) i 20,
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and its standard deviation is

1 ,l =1
124 M+ 1

Thus, the mean of Pj4) is also
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and its standard deviation is

1 ,I 7
Pr1 757 717+ 1
65

The coefficient of variation of P;{)is its standard devia-
tion divided by its means, which applicant set equal to a
constant p independent of /J/. Thus applicant chose

19

30

N l i/ % 1
Frr =P\ 57—

In the presented simulations,

20)

!

p: .
10N3

Coefficient F,j; in Equation 11 describes the total
number of inhibitory synaptic sites within a population
v{). By Equation 15, this quantity is chosen to keep the
number of synaptic sites constant across all the nodes.
Small random variations could also be allowed, but all
of the effects of randomness have been absorbed into
the coefficients p;#) in Equation 16 for simplicity.

Coefficient Gk, in Equation 11 measures the total
number of inhibitory connections, or axons, emitted by
each population v,,{% to all other F; populations. Due
to self-similar growth, G/k/ increases with /K/. In
applicants simulations, the simplest choice was made.

Self-Similar Axon Generation:
Gy = /K/

@n

Where G/x,/=0 if /K/=0, and by self-similarity, nodes
contacted by more items (/K/) generate stronger self-
excitatory feedback pathways (G/k/).

Coefficient H/xnys in Equation 11 describes how
well growing axons from a population v,,X) can com-
pete for synaptic sites at a population v{. In particular,
coefficient G/g/ describes the number of emitted axons,
whereas coefficient H/xnj, measures the fraction of
these axons that can reach v/’ and compete for synaptic
space there. Due to self-similar growth, H/xnj/ in-
creases with /K NJ/. Consequently, if either set K or J
increases, then H,/xnJ/ also increases, other things being
equal. Given fixed sizes of K and J, then H/xkny/ in-
creases as the overlap, or intersection, of the sets in-
creases. In other words, F3 list nodes become list nodes
due to random growth of connections from Fj item
nodes. Two list nodes therefore tend to be closer in Fa
if they receive more input pathways from the same item
nodes in Fy. If a pair of list nodes in F3 is closer, then
their axons can more easily contact each other, other
things being equal. In the simulations, applicant chose
H/xny, as follows. Let

Hxny=V+/xnJ- 22)
Where H/xnJy increases linearly with /K NJ/. Because
H/knJj/ is always positive, when H,xnJs/ multiplies
G/k/ in Equation 11, every population v,»{&} can send
weak long-range inhibitory pathways across the whole
of F7, but these pathways tend to arborize with geater
density at populations v{) which receive inputs from
the same Fnodes. Equation 15, (A19), and Equation 21
imply that the total number of paths that can be rejected
by a node in Fz is .

23

Fi= L
7 2 /KA1 + /KNJ/)
mK

The positive and negative feedback signals f(x4") and
2(xK)) respectively in Equation 11 enable the network
to contrast enhance its input patterns before storing
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them in STM. To achieve this property, choose both
f(w) and g(w) to be sigmoid, or S-shaped, functions of
the activity level w as discussed in Grossberg, S. (Ed.),
“Adaptive Resonance in Development, Perception, and
Cognition”, Mathematical Psychology and Psychophysiol-
ogy, Providence, RI: American Mathematical Society,
1981 and “The Quantized Geometry of Visual Space:
The Coherent Computation of Depth, Form, and Light-
ness”, Behavioral and Brain Sciences, 1983. In particular,

Ry 24)
fow) = (wl+) .
fo+ v+
and
2 25
o) = ([w]+) _
g + (W] +)

The notation (w)+ stands for max (w,0). Thus f(w) and
g(w) do not generate feedback signals if w is smaller
than the signal threshold zero. As w increases above
zero, both f(w) and g(w) grow quadratically with w
until they begin to saturate at their maximum value 1.

The associative law that is used is the one described in
equation (1).

Associative Learning Law

3‘17 £ = fN-2) + L.

(26)

Where f(x4/) is an activity dependent learning rate of
the x;th node of F; in unordered set J and Z;) is the
input path to node x; In Equation 26, the sampling
signal f(x{) is assumed to equal the positive feedback
signal in equation 1, and is thus a sigmoid function of
activity x£). The parameter € determines the learning
rate and the parameter L is a constant that multiplies the
input I; from node v;in Fi.

The associative learning law contains term I, rather
than tem I;P;4) as in Equation 11, due to the following
interpretation. Term Z;) in Equation 11 is the LTM
density, or LTM strength per unit cross-sectional area,
in the pathways from v;in Fj to v;in F2. Term p;{)
describes the total cross-sectional area of these path-
ways. The input term I; is broadcast along all these
pathways, where it influences the LTM densities as in
equation 26. The total signal that is read out from these
pathways into v; equals the read-out of all the LTM
densties Z;) by ¥; summed across all the pathways.
This sum equals LP;ANZ;4), as in Equation 11.

Equation 11 can now be modified by Equations 12
through 23 into the following:

Adaptively filtered Masking Field

@n
L=tz + B P IL_EIJJ-[—/-}TU —p /AN +
AP p/,/:‘z},b + D/l ﬂx}h)] -

(J) 2 =INKAL + /K0IN
AT+ O 5 7kaT T 7R I)
mK

and
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-continued
L gD = "~ + L) 20

where f and g are sigmoid signal functions. All of the
“intelligence” of a masking field is embodied in th emer-
gent properties which arise from the paralled interac-
tions defined by these equations.

Parameters
The following parameter choices were made: A=1,
B=1, D=4, L=10, fo=16, go=1. In all runs

CF=1088. Additional parameters are listed by figure.
Unless otherwise noted, the system has run to near
equilibrium value.

FIG. 6:¢=0, C=1, F=1088m, Ip=1.5

FIG. 7: same as FIG. 6 except I1=1.5; FIG. 8:
I,=1.5; FIG. 9: Ip=1, [;=0.5; FIG. 10: Ip=0.5, I; =1.

FIG. 11: Ip=0.68, 1;,=0.48, 1,=034; FIG. 12
Ip==0.34, [;=0.68, [,=0.48; FIG. 13: Ip=0.34, 1, =0.48,
I,=0.68.

FIGS. 14 and 15: e=0, C=0.125, F=8704.

FIG. 14: Ip=1.5; FIG. 15: [p=1.0, I;=0.5.

FIG. 19: Simulation is run at e=0 until no single step
nor the size of any component of the derivative is
greater than 1.0 10—4. € is then set equal to 1 and
simulation proceeds to equilibrium parameters;
C=0.125, F=8704.

FIG. 19a: Ip=1.5; FIG. 196: 1,=1.5; FIG. 19c:
I;=1.5; FIG. 194: Iy=1.0, I;=0.5.

FIG. 20: Same parameters and conditions as in FIG.
19 except where noted.

FIG. 20a: Ip=0.5, I;=1.0; FIG. 20b: In=0.68,
1;=048; 1,=034; FIG. 20c: I1p=0.34, [1=0.68,
1,=0.48; FIG. 204: 1o0=0.34, 1;=0.48, I1,=0.68.

FIG. 21: €=0.1, C=0.125, F=8074. Figures are out-
put of (0,1) long term memory traces at times 1, 2, 4, 8,
16, 32, 64, 96.

FIG. 22: =0, C=1, F=1088, t=0.1, t=0.2, t=0.4,
t=0.8, t=1.6.

FIG. 23a: ¢=0, C=0.125, F=8704, Ip=1, 1;=0.5;
FIG. 23b: e=1; FIG. 23c:=1; FIG. 23d: €=0.1.

While this invention has been particularly shown and
described with references to preferred embodiments
thereof, it will be understood by these skilled in the art
that various changes in form and details may be made
without departing from the spirit scope of the invention
as defined by the appended claims.

We claim:

1. Pattern recognition apparatus in a computer sys-
tem, the apparatus comprising a feedback, self compen-
sating network, the network receiving an input pattern
provided to the computer system for recognizing and
determining subpatterns thereof, the network simulta-
neously coding, through direct access of a content-
addressable memory area, both the whole input pattern
and various groupings of subpatterns in the input pat-
tern, each said coding including a respective activity
weight, the weight of a code indicating the probability
of the input pattern being the grouping of subpatterns of
that code, the subpatterns being independently recog-
nizable patterns having exiting nodes in the memory
area, the probability based upon spatial likeness be-
tween the grouping of subpatterns and the input pat-
tern, with respect to previous and succeeding input
patterns and past probabilities used for recognizing
other input patterns, such that the code with a weight of
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highest probability indicates recognition of the input
pattern as the grouping of subpatterns of the code.

2. Apparatus as claimed in claim 1 wherein the input
patterns are a time ordered series of speech elements
and the network coding includes context-sensitive lan-
guage representations of the series of speech elements;
and the network further comprising computer means
responsive to said representations of the series of speech
elements, the computer means grouping the speech
elements in a manner which reorganizes past groupings
of the speech elements for coding through the content-
addressable memory area, the computer means group-
ing the speech elements as a function of the context-sen-
sitive language representations of the series of speech
elements, such that the speech elements themselves and
temporal order thereof are used together in the coding
through the content-addressable memory area.

3. Apparatus as claimed in claim 1 wherein the net-
work exhibits simple rules of neuronal development
including (i) random increase of memory area access for
input patterns and subpatterns, (i) expansion of the
memory area as a function of said increase of memory
area access, and (iii) competition for access of particular
nodes of the memory area, the development rules gener-
ating a network architecture whose simultaneous cod-
ing can directly activate correct subpattern groupings
without the need for prior search through the memory
area.

4. Apparatus as claimed in claim 1 wherein the net-
work accomplishes direct access by performing multi-
ple spatial scale analysis of temporally evolving input
patterns which enhances correct encoding and competi-
tively masks inappropriate encodings.

5. Apparatus as claimed in claim 1 wherein memory
access provides a code which represents the current
input pattern, and wherein this code indicates a proba-
bility of subsequent changes to the current input pattern
by assigning activity weights indicative of activities to
groupings which have not yet fully occurred, based on
coding of previous input patterns and context including
similarities between the previous input patterns and the
current input pattern, without serial processing within
the network.

6. A computerized pattern recognition and learning
system comprising:

an adaptive filter that is activated by a source pattern
and provides an input pattern indicative of the
source pattern;

a self-similar, automatically gain controlled coopera-
tive-competitive nonlinear feedback masking field
network having a content addressable memory
responsive to the adaptive filter input pattern, the
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content addressable memory holding a plurality of .

list codes, and based on the input pattern, the net-
work activating list codes that are predictive of the
source pattern and competitively inhibiting list
codes which are unpredictive of the source pat-
terns based on different groupings of subpatterns in
the input pattern, such that the masking field net-
work provides the list code in the content address-
able memory which is most predictive of the
source pattern to indicate recognition of the source
pattern and stores the source pattern with the list
code in the content addressable memory to provide
learning in the system.
7. A pattern recognition and learning system as
claimed in claim 6 wherein the masking field network
further simultaneously detects multiple groupings of
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subpatterns within the input pattern and assigns activa-
tion weights to the list codes for these groupings, said
weights based on contextual information embedded
within the input pattern and on list codes activated for
recognizing other previous input patterns, the subpat-
terns each having a respective list code in the content
addressable memory, and the masking field network
determining said contextual information from relative
positions of the subpatterns in the input pattern.

8. A pattern recognition and learning system as
claimed in claim 6 wherein the content addressable
memory activates predictive list codes and inhibits un-
predictive list codes through a multiple scale analysis.

9. A pattern recognition and learning system as
claimed in claim 8 wherein recognition by the system of
other previous input patterns biases the adaptive filter
to signal the masking field network to activate preferred
list codes. .

10. A pattern encoding system as claimed in claim 9
wherein the prior learning of the system biases the
adaptive filter through feedback means.

11. A pattern recognition and learning system as
claimed in claim 7 wherein the masking field network
has sensitivity to the input pattern and automatically
rescales said sensitivity as the overall size of the input
pattern changes but remains sensitive to salient subpat-
terns of the input pattern, such that the masking field
network activates the list code at a different level for
the whole input pattern than the list codes for salient
subpatterns of the input pattern, and said masking field
network activates the list code for a subpattern at a
different level when the subpattern becomes a pattern
whole in a new source context.

12. A pattern recognition and learning system as
claimed in claim 7 wherein the masking field network is
primed by inputs directly from the source pattern such
that the masking field network activates list codes
which represent predictions of how the source pattern
may evolve in a subsequent time interval.

13. A pattern recognition and learning system as
claimed in claim 7 wherein the masking field network
exhibits adaptive sharpening in which repetition of a
familiar source pattern tunes the adaptive filter to elicit
from the content addressable memory a more focal
spatial activation of list codes than does an unfamiliar
source pattern.

14. A pattern recognition and learning system as
claimed in claim 7 wherein the adaptive filter is tuned to
elicit activation of preferred list codes which are held in
a short term memory of the system.

15. A pattern recognition and learning system as
claimed in claim 7 wherein the list codes activated be-
come less distributed when the input pattern contains
more contextual information on which to base an unam-
bignous prediction of the source pattern being pro-
cessed.

16. A pattern recognition and learning system as
claimed in claim 7 further comprising a multiplicity of
source nodes for holding the source pattern the adapt-
ive filter being responsive to the source nodes to pro-
vide an input pattern indicative of the source pattern.

17. A pattern recognition and learning system as
claimed in claim 16 wherein the adaptive filter is differ-
ently responsive to different source nodes.

18. A pattern recognition and learning system as
claimed in claim 7 wherein the content addressable
memory includes a plurality of masking field nodes and
holds the list codes in respective masking field nodes,
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the nodes being activity-dependent and self-similarly
established to hold a source pattern with a correspond-
ing list code.

19. A pattern recognition and learning system as
claimed in claim 18 wherein a relative value of an activ-
ity dependent self-similarly established node is con-
strained by number of times the network activates the
node for an adaptive filter input pattern.

20. A computerized recognition and learning system
comprising:

a plurality of source nodes which embody a source

pattern;

a multiple scale, cooperative-competitive feedback
masking field network of list nodes, the list nodes
holding respective recognition codes of patterns;

a plurality of adaptive filter paths which map the
source nodes to list nodes in a manner which pro-
vides an input pattern to the network;

the network receiving the input pattern from the
adaptive filter paths and having content-addressa-
ble memory means responsive to the input pattern,
the content-addressable memory means determin-
ing (i) list nodes which provide compressed recog-
nition codes that are predictive of the source pat-
tern, said list nodes being activated list nodes, and
(ii) list nodes which provide compressed recogni-
tion codes that are unpredictive of the source pat-
tern, said list nodes being masked list nodes, where
at least one adaptive filter path is mapped from
each source node to at least one activated list node,
such that the masking field network provides the
recognition code which is most predictive of the
source pattern, based on different groupings of
subpatterns in the input pattern, to indicate recog-
nition of the source pattern, and stores the recogni-
tion code of the source pattern in a list node to
provide learning in the system.

21. A recognition and learning system as claimed in
claim 20 wherein the adaptive filter paths are mapped in
a profuse random manner.

22. A pattern recognition and learning system as
claimed in claim 21 wherein the randomness of mapping
from a source node is controlled by the number of
adaptive filter paths associated with that source node.

23. A recognition and learning system as claimed in
claim 20 wherein the number of adaptive filter paths
mapped to a list node determines the size of the list
node, and the content-addressable memory means de-
termines an activated list node through a subset of cer-
tain mapped paths depending at least ¢n the number of
paths mapped to the list node.

24. A recognition and learning system as claimed in
claim 23 further comprising means for preventing a
threshold number of adaptive filter paths from being
mapped to an activated list node.

25. A recognition and learning system as claimed in
claim 23 wherein the paths mapped to one activated list
node experience a change in strength relative to each
other as the one node changes in size.

26. A recognition and learning system as clalmed in
claim 20 wherein a list node exhibits activity dependent
self-similar growth constrained by conservation of
points of connection between the list node and filter
paths.

27. A recognition and learning system as claimed in
claim 20 wherein the list nodes are of different memory
sizes, larger list nodes being able to hold recognition
codes of longer patterns than smaller list nodes, and
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more adaptive filter paths able to be mapped to larger
list nodes than smaller list nodes.

28. A recognition and learning system as claimed in
claim 27 wherein different subsets of the adaptive filter
paths provide different subsets of the input pattern
which enables selective determination of activated list
nodes of a certain interaction ability.

29. A recognition and learning system as claimed in
claim 20 wherein the masking field network simulta-
neously detects multiple groupings of subpatterns in the
input pattern and assigns activation weights to the rec-
ognition codes for these groupings, the weights being
based on relative positions of the subpatterns in the
input pattern and recognition codes used to predict
prior source patterns of the system, the subpatterns
having recognition codes provided by certain list nodes.

30. A recognition and learning system as claimed in
claim 20 wherein the masking field network automati-
cally rescales its response to the input pattern as the
overall size of the input pattern changes but remains
responsive to relative positions of subpatterns in the
input pattern such that the content-addressable memory
means differently determines an activated list node for
producing the code for the whole input pattern than a
list node for producing the code for salient subpatterns
of the input pattern, and differently determines an acti-
vated list node for producing the code for a source
pattern part when that part is a pattern whole in a new
context.

31. A method of learning and recognizing patterns
comprising the steps of:

providing an input pattern;

simultaneously detecting multiple groupings of sub-

patterns within the input pattern, each grouping
being associated with a predefined code accessible
through a content-addressable memory;

assigning respective weights to the codes for the

detected multiple groupings;

activating the codes associated with the detected

groupings such that the codes of the groupings
with their respective weights each provide a proba-
bility that the input pattern is the grouping associ-
ated with that code according to relative positions
of subpatterns in the input pattern and codes used
to recognize prior input patterns; and

selecting the code with the weight of highest proba-

bility to indicate recognition of the input pattern as
the grouping of subpatterns of the selected code.

32. A method as claimed in claim 31 further compris-
ing the step of competitively inhibiting codes which are
unpredictive of the input pattern.

33. A method as claimed in claim 32 wherein the step
of activating codes and the step of competitively inhib-
iting codes include activating predictive codes and in-
hibiting unpredictive codes through a multiple scale
analysis.

34. A method as claimed in claim 31 further compris-
ing the step of automatically detecting new groupings
of subpatterns as the overall size of the input pattern
changes but remaining responsive to salient subpatterns
of the input pattern, such that the codes are activated at
a different level for the whole input pattern than the
codes of the salient subpatterns of the input pattern, the
code for a subpattern of the input pattern being acti-
vated at a different level when the subpattern becomes
a pattern whole in a new input context.

35. A method as claimed in claim 31 further compris-
ing the step of providing priming inputs directly from
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the input pattern such that codes which represent pre-
dictions of how the input pattern may evolve in a subse-
quent time interval are activated.

36. A method as claimed in claim 31 wherein the step
of activating codes includes adaptively sharpening such

that repetition of a familiar input pattern elicits a more
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focal spatial activation of codes than does an unfamiliar
input pattern.

37. A method as claimed in claim 31 wherein the step
of activating codes includes activating codes which are
less distributed when the input pattern is similar to a
recognized prior input pattern on which to base an
unambiguous prediction of the input pattern being pro-

cessed.
* * * * *
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