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ABSTRACT 

A supervised neural network, SMART;?, has been developed 
which can be used with the ART2 algorithm for modelling 
discrete dynamic systems. A new layer has been added as a 
higher transformation stage to provide an output mapping 
field. The connection between the new field and the category 
field has been made by Long Term Memory (LTM) adaptive 
filters. Top-down adaptive filters in the new field have been 
employed to code the output prototype. Error equations have 
been derived to trace errors in the model and train the new 
network. The proposed network has been shown in simulation 
to be able to represent arbitrary dynamic systems. Results 
presented in this paper demonstrate the effectiveness of the 
network. 
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1. INTRODUCTION 

Adaptive Resonance Theory (ART) networks which were 
developed by Grossberg and Carpenter are self-organising 
neural networks, that is they make no use of the class 
information associated with a training pattern 111. ART nets 
automatically detect clustering and form classes of the data 
structure [2]. The ART architecture is reasonably suited for 
pattern recognition tasks [3, 41. An extension to incorporate 
supervised learning to enable the architecture to act as a 
mapping network has been developed as a modified version of 
ART [5, 61. 

This paper presents a different type of ART2 network which 
is also a supervised network suitable for mapping 
applications, the Supervised Mapping ART2, or SMART2, 
network. The paper discusses the application of SMART;! to 
the modelling of dynamic systems. This is a task that has so 
far been implemented mainly using other kinds of networks 

such as the multilayer perceptron or the Elman and Jordan 
networks (see [7-101 for example). 

The remainder of the paper is organised as follows. Section 2 
describes SMART;?, and how it has been designed for 
dynamic system modelling. Section 3 reports on the use of 
SMART2 to model different plants. The paper concludes with 
Section 4. The paper assumes the reader is reasonably 
familiar with the ART2 network, a detailed description of 
which can be found in [2]. 

2. SMART2 AND DYNAMIC SYSTEM MODELLING 

Supervised Function 
SMART;! is a supervised learning network because there is a 
definite input-output mapping that the network must learn 
and the network receives a required output from its 
environment. The architecture of SMART2 is shown in 
Figures 1 and 2. 

Figure 1. Overall structure of SMART2 network 
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Figure 2. Detailed architecture of SMART2 network 

are the STM for node i in the preprocessors of the FO and Fl 
layers. a and b are internal feedback parameters for the FO 
and F1 layers. Feedback is employed to perform contrast 
enhancement and noise suppression. c is a parameter 
controlling the sensitivity of the network to the reset 
operation. d is a top-down feedback parameter determining 
the amount of weight change during learning. Zi. and Zji are 
the LTM for the bottom-up and top-down adaptive filters 
between F1 and F2. ri is the i-th component of the reset vector 
r and p is the vigilance parameter. f is a non-linear or 
piecewise linear feedback activation function used in the FO 
and F1 preprocessors. f3 is the threshold in f. 

J 

To allow supervised learning of dynamic patterns, a new layer 
(F3) with adaptive filter connections has been added to the 
original ART2 network. The number of nodes, m, in F3 is 
equal to the dimension of the system output. The adaptive 
filters introduced by F3 are contained in pathways leading 
from the nodes in F3 to the category representation field F2. 
During training, the ART2 module receives a series of input 
patterns I(k) and the top-down adaptive filter F3 is supplied 

with a series of corresponding output patterns y(k+l). These 
outputs are stored only in the new Long Term Memory (LTM) 
traces used in the top-down adaptive filter leading from the 
output field F3 to the category field F2. 

F2 selects the node to be fired as the winning node receiving 
the largest total input and quenching activity in all other 
nodes. During learning, after the winning node j in F2 has 
been chosen, the top-down LTM traces equations of F3 are: 

if the j-th F2 node has not been reset on the current trial, or 

otherwise. 

In the above equations, vmj is the LTM trace of node m in F3 
due to node j in F2 and ym(k+l) is the m-th output of the 
system at time k. 

If during recall, at time (k+l), the j-th node in F2 has been 
selected for fving by the winner-take-all rule, the Short Term 
Memory (STM) ym(k+l) of the m-th node in F3 obeys the 
following equation: 

Learning Scheme and Error Equations 
The scheme for training SMART;? to model a dynamic plant 
is illustrated in Figure 3. Given a time series input u(k) (k= 0, 
1, 2, ... ), SMART;? is taught to generate the corresponding 
time series output y(k+l) (k= 0, 1, 2, ... ) that the plant will 
produce if supplied with U&). 

As the plant is dynamic, at a particular time (k+l), y(k+l) 
depends not only on u(k) but on previous output values and 
possibly previous input values also. To reflect this, in 
SMART2, the input vector I(k) is made up of the current 
input u(k) and previous input u(k-1) plus the current output 
y(k) and previous output y(k-1), namely: 

This is illustrated in Figures 3 and 4. The latter Figure shows 
SMART2 acting as an independent model after training. 

The recognition category for I(k) is represented at node j in 
field F2 by the weight vector Zj(k), where: 

2501 



Zj,(k+l)= Zjo(k)= u(k) (1 1) 

Figure 3. Identification structure 

UTI SMART2 1 y(k;l) , 

Figure 4. Recall structure 

In equation (3, Z&k) (0 I i I 3)  is the weight (LTM trace) 
in the top-down adaptive filter from the j-th node of the F2 
layer to the i-th node of the F1 layer. 

If SMART2 produces an incorrect output when a certain input 
is applied, the top-down weights Z. can be adjusted to 
improve the output by using the difference ei(k+l) (i= 0 to 3) 
between the actual and ideal weights. That is: 

J 

- 
Z&k+l)= Z&k+l) + a ei(k+l) (14) 

where zj,(k+l) is the corrected value of Z$(k+l), ct is a 
learning rate. (0 < ct < 1) and 

e,= Zj,(k+2) - Zjo(k+l) (15) 

el= Zjo(k) - Zj,(k+l) (16) 

e2= ZD(k+2) - Zj2(k+l) (17) 

Note that adjustments to the bottom-up LTM adaptive filters 
from F1 to €2 are made in the same manner. 

S M A R n  Algorithm 
The main steps of the algorithm are as follows: 

1. Initialise all weights in the ART2 module according to the 
ART2 procedure [2] and set those in the new F3 layer to 
zero. 

2. Present an input-output pair. 
At time (k+l), the input and weight vectors are: 

3. Determine the F2 node to be fired. 

Zji(k+l)= [Zjo(k+l) Zjl(k+l) Zj2(k+l) ZD(k+l)] (7) 

Consequently, at time (k+2), the input and weight vectors are: 

I(k+2)= [u(k+2) u(k+l) y(k+Z) y(k+l)] (8 )  

Ideally, after the weights have settled down following the 
presentation of the input vector, 

Zjo(k+l)= Zj,(k+2)= u(k+l) (10) 

4. Start learning and update LTM traces between F1 and F2 
using the ART2 procedure and those between F2 and F3 
using Equations (1) and (2). 

5. Adjust the weights between F1 and F2 according to 
Equation (14). 

6. Go to step 2. 

3. SIMULATIONS 

SMART2 has been trained in simulation to model different 
types of plants. This section presents the results for a second- 
order plant, a third-order plant and a non-linear plant. A 
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series of uniform random inputs U E [0, 11 was presented to 
the plants to produce a training data set of 80 points. 
Complement coding was used for negative values. 

After being trained on that data, SMART2 was employed to 
generate outputs corresponding to a series of 300 inputs 
previously not encountered during training. 

In all simulations, the FO and F1 layers each had 4 nodes (the 
input vector dimension), the F2 layer had 80 nodes (the 
number of training data) and the F3 layer had 1 node (the 
output dimension). 

Second-Order Plant 
The second-order linear plant used in the simulations could 
be represented by the following difference equation: 

y(k+l)= 1.72357y(k) - 0.74082y(k-1) 
+ 0.009048u(k) - 0.008214~(k-l) (19) 

The plant input and output are denoted by U and y 
respectively. A piecewise linear activation function with 9= 
0.018 was used. Internal feedback parameters a and b were 
both set to 9.4 to give stable STM preprocessor activities. The 
reset sensitivity parameter c was 0.1. The value of the 
feedback learning parameter d was 0.9. The vigilance 
parameter p was 0.96. The learning parameter IX was 0.62. 
The values of these parameters were obtained by 
experimentation. 

It was found that gain factors a and b only had a minor 
influence, the values used being necessary to ensure learning 
stability and allow the network to settle down. A piecewise 
linear activation function was used in preprocessors FO and 
F1. The degree of contrast enhancement and noise 
suppression is determined by the threshold 9 in the feedback 
activation function. Learning rules in F2 follow the membrane 
equation (21. Slow learning was achieved using the Runge- 
Kutta method for solving that equation. The step size (h) was 
0.1 and the maximum number of time steps (nsteps) was 100. 
Fast learning was implemented by applying Equations (1) and 
(2) in the LTM of the new F3 layer. The training time was 
approximately 10 seconds on a PC/AT 486 33 MHz 
microcomputer. 

Figures 5 and 6 show the step and sinusoidal responses of 
SMART;! following training. They have been superimposed 
on those of the plant. It can be seen that there is little 
difference between them and thus the trained network is an 
accurate model of the plant. 

Figure 5. Step response of the second-order plant 

0.1 

Figure 6. Sinusoidal response of the second-order plant 

Third-Order Plant 
The 3rd-order linear plant used could be represented by the 
following discrete input-output equation: 

y(k+l)= 2.038y(k) - 1.366y(k-1) + 0.301y(k-2) 
+ O.O059u(k) + 0.018~(k-1) + 0.0033u(k-2) (20) 

The parameters employed in the SMART;? network were as 
follows: 9= 0.002, a= b= 8.2, C= 0.1, d= 0.9, p= 0.96, CZ= 
0.51, h= 0.1 and nsteps= 100. 

Figures 7 and 8 show the step and sinusoidal responses of 
SMART2 superimposed on those of the plant. Again, it can be 
noted that there are insignificant differences between the 
responses of SMART2 and those of the plant. 

Figure 7. Step response of the third-order plant 
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Figure 8. Sinusoidal response of the third-order plant 

Non-linear Plant 
The non-linear plant model adopted could be described by the 
following discrete input-output equation: 

y ( k + l ) =  y(k) - 0 .3y(k- l )  + 0.5u(k) (21) 
1.5 + y2 (k)  

The parameter settings were as follows: O= 0.2, a= b= 7.2, c= 
0.1,d=0.9, p=0.98,a=0.39,h=O.l andnsteps= 100. 

Figures 9 and 10 give the step and sinusoidal responses of 
SMART2 which are virtually indistinguishable from those of 
the plant. 
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Figure 9. Step response of the non-linear plant 
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Figure 10. Sinusoidal response of the non-linear plant 

4. CONCLUSION 

SMART2, a supervised version of the ART2 neural network 
designed for modelling discrete dynamic systems, has been 
demonstrated in simulation on different types of plants. The 
advantages of SMART2 are its ability to model both linear 
and non-linear plants accurately, its requirement for a low 
number of inputs (only four input nodes are employed in all 
cases), its need for little training data (only 80 data points are 
used in all cases) and its fast training speed. 
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