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Abstract

Pattern recognition is an important aspect of a dominant technology such as machine intelligence. Domain specific fuzzy-neuro mod-
els particularly for the ‘black box’ implementation of pattern recognition applications have recently been investigated. In this paper, San-
chez’s MicroARTMAP has been discussed as a pattern recognizer/classifier for the image processing problems. The model inherently
recognizes only noise free patterns and in case of noise perturbations (rotations/scaling/translation) misclassifies the images. To tackle
this problem, a conventional Hu’s moment based rotation/scaling/translation invariant feature extractor has been employed. The poten-
tial of this model has been demonstrated on two problems, namely, recognition of alphabets and words and prediction of load from yield
pattern of elasto-plastic analysis. The second example concerns with color images dealing with colored patterns. MicroARTMAP is also
applied to other two civil engineering problems, namely (a) Indian Standard (IS) classification of soil and (b) prediction of earthquake
parameters from the response spectrum in which no feature extractor step is necessary.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The success that concerns the description or classifica-
tion (recognition) of measurements is often an important
component of intelligent systems. Diagnostic analysis of
crack pattern by Chao and Cheng [1], structural damage
assessment by Ishizuka et al. [2] and Watada et al. [3]
and examination of soil cracking pattern are some of the
problems on which pattern recognition (PR) techniques
have been applied.

In the past, neural network (NN) and fuzzy logic (FL)
have individually presented themselves as potential candi-
dates for several approaches well suited for pattern classifi-
cation applications. Kosko’s fuzzy associative memory [4]
has been used to present fuzzy association. Yamakawa
and Tomoda [5] proposed a simple fuzzy neuron model
for application in character recognition but failed to
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describe a specific learning algorithm. The aim of this
paper is to build a pattern recognizer based on a fuzzy-
neuro model that exhibits the following characteristics.

1. A less complex but powerful fuzzy neuro architecture.
2. Significant reduction in training.
3. Recognition of both monochrome and color images.
4. Tolerance to pattern perturbations (rotation, scaling

and translation).

The adaptive resonance theory (ART) model by Moore
[6] is one of the triumphs of modern neural network theory.
The model combines the concepts of feedback stability
between two layers of competing neurons with learning
convergence of the synaptic pathways that connect the
two layers. The synapses learn only if the two fields reso-
nate in a dynamic equilibrium. The Fuzzy ART models
of Carpenter and Gjaja [7] and Carpenter et al. [8] approx-
imate surfaces in a fuzzy cube of high dimension [4]. Each
pattern is a discrete fuzzy set. The ART system uses the
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Fig. 1. Fuzzy ART notation.
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degree of subset hood to control how well fuzzy patterns
match. The system covers the decision surface with
hyper-boxes as much as a feed forward fuzzy system cover-
ing a function’s graph with rule patches. As the diversion of
the space grows, there is rule explosion. The fuzzy ART
model uses subset hood to control the fineness of the hyper
box cover in a fixed fuzzy cube. The result blends the core
concepts of fuzzy cubes and feed back neural networks in a
novel and powerful architecture.

Kasuba’s simplified fuzzy ARTMAP (SFAM) [9] was
chosen to function as the core architecture. When com-
pared to its predecessor, Carpenter’s fuzzy ARTMAP,
SFAM has reduced computational overhead and architec-
tural redundancy. The MicroARTMAP is a modification
of the Fuzzy ARTMAP that includes an inter-ART reset
mechanism. This reset mechanism does not cause category
proliferation and allows the correct treatment of excep-
tions. Category proliferation has been handled in Fuzzy
ARTMAP by modifying the architecture or the training
algorithm by MicroARTMAP as explained by Sanchez
[10].

In order to overcome the problem of tolerance to pat-
tern perturbation, features are extracted to be fed into
MicroARTMAP as ‘‘pre-processed’’ inputs. Already Raj-
asekaran and Vijayalakshmi Pai [11,12] have used SFAM
and Rajasekaran and Amalraj [13] ART1 architecture for
image recognition.

This paper discusses MicroARTMAP, a neuro-fuzzy
pattern recognizer. First, the MicroARTMAP and their
learning equations are presented in brief. Next, the conven-
tional Hu’s moment invariants for the successful feature
extraction are discussed. Finally, the structure of the pat-
tern recognizer and the architecture for two problems,
namely (a) recognition of letters and words and (b) predic-
tion of load from the yield line pattern of elasto-plastic
analysis of clamped plate which requires features are to
be presented. The MicroARTMAP is also applied to two
other civil engineering problems, namely (a) soil classifica-
tion and (b) the prediction of earthquake parameters from
response spectra.

2. Fuzzy art algorithm

The fuzzy ART system has three fields of nodes, namely
F0, F1 and F2. A field F0 of nodes represents a current input
vector and field F1 receives both the bottom–up input from
F0 and top–down input from a field F2 that represents the
active code or category. The vector I = (I1, . . ., Im) denotes
F0 activity in the interval [0, 1] for i = 1, 2, . . ., M. So I is a
point in a fuzzy n-cube. I 2 [0, 1]n. x = (x1, x2, . . . ,xM)
denotes F1 activity and y = (y1, . . ., yN) denotes F2 activity.
The fuzzy ART notation is given in Fig. 1.

2.1. Weight vector

Associated with each F2 category node is a vector wj =
(wj1, wj2, . . ., wjM) of adaptive weights. At first, all the
weights (wj1(0) = � � � = wjM(0) = 1) are initialized to 1.
Then each category is uncommitted. After a category codes
its first input it becomes committed. wj subsumes both the
bottom–up and top–down weight vectors of ART1.
2.2. Parameters

A choice parameter a > 0, a learning rate b 2 [0, 1] and a
vigilance parameters q 2 [0, 1] fix the fuzzy art dynamics
[14].
2.3. Category choice

Neural networks are in general very sensitive to absolute
magnitude and fluctuations in inputs and may tend to
swamp the performance of the network while predicting
the desired outputs. Hence, the need for normalization of
inputs so that the inputs correspond to the same range of
values. Complement coding is applied as a normalization
rule for preserving amplitude information. Thus, it repre-
sents the on-response and the off-response to an input vec-
tor. It also represents the presence of a particular feature in
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the input pattern and its absence. For each input I and F2

node j, the choice function Tj has the form

T jðIÞ ¼
jI ^ wjj
aþ jwjj

ð1Þ

where ^ is the fuzzy intersection given by
(p ^ q)i � min(p, q) and the norm j Æ j is the fuzzy count

c(p) given by

jpj ¼
XM

1¼1

jpij ð2Þ

The index J denotes the chosen category.

T J ¼ maxfT j : j ¼ 1; . . . ;Ng
If more than one Tj is maximal then the system chooses the
category with the smallest j index. Thus, nodes become
committed in order j = 1, 2, 3, . . .. When the system
chooses the Jth category then yJ = 1 and yj = 0 for yj 5 J.
In a choice system the F1 activity vector x obeys the
equation

x ¼ I if F 2 is inactive ð3Þ
I ^ wJ if J th F 2 node is chosen ð4Þ
2.4. Resonance

Resonance occurs when

jI ^ wjj
jI j P q ð5Þ

where q is the vigilance criterion implying that when the
Jth category becomes active, the resonance occurs if

jxj ¼ jI ^ wjjP qjI j ð6Þ
Mismatch reset occurs when

jI ^ wjj
jI j < q ð7Þ

and thus if jxj ¼ jI ^ wjj < qjI j ð8Þ
2.5. Learning

The weight vector wj learns according to

wðnewÞ
j ¼ bðI ^ wðoldÞ

j Þ þ ð1� bÞwðoldÞ
j ð9Þ

Fast learning corresponds to setting b = 1.

2.6. Fast-commit and slow-recode

For efficient coding of noisy input sets, it helps to set
b = 1 when j is an uncommitted node. Then b < 1 is consid-
ered after the system already commits the category. The
just-commit and slow recode by Moore [6] option makes
wðnewÞ

j ¼ i, the first time category j becomes active. Comple-
ment coding solves the problem of many random inputs
eroding the norm of weight vectors.
2.7. Normalization by complement coding

Normalization of fuzzy ART inputs prevents category
proliferation. This normalization is done using comple-
ment coding as shown below.

The system normalizes the F0! F1 inputs if for some
c > 0X

i

I i ¼ jI j ¼ c ð10Þ

for all inputs.
If a 2 [0, 1]M denotes original input, then

I ¼ ða; acÞ 2 ½0; 1�2M ð11Þ

where

ac ¼ fac
i g and ac

i ¼ 1� ai ð12Þ

The new F0 layer input vector I is complement coded and
both I and wj are of dimensions 2M:

I ¼ ða; acÞ ¼ ða1; a2; . . . ; aM ; ac
1; . . . ; ac

MÞ ð13Þ

So I is a point in the double-sized fuzzy cube [0, 1]2M.
One way to normalize a vector ‘a’ is to divide by the fit

count

I ¼ �a
jaj ð14Þ

Compliment coding represents both on-response and the
off-response to an input vector �a. In the simplest form �a
represents on-response and �ac represents off-response. I
has the same fuzzy or entropy structure as does its terms
�a and �ac.

The system automatically normalizes a complement
coded input because

I ¼ jð�a; �acÞj ð15aÞ

¼
XM

i¼1

aiþ R M �
XM

i¼1

ai

 !
ð15bÞ

¼ M ð15cÞ

with complement coding the initial condition

wj1ð0Þ ¼ wj2ð0Þ � � � ¼ wj2Mð0Þ ¼ 1 ð16Þ

Both I and wj are of dimension 2M.

2.8. MicroARTMAP algorithm (supervised neural network
architecture) [10]

The architecture of MicroARTMAP is the same as fuzzy
ARTMAP. MicroARTMAP uses two fuzzy ART modules
ARTa and ARTb that link together via an inter-ART mod-
ule Fab called a map field. The map field forms predictive
association between categories and realizes the ARTMAP
match tracking rule. Match tracking increases ARTa vigi-
lance parameter qa in response to a predictive error or mis-
match at ARTb. Match tracking reorganizes category
structure so that subsequent presentations of the input do
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not repeat the error. The MicroARTMAP architecture is
shown in Fig. 2. The learning is similar to FUZZY ART-
MAP and herein we give the details of MicroARTMAP
as given by Sanchez et al. and the reader is advised to refer
to the paper [10].
3. Training of MicroARTMAP

All the weights are initialized to 1 as all categories are
uncommitted:

wab
jk ¼ 0; j ¼ 1; . . . ;N a k ¼ 1; . . . ;N b ð17Þ

The starting vigilance is set to 0 to minimize the number of
categories.

Present the input–output pairs (a, b).
When a pattern ‘a’ is presented to ARTa, a category J is

selected according to the choice function:

T j ¼
jI ^ wjj
aþ jwjj

ð18Þ

If it is a newly committed category then qJ = qa.

The reset condition is evaluated as qJ ¼
jI^wjj
jI j P q where

q 2 [0, 1], i.e. J node is active.
If this condition is not satisfied, this node will be inhib-

ited and new search triggered.
Pattern b is presented to ARTb selecting the Kth

category
Map field activity is given by

xab ¼

yb þ wab
j if jth F b

2 node is active

wab
j if jth F a

2 node is active F b
2 is inactive

yb if F a
2 is inactive F b

2 is active

0 if F a
2 is inactive yf b

2 is inactive

8>>>><
>>>>:

ð19Þ
3.1. Inter art reset

After xab the map field activity has been calculated,
replacing pj and pjk by

pjk ¼
xab

k

jxabj if j ¼ J

pj ¼
xab

jxabj þ
PNa

i¼1;i6¼jjwab
i j

ð20Þ

pjk ¼
jwab

jk j
jwab

j j
otherwise

pj ¼
wab

j

jxabj þ
PNa

i¼1;i6¼j jwab
i j

ð21Þ

The contribution to the total entropy of the Jth unit if al-
lowed to learn this pattern, hj is calculated.

If hJ > hmax, then the category is too entropic and the
Jth node in ARTa is inhibited by setting Tj(I

a) = 0, for
the rest of this pattern presentation. Its vigilance parameter
is not valid. Other categories will be chosen in ARTa until
the entropy contribution criterion is met. When previously
uncommitted category is selected say Ji then

P Ji
k
¼ 1 while pjk ¼ 0 for k 6¼ K ð22Þ

and hJ = 0. Then the weights in ARTa and ARTb are up-
dated and also in the map field by wab

j ¼ xab.

3.2. Offline evaluation

The off-line map field is initialized by V Jab
k
¼ 0; j ¼

1; . . . ;N a; k ¼ 1; . . . ;Nb after all patterns have been pro-
cessed and the data are presented again to update these
weights. A test on the training data is done and results
are stored in weights. The entropy H is computed and com-
pared to Hmax.
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If H > Hmax, then mapping defined by MICRO ART
MAP is too entropic.

The ARTa has a node J that has maximal contribution
to the total entropy.

J = arg max hj, j = 1, . . ., Na is searched and removed
(i.e. wa

j ¼ 1, wab
j ¼ 0).

The baseline vigilance is set to

pa ¼ jW jj
Ma ¼ 1� Rj

Ma þ Dq ð23Þ

This is done so that RJ 6M (1 � pa) (the category size is
bounded).

All the patterns that previously selected the Jth ARTa

category are presented and the rest are not presented. This
process continues till

H < Hmax:
Table 1
Normalized Hu’s moments

/1 = g20 + g02

/2 ¼ ðg20 � g02Þ2 þ 4g2
11

/3 = (g30 � 3g12)2 + (3g21 + g03)2

/4 = (g30 + g12)2 + (g21 + g03)2

/5 = (g30 � 3g12)(g30 + g12)b(g30 + g12)2 � 3(g21 + g03)2c
+ 3(g21 � g03)(g21 + g03)
+ b(3g30 + g12)2 � 3(g21 + g03)2c

/6 = (g20 � g02)b(g30 + g12)2 � 3(g21 + g03)2c
+ 4g11(g30 + g12)(g21 + g03)

/7 = (3g21 � g03)(g30 + g12)b(g30 + g12)2 � 3(g21 + g03)2c
� (g30 � 3g12)(g21 + g03)b3(g30 + g12)2 � (g21 + g03)2c

l00 = M (Mass)
l10 = 0
l01 = 0
l20 ¼

Pn
j¼1

Pn
i¼1f ðxi; yjÞðx2

i þ 1
12Þ

l02 ¼
Pn

j¼1

Pn
i¼1f ðxi; yjÞðy2

j þ 1
12Þ

l03 ¼
Pn

j¼1

Pn
i¼1f ðxi; yjÞðy3

j Þ
3.3. MicroARTMAP prediction

The Jth ARTa node is selected so that TJ(I) value is
highest and then the node corresponding to the K th

J ARTb

category is predicted:

KJ ¼ arg maxhfW ab
jk ; k ¼ 1; . . . ;Nbg: ð24Þ

where KJ has the most frequent association to node J.

3.4. Fast learning in MicroARTMAP

When qa = 0, hmax = 0, fast learning is assumed. All pat-
terns associated with a given class label will be inside the
same ARTa hyper box which is arbitrarily large. The off-line
evaluation will measure the probabilistic overlapping of the
created hyper boxes. This is related to the number of patterns
that select a different category when inter-ART reset is
enabled and when it is disabled. This happens as the inter-
ART reset does not raise ARTa vigilance. Overlapping of
patterns will be large if H > Hmax. Learning is stopped when
H = 0 that is when there is no overlapping in the input space.
The hyper box to be refined is deleted and all patterns that
previously selected that particular hyper box are presented
again. Smaller hyper boxes are forced to cover the same
region. Through this batch learning process, large hyper
boxes are placed in regions where all patterns have the same
class label, while small hyper boxes are placed in the bound-
aries between classes. Populated exceptions are handled with
one large hyper box which is a general rule and a specific rule
is represented by one smaller hyper box.

4. MicroARTMAP rules

The MicroARTMAP rules are extracted from the
weights in the form.

4.1. IF a is cj THEN output is LK (priority pi)

This means that pattern ‘a’ selects the jth category and
LK is the predicted label. The most general rule, i.e. the cat-
egory with largest hyper box is evaluated. If the first rule is
impure, then MicroARTMAP dynamically finds some cat-
egory that arguments the mutual information between
input and output partitions. When entropy has been
reduced sufficiently MicroARTMAP training algorithms
stops.

5. Feature extractor – moment based invariants [11,12]

Moments are extracted features that are derived from
raw measurements. In practical imagery, images are sub-
jected to various geometric disturbances or pattern pertur-
bations. It is therefore necessary that features that are
invariants to orientations be used for purposes of recogni-
tion or classification. For 2D images moments have been
used to achieve Rotation (R), Dilation (D) and Translation
(T) invariants.

The normalized moments g is defined as

gpq ¼ lpq=l
ððpþqÞ=2þ1Þ
00 ð25Þ

where (p + q) = 2, 3 . . . From Eq. (25), constraining
(p, q 6 3) and using the tools of invariant algebra, a set
of seven RST invariant features using Hu’s moment invar-
iants (but calculated with respect to centre of rotation) as
shown in Table 1 may be derived. Those images, which
are similar, are classified as belonging to the same class.
In other words, images that are perturbed (rotated, scaled
or translated) versions of the given nominal pattern are
all classified as belonging to a class.

Visual image data can be either binary (for monochrome
images) or real (for color images). In Hu’s moment features
formulae, f(x, y) = 0 or 1 based on whether the pixel is
dark or bright. On the other hand, the intensity is repre-
sented by various shades with 0 6 f(x, y) 6 1, indicating
that the density lies anywhere between the ends of a spec-
trum; very dark to very bright thus representing color
images. However, the image function f(x, y) is constant
over any pixel region.



Table 2
Alphabets recognition

Input alphabet Output Training step Recognition

W (exact pattern) 10111 23rd Correct
O (noisy pattern) 01111 15th Correct
R (noisy) 00100 4th Correct
D (noisy) 00100 4th Correct
A (exact) 00001 23rd Correct
O (noisy) 01111 15th Correct
R (noisy) 00100 24th Correct
Pa (noisy) 11101 14th Correct
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The behaviour of the model during the recognition of
color images has been studied both in the presence and
absence of noise or perturbations.

6. Structure of MicroARTMAP based pattern recognizer

The overall structure of the pattern recognizer consists
of an image processor, a feature extractor, MicroART-
MAP training and MicroARTMAP inference. The images
(patterns) whether monochrome or color are input through
the image processor. In this work, the images are engraved
on a grid size of 25 · 25 or 40 · 40. Also images may have
their colors chosen from a fixed palette. Here, the colors
are white, black, green and yellow. However, any number
of colors could be used to define the palette. The image
processor receives the images that are to be trained (train-
ing patterns) or inferred by MicroARTMAP (inference
patterns).

The feature extractor obtains the RST invariant features
for each image, whether for training or inference. From the
images submitted for training or inference, the seven
moments based invariant functions, /1, . . ., /7 are
extracted by the feature extractor for presentation to
MicroARTMAP. Thus, the MicroARTMAP works only
on the feature vectors of the images and not on whole
images. The MicroARTMAP activator functions have
two modules: the training module and the inference mod-
ule. The feature vectors of the training patterns and the cat-
egories to which they belong (image category) are
presented to MicroARTMAP’s TRAINING MODULE.
The only user selectable parameter for training session is
the vigilance parameter q(0 < q < 1). Once the training is
complete, the top–down weight vectors represent the pat-
terns leaned. Next, the feature vectors of the images that
are to be recognized/classified are presented to the infer-
ence module. MicroARTMAP now begins its classification
of images by associating the feature vectors with the top
down weight vectors. The category of the image is output
by MicroARTMAP.

7. Examples

7.1. Recognition of alphabets and words by MicroARTMAP

Optical character recognition of hand written or printed
characters is wide-spread nowadays. Images of pages in
text are converted to ASCII character files for editing
and combining with other files. Generally, these systems
operate on typed fonts. The problem of recognition
becomes more difficult for hand written alphanumeric
characters. There are similarities between certain charac-
ters. A ‘‘2’’ may appear to be ‘‘z’’ or vice versa. An ‘‘a’’
may appear to be ‘‘q’’, or a ‘‘h’’ may appear as ‘‘n’’. If
the recognition features are invariant under rotation, then
a ‘‘d’’ and ‘‘p’’ will have the same features. Hence, some
features which are not rotation invariant would distinguish
these characters. Each character is thus treated as a texture
and the texture features are extracted. Hu’s moment invar-
iants are used to arrive at these features of the texture.
Those patterns that are similar are classified as belonging
to the same class. The images that are perturbed (rotated,
scaled or translated) versions of the given nominal patterns
are all classified as belonging to a class. The feature extrac-
tor extracts these features from the patterns before present-
ing them as ‘‘pre-processed’’ inputs to MicroARTMAP.
Weights are initialized to 1 before training. The inputs
are normalized by complement coding. The number of
samples is 40 · 10 = 400 (26 English alphabets + 4 Tamil
alphabets + 10 numbers). Each input of hand written
alphabet is presented in 40 · 40 grid size and the moment
based feature extractor extracts seven features. Out of these
seven features, first six are used to the MicroARTMAP
since the seventh feature is negligibly small. For example
B has six features as

B ¼ ½0:47844 0:16473 0:05568 0:14866 0:0188 0:06017;

� � � � � � � � � � � � � � � ��
� � � � � � � � � � � � � � � ��
0:4761 0:10269 0:055137 0:14588 0:018239 0:05873�;

Number of training pairs used for each alphabet is 6
(with noise) and the recognition is 100%. Training with cor-
rect data takes 30 steps as shown in Table 2. Without con-
sidering moment invariant features, MicroARTMAP has
also been tested to recognize hand written words. Each
hand written alphabets (20 English alphabet + 4 Tamil
alphabets) is given 7 · 5 matrix forms as input and the
input has space of 30 patterns in total. There are 10 num-
bers of data for each pattern and the total number of sam-
ples is 300. After training the network, any alphabet or
word is given as input and is easily recognized by the net-
work. Table 2 gives the details of the recognition of alpha-
bets by MicroARTMAP. Total time for training and
recognition of word (WORD) is 0.5313 s.
7.2. Is classification of soil [15]

The two objectives of soil exploration and classification
are to find the suitability of the soil for the construction of
different structures like dams, embankments sub grade and
wearing surfaces, and secondly, the effect on the fertility of
soil when it is irrigated. Soils seldom exist in nature
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separately as sand, gravel or any other single component,
but are usually found as a mixture with varying propor-
tions of particles of different sizes. When soil consists of
various constituents in different proportions, the mixture
is given the name of the constituent that appears to have
a significant influence on its behaviour. Thus, sandy clay
has most of the properties of clay, but contains a significant
amount of sand. The behaviour of soil mass under load
depends upon many factors: the properties of the various
constituents present in the mass, the degree of density sat-
uration and the environmental conditions. There are many
classification systems of soils, from among which we con-
sider the unified soil classification system. In practice, soil
classification is determined by comparing data with the
existing experimental results. Hence, MicroARTMAP is
applied to this problem, because existing techniques are
not accurate or satisfactory.

The Bureau of Indian Standards (BIS) classifies the soil
based on properties such as color of soil, percentage of
gravel, percentage of sand, percentage of fine-grained par-
ticles, liquid limit and plastic limit. For input to the net-
work, the following rule is used for the color of the soil;
0.1 – brown; 0.2 – brownish grey; 0.3 – grayish brown;
0.5 – reddish yellow; 0.7 – yellowish red. The classification
of the soil is given as 0.1 – clayey soil; 0.2 – clay with
medium compressibility; 0.3 – clay of low compressibility;
0.6 – silt with medium compressibility. Table 3 shows the
normalized data to the MicroARTMAP. It is possible to
classify the soil using MicroARTMAP.

In order to compare the efficiency of MicroARTMAP,
the sequential learning neural networks (SLNN) [15] was
used with the architecture (7 inputs � 6 input neurons + 1
bias), 1 hidden neuron and 1 output neuron with learning
rate of 0.5 and a momentum factor of 0.0000001. It
required 10,000 iterations for training. First ten samples
Table 3
IS classification of soil

Color soil %Gravel/18 %Sand/82 %Grain particles/84

Soil

0.1 0.000 0.975 0.238
0.2 0.111 0.682 0.5
0.1 0.000 0.341 0.857
0.1 0.000 0.329 0.869
0.2 0.000 0.524 0.678
0.2 0.000 0.512 0.690
0.2 0.000 0.548 0.654
0.2 0.166 0.67 0.5
0.2 0.000 0.585 0.619
0.2 0.222 0.682 0.476
0.1 0.000 0.341 0.857
0.2 0.000 0.536 0.666
0.5 0.000 0.597 0.607
0.2 0.000 0.512 0.690
0.1 0.000 0.926 0.285
0.2 0.222 0.658 0.5
0.1 0.000 0.951 0.261
0.1 0.000 0.341 0.857
are used for training and next eight samples are used for
testing. From the weights determined in SLNN, the soil
classification is given by the equation as

s:c: ¼ 210:232=ð1þ e�pÞ ð26aÞ

where

p ¼ ð�0:164I1 � 2:121I2 � 3:521I3 � 0:715I4

� 10:95I5 þ 8:0619I6 � 3:237Þ ð26bÞ

It is not possible to write the equation for soil classification
by a MicroARTMAP but only classification can be done.
7.3. Plastification of clamped isotropic plate

For many generations, engineers have based the analysis
and design of structures on a linear theory of elasticity
assuming the material to be isotropic. But, it is common
that the elastic analysis is unduly conservative because it
fails to take advantage of the ability of many materials to
carry stresses above the yield stress. The problem is per-
tained to the recognition of patterns for the prediction of
load from yield patterns of elasto-plastic, clamped plates.
Finite element displacement method for elasto-plastic anal-
ysis of bilinear strain hardening orthotropic plates and
shells, assuming elastic unloading was developed by
Whang [16]. The two basic approaches by Whang in
elasto-plastic analysis are the initial stiffness approach
and tangent stiffness approach, in conjunction with the
Huber–Mises yield criterion and the Prandtl–Reuss flow
rule in accordance with the strain hardening yield function.

The formation of plastic zones with respect to the
loading is to be represented in the patterns. The Micro-
ARTMAP architecture is trained with the patterns repre-
senting the plastic zones and their corresponding loading
Liquid limit/50 Plastic limit/34 IS classification

Actual Micart

0.61 0.647 0.1 0.1
0.508 0.529 0.1 0.1
0.728 0.764 0.2 0.2
0.711 0.735 0.2 0.2
0.576 0.676 0.3 0.3
0.576 0.647 0.3 0.3
0.593 0.676 0.3 0.3
0.525 0.558 0.1 0.1
0.61 0.823 0.6 0.6
0.508 0.529 0.1 0.1
0.711 0.735 0.2 0.2
0.576 0.647 0.3 0.3
0.61 0.823 0.6 0.6
0.593 0.676 0.3 0.3
0.627 0.676 0.1 0.1
0.525 0.529 0.1 0.1
0.61 0.676 0.1 0.1
0.728 0.735 0.2 0.2



     =      plastic

= =

P/Pel=1.4 P/Pel=1.6 P/Pel=1.8 P/Pel=2.0

Fig. 3. Isotropic plate (clamped).
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and tested for its inference capability. The uniformly
loaded isotropic plates with clamped edges are assumed
to have the thickness as t = 1.0, the Young’s modulus
and the Poisson’s ratio as E = 300,000 kN/sq m and 0.3
and r0 is the yield stress = 30 kN/sq m, Ep = 300 kN/sq m.

Considering the doubly symmetric nature of the pat-
terns, only a quarter of the image is presented to Micro-
ARTMAP for training as shown in Fig. 3. A slight
disturbance is made in the original patterns and these pat-
terns are used for inference out of the training. Moment
invariants are calculated for all the patterns used as data
for training the architecture and are tabulated in Table 4.
It is seen that MicroARTMAP is able to recognize patterns
if they are slightly disturbed and it is not possible to iden-
tify patterns if the noise is too high.

The network can handle both symmetric and asymmet-
ric patterns. However, in the case of symmetric patterns it
is essential that only distinct portions of the images be
Table 4
Moment invariants for yield pattern for clamped isotropic plate

M1 M2 M3 M4 M5 P/P(y)

0.93 0.26 0.321 0.938 0.483 1.4
0.568 0.0874 0.041 0.205 0.016 1.6
0.275 0.627 0.004 0.018 0.0001 1.8
0.228 0.015 0.00395 0.0137 0 2.0
0.935 0.267 0.321 0.938 0.483 1.4
0.596 0.0904 0.041 0.205 0.016 1.6
0.258 0.0217 0.004 0.018 0.0001 1.8
0.228 0.015 0.00375 0.0137 0 2.0
0.938 0.268 0.321 0.938 0.483 1.4
0.586 0.0674 0.041 0.205 0.016 1.6
0.285 0.047 0.0048 0.018 0.0001 1.8
0.228 0.015 0.00395 0.0137 0 2.0
0.939 0.269 0.321 0.938 0.483 1.4
0.576 0.0784 0.041 0.205 0.0116 1.6
0.275 0.0217 0.0214 0.067 0.0031 0.8
0.228 0.015 0.00395 0.0137 0 2.0
0.937 0.269 0.321 0.938 0.483 1.4
0.568 0.0874 0.041 0.205 0.016 1.6
trained. This is because in the case of doubly symmetric
patterns, their RST invariant feature vectors /2, . . ., /7

acquire values that are very close to 0, and /1 tends to 1.
This consequently results in feature vectors which are sim-
ilar, leading to misclassification of patterns.
7.4. Prediction earthquake parameters from response spectra

In the last century, India and other countries have had a
number of the world’s greatest earthquakes. More than
60% of the area in India is considered prone to damaging
earthquakes. The north-eastern region of the country as
well as entire Himalayan belt is susceptible to great earth-
quakes of magnitude more than 8. Besides these, even the
peninsular India is prone to damaging earthquakes. The
January 26, 2001, Earthquake at Bhuj, Gujarat has been
the most damaging earthquake in the last five decades.
The M7.9 quake has caused a huge loss of life and prop-
erty. Housing and safety are the basic human needs. Struc-
tures adequately designed for usual loads need not
necessarily be safe for earthquake forces. In case of design
to earthquake loading, it is not practical and economically
viable to design the structures to remain within elastic lim-
its. Cracking of concrete and yielding of steel, which would
be considered unacceptable for usual types of loading are
depended on to dissipate the seismic energy without col-
lapse for ground shaking that may take place infrequently.
It is also necessary to generate artificial accelerograms and
study the behaviour of structures due to various types of
earthquakes simulated.

Proper ground motions are required to assess the seismic
response of a structure. It is necessary to generate artificial
earthquake ground motions at a site because recorded
accelerograms are generally very limited. Trifunac and
Brady [17] defined the significant duration as a function
of the magnitude (M) and epi-central distance (R). Also
Trifunac and Lee [18] developed as empirical model for
Fourier spectrum in terms of M, R and attenuation



Table 5
M, S, H and R for different response spectra

S. no. M (actual) M (normal) S (actual) S (normal) H (actual) H (normal) R (actual) R (normal)

1 6 0.166667 0 0.166667 1 0.03125 30 0.083333
2 6 0.166667 0 0.166667 1 0.03125 50 0.916667
3 6 0.166667 0 0.166667 30 0.9375 30 0.083333
4 6 0.166667 0 0.166667 30 0.9375 50 0.916667
5 6 0.166667 2 0.833333 1 0.03125 30 0.083333
6 6 0.166667 2 0.833333 1 0.03125 50 0.916667
7 6 0.166667 2 0.833333 30 0.9375 30 0.083333
8 6 0.166667 2 0.833333 30 0.9375 50 0.916667
9 8 0.833333 0 0.166667 1 0.03125 30 0.083333
10 8 0.833333 0 0.166667 1 0.03125 50 0.916667
11 8 0.833333 0 0.166667 30 0.9375 30 0.083333
12 8 0.833333 0 0.166667 30 0.9375 50 0.916667
13 8 0.833333 2 0.833333 1 0.03125 30 0.083333
14 8 0.833333 2 0.833333 1 0.03125 50 0.916667
15 8 0.833333 2 0.833333 30 0.9375 30 0.083333
16 8 0.833333 2 0.833333 30 0.9375 50 0.916667
17 6 0.166667 1 0.5 15.5 0.484375 40 0.5
18 8 0.833333 1 0.5 15.5 0.484375 40 0.5
19 7 0.5 0 0.166667 15.5 0.484375 40 0.5
20 7 0.5 2 0.833333 15.5 0.484375 40 0.5
21 7 0.5 1 0.5 1 0.03125 40 0.5
22 7 0.5 1 0.5 30 0.9375 40 0.5
23 7 0.5 1 0.5 15.5 0.484375 30 0.083333
24 7 0.5 1 0.5 15.5 0.484375 50 0.916667
25 7 0.5 1 0.5 15.5 0.484375 40 0.5
26 7.5 0.666667 0 0.166667 22 0.6875 45 0.708333
27 7.5 0.666667 1 0.5 22 0.6875 35 0.291667
28 7.5 0.666667 2 0.833333 8 0.25 45 0.708333
29 6.5 0.333333 0 0.166667 8 0.25 35 0.291667
Minimum 6 0 1 30
Maximum 8 2 30 50
Min (taken) 5.5 �0.5 0 28
Max (taken) 8.5 2.5 32 52
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Fig. 4. Response spectra for M = 6, S = 0, H = 1, R = 30.
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Fig. 7. Black and white figure of Fig. 3.
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Fig. 8. The figure is divided into eight parts. Number of black counts in each part is C1 = 4731, C2 = 4881, C3 = 4977, C4 = 4982, C5 = 4732, C6 = 4882,
C7 = 4978, C8 = 4983.

Table 6
Black pixel count in the split response spectra

C1 C2 C3 C4 C5 C6 C7 C8

0.6871 0.7419 0.9080 0.9365 0.6886 0.7435 0.9100 0.9385
0.4214 0.7452 0.7420 0.7827 0.4229 0.7468 0.7440 0.7846
0.8214 0.7613 0.8540 0.8038 0.8229 0.7629 0.8560 0.8058
0.5286 0.7694 0.8200 0.8481 0.5300 0.7710 0.8220 0.8500
0.7114 0.7839 0.9640 0.9615 0.7129 0.7855 0.9660 0.9635
0.3100 0.9274 0.8640 0.8538 0.3114 0.9290 0.8660 0.8558
0.4871 0.7597 0.7520 0.8692 0.4886 0.7613 0.7540 0.8712
0.1243 0.7403 0.7680 0.7462 0.1257 0.7419 0.7700 0.7481
0.6357 0.6000 0.4800 0.6077 0.6371 0.6016 0.4820 0.6096
0.4529 0.9677 0.9700 0.7673 0.4543 0.9694 0.9720 0.7692
0.8386 0.8065 0.6300 0.5712 0.8400 0.8081 0.6320 0.5731
0.9971 0.9677 0.9620 0.7038 0.9986 0.9694 0.9640 0.7058
0.9786 0.8645 0.8760 0.9385 0.9800 0.8661 0.8780 0.9404
0.8443 0.7194 0.5880 0.6212 0.8457 0.7210 0.5900 0.6231
0.7214 0.7661 0.6160 0.5577 0.7229 0.7677 0.6180 0.5596
0.6500 0.5387 0.4620 0.5135 0.6514 0.5403 0.4640 0.5154
0.5500 0.5371 0.5740 0.6346 0.5514 0.5387 0.5760 0.6365
0.5157 0.7258 0.6120 0.5423 0.5171 0.7274 0.6140 0.5442
0.5414 0.7258 0.5380 0.5096 0.5429 0.7274 0.5400 0.5115
0.8243 0.6855 0.6740 0.6442 0.8257 0.6871 0.6760 0.6462
0.4557 0.8065 0.6600 0.6808 0.4571 0.8081 0.6620 0.6827
0.7257 0.6226 0.5480 0.6038 0.7271 0.6242 0.5500 0.6058
0.8500 0.6097 0.5860 0.7635 0.8514 0.6113 0.5880 0.7654
0.7186 0.7435 0.6040 0.6096 0.7200 0.7452 0.6060 0.6115
0.1186 0.4758 0.3240 0.2096 0.1200 0.4774 0.3260 0.2115
0.8600 0.9677 0.8660 0.8058 0.8614 0.9694 0.8680 0.8077
0.9943 0.8048 0.7800 0.7904 0.9957 0.8065 0.7820 0.7923
0.4271 0.1435 0.0360 0.1538 0.4286 0.1452 0.0380 0.1558
0.2629 0.5645 0.3720 0.3365 0.2643 0.5661 0.3740 0.3385
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function related to a site condition (S) and focal depth (H).
Hence, initial information is defined in terms of M, R, S, H.
Lee and Han [19] have developed efficient neural network
based models for the generation of artificial earthquake
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Fig. 9. Comparison of MIRCRO ARTMAP with BPN.
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and response spectra. Several examples were given to verify
the developed models.

Rajasekaran et al. [20] developed wavelet and principal
component analysis for the generation of artificial earth-
quake motion records using initial parameters M, S, H

and R. Most of the seismic design procedures have pre-
sented the well defined design spectrum rather than the
time history. Hence, it is important to generate the acceler-
ogram compatible with a target spectrum which can be
called inverse problem.

In this paper, the problem is pertained to solving the
inverse problem for the prediction of Magnitude, Site con-
dition, Focal depth and Epi-central distance from response
spectrum [21]. The actual and normalized values of M, R, S

and H are given in Table 5. Three different spectra are
given in Figs. 4–6 for different earthquakes 1, 12 and 28
of Table 5. Any given response spectrum is changed to
black and white figure and it is divided in to eight-parts
using a program developed in MATLAB and the number
of black pixels in all the eight parts are counted and are
denoted by C1, C2, . . ., C8 (see Figs. 7 and 8). These counts
in normalized form are given as inputs for all the 29 data as
shown in Table 6 and corresponding Magnitude, Site con-
dition, Focal depth and epi-central distance are given as
four outputs to MicroARTMAP. Training is successfully
carried out for 29 different patterns. The range of the train-
ing patterns is limited to 6.0–8.0 for M. 30–50(m) for R. 0,
1, 2 for S (classification by UBC) and 1–30(m) for H. In
this problem, the learning rate, vigilance parameter on out-
put and step size is assumed as 1, 0.9 and 0.02, respectively.

A slight disturbance is made in the original patterns and
these patterns are used for inference out of the training. It
is seen that MicroARTMAP is able to recognize patterns if
they are slightly disturbed and it is not possible to identify
patterns if the noise is too high. It is possible to classify the
Magnitude, Site condition, Focal depth and epi-central
distance of any given response spectrum using Micro-
ARTMAP.

When the same problem is presented to BPN (available
in tool box of MATLAB), it requires 2800 epochs for con-
vergence. Fig. 9 shows the comparison of M, S, H and R

obtained by MicroARTMAP and BPN. MicroARTMAP
does not take much time for training as BPN does.

8. Conclusions

In this paper, the pattern recognition capability of
MicroARTMAP has been discussed. The architecture aug-
mented with a moment based feature extractor exhibits an
excellent capability to recognize patterns by working on the



S. Rajasekaran, V.K. David / Advances in Engineering Software 38 (2007) 698–709 709
RST invariant feature vectors of the patterns rather than
the patterns themselves. The augmented architecture can
handle both symmetric and asymmetric patterns. In the
case of asymmetric patterns, the RST invariant functions
turn out to be the same for all perturbations of a given pat-
tern. Hence, MicroARTMAP has no difficulty in recogniz-
ing perturbed patterns since it only calls for associating the
same feature vectors with top–down weights vectors. This
results in the invocation of the same category node with
correct identification of the perturbed pattern. However,
in the case of symmetric patterns it is essential that only
distinct portions of the images be trained. In the case of
multi-symmetric patterns, it is sufficient to consider 1/2n

of the portion of the image.
It is seen from the first example, MicroARTMAP recog-

nizes hand written characters (English and Tamil) and
words. When the MicroARTMAP is augmented with
moment based feature extractor, it can recognize hand
written alphabets and numerals. Time taken for soil classi-
fication is much less compared to other architectures such
as SLNN.

The prediction of load from yield pattern by using
MicroARTMAP is done quite accurately. It is also seen
that inverse problem could be handled by MicroARTMAP
such as prediction of earthquake parameters from response
spectra. Again comparing with other neural network archi-
tecture such as BPN, the time taken by MicroARTMAP is
less.

Moreover, the potential of the proposed MicroART-
MAP as a tool for pattern recognition problems has been
illustrated in the examples presented.
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