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Abstract

Unlike to traditional hierarchical and partitional clustering algorithms which always fail to deal with very large databases, a neural

network architecture, projective adaptive resonance theory (PART), is developed for the high dimensional space clustering. However, the

success of the PART algorithm depends on both accurate parameters and satisfied orders of input data sets. These disadvantages prevent

PART from being applied to realtime databases. In this paper, we propose an improved method, PART with buffer management, to

overcome these disadvantages. The major contributions of our method are introducing a buffer management and a new similar degree

function and buffer checkout process. The buffer management mechanism allows data sets not to be immediately clustered to one cluster.

The purpose of the average similar degree is to successfully work with high similar noise data sets and partly achieve an order-

independent objective without correct parameters. And the average similar degree has a good attribute, the parameter-tolerance.

Namely, the clustering result does not depend on the precise choice of input parameters, and different parameter values have close

clustering results including dimensions associated with clusters. The buffer checkout process can handle a huge amount of input data sets

by a small buffer space. Also, simulations and comparisons in high dimensional spaces are reported, and an application by using our

algorithm to find stock concurrence association rules is given finally.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Clustering is an unsupervised classification process to
discover pattern hidden in a huge data set or high
dimensional spaces. Many scholars have extensively
explored clustering problems from different methodology
perspectives [10,11,19]. And with widespread availability of
the information age, a great number of very high
dimensional data sets are more likely to be produced. As
the noted statistician, Professor David L. Donoho, pointed
e front matter r 2008 Elsevier B.V. All rights reserved.
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out [9], ‘‘The coming century is surely the century of data’’.
Traditional hierarchical and partitional clustering algo-
rithms, however, always fail to deal with very large and
high dimensional databases, especially in realtime situa-
tions such as text processing [18], video classification [13],
biology networks [17,16] and social networks [12]. It is
inefficient for most clustering algorithms to cluster in high
dimensional spaces due to ‘‘the inherent sparsity of the
data’’ [4,2,14].
Fortunately, PART, Projective Adaptive Resonance

Theory [3], based on the ART [5] and PROCLUS [1], is
very good at recognizing self-organizing patterns in
arbitrary sequences [6–8,15]. Instead of considering in the
total space, PART focuses on the subspace D in which a
subset C of data points are very close to each other. The
major contribution of PART is the selective output
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signaling mechanism. It allows the signal, generated in an
input layer node, to be transmitted to a clustering layer
node only when the signal is similar to the top-down weight
between the two nodes. Therefore, it can successfully find
projected clusters in high dimensional spaces.

Nevertheless, PART relies on some parameters, espe-
cially r (r presents the least similar degree of data sets
placed in the same cluster). The clustering accuracy may be
seriously degraded if an incorrect value is chosen. In
realtime situations, it is rarely possible for users to supply
accurate parameters. In most cases, it causes practical
difficulty to apply PART to realtime data sets.

On the one hand, some high similar noise data sets
maybe cause seriously inaccurate clustering results. These
noise data sets may be correlated in several dimensions,
and the number of such dimensions may be bigger than the
r parameter. But in fact they do not belong to one cluster.
In the paper [3], authors increase the r step by step to figure
out the good result, but it is impossible in realtime
situations since computers need too much time to find
out the exact step value when the data are too large. The
example simulations of high similar noise data sets are
given in Section 4.1.

On the other hand, the dimensions of projected clusters
are sensitive to the choice of the input parameter r. This
property can be shown from the comparison in Section 4.2.
As a simulation experiment introduced in paper [3], PART
presents different clustering results of projected dimensions
with different values of the parameter r. Although the
number of data sets found in these experiments is basically
consistent with that of real clusters, the projected dimen-
sions associated with clusters are incomplete with regard to
the real dimensions.

Sometimes, the projected dimensions associated to a
cluster are more valuable than the number of data in the
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Fig. 1. The architec
cluster. Users always hope to get the completely helpful
information at one time. Apparently, PART cannot satisfy
their appetite since PART requires the accurate parameter
r in order to find complete projected dimensions associated
to one cluster. In the paper [3], increasing step by step the
parameter r could surely get a precise result including the
projected dimensions. Nonetheless, in realtime situations
we face hundreds of input data sets, so we do not have
many time to deal with a huge number of data!
In this paper, in order to relieve PART from a

parameter-laden dilemma, we propose a significant im-
provement, buffer management, that can neglect the noise
data sets and achieve a parameter-free algorithm. The basic
architecture of PART with buffer management is similar to
that of the PART architecture. The simplified configura-
tion of PART with buffer management is shown in Fig. 1.
In this architecture, there are an input-comparison field

(F 1 layer), a clustering layer (F2 layer), a reset subsystem
and a sublayer hidden in F1 layer which selectively sends
signals to nodes in the F 2 layer. One node in the F 1 layer
can be active to some F2 nodes, but inactive to the other F 2

nodes. Two types of connections are existed between each
node pair in the F1 and F 2 layers. The connection from the
F1 layer to the F 2 layer is weighted by zij , the bottom-up
value. While the top-down value, zji, denotes the weight of
the top-down connection. Both weights should be modified
in the control of two learning rules. And a winner-take-all
paradigm is implemented so that the F2 node with the
largest net input becomes the candidate winner to get the
input pattern. After that, an F 2 node is considered
committed to learn some input patterns before, otherwise
noncommitted. Only the committed nodes can accept
signals from the F1 layer, and noncommitted F2 nodes
cannot take signals. If all committed F2 nodes are not
suitable to learn the input pattern, we randomly select the
arity Check
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winner node from noncommitted F2 nodes. A winner node
is a chosen committed F 2 node which has finally accept the
input data set, or the input pattern. Moreover, we add an
outlier cluster, Coutlier, which collects data sets clustered not
to any F 2 nodes. Therefore, the outlier cluster serves as a
trash can which does not learn any input pattern. Mean-
while, the reset mechanism decides whether the candidate
will learn the input pattern. The purpose of the reset
mechanism is to determine the similar degree of data sets in
a cluster.

The principal contributions of BPART1 are as follows:
1.
1

pap
Buffer management (the buffer layer). It manages the
nodes whose similar degrees are less than the average
similar degree but more than the parameter r.
2.
 New similar degree function avgj of the cluster vj. It is 0
at the beginning. When a input data set is ready to be
grouped into one candidate cluster, BPART calculates
the new average similar degree of this candidate cluster.
If the average similar degree is more than the similar
degree of the input data set, it is pushed into the buffer.
Otherwise, the input data set is grouped into this
candidate cluster.
3.
 Buffer checkout. We check whether similar degree of
any pushed data set in the buffer is more than or equal
to the new average degree. If yes, we pull this data set to
the cluster. If the buffer is full, BPART will discard the
data set whose similar degree is smallest in the buffer to
the outlier cluster.

The remainder of this paper is organized as follows. In
Section 2, we describe the BPART architecture, the STM
and LTM equations, the vigilance and reset mechanism,
and the buffer management mechanism. In Section 3, we
provide the BPART algorithm and pseudocodes in detail.
Examples and simulations in high dimensional spaces are
presented in Section 4. In Section 5, we apply BPART to
discover stock concurrence association rules in 100 stock
transactions of the Hang Seng Composite Index of
HongKong. Conclusions and Acknowledgements are
provided in Sections 6 and 7, respectively.
2. PART with buffer management

2.1. Basic architecture of BPART

In the basic BPART architecture as shown in Fig. 1, vi

(i ¼ 1; . . . ;m) stands for nodes in the F1 layer, whose
activation is xi; vj (j ¼ mþ 1; . . . ;mþ n) denotes jth-node
in the F 2 layer, whose activation is xj. vj is also a cluster
who learns the input pattern. The number of input data
sets clustered to vj is nj. And the range of activation xi is
W i. Avgj is the average similar degree of the cluster vj. And
BPART is short for PART with buffer management in the rest of this

er without special hints.
an F2 node is called committed if it has learned some input
patterns before, otherwise noncommitted.
The bottom-up weight from vi to vj is zij, and the top-

down weight from vj to vi is zji. According to paper [3], the
term hij is defined as the selective output signal from node
vi in the F 1 layer to a committed node vj in the F2 layer as
follows:

hij ¼ hðxi; zij ; zjiÞ ¼ hsðdðf 1ðxiÞ; zjiÞÞlðzijÞ, (1)

where

dða; bÞ ¼ ja� bj=ðeþ jbjÞ, (2)

for given constants s and y, hsða; bÞ is given by

hsða; bÞ ¼
1 if dða; bÞps;

0 if dða; bÞ4s;

(
(3)

and lðzijÞ is given by

lðzijÞ ¼
1 if zij4y;

0 if zijpy:

(
(4)

If hij ¼ 1, we consider that vi is active to vj ; otherwise, vi

is inactive to vj. We also simply take function f 1 as PART,
f 1ðxiÞ ¼ xi.

2.2. STM equations

The STM activation xi and xj of any F 1 node vi and any
F2 node vj obey a membrane equation, respectively:

�
dxi

dt
¼ �xi þ I i (5)

and

�
dxj

dt
¼ �xj þ ð1� AxjÞJ

þ
j � ðBþ CxjÞJ�j , (6)

where

0o�51, (7)

Jþj ¼ gðxjÞ þ Tj, (8)

J�j ¼
X

kaj;vk2F2

gðxkÞ, (9)

gðxiÞ ¼
0; xioy;

1 otherwise:

�
(10)

Here, I i is the input data set. A, B and C are all
constants. Particularly, A, B and C are assigned to 1, 0, 1,
respectively. Input Jþj adds a positive feedback signal gðxjÞ

from vj to itself in addition to the bottom-up adaptive filter
input Tj.
Regarding Tj, PART simply uses the equation Tj ¼P
zijhij which neglects the important factor of volumes of

one cluster. In other words, a big cluster has more chances
to learn patterns than a small cluster even though two
clusters have a same number of projected dimensions in
response to one input data set. Therefore, in contrast to
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PART, we have the formula by Bayes rules:

Tj ¼ Tjjxi1 i2 ...ip
¼

Pðxi1xi2 . . . xip
jvjÞPðvjÞ

Pðxi1xi2 . . . xip
Þ

¼
Pðxi1 jvjÞPðxi2 jvjÞ . . .Pðxip

jvjÞPðvjÞ

Pðxi1 ÞPðxi2Þ . . .Pðxip Þ
, (11)

where

p ¼
X

i

hij , (12)

PðxijvjÞ ¼ 1�
jxi � zjij

W i

, (13)

PðvjÞ ¼
njP
k nk

, (14)

PðxiÞ ¼ s. (15)

The F2 layer makes a decision by the winner-take-all
paradigm:

f 2ðxjÞ ¼
1 if node vj is a winner;

0 otherwise:

�
(16)
2.3. Buffer management mechanism

Similar to PART, the candidate winner node vj is chosen
by: Let G ¼ Tk : F2 node vk is committed but not reset on
the current trial. Then the node vj is a candidate winner if
Ga; and Tj ¼ maxG.

For a candidate winner node vj , if its similar degree is
more than or equal to the avgj, or if G ¼ ; and node vj is
the next noncommitted node in F2 layer, then the
candidate winner node vj becomes the winner; otherwise,
the candidate winner node vj is reset.

We calculate the new avgj as follows:

avgj ¼

x if avgj is zero;

avgj �
ðnj � 1Þ � ðnj � 2Þ=2

nj � ðnj � 1Þ=2

þx �
nj � 1

nj � ðnj � 1Þ=2
otherwise;

8>>>>>>><
>>>>>>>:

(17)

where x is the similar degree of the current input data set
with regard to the candidate winner node vj.

We could see that with the increasing number of input
data sets, nj , in one cluster, the effect of sparse noise data
sets on avgj is very small. Hence, the stable avgj can reflect
maximum projected dimensions associated with one cluster
in spite of the inaccurate choice r.

Eq. (17) could be simplified as follows:

avgj ¼

x if avgj is zero;

avgj �
nj � 2

nj

þ x �
2

nj

otherwise:

8><
>: (18)
When a candidate winner node becomes a winner, we
check whether the similar degree of any buffer data set is
more than or equal to the new similar average degree. If
yes, we pull the buffer data set to the winner node. And if
the buffer is full, BPART will pull one buffer data set,
whose similar degree is smallest, to the outlier.

2.4. LTM equations

The LTM bottom-up weight equation is described by

d
dzij

dt
¼ f 2ðxjÞ ð1� zijÞLhðxi; zij ; zjiÞ

"

�zij

X
kai;xk2F1

hðxk; zkj ; zjkÞ

#
. (19)

The LTM top-down weight equation is presented by

dzji

dt
¼ f 2ðxjÞ½�zji þ f 1ðxiÞ� if vj is committed, (20)

d
dzji

dt
¼ f 2ðxjÞ½�zji þ f 1ðxiÞ� if vj is noncommitted, (21)

where 0o�5d51, and L is a positive constant. When a
noncommitted F 2 node vj is selected as the winner node, all
F1 nodes are immediately active to the winner.

2.5. Vigilance and reset

Similar to PART algorithm, the vigilance parameter r in
BPART also decides the similar degree of data sets in the
same cluster in F2 layer. If a candidate winner F2 node vj

does not meet the vigilance requirement, or the similar
degree rj is less than the vigilance parameter r, BPART will
reset vj not to become a winner during the current trial;
otherwise, the winner node is ready to accept the input data
set.
We reset the winner vj if and only if

rjor, (22)

where

rj ¼
X

i

hij. (23)

Here r 2 f1; 2; . . . ;mg is a vigilance parameter. It is easy to
know that avgj is more than or equal to r.

3. Algorithms and pseudocodes

3.1. Algorithm trees
1.
 Initialization
Initialize parameters L; �; a; y;s;r;m; n. m is the
number of dimensions in input data sets, n is the
expected maximum number of clusters.
Set all F2 nodes as being noncommitted.
Set all avgj ¼ 0; j ¼ 1; . . . ; n.
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2.
 For the input data set S, do the following Steps 2(a)–(f),
until users stop inputting data.
(a) Compute hij for all F1 nodes vi and committed F2

nodes vj. Compute Tj for all committed F 2 nodes vj.
If all F2 nodes are noncommitted, randomly select
one noncommitted F2 node as the candidate winner,
then go to 2(c).

(b) Select the candidate winner F2 node vj . If no candidate
winner F2 node can be selected, put the input data set
into the outlier cluster and then continue to do Step 2.

(c) Compute rj.
(d) If rjXr, go to Step 2(e); otherwise reset the

candidate winner vj and go back to Step 2(a).
(e) If rjXavgj, go to Step 2(f); otherwise push this input

data set into the buffer, and renew the avgj for the
candidate winner node vj. If the buffer is full, pull
the buffer data set, whose similar degree is smallest,
to the outlier. Then go to Step 2.

(f) Set the candidate winner vj as the winner and the
committed node, and update the bottom-up and
top-down weights for the winner node vj, and renew
the avgj for the winner node vj. Then check whether
the similar degree of any buffer data set is more than
or equal to the new average degree. If yes, put this
buffer data set to the winner cluster.
F

3.
 Each committed F 2 node vj represents a projected
cluster Cj and the projected dimension set is Dj.

The algorithm block diagram is in Fig. 2. As presented
above, the difference between BPART and PART is the
buffer management which avoids a step-by-step increasing
procedure. Every increasing procedure need completely deal
with all input data sets. It is impossible to run in realtime
situations because of the time complexity of PART. Although
Start

Compute hij, Tj
Select candidate

No candidate

Computer rj

rj> = p

rj> = avgj

Y

Y

N

N

Update & Learn

Buffer

Reset vj

Outlier
Y

N

ig. 2. Algorithm block diagram of the BPART algorithm.
extra resources of the buffer management such as time and
space are needed, we could know that extra resources we need
are very limited through experiments in Section 4.

3.2. Detailed phases and pseudocodes

In this section, we detail each phase as follows.

3.2.1. Computation of hij and Tj

From Eq. (1) we obtain

hij ¼ hsðI i; zjiÞlðzijÞ. (24)

The pseudocodes of computation of this equation are in
Fig. 3.

3.2.2. Selection of the winner

We select the candidate winner according to rules
introduced in Section 2.2. The number of clusters in the
F2 layer is up to n.
The pseudocodes of the selection procedure are in Fig. 4.

3.2.3. Vigilance and reset

The algorithm resets the candidate winner vj if and only ifX
i

hijor (25)

for a vigilance parameter r 2 f1; 2; . . . ;mg.
Fig. 3. Computation of hij and Tj .
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Fig. 4. Selection of the winner.

Fig. 5. Vigilance and reset.
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The pseudocodes of the vigilance and reset mechanism
are in Fig. 5.
3.2.4. Buffer management

We push input data sets, whose similar degree is less than
avgj, into the buffer. Meanwhile, we detect the fullness of
the buffer. If the buffer is full of data, we clean the buffer
data set whose similar degree is smallest and put this data
set to the outlier cluster.
For the convenience of management, every buffer data
set adds two elements, indicators for the candidate winner
and similar degree, respectively.
The pseudocodes of the buffer management are in Figs. 6

and 7.
3.2.5. Learning

If the similar degree of a candidate winner is more than
or equal to the average similar degree, the candidate winner
becomes the winner.
The winner learning formulae obey from Eqs. (19) to

(21). According to Eq. (19), for a committed winning F 2

node vj, we have

znewij ¼
L=ðL� 1þ jX jÞ if vi is active to vj ;

0 otherwise;

(
(26)

znewji ¼ ð1� aÞzoldji þ aI i, (27)

where jX j is the number of F1 nodes which are active to the
F2 node vj , and a is the learning rate, 0pap1. And L is a
positive constant.
For a noncommitted winner vj and F1 node vi, we obtain

znewij ¼ L=ðL� 1þmÞ, (28)

znewji ¼ I i. (29)
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Fig. 6. Pushing into buffer.

Fig. 7. Cleaning the buffer.
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3.2.6. Computation of avgj and the buffer checkout

At the end of BPART, we compute avgj according
to Eq. (18). We should keep avgj stable at first. In other
words, nj initial value is more than 0, for example 50 in
this paper.

When an input data set into a cluster vj in F 2 layer, since
avgj is renewed, we must check whether the similar degree
of any buffer data set is more than or equal to the new
average degree, if yes, we pull this buffer data set to the
cluster.

The pseudocodes of the buffer checkout are in Fig. 8.
4. Examples and simulations

4.1. Examples for PART disadvantages

In this section, we give several simple examples to
illustrate that high similar noise data sets deteriorate the
clustering result.
On one hand, in Figs. 9 and 10, the similar degree of the

noise data set, 3 2 1 6 5 0, is more than the vigilance
parameter r. So according to PART, the noise data set has
to be clustered to the projected cluster. The result reduces
the valuable information, such as the projected dimensions.
While Fig. 11 is the best clustering result. The noise data set
is put into the outlier cluster, and the desired clustering
result in Fig. 11 preserves the maximum valuable informa-
tion, in which the desired result has the 5-dimension similar
degree comparing to 2-dimension of the bad results in Figs.
9 and 10.
On the other hand, as Professor Jain says [10], ‘‘ART

nets are order-dependent, that is, different partitions are
obtained for different orders in which the data sets are
presented to the net’’. Figs. 9 and 10 have the identical
input data but small order difference. As a result, clustering
results are different from each other.

4.2. Simulations in high dimensional spaces

For the purpose of illustration, we design a few sets of
data, which form clusters only in subspaces. The high
dimensional spaces are generated by the method intro-
duced by Aggarwal [1]. To show advantages of BPART, we
take a small modification to the method as follows.
The coordinates of clustered data sets and noise data sets

(outliers) all span in the range ½0; 100�. There are totally 5%
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Fig. 8. Check the buffer.

1 2 1 4 3 5
1 2 1 4 3 0
3 2 1 6 5 0
1 2 1 4 3 6
1 2 1 4 3 1
1 2 1 4 3 9

1 2 1 4 3 5
1 2 1 4 3 0
3 2 1 6 5 0

1 2 1 4 3 6
1 2 1 4 3 1
1 2 1 4 3 9

Fig. 9. The high similar noise data, 3 2 1 6 5 0, disturb the clustering

result, where r ¼ 2, s ¼ 0:1, L ¼ 2, � ¼ 1, a ¼ 0:1, y ¼ 0.

1 2 1 4 3 5
1 2 1 4 3 0
1 2 1 4 3 6
1 2 1 4 3 1
3 2 1 6 5 0
1 2 1 4 3 9

1 2 1 4 3 5
1 2 1 4 3 0
1 2 1 4 3 6
1 2 1 4 3 1
3 2 1 6 5 0 1 2 1 4 3 9

Fig. 10. The high similar noise data, 3 2 1 6 5 0, deteriorate the cluster,

where r ¼ 2, s ¼ 0:1, L ¼ 2, � ¼ 1, a ¼ 0:1, y ¼ 0.
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noise data sets and are distributed uniformly random
throughout the entire space. The centers of all clusters are
obtained by using k uniformly distributed data sets in a
d-dimensional space. The number of dimensions associated
with a cluster is generated by the Poisson distribution.
Every two clusters have some overlap dimensions. The
data sets for the cluster vj are generated as follows:
the coordinates of data sets on the nonprojected
dimensions are random, while the coordinates of one
projected dimension j obey the normal distribution
with the mean at range of the respective �5% of the
anchor data set.
The modification to this method is that we put some
noise data sets into input files. Those noise data sets
have a characteristic: they share partial dimensions
(more than or equal to the degree of r) of one cluster,
but they are completely different at the other dimensions of
the cluster.
We design the experiment file which has 10,000 data sets

and five clusters in a 20-dimensional space and all five
clusters have the seven projected dimensions in different
subspaces. Table 1 shows the projected dimensions and the
number of data sets of each cluster.
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Table 1

Dimensions and numbers of data sets of INPUT clusters in a 20-

dimensional space

Cluster no. Projected dimensions Number

1 3,4,7,9,14,16,17 2139

2 3,4,7,12,13,14,17 2328

3 4,6,11,13,14,17,19 1824

4 4,7,9,13,14,16,17 1573

5 3,4,9,12,14,16,17 1636

Outliers – 500

Table 2

Dimensions and numbers of data sets of OUTPUT clusters for the input

file by PART, where r ¼ 5, s ¼ 0:17

Found cluster no. Projected dimensions Number

1 3,4,7,9,14,16,17 2139

2 3,4,7,12,13,14,17 2327

3 4,6,11,13,17 1825

4 4,7,9,13,14,16,17 1573

5 4,9,14,16,17 1637

Outliers – 498

1 2 1 4 3 5
1 2 1 4 3 0
3 2 1 6 5 0
1 2 1 4 3 9
1 2 1 4 3 6
1 2 1 4 3 1

1 2 1 4 3 5
1 2 1 4 3 0
1 2 1 4 3 6
1 2 1 4 3 1
1 2 1 4 3 9 3 2 1 6 5 0

Fig. 11. The best clustering result with high similar noise data, 3 2 1 6 5 0,

deteriorate the cluster, where r ¼ 2, s ¼ 0:1, L ¼ 2, � ¼ 1, a ¼ 0:1.

Table 3

Dimensions and numbers of data sets of OUTPUT clusters for the input

file by BPART, where r ¼ 5, s ¼ 0:17

Found cluster no. Projected dimensions Number

1 3,4,7,9,14,16,17 2139

2 3,4,7,12,13,14,17 2327

3 4,6,11,13,14,17,19 1824

4 4,7,9,13,14,16,17 1573

5 3,4,9,12,14,16,17 1636

Outliers – 501

Table 4

Dimensions and numbers of data sets of OUTPUT clusters for the input

file by PART, where r ¼ 4, s ¼ 0:17

Found cluster no. Projected dimensions Number

1 3,9,14,17 2140

2 4,12,14,17 2328

3 4,11,13,17 1827

4 4,9,13,17 1574

5 4,9,14,16,17 1637

Outliers – 493

Table 5

Dimensions and numbers of data sets of OUTPUT clusters for the input

file by BPART, where r ¼ 4, s ¼ 0:17

Found cluster no. Projected dimensions Number

1 3,4,7,9,14,16,17 2139

2 3,4,7,12,13,14,17 2327

3 4,6,11,13,14,17,19 1824

4 4,7,9,13,14,16,17 1573

5 3,4,9,12,14,16,17 1636

Outliers – 501

Table 6

Dimensions and numbers of data sets of OUTPUT clusters for the input

file by PART, where r ¼ 3, s ¼ 0:17

Found cluster no. Projected dimensions Number

1 7,9,17 2142

2 3,7,12 2323

3 4,13,17 1831

4 7,9,13 1574

5 9,16,17 1644

Outliers – 475

Table 7

Dimensions and numbers of data sets of OUTPUT clusters for the input

file by BPART, where r ¼ 3, s ¼ 0:17

Found cluster no. Projected dimensions Number

1 3,4,7,9,14,16,17 2139

2 3,4,7,12,13,14,17 2327

3 4,6,11,13,14,17,19 1824

4 4,7,9,13,14,16,17 1573

5 3,4,9,12,14,16,17 1636

Outliers – 501
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We report the experiment result of both BPART and
PART in each file. In this experiment, BPART emphasizes
independence of the vigilance parameter r. BPART
algorithm obtains the full projected dimensions by the
different parameters r. Tables 2 and 3 show the two
simulation results with r ¼ 5, s ¼ 0:17; and Tables 4 and 5
show the two simulation results with r ¼ 4, s ¼ 0:17; and
Tables 6 and 7 show the two simulation results with r ¼ 4,
s ¼ 0:17. (In this paper we only focus on r, so we choose a
small s.)
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From the results and comparisons, we could understand
the advantage of BPART, that found dimensions are
independent on the accurate choice of r. In Tables 2, 4 and
6, with the decreasing r, the found dimensions are also
decreasing. While in Tables 3, 5 and 7, BPART can still
find full projected dimensions. We call the advantage
r-toleration.

Due to the r-toleration, users do not have to choose a
precise r. So they could choose a rough parameter to
obtain a close result. In fact, choosing an accurate r is a
hard job for an user (even an experienced user).

4.3. Scalability results

Due to the buffer management mechanism of BPART,
readers may ask whether the run time and extra
space is sustainable. So in the following we will discuss
the dependency on run time and extra buffer space
with different percentages of outliers, different total
number of input data sets and various capacities of the
buffer space.

4.3.1. Dependency of run time

Firstly, we design a series of input data files with 20,000
data sets in a 20-dimension space. They are clustered into
five clusters.

Simulations are performed on a 677-MHz Intel Celeron
CPU with 256M of memory and Windows XP sp2.

As noticed in previous sections, the output of PART is
seriously influenced by the choice of r and high similar
noise data sets. Hence, we compare the run times of PART
and BPART only in input files which eliminate such noise
data sets, and the r is set to 5. Because of random outliers,
each run time reported in this section is averaged over five
times.

Fig. 12 shows the time dependency of simulation
results of BPART and PART on different percentages of
random outliers. From this figure, we could conclude three
points:
1.
 The run times of both BPART and PART are increasing
with the growth of percentages of random outliers.
2.
 Although the run time of BPART is more than that of
PART at each column, the difference is small. The
biggest difference is 23.5% (at 25% percentage), and the
average of difference of run time is 14.2%.
3.
 The rate of the run time to the outlier percentage is
gradually diminishing.

The other simulation about the dependency of run time
on the number of input data sets is in Fig. 13. In these input
files, not only the total number of data sets but also the
percentages of random outliers are increasing. The total
number is from 10,000 to 47,500, while the percentage of
outliers is from 5% to 80%. The run times of BPART and
PART at each number and percentage are also consistent
with our conclusion.
From Figs. 12 and 13, introducing the buffer manage-
ment does not bring the great change of run time of
BPART with a big number of data sets or different
percentages of outliers. The extra run time of BPART is
checking whether the similar degree of any buffer data set
is more than or equal to the new average degree. However,
the avgj greatly reduces the chance that high similar noise
data sets are grouped to a good cluster. With increasing
number of input data sets grouped to clusters, the avgj

becomes a stable value.
4.3.2. Dependency of buffer spaces

In this section, through the comparison with different
buffer spaces, we will find that the small capacity of the
buffer can handle a big amount of input data sets.
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Table 8

Scalability with capacity of buffer spaces on the first input file (20%

outliers), where s ¼ 0:17, L ¼ 2, � ¼ 1, a ¼ 0:17, y ¼ 0

r 2.5% 1% 5% 2:5% 1% PART

8 0 0 0 0 3 8

7 0 0 0 0 4 28

6 0 0 0 3 23 346

5 0 0 0 11 31 1487

Table 9

Scalability with different capacity of buffer spaces on the second input file

(70% outliers), where s ¼ 0:17, L ¼ 2, � ¼ 1, a ¼ 0:17, y ¼ 0

r 2.5% 1% 5% 2:5% 1% PART

8 0 0 0 0 7 63

7 0 0 0 0 11 254

6 0 0 0 14 35 1874

5 0 0 0 31 58 4481
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Fig. 14. The concurrence of rising–falling of four stocks in HSI.
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We design two input files with 20,000 data sets in five
clusters and a outlier cluster, each of which is projected
between 10-dimension and 40-dimension subspace in a 100-
dimension space. One input file contains 20% of outliers,
and the other contains 70% of outliers. Tables 8 and
9 are the simulation results. A necessary explanation
of this simulation is that we demonstrate different results
with the decreasing capacity of the buffer and r. In Tables
8 and 9, we compare the number of data sets clustered to
wrong clusters with different buffers to demonstrate
BPART’s benefits over PART. (The buffer space is 2.5%
of the total number of data sets, 1%, 5%, 2:5% and 1%,
respectively.)

From Tables 8 and 9, we could obtain a conclusion that
the decreasing capacity of the buffer space has a small
effect on the clustering result. In other words, a small
buffer space can process a huge amount of input data sets.
In fact, the good behavior of BPART is consistent with
those algorithms reported in Section 2, and the main
function of the buffer space is storing the high similar noise
data sets. Although high similar data sets are very few, they
can bring a jeopardous result if we cannot efficiently
discard them.

5. An application

In decades, the problem of discovering association
rules between items in a large database is a popular
research field. Association rule mining finds interesting
associations or correlation relationships among large set of
data items.

In this section, we apply BPART to cluster stock
concurrence association rules, which means that in
most cases these stocks surprisingly rise or fall at same
time. For example, the rise of stocks in the petroleum
sector always brings about the fall of stocks of tourism
and airline corporations. This concurrence association
rule is good to predict the trend of certain stocks
with the aid of other stocks. Thus, we are going to
use data mining algorithm to discover stock concur-
rence association rules behind a wealth of stock
transaction databases in order to predict the stock market
change.
In our study, we experiment with BPART in the

database of The Hang Seng Composite Index Series
(HSCI), launched on 3 October 2001. We select randomly
100 constituent stocks contributing to the HSCI Index.
There are a total 481 transaction days and each transaction
day contains all 100 constituent stocks. And we initialize
parameters as follows: r ¼ 2, s ¼ 0:2, L ¼ 2, � ¼ 1, a ¼ 0:1
and y ¼ 0.
After this experiment, we find that there are four out of

100 stocks which have concurrence associations. In detail,
00001 Cheung Kong, 00004 Wharf (Hldgs), 00012 Hen-
derson Land and 00293 Cathay Pac Air are related
(or concurrence) in 90 days out of 481 transaction days,
and partly related in 105 days out of 481. ‘‘Partly related’’
means that two or three stocks are related in one
transaction day. The result of stock concurrence associa-
tions is shown in Fig. 14. The ratio of concurrence of
rise–fall is 195 ð90þ 105Þ to 481, or 0.4. Specially, we
regard the unchangedness of stocks on one transaction day
as rise.
When we use our result to predict ‘‘future’’ trends,

surprising success is emerged: the four stocks are concur-
rence in 103 days of 243 transaction days dated from
January 02, 2002 to December 31, 2002 and the ratio of
concurrence is approximately 0.5 (103/243)!
Compared with PART, our algorithm initializes the

important parameter r to 2, which is easily estimated and
applied. And from this result above, any value more than 4
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fails to find the concurrence of four stocks. Therefore, our
algorithm over PART can obtain the good result without
an accurate parameter r.

6. Conclusions

In this paper, we have presented an improved architec-
ture, PART with Buffer, of the neural network for data
mining, which can successfully deal with high similar noise
data sets and has the r-tolerance attribute. At the same
time, the time and space cost of BPART is very limited.

Our improvement is the introduction of a buffer layer
and a new similar degree function, avgj . Both the buffer
and avgj can keep away from the fatal clustering result
impairment in the case of high similar noise data sets. And
we could obtain close results including projected dimen-
sions even if we choose an imprecise parameter r value.
Besides the high-similar-noise-data-tolerance and r-toler-
ance, we could find that the run time of BPART is also as
much as that of PART, while a small buffer space can
satisfy the requirement of correct clustering. Therefore,
because of above good features, PART with buffers is a
promising methodology for the high dimensional space
clustering.
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