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Abstract

 

Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two
issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the
appearance of a bifurcation, a neural network can show discontinuities and may acquire qualitatively new knowledge. First, it
is shown that biological principles of neurite outgrowth result in self-organization in a neural network, which is strongly dependent
on a bifurcation in the activity dynamics. Second, the effect of a bifurcation due to morphological change is investigated in an
Adaptive Resonance Theory (ART) network. Exact ART networks with quantitative differences in network structure at the
category level show qualitatively different dynamical regimes, which are separated by bifurcations. These qualitative differences
in dynamics affect the cognitive function of Exact ART: Representations of learned categories are local or distributed.

 

Introduction

 

Constructivist theories of cognitive development are
involved in at least two theoretical issues: the occurrence
of discontinuities and the possibility of acquiring qualit-
atively new knowledge. According to the developmental
theory of Piaget (e.g. Piaget & Inhelder, 1969), children
show stages in their development during which their
cognitive abilities are relatively stable. But it is predicted
that during a transition between two stages, behavior
shows discontinuous change and qualitatively new
knowledge is acquired. Both issues have raised a lot of
criticism. Brainerd (1978) argued that a discontinuity in
behavior is not a testable prediction because it cannot be
distinguished from a continuous acceleration. Fodor
(1980) is one of the critics of the second claim because,
as he argues, an explanatory model of the mechanism of
qualitative change is impossible.

A solution has been found for testing discontinuities
in behavior. Several authors (Preece, 1980; Van der Maas
& Molenaar, 1992) model a discontinuity in behavior by
a bifurcation, in particular the so-called cusp cata-
strophe (Thom, 1975). A bifurcation is mathematically
defined as a qualitative change of the equilibrium beha-
vior emerging from gradual change in a control para-
meter (see next section). Van der Maas and Molenaar
(1992) derived testable predictions (catastrophe flags)
from a bifurcation model (the so-called cusp model).

Empirical evidence of developmental transitions in beha-
vior has been found in several domains: for example,
Jansen and Van der Maas (2001) show that the trans-
ition from Rule I to Rule II on the balance scale task is
a bifurcation. Evidence for bifurcations has also been
found in the domain of language development (e.g.
Dromi, 1987), motor development (e.g. Wimmers, Sav-
elsbergh, Beek & Hopkins, 1998) and analogical reason-
ing (Hosenfeld, van der Maas & van den Boom, 1997).

The impossibility of acquiring qualitatively new
knowledge is still debated (e.g. Laurence & Margolis,
2002), often in reaction to Fodor (1980, 1981). Accord-
ing to Fodor, learning is necessarily some sort of in-
ductive inference involving hypothesis formation and
confirmation. Therefore new concepts that a subject can
learn have to be composed of innate primitive concepts.
The addition of conceptual resources (by maturation) is
the only way in which Fodor allows a system to become
more powerful. We will refer to this as Fodor’s scenario.

Connectionist models of learning and cognitive devel-
opment have been proposed as systems that can acquire
new concepts (e.g. Elman, 1996). After learning input–
output relations, the hidden node activity in connection-
ist models is considered to represent new concepts. An
objection against this claim is that the learned repres-
entations thus obtained still have to be compositional in
the sense of Fodor’s scenario (e.g. Bloom & Wynn,
1994). Moreover, current neural networks may not learn
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concepts at all, but only associations that fully depend
on the context of the learned examples (Marcus, 1998;
Raijmakers, van Koten & Molenaar, 1996).

Generative neural networks, such as cascade correlation
networks, model constructive growth principles by the addi-
tion of hidden nodes, as a function of learning. Quartz
(1993) argues that these networks extend their hypothesis
space during learning and hence escape Fodor’s scenario
(see also Mareschal & Shultz, 1996). Cascade correlation
networks are presented as models of transitions in devel-
opment on several Piagetian task domains: the balance
scale (Shultz, Mareschal & Schmidt, 1994), distance
space and velocity (Buckingham & Shultz, 2000) and
seriation (Mareschal & Shultz, 1999). The constructive
growth principles in generative neural networks would
not seem to escape Fodor’s scenario, however, but in fact
constitute a particular instantiation of it (cf. Raijmakers,
1997, and Marcus, 1998, for further elaboration). 

In what follows we will argue that modeling a transition
by a bifurcation leads to a model of acquiring qualitat-
ively new knowledge without the addition of resources,
thus escaping Fodor’s nativistic scenario. The outline of
the article is as follows: First, it is explained why a bifurca-
tion may lead to qualitatively new knowledge. Second,
a constructivist model of neurite outgrowth is presented
in which the development of network structure bifurc-
ates. Third, in an Adaptive Resonance Theory neural
network, we show how this growth-related bifurcation
may have an effect on cognition.

 

Modeling transitions by a bifurcation

 

Modeling a developmental transition by a bifurcation
provides testable predictions (catastrophe flags) to detect
discontinuities, as we discussed in the introduction.
Several researchers (including Fodor, 1981, p. 300) sug-
gested that the occurrence of a bifurcation (often men-
tioned as self-organization) might be a mechanism by
which a nonlinear dynamical system, such as a human
neural network, acquires qualitatively new knowledge,
escaping Fodor’s scenario (cf. Bereiter, 1985; Lawson &
Staver, 1989; Molenaar, 1986; Molenaar & Raijmakers,
2000).

Dynamical systems are defined by equations that
describe the evolution of their behavior (see Kelso, Ding
& Schöner, 1992, for a general introduction). In the fol-
lowing example of a system that shows bifurcations, the
behavioral variable is 

 

X

 

, which depends on a parameter
W, which is called the control parameter. For each value
of W, 

 

X

 

 has one or more equilibrium values, as depicted
in Figure 1. If  a dynamical system is perturbed, it moves
to a stable equilibrium state (solid line) and away from

an unstable equilibrium state (dotted line). Points F and
B are bifurcation points, because at these points the
number of equilibrium states changes under variation of
W. More precisely, B and F are so-called fold bifurca-
tion points, which are one particular kind of bifurcation
(Guckenheimer & Holmes, 1993). In a fold bifurcation
point, a stable and an unstable equilibrium appear or
disappear simultaneously. If  the system starts at A and
W gradually increases from 1 to 8, then 

 

X

 

 moves from
A to B to C to D. From B to C, the equilibrium value
of 

 

X

 

 makes a discontinuous jump, which is one of the
catastrophe flags.

According to Fodor’s scenario, qualitatively new
knowledge can only be learned by the addition of
resources. However, if  the behavior of the above system
at point D differs qualitatively from that at A, then it
becomes more powerful without adding resources. In
dynamical systems, a qualitative change of the dynamics
is triggered by a gradual change of a parameter, which
is a resource that was present all the time. Moreover, the
change of the parameter does not by itself  determine the
nature of the qualitative change, that is, the increase of
power. In the following section we will discuss a model
of biological growth of a neural network structure,
which shows a bifurcation of activity dynamics.

 

Constructivism in biology

 

Biological models of neurite outgrowth show that con-
structive growth principles can be implemented by the

Figure 1 Equilibrium behavior of a dynamical system with 
behavioral variable X as a function of parameter W. Solid lines 
are stable equilibrium states of X, dotted lines are unstable 
equilibrium states (see text for further explanation).
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evolution of a fixed number of variables. Van Ooyen, Van
Pelt and Corner’s (1995) model is called a constructivist
model because the development of network morphology
is directly dependent on neuron activity and external
influences upon it. The mathematical basis of the model
consists of evolution equations for neuronal activity of
individual neurons and the outgrowth of the neuritic
fields of individual neurons, which are mutually depend-
ent. The network is a so-called shunting neural network
(SNN; Grossberg, 1988). In an SNN excitatory inputs
drive the membrane potential towards a finite max-
imum, while inhibitory inputs drive the membrane poten-
tial towards a finite minimum. In the model discussed
below, the neurons are placed on a circle such that con-
nections grow first between neighbors and then with
more distant neurons.

Figure 2 shows a simple example of Van Ooyen 

 

et al.

 

’s
model. The neuritic field of each neuron, which is shown
by a circle, is the range of its interactions with other
neurons. The neuritic field of neuron k is modeled by
one real-valued parameter, its radius, R

 

k

 

. The connec-
tion weight between two neurons k and l equals the over-
lap of their neuritic fields.

In the model, initially disconnected cells (Figure 2a)
organize themselves into a network of connected cells
(Figure 2b) under the influence of intrinsic activity. Sev-
eral characteristic phenomena of brain development
emerge from the dynamics of this relatively simple model
(see Van Ooyen 

 

et al.

 

, 1995), such as a transient overpro-
duction (overshoot) in the number of connections. The
bifurcation diagram of Figure 1 shows the dependence of
the average activity, 

 

X

 

, on the average connection weight,
W. Due to their mutual dependence, in time, 

 

X

 

 and W

move, approximately, from A to B to C to E. The effect
of the bifurcation is illustrated in Figure 3, which shows
that the average activity of excitatory neurons abruptly
increases with gradual change of connection weights.

The dynamics of the model are defined on a low level,
that is, the interaction of individual cells. Morphological
and functional properties of the model, such as recovery
of network structure after cell death and a critical period
for the elimination of  neurons, appear as emergent
properties of the system. The fact that the outcomes of
developmental processes are similar under normal cir-
cumstances does not imply that the network structure
and the functional properties have been completely laid
down in the mathematical description of the network.

 

Bifurcations in Adaptive Resonance Theory

 

The biological model of morphological growth discussed
here does not show functional, cognitive behavior. How-
ever, in some neural network models for cognition, such
as Adaptive Resonance Theory (ART; Grossberg, 1976),
the SNN implements a content addressable memory. In
ART, the SNN maps inputs to category information. The
category information is stored in long-term memory, which
is recalled directly on the basis of the content of input.
We will show how the occurrence of bifurcations in the
SNN leads to qualitative changes of ART on a cognitive
level. First, we will briefly introduce an ART model.

Figure 2 A schematic view of a one-dimensional layer of 
eight excitatory (black lines) and one inhibitory (gray line) 
neurons. (a) The model starts with non overlapping neuritic 
fields, that is disconnected neurons. (b) In equilibrium, a 
pattern of small and large overlapping neuritic fields has 
resulted, which means that neurons are connected with 
different weights. Replication of results in Van Ooyen 
et al. (1995).

Figure 3 The time course of the neuritic field size of two 
neurons, 1 and 4, and of the average activity of excitatory 
neurons of the model displayed in Figure 2. Note the initial 
overshoot of the neuritic field sizes of the neurons and the 
abrupt change of the average activity. Replication of results in 
Van Ooyen et al. (1995).
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Exact ART

 

Adaptive Resonance Theory defines network principles
for unsupervised learning of patterns. As in a statistical
clustering algorithm, patterns that are alike according to
some distance measure are clustered in one category. In
ART, each category is represented by a vector, which
describes the common factors of its elements. An ART
network constructs categories online during the presenta-
tion of input vectors, and is able to classify known and
unknown input vectors. Each sequence of input vectors
will result in a stable clustering. Moreover, an ART net-
work remains adaptable to unknown input vectors and
a very long or frequent presentation of one pattern will
not remove some of its learned categories. There exist
many implementations of Adaptive Resonance Theory:
ART 1 (Carpenter & Grossberg, 1987a) is a classifier of
binary vectors; ART 2, ART 3 and fuzzy ART are clas-
sifiers of analog vectors (Carpenter & Grossberg, 1987b,
1991; Carpenter, Grossberg & Rosen, 1991). Unsuper-
vised ART networks are extendable to ARTMAP net-
works for supervised learning (e.g. Carpenter, Milenova
& Noeske, 1998). See Levine (2000) for an overview. Here
we will describe Exact ART (Raijmakers & Molenaar,
1997) because it actually implements the content ad-
dressable memory as an SNN. Exact ART clusters ana-
log input vectors.

The Exact ART model consists of several modules
(Figure 4): an input level (F0), a feature level (F1), a
category level (F2) and a reset system. Between F0 and
F1 only bottom-up, non-adaptable connections exist. F1

and F2 are mutually, fully connected by bottom-up,
adaptable connections (dark gray in Figure 4) and top-
down, adaptable connections (light gray in Figure 4).

ART is based on the idea of adaptive resonance feed-
back between two layers of nodes, F1 and F2, as devel-
oped in Grossberg (1976). The following sequence of
events occurs after presentation of an input pattern.
Each step in the description corresponds with a diagram
in Figure 5.

1. In F0, the input vector is preprocessed, such that con-
trast is enhanced, activity is normalized and noise is
suppressed.

2. The resulting activity vector is bottom-up input for
the feature level, F1.

3. The activity vector in F1 is multiplied by bottom-up,
adaptable weights and triggers an activity pattern at
the category level, F2. In its standard form, F2 is an
SNN that results in a winner-takes-all competition
between F2-nodes. This means that the F2-node with
the largest input is the only node with sustained act-
ivity. The one, active F2-node is the recognized cat-
egory. The category is represented by its connected
bottom-up weight vector (In Figure 5–3, the thickness
of the line denotes the size of the weight). In a stand-
ard F2-layer, categories have a local representation,
because they are represented by the weight vector of
one F2-node.

4. The active F2-node also sends activity down, which is
the expected activity pattern generated by the active
category. This top-down input for F1 is the F2 activ-
ity vector multiplied by top-down weights. F1 now
receives two input vectors: the bottom-up input from
F0 and the top-down expectation from F2. The re-
sulting F1 activity consists of the matching elements
of both vectors. Resulting F1 activity is normalized
such that the sum of F1-node activities is 1.

5. The F0 and the F1 vector are compared by calcula-
tion of the match, which is a scalar between 1 and 0.

 

1

 

A match larger than the predefined vigilance para-
meter 

 

ρ

 

 results in resonant feedback between F1 and
F2 (continue with step 8). A match smaller than 

 

ρ

 

 is
insufficient and results in a reset of the selected cat-
egory (continue with step 6).

6. The reset system generates activity that inhibits all
nodes of F1 and F2 shortly, such that activities be-
come 0. Only recently active F2-nodes are suppressed
for a longer period.Figure 4 General lay-out of Exact ART. Black bars are 

activities at the different levels. The gray lines are connections 
between levels. Between F0 and F1 only bottom-up, non-
adaptable connections exist. F1 and F2 are mutually, fully 
connected by bottom-up connections (dark gray) and top-
down connections (light gray). Only outgoing connections of 
one F1-node and one F2-node are drawn.

 

1

 

The match, 

 

R

 

, is calculated as follows: · 

 

u

 

i

 

 is

an element 

 

i

 

 of  the activity vector in F0 and 

 

x

 

i

 

 is an element 

 

i

 

 of  the
activity vector in F1. Both vectors have length N.

R u xi i
i

N

      = − −
=
∑1

1
2

1

| |
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7. As in steps 2 to 5, F1 becomes activated by F0 and
competition takes place in F2. F2-nodes that caused
a mismatch before, are now excluded from the com-
petition. The search for an appropriate F2-node con-
tinues until a matching F2-node is found or a blank
F2-node is selected, which always results in resonant
feedback. The search is a relatively fast process, so that
the weights between F1 and F2 get no time to adapt.

8. As a result of resonant feedback between F1 and F2,
activity patterns in F1 and F2 are sustained for a
relatively long period (compared to the search pro-
cess), meaning that the input vector is stored in short-
term memory (STM).

9. Resonant feedback gives weights of connections be-
tween F1 and F2 time to adapt, such that F1 activity
patterns are stored in long-term memory (LTM).

Equations of bottom-up and top-down weight changes
are given by:

Top-down : 

 

∆

 

z

 

ji

 

 

 

=

 

 

 

α

 

f

 

(

 

y

 

j

 

) (

 

f

 

(

 

x

 

i

 

) 

 

−

 

 

 

z

 

ji

 

)
Bottom-up : 

 

∆

 

z

 

ij

 

 

 

=

 

 

 

α

 

f
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y

 

j

 

) (

 

f

 

(

 

x

 

i

 

) 

 

−

 

 

 

z

 

ij

 

) (1)

 

∆

 

z

 

ji

 

 denotes the change in weight from F2-unit 

 

j

 

 to F1-
unit 

 

i

 

; 

 

∆

 

z

 

ij

 

 denotes the change in weight from F1-unit

 

i

 

 to F2-unit 

 

j

 

; 

 

y

 

j

 

 denotes the activity of F2-node 

 

j

 

; 

 

x

 

i

 

denotes the activity of  F1-node 

 

i

 

; 

 

ƒ

 

() is a threshold

Figure 5 Each diagram shows a phase of the classification and learning process of Exact ART. Separate steps are described in 
the text.
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function; 

 

α

 

 denotes the learning rate. Bottom-up weights
are initialized at small random values, top-down weights
are initialized at maximum values (i.e. 1.0). According to
Equation 1, weights are only updated if  they are con-
nected to active F2-units. Moreover, weights are normal-
ized because F1 activity is normalized and during the
update weight 

 

z

 

ji

 

 and 

 

z

 

ij

 

 become equal to 

 

x

 

i

 

 (see also
Equation 3 from Munakata and Pfaffly, this issue).
Although from the above description, the classification
and learning processes appear to be sequential and step-
wise, the actual implementation is continuous and par-
allel in Exact ART (but not in most other ART imple-
mentations). Exact ART is fully defined by the evolution
equations of all variables (such as Equation 1) and the
initial values of all variables. For example, the sequential
search process is realized as transient behavior in the
Exact ART model (i.e. behavior of the network before
the network is in equilibrium). So-called fast learning
takes place if  after presentation of each input vector, the
network equations are calculated until all variables reach
equilibrium, such that Equation 1 also reaches equilib-
rium. Further details are described in Raijmakers and
Molenaar (1997).

 

From local to distributed representations

 

In its standard form, the category level of ART models
is implemented by winner-takes-all dynamics in an SNN,
which means that only one F2-node is active at a time.
As a consequence, the representations of categories are
local: each category is represented by one weight vector
and each weight is part of the representation of only one
category. However, the SNN appears to have several
dynamical regimes under variation of the range of con-
nections, as we saw in the biological model of neurite
outgrowth. Raijmakers, van der Maas and Molenaar
(1997) performed a numerical bifurcation analysis to
systematically map all relevant bifurcations and dynam-
ical regimes of the SNN as it is implemented in Exact
ART. They varied structural parameters of the SNN: the
range of excitatory connections (

 

σ

 

e

 

) and the range of
inhibitory connections (

 

σ

 

i

 

). The strength of inhibitory
and excitatory connections between units within F2 is
defined by a Gaussian function with parameter 

 

σ

 

 and 

 

d

 

:

 

σ

 

 denotes the width of the function (

 

σ

 

 denotes the
standard deviation in a Normal distribution function); 

 

d

 

denotes the size of the surface under the graph (

 

d

 

 equals
1 in a Normal distribution function); 

 

d

 

e

 

 and 

 

d

 

i

 

 denote
the sum of connection weights of, respectively, excitatory
and inhibitory connections per neuron within F2 (see
Figure 6). Parameters 

 

σ

 

e

 

, 

 

σ

 

i

 

, 

 

d

 

e

 

 and 

 

d

 

i

 

 can be interpreted
as properties of cortical networks that change during
postnatal development (Purves, 1994).

Numerical bifurcation analysis shows that fold bifurca-
tions (see Figure 1; Guckenheimer & Holmes, 1993) in
activity dynamics appear with 

 

σ

 

i

 

 and 

 

σ

 

e

 

 as control
parameters. Figure 7 shows different activity patterns of
a 25-node SNN with variation of 

 

σ

 

i

 

.
The most striking difference between the activity pat-

terns in Figure 7 is the number of simultaneously active
F2-nodes. The winner-takes-all dynamics corresponds with
one active node, as in Figure 7j, and results in local repres-
entations. If  more nodes are active simultaneously dis-
tributed representations may also appear, as we show by
the following small simulation study. During this study
Exact ART learns and classifies a small number of input
patterns, during which connections within F2 are fixed.

Exact ART is repeatedly presented the following
sequence of input patterns A, B, C, A, D, which are
shown in Figure 8. The study is constructed after Car-
penter and Grossberg (1987b) to test for some important
characteristics of the model with regard to stability and
plasticity (for the rationale of this study see Carpenter &
Grossberg, 1987b, and Raijmakers & Molenaar, 1997).
The match criterion, 

 

ρ

 

, is set to .7 such that Exact ART
with a winner-takes-all dynamics would learn four dis-
tinct categories to represent the input patterns.

In this study 

 

σ

 

i

 

 is relatively small, such that more
nodes are active simultaneously (

 

σ

 

i

 

 

 

=

 

 1.3). Figure 9 shows
equilibrium patterns of F2. With six or seven simultan-
eously active F2-nodes, the total number of nodes in F2
is too small to form four totally distinct representations.

Figure 6 Graphs of the strength of excitatory (bold line) and 
inhibitory (thin line) connections between units within F2. The 
horizontal axis represents the distance between two neurons. 
The vertical axis represents the connection strength of two 
neurons. Note that there are no self-inhibitory connections 
(σe, σi, de, di) = (1, 2.1, 1, 6.48).
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Consequently, some F2-nodes are active during the pre-
sentation of  several input patterns, such that distrib-
uted representations are learned. The representations are
stable and the match between input, i.e. F0, and learned
representation, i.e. F1, is sufficient for each input pat-
tern, although it is no longer perfect; the match is .99, .98,
.73 and .81 for inputs A, B, C and D, respectively (cal-
culation of the match is explained in footnote 1). As
expected, learned category representations overlap: Rep-
resentations of input patterns C and D share five out of
seven F2-nodes. As can be verified in Figure 8, of all

pairs, input patterns C and D are most alike. It appears
that Exact ART learns distributed representations where
it is forced to do so. These distributed representations
are unique, but, in contrast to local representations, they
represent similarities between patterns.

 

2

  

Figure 7 Activity patterns for different values of σi, ranging from .7 in Figure 5a to 10.0 in Figure 5k (de = 1, di = 24, σe = 1.02). 
In general, the number of active nodes decrease with increasing σi: i.e. 12, 6, 5, 4, 3, 3, 2, 3, 2, 1 and 0, Figure (h) being an 
exception. More details can be found in Raijmakers et al. (1997).

Figure 8 Input patterns A, B, C and D of a small simulation study (see also Carpenter & Grossberg, 1987b). Horizontal axis denotes 
node index, vertical axis denotes the size of activity.

2 ART3 and Distributed ARTMAP can also form a distributed code
(Carpenter & Grossberg, 1991; Carpenter et al., 1998). As is pointed
out by Carpenter (2001), if  distributed codes are learned, there is a
trade-off between adaptability and stability of learned categories, which
does not occur in local coding.
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Conclusion

In the present article, we argue that modeling a develop-
mental transition by a bifurcation may solve two main
criticisms of constructivist theories of cognitive develop-
ment. First, as was shown elsewhere (Van der Maas &
Molenaar, 1992), a bifurcation model provides testable
criteria to detect discontinuities. Second, simulation models
of developmental mechanisms that show bifurcations,
such as some neural network models, may learn qualitat-
ively new knowledge, that is, they may escape Fodor’s
scenario. To our knowledge, present neural network
models of developmental transitions do not include such
a bifurcation. Furthermore, it appears to be extremely
difficult to define a neural network that learns a nontrivial,
developmentally relevant task by a bifurcation, because
bifurcations involve instabilities. Moreover, transitions
in cognitive development such as the balance scale task
involve higher cognitive functioning, such as the applica-
tion of  higher-order rules. Most neural networks, such
as feed-forward PDP networks, are not naturally suited
for modeling higher cognitive tasks (Raijmakers et al.,
1996). As an exception, ART networks have some prom-
ising applications of higher-order rules, among other
things because they include the sequential search process
that is explained in the section Exact ART (Anumolu,
Bray & Reilly, 1997; Levine, 1995; Tan, 1995).

The numerical bifurcation analysis of the SNN and
the presented simulation study of Exact ART together
show that bifurcations in the dynamics of the category
level F2 result in the learning of qualitatively different
representations in Exact ART, namely local representa-
tions and distributed representations. This is one import-

ant condition for learning qualitatively new knowledge.
To show that Exact ART can truly escape from Fodor’s
scenario, two additional conditions should be fulfilled.
First, the distributed representations should be more
powerful than the local representations. This is not
immediately clear, but the memory capacity and gener-
alization ability of the network are certainly affected by
the nature of the representations (Földiák & Young,
1995). Second, maturation (the change of parameters σi,
σe, di and de) should be modeled as a process of change
in addition to the learning process. In our view (cf.
Quinlan, 1998), the extension of a neural network with
a biologically plausible model of morphogenesis is an
interesting innovation for neural network models of cog-
nitive development. One way of doing this is to incor-
porate Van Ooyen et al.’s (1995) evolution equations
of connection growth in Exact ART. With bifurcations
at the category level of Exact ART, we showed a pos-
sible effect of growth dynamics on the cognitive level,
namely the occurrence of qualitatively different dynam-
ical regimes, which lead to qualitatively different, local
and distributed, representations.
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