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Abstract

Honey-bees have long served as a model organ-
ism for investigating insect navigation and collec-
tive behavior: they exhibit division of labor and
are an example of insect societies where direct
communication between workers enable coopera-
tion in the task of collecting nectar and pollen for
the colony. However, honey-bees seem to learn
about their environment progressively before be-
coming foragers and displaying the very complex
collective behaviors that have inspired researchers
interested in collective intelligence. Motivated
by recent researches by biologists and neuroscien-
tists on the individual learning in honey-bees, we
have implemented a hebbian-learning model and
tested it in a foraging task with an autonomous
mobile robot (a robot-bee). Then, we used a
second learning model that merges unsupervised
learning and reinforcement learning techniques.
We present, some experimental results, as well as
the advantages and disadvantages of both models,
and describe future directions of research.

1. Introduction

Engineers have recently considered nature as a source
of inspiration for developing novel approaches and solu-
tions to their problems. Basically, they have tried to
understand and conceptualize the desired overall fea-
tures or behaviors present in living organisms. Char-
acteristics, such as evolution, fault tolerance, and
adaptation have always been very interesting to engi-
neers (Sipper et al., 1997). Social insect societies of ants,
termites, wasps, and bees have interested researchers
for their emergent complex behavior at the colony-
level (Bonabeau et al., 1997). Such behavior is the result
of the interaction of many individuals doted with simple
behaviors and simple learning capabilities. In addition
to being a decentralized system, insect societies exhibit
flexibility and robustness, two desirable features for any
engineering solution (Kube and Bonabeau, 2000).
Honey-bees have long served as a model organism for
investigating insect navigation (McFarland, 1999). Re-

searchers in artificial intelligence have also been inter-
ested in honey-bees, particularly for their collective be-
havior. Insect societies exhibit division of labor and co-
operate through direct and indirect (stigmergy) com-
munication schemes (Bonabeau et al., 1997). Honey-
bees are an example of insect societies, where di-
rect communication between workers enable coopera-
tion in the task of collecting nectar and pollen for the
colony (Gould and Gould, 1995). However, it has been
recently proved that honey-bees seem to learn about
their environment progressively before becoming for-
agers (Capaldi et al., 2000) and displaying the very com-
plex collective behaviors that have inspired researchers
interested in collective intelligence.

Motivated by recent researches on the individual learn-
ing process of “young” honey-bees, we have implemented
and tested two learning models using a bee-like robot
(i-e., a robot-bee) in a foraging task. Indeed, we found
that learning in a second species of bees, the bumble-
bees has been widely studied (Montague et al., 1995).
Therefore, we first implemented a learning model previ-
ously developed by neuroscientists and tested it with our
robot-bee in a foraging task, conducted in a workspace
that contained two artificial flowers. Then, we used
a second learning model that merges unsupervised
learning (Dayan, 1999) and reinforcement learning tech-
niques (Sutton and Barto, 1998).

This paper is organized as follows: Section 2 briefly
describes some learning and foraging behaviors in honey-
bees and recent studies that indicate that such species
learn about their environment progressively before be-
coming foragers. Section 3 describes learning and forag-
ing in bumble-bees. We focus on the fact that neurosci-
entists have identified and modeled a neuron in bumble-
bees that appears to play an important role in classical
conditioning experiments. Section 4 presents learning
and foraging in robot-bees. We describe the model, the
implementation, and test of two learning models: a heb-
bian learning, and, an unsupervised and reinforcement
learning model. Finally, Section 5 presents some conclu-
sions and future work.



2. Learning and foraging in honey-bees

Karl von Frisch (von Frisch, 1993), one of the pioneers
in studying the complex behavior of honey-bees (Apis
mellifera) found that bees are responsive to color when
foraging for food. Indeed, it appears that bees learn and
remember cues related to food in a very particular way:
learning of one aspect (smell, color, shape, landmarks) of
the flowers is tightly constrained in time. Color is learned
in the 3 seconds that precede ingestion of nectar, odor is
learned while the bee is on the flower, and landmarks are
learned in the seconds after feeding. Moreover, foraging
bees appear to learn those characteristics as a package.
If for example, the smell is changed experimentally, then
the whole package has to be re-learn (McFarland, 1999).

When a forager has learned and remembered informa-
tion about food, it transmits this information to other
bees in the hive via a dance. The angle between the axis
of the dance and the vertical is the same as the angle
between the source of food and the sun.

Bees, like many other nesting animals, primarily use
learned visual features of the environment to guide their
movement between the nest and foraging sites. Srini-
vasan et al. (Srinivasan et al., 2000) have recently found
that a bee’s odometer is driven visually and that honey-
bees transmit environmental clues that appear along the
way to food to other bees using the well-known honey-
bee’s dance.

Recent studies showed that honey-bees realize re-
peated “orientation” flights before becoming for-
agers (Capaldi et al., 2000).  Researchers used har-
monic radars to study orientation flights and found that
they enable honey-bees to view the hive from differ-
ent viewpoints. Moreover, researchers found that in
those orientation flights, honey-bees hold the trip du-
ration, but with increased experience they fly faster,
so that they cover increasingly larger areas. Finally,
Dukas suggested in 1994 that honey-bees, spend a sig-
nificant portion of their life span learning and im-
proving on their central task of collecting floral re-
ward (Dukas and Visscher, 1994).

To summarize, honey-bees seem to learn about their
environment progressively before becoming foragers and
displaying the very complex collective behaviors that
have inspired researchers working in the domain of col-
lective intelligence.

3. Learning and foraging in bumble-bees

Bumble-bees (Bombus Pennsylvanicus) have many par-
ticular features. For example, individual worker bumble-
bees are almost exclusively engaged in a single task: col-
lecting nectar and pollen for the colony. Worker bumble-
bees are sterile and thus not concerned with acquiring
mates or reproductive decisions. They are largely free
from predation, and unlike honey-bees, they do not com-

municate with each other about resources. This last fea-
ture renders bumble-bees ideal for studying learning be-
haviors like animal choice behavior and the evolution of
decision-making processes (Real, 1991).

In the early 1990’s Real and colleagues (Real, 1991)
performed a series of experiments on bee foraging on
artificial blue and yellow flowers. In one series of exper-
iments, all the blue flowers contained 2 ul of nectar, 1/3
of the yellow flowers contained 6 ul of nectar, and the
other 2/3 of yellow flowers contained no nectar. They
observed that about 85% of the bees’ visits were to blue
flowers, thus avoiding risk.

M. Hammer (Hammer, 1993) identified a neu-
ron (called VUMmx1) that delivers reward in-
formation during classical conditioning experiments
with bees. More recently, Montague and col-
leagues (Montague et al., 1995) developed a simulator of
a foraging bee to test a neural model and a form of pre-
dictive hebbian learning. The neural model they imple-
mented is based on recent work on the VUMmx1 neu-
ron which has widespread projections to odor processing
regions of the honeybee brain and whose activity repre-
sents the reward of the gustatory stimuli. The predictive
hebbian learning model made use of neuromodulatory
influences to bias actions and control synaptic plastic-
ity in a way beyond standard correlational mechanisms.
Montague found that real bees were more variable than
the modeled bees, but obtained results similar to those
reported by Real. Moreover, he also switched the con-
stant nectar flowers from blue to yellow and noticed the
switching in the flower preference of his modeled bees,
just as observed by Real in the experiments with real
bees.

4. Learning and foraging in robot-bees

Motivated by the studies of behavior and learning
in real and simulated bees, we have realized two
robot-bee experiments based on the hebbian learn-
ing model of Montague (Montague et al., 1995)
and a neurocontroller architecture that imple-
ments incremental unsupervised categorization of
color visual information and trial-and-error learn-
ing of behaviors (Pérez-Uribe and Sanchez, 1997,
Pérez-Uribe and Sanchez, 1999, Pérez-Uribe, 1999a).

We have used an autonomous mobile robot with a
color CCD camera to implement a robot-bee (Khepera
Coloris) and placed it in a workspace that models a field
of flowers, where the robot-bee wanders in search of food
and learns to choose between two species of flowers with
different colors, blue and green, similar to Real and Mon-
tague’s experiments (the experiments with real bees were
realized with blue and yellow artificial flowers).
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Figure 1: Foraging robot-bee setup. (a) A Khepera mobile robot with a color CCD camera is used to implement a robot-bee.

(b) Workspace where the robot-bee wanders in search of food and learns to choose between two species of flowers.

4.1 Ezperimental setup

We have used the Khepera mobile robot developed at the
Microcomputing Laboratory, Swiss Federal Institute of
Technology in Lausanne (EPFL) (Mondada et al., 1993)
to implement a robot-bee. It has a circular shape (Fig-
ure la), with a diameter of 55 mm, a height of 30 mm,
and a weight of 70 g. It has two wheels controlled by two
DC motors, and eight infrared sensors. The mobile robot
contains a Motorola 68331 microcontroller, 256 Kbytes
of RAM, 512 Kbytes of ROM, and a RS-232 serial link
at 9600, 19200, or 38400 Baud. On-board rechargeable
batteries provides around 30 minutes of autonomy. The
Khepera robot is modular: several extension turrets have
been developed including color CCD cameras, linear vi-
sion systems, grippers, artificial retinas, auditory sys-
tems, etc.. We have used a K2D video turret developed
by K-Team (K-team, 1995a). It is a color CCD camera
of 500(H)x582(V) pixels, wired PAL video output, and
automatic light adaptation or auto iris.

The microcontroller provides infra-red readings with a
10-bit precision. In our experiments, we have used three
8-bit values as sensor readings: L (left front), R (right
front) and B (back), corresponding to a preprocessing
of the eight infra-red sensor signals. These 8-bit values
encode a real number in the range [0 1). The speed of the
two motors can be set in steps of 8 mm/s. The maximum
speed is around 1 m/s (K-team, 1995b).

The arena we have used for the robot-bee foraging

experiments is a box of 35cm x 30 cms with light red
walls (Figure 1b). Two blocks made of wood, one blue
and one green, represent two types of flowers where the
robot-bee can collect nectar. Those blocks lie over two
bases in order to enable the color CCD camera to sense
them when the robot is close. The surface of the bases
is black (a neutral color) like the floor and the front
wall, but their sides are light red to enable the infra-red
sensors to detect them (Figure 2 shows several snapshots
of the artificial-flowers and the workspace as seen by the
robot-bee from different positions in the arena).

When the color camera senses one of the two flowers
(i-e., it senses a minimum percentage of blue or green)
and the activation of the infra-red sensors exceeds a cer-
tain threshold value, it means that the robot-bee has
encountered or “landed” on a flower, and receives its
nectar in the form of a reinforcement signal.

Our robot-bee is insensitive to the red color. Indeed,
it has been found that honey-bees have a well developed
color vision that goes into the ultraviolet, but is insen-
sitive to the red light, and that bees follow landmarks
on the flowers called honey guides visible only in ultra-
violet light (McFarland, 1999). Our robot-bee has three
color sensing neurons: given a snapshot of the environ-
ment, one neuron gives the change in the percentage of
blue, a second neuron gives the change in the percentage
of green, and the third neuron gives the change in the
percentage of other (neutral) colors. The R,G,B com-
ponents of each pixel (coded in 8 bits) of a snapshot
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Figure 2: Various snapshots of the artificial-flowers as seen by the robot-bee from different positions in the arena. (a) Artificial-
flowers seen by the robot-bee from the starting position of the foraging experiments. (b) Snapshot of the vision of the robot-bee
facing the blue-flower. (c) and (d) Closer snapshots of the artificial-flowers.

of the environment are obtained by a workstation that
hosts an external grabber connected to the robot by a
cable with unroller. To determine the blue and green
colors we perform a thresholding preprocessing. Typi-
cally, we have defined the blueness of the blue flower as
the color sensed by the robot-bee with RGB components
R < 220, G < 200, and B > 200, and the greenness
of the green flower as the color with RGB components
R < 220, B < 200, and G > 200.

4.2 Hebbian learning experiment

In our first experiment we used the setup described
above to implement a hebbian-learning foraging robot-
bee. To control the robot-bee, we implemented Mon-
tague’s hebbian learning model with neuromodulatory
influences (Montague et al., 1995). In such model (See
Figure 3), a single linear neuron P receives information
representing the changes in the percentage of blue (x),
green (z,) and neutral (x,) inputs from the visual field
of the robot-bee (i.e., the output of the neurons B,G,
and N), weighted by ws, w,y, and wy,, respectively. The
output of the P neuron §(¢) is defined as follows:

t)y=r@t)+VvVE)-V(E-1), 1)

where,
V(t) = wp(t)zp(t) + we()xg(t) + wp(B)zn(t) , (2)

r(t) is a reward signal which takes a value that is a
function of the activation of the S-neuron (See Fig-
ure 3) that “senses nectar” in the robot-bee. Such
function has been obtained experimentally with real
bees (Montague et al., 1995) and accounts for risk-
aversion in bumble-bees (Real, 1991). It has the form
of a positive decelerating function of the nectar volume.
In our experiments, the robot-bee receives a reward of
r(6pl) = 1.0 when encountering 1/3 of the green flowers,
r(0pl) = 0.0 when encountering 2/3 of the green flowers,
and r(2ul) = 0.7 when encountering any blue flower.

The 6(t) output of the P neuron represents an ongo-
ing comparison between V(¢ — 1) and r(¢) + V(t). That
difference is known as the temporal difference error in
reinforcement learning techniques. If 6(¢) > 0 neuron
P labels transition in the sensory input as better than
expected, or worse than expected if §(t) < 0.

The weight values wy and w, are updated according
to:
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Figure 3: Montague’es hebbian learning model with neuro-
modulatory influences. Neurons B, G, and N sense blue,
green, and neutral colors in the environment. The black dots
mean modifiable interconnection weights. Weight w, was

fixed at -0.5.

Aw(t) = Azt — 1)3(t) (3)

where A is a learning rate. The value of A\ is modu-
lated by neurons that become active or signals specifi-
cally associated with a flower encounter, such as touch-
sensitive neurons and odourant detectors with appropri-
ate thresholds (Montague et al., 1995). In our experi-
ments A was set to 0.9 when the robot-bee “landed”
on an artificial-flower and to 0.0 otherwise. Therefore,
weight changes only occurred during encounters with
flowers (moreover, it is assumed that V' (¢) = 0 when the
robot-bee gathers nectar at time t). This corresponds to
a dopamine-neuron based neuromodulation of plastic-
ity (Schultz et al., 1997). This makes part of our study
of a new class of learning algorithms which are being de-
veloped by neuroscientists based on experimental work
with monkeys. We are particularly interested to use such
new algorithms and to test them with autonomous mo-
bile robots given their potential for prediction and learn-
ing of sequential behavior (Suri and Schultz, 1998).

4.2.1 Robot-bee’s resulting biased random walk

Each trial of the hebbian-learning robot-bee foraging
task started by placing the robot-bee in the back of the
arena facing the artificial flowers. The starting angle of
the robot-bee was kept within 30 degrees approximately,
but no special care was taken on the initialization angle.

At each time step ¢, the §(t) output of the P neuron
was used to choose between two possible actions: go for-

ward and reorient randomly. The re-orienting action was
taken with a probability P,(6(t)) = 1/(1 + e~™0(1)+b),
where m was set to 3.0 and b was set to 0.1 (the slope m
represents the amount of noise in the decision function).
The re-orienting action consisted in a random change in
heading from approximately —30° to 30°. The result-
ing path of the hebbian-learning robot-bee resembles a
biased random walk similar to chemotaxing in bacteria
(See Figure 4). Such decision making is called klinoki-
nesis (Montague et al., 1995).

In these experiments, we have supplied the robot-
bees with a pre-wired basic reflex to speed-up the trials:
whenever the robot-bee senses no green and no blue, it
turns right or left with 50% of probability, until it senses
a minimum of green or blue. This innate behavior en-
abled the robot-bee to focus on moving through the arti-
ficial flowers, since our main interest was not navigation
but learning in foraging robot-bees.

green blue
flower flower
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Figure 4: Typical “flight” of a robot-bee in the hebbian learn-
ing experiment.

4.2.2  Robot-bee’s foraging results

We performed a number of runs of variable number of
trials or robot-bee “flights” using Montague’s hebbian
learning model. The weight’s wy and w, are set to zero
at the beginning of every run as if a new bee were used
for the experiment. In Table 1 we show the resulting
percentage of blue-flower encounters in seven runs of
variable number of trials and the percentage of visits
to rewarding green-flowers during those runs. The last
row of Table 1 shows that the overall percentage of blue-
flower visits was only 45%. Indeed, we found that our
robot-bee with hebbian learning did not achieved a clear



blue-flower preference in the reported experiments. This
may be due to a difference with the real experiments re-
ported in (Real, 1991) where each bee visits in average
40 flowers during a flight and not a single flower as in
our robot-bee experiments. Our experiments resemble
more those realized by Montague with a simulated bee
in a simulated environment, since he considered a single
flower encountering for each simulated-bee flight. How-
ever, in his model, Montague used many blue and yellow
flowers randomly scattered, though, in our workspace
there are only two “big” flowers, one of each species.

In reality, what may be a problem in our experimental
setup is the fact that the robot-bee is “too big” com-
pared to the size of the flowers. To see this, lets consider
that we set the weight W such that W, > W, as if
it had learned it by experience, and then, consider that
the robot-bee is approaching the blue flower (as in Fig-
ure 2¢). The robot-bee does not change its orientation
if it senses a continuous increase in the percentage of
blue in the arena while approaching the blue flower (i.e.
Zp(t) > zp(t — 1)). When it reaches the blue flower, the
weight Wy(t) is augmented, given that both zp(t — 1)
(the preceding change in the percentage of blue in the
arena) and (t) (the output of P) are positive values.
The weight W, (t) is decreased if x4(¢t — 1) sensed a de-
crease in the percentage of green color.

A problem occurs when the robot-bee approaches the
blue flower as in Figure 2d, because, in such case, the
robot-bee senses an increase in the percentage of green
and a decrease in the percentage of blue, when reaching
the blue-flower. The result is that the learning algorithm
does not work as expected.

Moreover, our experimental setup suffers from another
problem concerning the proportion of variable-rewarding
flowers. In the experiments with real bees (Real, 1991)
1/3 of variable-rewarding flowers provided 6ul of nectar,
and the other 2/3 of such flowers provided no nectar. To
simulate this ratio, we used a random number generator
to determine to provide or not to provide nectar after an
encounter with a variable-rewarding green flower (i.e.,
we delivered nectar only if rnd() < 2/3 when reaching
a variable-reward flower). However, given that we were
not able to realize hundreds of trials, the resulting ratio
of rewarding green-flowers was quite different from 1/3
or 33% as shown in Table 1.

We have thus performed a run of 40 trials (20 extra tri-
als were realized after those reported in run 7 of Table 1)
to compute the ratio of variable-rewarding flowers, and
found that it was approximately 30%, which was what
we expected. However, the resulting ratio of blue-flower
visits was of only 42.5%.

Given that our experimental setup was not appropri-
ate to the hebbian learning model, we decided to use
a less biologically plausible, but similar learning model
that merges ideas from unsupervised learning and rein-

run || blue-flower rewarding trials
encounters | green-flowers | per run

1 70 % 33 % 10
2 30 % 14 % 10
3 50 % 50 % 10
4 46.6 % 375 % 15
) 30 % 55 % 15
6 45 % 45 % 20
7 35 % 45 % 20

44 % 40 % 100

Table 1: Percentage of blue-flower encounters in seven runs of
variable number of trials and percentage of visits to rewarding
green-flowers. The last row shows the overall percentage of
blue-flower visits, the overall percentage of visits to rewarding
green-flowers, and the total number of trials performed.

forcement learning techniques.

4.8 Unsupervised and reinforcement learning
experiment

In a second experiment we have provided our robot-
bees with a neurocontroller architecture based on the
paradigms of unsupervised learning (Dayan, 1999) and
reinforcement learning (Sutton and Barto, 1998). Such
neurocontroller enables the robot-bee to autonomously
categorize the input data it receives from its environ-
ment, to handle with the stability-plasticity trade-off
(i-e., how can it preserve what it has previously learned,
while continuing to incorporate new knowledge), and,
finally, to generalize between similar situations and de-
velop a proper policy for action selection, based on an
evaluative reinforcement signal. The main difference be-
tween this second experiment and the previous one lies
in that categorization will enable the robot-bee to have
a less stochastic “flight” when foraging. Indeed, cate-
gorization of the visual information should enable the
robot-bee to anticipate the consequences of its actions
and to react differently and more deterministically when
facing different situations, that is, when being far or near
the flowers, when facing the blue or the green flower, etc.
The unsupervised and reinforcement learning robot-bee
model is similar to the one in Figure 3, except that the B
and G neurons do not provide changes in the proportion
of blue and green colors, but simply the percentage of
blue and green color in a snapshot of the environment.
Moreover, no N-neuron is used, and the P-neuron is im-
plemented as a state-action value function instead of a
simple linear neuron.

4.8.1 Learning of categories

Categorization refers to the process by which distinct en-
tities are treated as equivalent. It is considered as one of



Figure 5: Typical robot-bee’s (learned) categorization of its
visual information in the foraging task. The x-axis corre-
sponds to the activation of the sensor neurons responsive to
the blue color, whereas the y-axis corresponds to the acti-
vation of the sensor neurons responsive to the green color.

the most fundamental cognitive activities because cate-
gorization allows us to understand and make predictions
about objects and events in our world. This is essen-
tial in real bees, for instance, to be able to handle the
constantly changing activation of their numerous photo-
receptors in each eye.

To enable our robot-bee to autonomously cat-
egorize the input data it receives from its envi-

ronment, we used an incremental unsupervised
learning model called FAST (Flexible Adaptable-
Size  Topology) (Pérez-Uribe, 1999b) based on

the premises of the Adaptive Resonance Theory
(ART) (Carpenter and Grossberg, 1995). Categories or
clusters are determined by the network itself, based on
correlations of the inputs. At the outset, no neurons or
categories are activated in the network. Input patterns
are then presented and the network adapts through
application of the FAST algorithm, which is driven
by three processes: learning, incremental growth, and
pruning. The learning mechanism adapts the neuronal
reference vectors; as each input vector P is presented to
the network, the distance D(P, W), between P and ev-
ery reference vector W;, is computed. If D(P,W;) < Tj
(the threshold of neuron j), W; is updated as follows:

Wji(t + 1) = Wji(t) +axT;x* (P, - Wji(t)) , (4)

where a is a learning parameter in the range (0,1]. In

our implementation, the Manhattan distance D(P, W;)
is used as a measure of similarity between the reference
vectors and the current n-dimensional input:

n
D(P,W;) = | Pi=Wji | (5)
i=1
This distance gives rise to the diamond-shaped sensitiv-
ity region of neuron j shown in Figure 5. The activation
of neuron j also entails an exponential decrease in its
threshold value:

Tj(t+1) = Tj(t) = v(Tj(t) — Tomin) (6)

where 7 is a gain parameter in the range (0, 1], and Tpin
is the minimal threshold. This threshold modification
decreases the size of the sensitivity region for neurons in
high-density regions of the vector space.

When an input vector P lies outside the sensitivity re-
gions of all currently operational neurons, a new neuron
is added (incremental growth mechanism), with its ref-
erence vector set to P and its threshold set to an initial
value Tj,;. The value of T},; should also be decreased in
order to avoid having sensitivity regions contained within
other sensitivity regions after successive deactivation-
activation phases, a situation which causes instability.
The pruning mechanism was deactivated in these exper-
iments (See (Pérez-Uribe, 1999b) for more details on the
algorithm).

In our experiments with the robot-bee, the FAST
incremental unsupervised learning system dynamically
categorizes the information provided by the B and G
neurons, which output the percentage of blue and green
(as previously defined) given a particular snapshot of the
environment. A maximum number of 40 categories was
selected for the foraging robot-bee task. The values of
the FAST learning parameters were initialized as follows:

Tini  Tmin Y L,
0.1 0.025 0.01 0.2

In Figure 5, we show a typical example of the resulting
adaptive categorization of FAST in our robot-bee learn-
ing and foraging task. The rhombi of Figure 5 represent
the sensitivity regions of the 40 FAST neurons on the
percentage-of-blue vs percentage-of-green plane.

Neuron 21, for example, categorizes the sensor read-
ings that activate the zp-input by 70% to 85%, and the
xg-input by less than 15%. In other words, neuron 21 is
activated when the robot-bee lies very close to the blue
flower as in in Figure 2b. Similarly, neuron 25 will be
activated when the robot-bee lies near the two flowers,
and neurons 0, 1, 16, or 39 when it is near its starting
point facing the flowers (as in Figure 2a). The FAST
neurons thus allow the robot-bee, for example, to start
moving towards a preferred flower by changing its ori-
entation in a particular direction. The distribution of
the FAST neurons along the axis in the category-space



(Figure 5) is due to the fact that from the very first
trials, the robot-bee prefers moving towards one of the
flowers. Indeed, if we observe a typical robot-bee behav-
ior (Figure 6), when the robot-bee starts a new trial, it
rapidly chooses to move to one side (preferably towards
the right) and then it proceeds moving facing one of the
flowers. Thus, it rarely faces a point between the flowers
(except, when it starts a new trial), which will activate
neurons lying in the diagonal of the category-space (e.g.,
between neurons 30 to 32, and, 25 and 29).

4.3.2  Learning of behaviors

Reinforcement learning techniques were used to allow the
system to selectively retain the actions that maximize
the received reward over time. The reinforcement learn-
ing module associates a particular action (by means of
a state-value function) to each environmental situation,
determined by the robot-bee’s neural vision system and
the adaptive categorization module.

The robot-bee foraging task is treated in discrete time
steps. At each time step t, the learning system receives
some representation of the environment’s state, it tries
an action, and one step later it is reinforced by receiving
a scalar evaluation (i.e., a reward or a punishment) and
finds itself in a new state.

In our experiments, the robot-bee takes a snapshot of
the environment, then neurons B and G outputs the per-
centage of blue and green in the environment, and the
FAST module selects a category for such environmental
situation. The reinforcement learning module associates
a Q(s,a) value to each FAST category s, which repre-
sents the expected cumulative reinforcement the robot-
bee can receive when choosing action a from the envi-
ronmental state s.

In particular, we used SARSA learning with eligibility
traces or SARSA () (Sutton and Barto, 1998), a kind of
memory that serve as a temporary record of the occur-
rence of an event, such as visiting a state or taking an
action (Sutton and Barto, 1998)). In this method, all
the @ action values are modified after every interaction
with the environment as follows:

Q(s,a) = Q(s,a)+alr+7Q(s', ')~ Q(s, a)le(s, a) , (7)

where s is the state, a is a possible action, s’ and a’
are the corresponding possible next state and action, r
is the reward, « is a step-size parameter, and e(s,a) is
the eligibility trace of action a taken from state s. The
eligibility trace is set to 1.0 when action a is taken from
state s and updated as e(s,a) = Y e(s, a) after every in-
teraction with the environment. 7 is the discount factor
and ) is a constant value in the range (0, 1]. The values
of the SARSA () learning parameters were initialized as
follows:

run | percentage of blue-flower encounters

1 85%
2a 45%
2b 53.3%

3 95%

4 85%

Table 2: Percentage of blue-flower encounters in four runs of
20 trials or robot-bee “flights”. The percentage value for run
2b corresponds to 30 trials.
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In our experiments, we initialized the Q-table to zeros
everywhere, and we used an e-greedy action selection
mechanism, with € equal to 0.05. In other words, our
system exploits with a probability of 95%, and explores
only 5% of the time.

In the robot-bee’s experiments with the neurocon-
troller, we determined four possible actions: go forward,
turn right and go forward, turn left and go forward, and
g0 backward, with a fixed speed of 40mm/s. The first
three actions are associated to particular situations dur-
ing learning, while the last action is only used as part
of a pre-wired basic reflex for wall avoidance, codified
as the following reactive behavior: follow the direction
of the least-activated sensors during 4 times 5 action-
selection steps. This basic reflex is activated when one
of the infra-red sensor exceeds a certain threshold value.

The robot-bee is punished (it receives a reinforcement
of ’-1’) when it crashes or turns on itself. The robot
holds two variables dl and dr that indicate if the system
moves left or right “too much” in order to detect when
the robot turns on itself (See (Pérez-Uribe, 1999a) for
more details). When the robot-bee encounters a blue
flower, it is rewarded as in the last experiment, but if
the robot-bee encounters a green flower, it receives no
reward (i.e., 7 = 0.0). Future experiments will consider
the use of this learning model for risk-aversion studies as
we did before.

In Figure 6, we show the typical action-selections
taken by our robot-bee in different positions in the
workspace after 20 trials or “flights”. Such actions
clearly show a blue-flower preference in our foraging
robot-bee.

4.3.3 Robot-bee’s foraging results

We performed four runs of 20 trials or robot-bee “flight-
s”. Each trial started by placing the robot-bee in the
back of the arena facing the artificial flowers, as in the
hebbian-learning experiments. The starting angle of the
robot-bee was kept within 30 degrees approximately, but

no special care was taken on the initialization angle.
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Figure 6: Typical robot-bee’s (learned) foraging behavior
in the unsupervised and reinforcement learning experiment.
The arrows indicate the robot-bee’s preferred action in dif-
ferent positions of the arena, facing the front.

The robot-bee successfully learned an appropriate
state-space partition (adaptive categorization) and a
perception-to-action mapping (action selection), such
that the robot-bee was able encounter one of the two
flowers while avoiding the walls. Indeed, the robot-bee
preferred the blue flower, that is, the flower that provided
some nectar (reward) instead of the green flower that did
not provided any nectar (reward). In Table 2 we show
the percentages of blue-flower encounters of the robot-
bee during the four runs of 20 trials. In the second run,
the robot-bee visited the zero-reward green flower more
than average during the first trials; this shows that de-
pending on the first flower encounters it can take longer
to learn a blue flower preference, however, this behavior
will be nevertheless achieved after some more trials as
shown in run 2b (See Table 2) where we performed 10
extra trials that raised the overall percentage of blue-
flower encounters from 45% to 53.3%. Indeed, 70% of
such extra trials ended with an encounter with the (re-
warding) blue flower.

5. Conclusions

We have presented two learning experiments in foraging
robot-bees. In our experiments we used an autonomous
mobile robot with a color CCD camera, which is placed
in a workspace with two blocks of wood, one blue, and
one green, simulating two different species of flowers that

provide different rewarding nectar. In a first set of ex-
periments we used a hebbian-learning model with neuro-
modulatory signals previously developed by neuroscien-
tists. This model is biologically plausible and introduces
the promising idea of using dopamine-like neural signals
that modulate learning (Schultz et al., 1997). We are
particularly interested to use such new algorithms and
test them with autonomous mobile robots given their
potential for prediction and learning of sequential be-
havior (Suri and Schultz, 1998).

The resulting foraging behavior is a biased random
walk similar to that observed in bacteria. We performed
a number of runs of variable number of trials or robot-
bee “flights” using such model and obtained different re-
sults than those reported by neroscientists working with
simulated bees, and biologists working with real bees.
This may be due to some differences in the experimen-
tal setup: while in the real and simulated experiments
there are many flowers scattered in the arena, in our
workspace only two flowers can be chosen by the robot-
bee in the foraging task, and the robot-bee appears to
be “too big” compared to the size of the flowers, which
causes the learning algorithm not to work as expected.
Moreover, in our experiments, a robot-bee can only visit
a single flower per trial, while in the real experiments, a
honey-bee can visit up to 40 different flowers in a single
flight.

Even, if we were very interested in using the hebbian
learning model because of its very simple form, we moved
to a second set of experiments, where we used a learning
model based on unsupervised and reinforcement learn-
ing techniques. The main difference between this second
experiment and the previous one lies in that unsuper-
vised categorization enables the robot-bee to have a less
stochastic “flight” when foraging. Indeed, categoriza-
tion of the visual information enables the robot-bee to
anticipate the consequences of its actions and to react
differently and more deterministically when facing differ-
ent situations. The learned foraging behavior is a clear
blue-flower preference (i.e., the rewarding flower).

We are planning new experiments considering the use
of the second learning model for risk-aversion studies
as we did before, and to merge both learning models
to provide powerful learning capabilities to our mobile
robots.
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