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A significant problem in gene expression analysis is that the sample size is substantially lower
than the number of genes. Bagging is an effective method of solving this problem in the case of
small sample datasets. We have devised a combination method, called the BagPART filtering
method, that uses the projective adaptive resonance theory (PART) to select important genes and
achieve a binary classification more accurately (p<10–10) than conventional methods, particularly
when the sample size is small.
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In gene expression analysis, filtering methods are needed
to avoid the problem of dimensions. A number of methods
have been developed to solve this problem; these include
signal-to-noise (S2N) measurement, significance analysis of
microarrays (SAM), and nearest shrunken centroid (NSC)
(1–3). We developed a projective adaptive resonance theory
(PART) filtering method for gene expression analysis by
modifying the original PART filtering method reported in
our previous studies (4, 5). Currently, we can obtain gene ex-
pression information from more than 10,000 genes owing to
advanced DNA microarray technology; however, the sample
size is, at most, about 100 in most datasets. Thus, the sam-
ple size is much smaller than the number of genes. We have
improved the PART filtering method by introducing the idea
of bootstrap aggregating (Bagging) (6). We have designated
the new method as BagPART. We applied BagPART to the
analysis of the two gene expression profile datasets and com-
pared its results with those of PART. In addition, we tested
the performance of both methods in the case of a small sam-
ple size. As a result, we have shown that BagPART is statis-
tically superior to PART for each dataset, and that BagPART
is more effective when sample size is small.
We used two sets of gene expression profiles downloaded

from the Stanford Microarray Database (http://genome-www5.
stanford.edu). The first set consisted of the colon cancer
gene expression profiles reported by Alon et al. (7). This
dataset comprised 2000 genes and 62 samples (40 tumor
samples and 22 normal samples). The second set consisted
of the prostate cancer gene expression profiles reported by
Singh et al. (8). This dataset comprised 12,600 genes and

102 samples (52 tumor samples and 50 normal samples).
We selected only those genes for which all the 102 samples
showed a positive intensity, resulting in the selection of
1820 genes. Signal values were transformed to a common
logarithm. For the colon dataset, because the tumor sample
number is about twice as large as that of normal controls,
we randomly selected tumor samples to equal the number of
normal samples.
BagPART modifies the PART algorithm in the following

manner. Assume that we have an original dataset S={(x
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b=1, ..., B for a large B (between 50 and 200). In the boot-
strap dataset, a sample is randomly selected and some de-
gree of overlap within the sample is permitted. For each
bootstrap dataset S

b
*, we carry out PART and extract the

gene group G
b
. We repeat this procedure for all bootstrap

datasets, S
1
*, ..., S

B
*, and finally select genes that are in-

cluded in more than half of the B gene groups, G
1
, ..., G

B
. A

schematic diagram of this process is shown in Fig. 1.
A parallel comparison of PART and BagPART was car-

ried out. Firstly, all the samples were randomly divided into
two groups: one was designated a training group, which
helped to construct classification models, and the other was
designated a test group, which was used to evaluate the model
constructed by the training group. The distributions of nor-
mal and tumor samples were equal for both groups. To in-
vestigate the performance of each model in the cases where
the number of samples in the training group was small, the
training sample size was changed to three patterns. The ratios
of the training sample size to the total number of samples,
hereafter expressed as training sample ratio (TSR), were
0.8, 0.6, and 0.4. Table 1 shows the number of samples used
in the analysis of each expression dataset. Secondly, to se-
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lect genes used to construct classification models, BagPART
and the PART filtering method were each applied to the
training group, and about 100 genes were returned by each
method in both expression datasets. In the BagPART algo-
rithm, we used B=100, which was adequate to converge the
selected gene size (Fig. 2). Finally, classification models
were constructed from the training group using only infor-

mation on extracted genes and the estimated test group. Here,
we used the Boosted Fuzzy Classifier with SWEEP operator
method (BFCS), we developed in a previous study, which
constructs 10 models for various gene combinations (9). We
repeated these operations 10 times, and tested whether there
is a statistically significant difference between the results
using a paired t-test.
Tables 2 and 3 show the results of our analysis of the colon

cancer and prostate cancer gene sets, respectively. Both re-
sults showed that BagPART was statistically superior to

FIG. 1. Schematic image of BagPART. In the first step, the resam-
pling data S1*, S2*, ..., SB* are made using bootstrap from the original
data S. In the second step, the genes sets G1, G2, ..., GB

 are extracted by
PART from each resampling dataset. Finally, genes included in more
than half of the B gene sets are selected. The selected gene set is repre-
sented as G.

TABLE 1. Number of samples in each dataset

TSRa Training sample Test sample

Dataset: Colon cancer (normal: 22, tumor: 22)
0.8 36 8
0.6 26 18
0.4 18 26

Dataset: Prostate cancer (normal: 50, tumor: 52)
0.8 82 20
0.6 61 41
0.4 41 61

a TSR, Training sample ratio, indicates the ratio of the number of
training samples to the total number of samples.

FIG. 2. Number of selected genes for each bootstrap iteration. BagPART was applied to each dataset 100 times and showed the average num-
ber of selected genes and standard deviation for each bootstrap iterations (B) in Fig. 1. The number of selected genes converged, and the standard
deviation was very small in each dataset when B=100.
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PART. For the colon cancer dataset, it was clear that despite
the smaller sample sizes in the training data, we observed
smaller p values using BagPART than using PART. Thus,
BagPART can correctly extract genes even if the sample size
is small. For the prostate cancer dataset, when TSR de-
creased from 0.8 to 0.6, p increased p= from 1.70×10–5 to
4.58×10–2. However, when TSR decreased to 0.4, p de-
creased markedly to 2.48×10–13. This means that when TSR
was between 0.8 and 0.6, the number of training samples in
each dataset (82 samples and 61 samples, respectively), was
sufficient to correctly extract genes with PART. In practice,
we obtained a more significant value, p=5.45×10–15, when
TSR decreased to 0.2 and the training sample size was 20
(data not shown). These results were in accord with previ-
ous results of Fu et al. (10). When the sample size is small,
the performance of estimation models varies markedly de-
pending on the proposal method. Many researchers have also
reported that analytical methods using bootstrap could po-
tentially provide more accurate estimates from datasets with
small sample size.
We concluded that our method benefited from the boot-

strap method. However, it is likely that when the sample size
is too small, the performance of BagPART becomes poor. It
is difficult to describe the minimum sample size needed for
satisfactory results because the minimum sample size strong-
ly depends on the quality of the dataset or complexity of the
acquired model.
A number of genes appeared frequently in the outputs of

the BagPART analysis of both datasets (Table 4). For the co-
lon cancer dataset, in particular, the two genes, MYH and

COL11A2, were frequently selected. COL11A2 is one of
two genes that encode two alpha strands of type11 collagen.
COL11A1 has been reported to be not expressed in a normal
colon but to be upregulated in colorectal cancer (11). This
gene was selected frequently in BagPART analysis when the
TSRs were 0.8, 0.6, and 0.4. However, in regular PART
analysis, this gene was only selected when TSR was 0.4,
and was only the 11th most frequent gene to appear in the
output (data not shown). MYH is relevant to DNA repair;
MYH mutation causes familial adenomatous polyposis (FAP)
(12, 13). This gene was also constantly selected in BagPART
analysis regardless of TSR; however, in PART, it was not
selected at all when TSR was 0.8.
MYH and COL11A2 have been reported as important genes

by many researchers, such as Le et al. (14), Shevade and
Keerthi (15), Chu et al. (16), and Ma and Huang (17). How-
ever, when we employed PART as a filtering method, both
genes were not frequently selected amongst all datasets.
Thus, there is a substantial difference in results between
PART and BagPART. For the prostate cancer dataset, HPN
was frequently selected by both filtering methods. This gene
has been reported as a marker of prostate cancer (20). More-
over, other genes, such as AKR1B1 and HSPD1, which have
been reported to play a role in prostate cancer (21), were
frequently selected by BagPART, but not by PART (data not
shown). These results indicate that BagPART can select
meaningful genes even if the sample size is small. More-
over, BagPART could constantly select important genes in
spite of the poor TSR values; we speculate that this charac-
teristic is a result of using the bootstrap method.

TABLE 2. Classification results of BagPART and PART for colon cancer dataset

TSR Method
Average test accuracy (%)

Selected gene
1 input 2 inputs 3 inputs 4 inputs 5 inputs

0.8 BagPART 66.3a±6.6b 73.3±8.7 75.5±6.9 71.8±8.3 71.3±10.6 100d

PART 60.3±7.2 61.0±8.3 68.1±10.0 69.0±8.3 70.9±11.2 99
p-value 4.19×10–10 c

0.6 BagPART 65.3±5.9 75.3±8.1 73.5±8.3 76.0±8.2 74.3±9.3 100
PART 60.3±3.7 69.4±10.3 71.1±8.7 72.4±8.2 69.7±9.0 99
p-value 5.30×10–11

0.4 BagPART 65.4±1.8 72.2±6.8 73.8±6.3 74.8±6.2 76.2±6.1 100
PART 62.7±2.9 68.2±8.8 70.1±6.5 68.9±8.2 71.2±6.8 99
p-value 2.16×10–14

a Average of test accuracies in 10 various datasets × 10 models.
b Standard deviation of test accuracies in 10 various datasets × 10 models.
c Result of paired t-test for comparison of test accuracies of BagPART with PART.
d The number of selected genes obtained from BagPART or PART. In BagPART, this is represented as G in Fig. 1.

TABLE 3. Classification results of BagPART and PART for prostate cancer dataset

TSR Method
Average test accuracy (%) Selected

gene1 input 2 inputs 3 inputs 4 inputs 5 inputs 6 inputs

0.8 BagPART 73.4±7.9 79.1±6.5 81.2±7.9 81.7±6.7 83.0±6.8 83.0±6.8 100
PART 68.7±5.6 79.4±5.7 78.9±8.3 80.6±7.1 80.9±7.4 80.9±7.4 100
p-value 1.70×10–5

0.6 BagPART 76.7±4.3 80.2±3.9 82.7±3.5 83.7±3.3 84.5±3.2 85.4±3.4 101
PART 73.2±4.5 81.4±4.2 82.6±3.6 84.2±4.2 84.2±4.2 84.8±3.2 100
p-value 4.58×10–2

0.4 BagPART 77.1±1.5 81.0±2.8 83.6±2.0 83.5±2.7 84.9±2.2 85.3±2.5 99
PART 71.6±4.3 80.6±3.9 80.9±2.9 81.8±3.2 82.0±3.6 83.1±3.4 101
p-value 2.48×10–13



KAWAMURA ET AL. J. BIOSCI. BIOENG.,84

We have developed an improved PART filtering method
that uses Bagging. To investigate the effect of the new
method, BagPART, on the gene expression analysis, we ap-
plied BagPART to two types of dataset, and obtained a sig-
nificant difference between the two datasets. In addition, we
have clarified that the new method could more correctly ex-
tract genes than conventional methods when the sample size
is small. In this study, we compared BagPART with only
PART. In our previous paper, we have reported that PART is
superior to signal-to-noise (S2N) measurement and nearest
shrunken centroid (NSC) (4). Therefore, we believe that
BagPART has better performance than the other methods,
although further comparison with other methods such as SOM
has not yet been carried out. We believe that, in the case of
precious or rare samples, our method is advantageous for
extracting important genes.
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TABLE 4. Gene lists selected frequently by BagPART

Rank Gene ID Genbank Gene name Description Reference

Colon cancer
1 Hsa.37937 R87126 MYH Myosin heavy chain, nonmuscle (Gallus gallus) 16, 17
2 Hsa.6814 H08393 COL11A2 Collagen alpha 2(XI) chain (Homo sapiens) 16, 17
3 Hsa.549 R36977 GTF3A general transcription factor Ⅲ A 18, 19
4 Hsa.627 M26383 IL8 MONAP mRNA, complete cds. 17, 18
5 Hsa.21562 R08021 PPA1 Inorganic pyrophosphatase (Bos taurus) –

Prostate cancer
1 37639_at X07732 HPN Hepsin (transmembrane protease, serine 1) 19, 22
2 38406_f_at AI207842 – Homo sapiens cDNA, 3 end 17, 19
3 36589_at X15414 AKR1B1 Aldo-keto reductase family 1, member B1 (aldose reductase) 19
4 40282_s_at M84526 DF D component of complement (adipsin) 19, 22
5 37720_at M22382 HSPD1 Heat shock 60kDa protein 1 (chaperonin) 19, 23


